1
|
Zhang QY, Xu LL, Zhong MT, Chen YK, Lai MQ, Wang Q, Xie XL. Gestational GenX and PFOA exposures induce hepatotoxicity, metabolic pathway, and microbiome shifts in weanling mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168059. [PMID: 37884144 DOI: 10.1016/j.scitotenv.2023.168059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Ammonium perfluoro (2-methyl-3-oxahexanoate) (GenX), a replacement for perfluorooctanoic acid (PFOA), has been detected in multiple environmental media and biological samples worldwide. Accumulated evidence implies that GenX exposure might exert adverse health effects, although the underlying mechanisms have not been fully revealed. In this study, pregnant BALB/c mice were exposed to GenX (2 mg/kg/day), PFOA (1 mg/kg/day), or Milli-Q water by gavage from the first day of gestation (GD0) until GD21. Necropsy and tissue collection were conducted in pups at 4 weeks of age. PFOA and GenX induced similar histopathological changes in both the liver and the intestinal mucosa, accompanied by higher serum levels of alanine and aspartate aminotransferase. Moreover, the capacity of hepatic glycogen storage and intestinal mucus secretion were significantly decreased, suggesting dysfunction of liver metabolism and the intestinal mucosal barrier. A total of 637 and 352 differentially expressed genes (DEGs) were identified in the liver tissues of GenX and PFOA group, respectively. Most of the enriched pathways from the DEGs by KEGG enrichment analysis were metabolism-associated. Moreover, overexpression of CYP4A14, Sult2a1, Cpt1b, Acaa1b, Igfbp1, Irs-2 and decreased expression of Gys2 were observed in livers of GenX exposed pups, supporting the hypothesis that there was metabolic disruption. Furthermore, DNA damage and cell cycle arrest proteins (Gadd45β, p21, Ppard) were significantly increased, while cell proliferation-related proteins (Cyclin E, Myc, EGFR) were decreased by gestational GenX exposure in the pups' liver. In addition, imbalance of gut microbiota and dysfunction of the intestinal mucosa barrier might contribute to hepatotoxicity at least in part. Taken together, our results suggested that gestational GenX exposure triggered metabolic disorder, which might be responsible for the hepatotoxicity in the pups in addition to dysfunction of the intestinal mucosa barrier. This study enriches the mechanisms of GenX-induced developmental hepatotoxicity by associating metabolic disorder with intestinal homeostasis.
Collapse
Affiliation(s)
- Qin-Yao Zhang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Ling-Ling Xu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Mei-Ting Zhong
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Yu-Kui Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Ming-Quan Lai
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| |
Collapse
|
2
|
Spyrakis F, Dragani TA. The EU's Per- and Polyfluoroalkyl Substances (PFAS) Ban: A Case of Policy over Science. TOXICS 2023; 11:721. [PMID: 37755732 PMCID: PMC10536631 DOI: 10.3390/toxics11090721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023]
Abstract
The proposal by the European Chemicals Agency (ECHA) to ban over 12,000 per- and polyfluoroalkyl substances (PFAS) has sparked a debate about potential consequences for the economy, industry, and the environment. Although some PFAS are known to be harmful, a blanket ban may lead to significant problems in attempting to replace PFAS-based materials for environmental transition, as well as in medical devices and everyday products. Alternative materials may potentially be less safe, as a rush to replace PFAS would reduce the time needed for toxicological analyses. Studies have shown that PFAS exhibit a diverse range of mechanisms of action, biopersistence, and bioaccumulation potential, and should thus not be treated as a single group. This is particularly true for the class of fluoropolymers. A targeted approach that considers the specific risks and benefits of each chemical may be more effective. Moreover, the proposed ban may also have unintended consequences for the environment as PFAS use is also associated with benefits such as reducing greenhouse-gas emissions and improving energy efficiency. Policymakers must carefully weigh up the potential consequences before making a final decision on the ban.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy;
| | | |
Collapse
|
3
|
Wang W, Hong X, Zhao F, Wu J, Wang B. The effects of perfluoroalkyl and polyfluoroalkyl substances on female fertility: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2023; 216:114718. [PMID: 36334833 DOI: 10.1016/j.envres.2022.114718] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The reproductive toxicity of perfluoroalkyl and polyfluoroalkyl substances (PFAS) has been verified in both animal and in vitro experiments, however, the association between PFAS and female fertility remains contradictory in population studies. Therefore, in this systematic review and meta-analysis, we evaluated the effects of PFAS on female fertility based on population evidence. METHODS Electronic searches of the Web of Science, PubMed, The Cochrane Library, and Embase databases were conducted (from inception to March 2022) to collect observational studies related to PFAS and female fertility. Two evaluators independently screened the literature, extracted information and evaluated the risk of bias for the included studies, meta-analysis was performed using R software. RESULTS A total of 5468 records were searched and 13 articles fully met the inclusion criteria. Meta-analysis showed that perfluorooctanoic acid (PFOA) exposure was negatively associated with the female fecundability odds ratio (FOR = 0.88, 95% confidence interval (Cl) [0.78; 0.98]) and positively associated with the odds ratio for infertility (OR = 1.33, 95%Cl [1.03; 1.73]). Perfluorooctane sulfonate (PFOS) exposure was negatively associated with the fecundability odds ratio (FOR = 0.94, 95% CI [0.90; 0.98]). Pooled effect values for perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluorohexane sulfonate (PFHxS) exposure did not find sufficient evidence for an association with female fertility. CONCLUSION Based on the evidence provided by the current study, increased levels of PFAS exposure are associated with reduced fertility in women, this was characterized by a reduction in fecundability odds ratio and an increase in odds ratio for infertility. This finding could partially explain the decline in female fertility and provide insight into risk assessment when manufacturing products containing PFAS.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xiang Hong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Fanqi Zhao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Jingying Wu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Bei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Guo Y, Yuan J, Ni H, Ji J, Zhong S, Zheng Y, Jiang Q. Perfluorooctanoic acid-induced developmental cardiotoxicity in chicken embryo: Roles of miR-490-5p. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120022. [PMID: 36028080 DOI: 10.1016/j.envpol.2022.120022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) could induce developmental toxicities, affecting various organs, including the heart. Although peroxisome-proliferation activated receptor alpha (PPARα) had been identified as a major target of PFOA, PPARα-independent effects are frequently reported. To further elucidate the mechanism of toxicity in PFOA-induced developmental cardiotoxicity, RNA-seq analysis was performed in hatchling chicken hearts developmentally exposed to vehicle or 2 mg/kg (egg weight) PFOA. RT-PCR and western blotting were then performed to confirm the identified potential targets. Furthermore, lentivirus was designed to overexpress and silence identified target miRNA in developing chicken embryo, and the resulting phenotypes were investigated. 21 miRNAs and 1142 mRNAs were identified to be affected by developmental exposure to PFOA in chicken embryo hearts. Among the identified differentially expressed miRNAs, miR-490-5p was confirmed to be significantly affected by PFOA exposure, along with its downstream targets, Synaptosome associated protein 91 (SNAP91) and LY6/PLAUR domain containing 6 (LYPD6), as indicated by RT-PCR and western blotting results. Lentivirus overexpressing miR-490-5p mimicked the phenotype induced by PFOA exposure, while lentivirus silencing miR-490-5p alleviated PFOA-induced changes. Similar patterns were also observed in the expression of downstream target genes, SNAP91 and LYPD6. In summary, miR-490-5p and its downstream genes, SNAP91 and LYPD6 are associated with PFOA-induced developmental cardiotoxicity in chicken embryo, which might help to further elucidate the mechanism of PFOA-induced developmental cardiotoxicity.
Collapse
Affiliation(s)
- Yajie Guo
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Junhua Yuan
- Department of Special Medicine, School of Basic Medicine, Qingdao University, China
| | - Hao Ni
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Jing Ji
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Shuping Zhong
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, China.
| |
Collapse
|
5
|
Xu LL, Chen YK, Zhang QY, Chen LJ, Zhang KK, Li JH, Liu JL, Wang Q, Xie XL. Gestational exposure to GenX induces hepatic alterations by the gut-liver axis in maternal mice: A similar mechanism as PFOA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153281. [PMID: 35066053 DOI: 10.1016/j.scitotenv.2022.153281] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 05/27/2023]
Abstract
GenX is an alternative to perfluorooctanoic acid (PFOA) and was included in the accession list of Substances of Very High Concern in 2019. Gestational GenX exposure induces maternal hepatotoxicity in animals. However, the mechanisms of GenX toxicity have not been explored. In the present study, pregnant Balb/c mice were administered with PFOA (1 mg/kg BW/day), GenX (2 mg/kg BW/day), or Milli-Q water by gavage during gestation. Similar hepatic pathological changes, including enlargement of hepatocytes, cytoplasm loss, nucleus migration, inflammatory cell infiltration, and reduction of glycogen storage, were observed in PFOA and GenX groups. Increased expression levels of indicators of the TLR4 pathway indicated activation of inflammation in the liver of maternal mice after exposure to PFOA or GenX, consistent with the pathological changes. Overexpression of cleaved PARP-1, cleaved caspase 3, Bax and decreased Bcl-2 proteins indicated activation of apoptosis, whereas overexpression of ULK-1, p62, beclin-1, LC3-II proteins and downregulation of p-mTOR implied that PFOA and GenX exposure initiated autophagy. Decreased secretion of mucus, reduced expression levels of tight junction proteins, and higher serum levels of lipopolysaccharide indicated disruption of the intestinal barrier. Translocation of lipopolysaccharide may be recognized by TLR4, thus triggering inflammatory pathway in the maternal liver. In summary, gestational exposure to PFOA or GenX induced maternal hepatic alterations through the gut-liver axis.
Collapse
Affiliation(s)
- Ling-Ling Xu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Yu-Kui Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Qin-Yao Zhang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Jia-Hao Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Jia-Li Liu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| |
Collapse
|
6
|
Aghaei Z, Steeves KL, Jobst KJ, Cahill LS. The impact of perfluoroalkyl substances on pregnancy, birth outcomes and offspring development: A review of data from mouse models1. Biol Reprod 2021; 106:397-407. [PMID: 34875017 DOI: 10.1093/biolre/ioab223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are persistent in the environment and bioaccumulate in wildlife and humans, potentially causing adverse health effects at all stages of life. Studies from human pregnancy have shown that exposure to these contaminants are associated with placental dysfunction and fetal growth restriction; however, studies in humans are confounded by genetic and environmental factors. Here, we synthesize the available results from mouse models of pregnancy to show the causal effects of prenatal exposure to PFOA and PFOS on placental and fetal development and on neurocognitive function and metabolic disorders in offspring. We also propose gaps in the present knowledge and provide suggestions for future research studies.
Collapse
Affiliation(s)
- Zahra Aghaei
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Katherine L Steeves
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Lindsay S Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
7
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Ceccatelli S, Cravedi J, Halldorsson TI, Haug LS, Johansson N, Knutsen HK, Rose M, Roudot A, Van Loveren H, Vollmer G, Mackay K, Riolo F, Schwerdtle T. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J 2020; 18:e06223. [PMID: 32994824 PMCID: PMC7507523 DOI: 10.2903/j.efsa.2020.6223] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluoroalkyl substances (PFASs) in food. Based on several similar effects in animals, toxicokinetics and observed concentrations in human blood, the CONTAM Panel decided to perform the assessment for the sum of four PFASs: PFOA, PFNA, PFHxS and PFOS. These made up half of the lower bound (LB) exposure to those PFASs with available occurrence data, the remaining contribution being primarily from PFASs with short half-lives. Equal potencies were assumed for the four PFASs included in the assessment. The mean LB exposure in adolescents and adult age groups ranged from 3 to 22, the 95th percentile from 9 to 70 ng/kg body weight (bw) per week. Toddlers and 'other children' showed a twofold higher exposure. Upper bound exposure was 4- to 49-fold higher than LB levels, but the latter were considered more reliable. 'Fish meat', 'Fruit and fruit products' and 'Eggs and egg products' contributed most to the exposure. Based on available studies in animals and humans, effects on the immune system were considered the most critical for the risk assessment. From a human study, a lowest BMDL 10 of 17.5 ng/mL for the sum of the four PFASs in serum was identified for 1-year-old children. Using PBPK modelling, this serum level of 17.5 ng/mL in children was estimated to correspond to long-term maternal exposure of 0.63 ng/kg bw per day. Since accumulation over time is important, a tolerable weekly intake (TWI) of 4.4 ng/kg bw per week was established. This TWI also protects against other potential adverse effects observed in humans. Based on the estimated LB exposure, but also reported serum levels, the CONTAM Panel concluded that parts of the European population exceed this TWI, which is of concern.
Collapse
|
8
|
Chappell GA, Thompson CM, Wolf JC, Cullen JM, Klaunig JE, Haws LC. Assessment of the Mode of Action Underlying the Effects of GenX in Mouse Liver and Implications for Assessing Human Health Risks. Toxicol Pathol 2020; 48:494-508. [PMID: 32138627 PMCID: PMC7153225 DOI: 10.1177/0192623320905803] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
GenX is an alternative to environmentally persistent long-chain perfluoroalkyl and polyfluoroalkyl substances. Mice exposed to GenX exhibit liver hypertrophy, elevated peroxisomal enzyme activity, and other apical endpoints consistent with peroxisome proliferators. To investigate the potential role of peroxisome proliferator-activated receptor alpha (PPARα) activation in mice, and other molecular signals potentially related to observed liver changes, RNA sequencing was conducted on paraffin-embedded liver sections from a 90-day subchronic toxicity study of GenX conducted in mice. Differentially expressed genes were identified for each treatment group, and gene set enrichment analysis was conducted using gene sets that represent biological processes and known canonical pathways. Peroxisome signaling and fatty acid metabolism were among the most significantly enriched gene sets in both sexes at 0.5 and 5 mg/kg GenX; no pathways were enriched at 0.1 mg/kg. Gene sets specific to the PPARα subtype were significantly enriched. These findings were phenotypically anchored to histopathological changes in the same tissue blocks: hypertrophy, mitoses, and apoptosis. In vitro PPARα transactivation assays indicated that GenX activates mouse PPARα. These results indicate that the liver changes observed in GenX-treated mice occur via a mode of action (MOA) involving PPARα, an important finding for human health risk assessment as this MOA has limited relevance to humans.
Collapse
Affiliation(s)
| | | | | | - John M. Cullen
- North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - James E. Klaunig
- Indiana University, School of Public Health, Bloomington, IN, USA
| | | |
Collapse
|
9
|
Qu K, Song J, Zhu Y, Liu Y, Zhao C. Perfluorinated compounds binding to estrogen receptor of different species: a molecular dynamic modeling. J Mol Model 2018; 25:1. [DOI: 10.1007/s00894-018-3878-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022]
|
10
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018. [PMID: 32625773 DOI: 10.2903/j.efsa.2018.5194">10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [10.2903/j.efsa.2018.5194','32625773', '10.1093/toxsci/kfs318')">Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
10.2903/j.efsa.2018.5194" />
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
11
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018; 16:e05194. [PMID: 32625773 PMCID: PMC7009575 DOI: 10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
12
|
|
13
|
von der Trenck KT, Konietzka R, Biegel-Engler A, Brodsky J, Hädicke A, Quadflieg A, Stockerl R, Stahl T. Significance thresholds for the assessment of contaminated groundwater: perfluorinated and polyfluorinated chemicals. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:19. [PMID: 29930891 PMCID: PMC5992233 DOI: 10.1186/s12302-018-0142-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/12/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Per- and polyfluorinated chemicals (PFC) do not occur naturally in the environment and are, therefore, of anthropogenic origin. As a consequence of their wide range of everyday applications and their extreme persistence in the environment, PFC have become ubiquitous in nature and can, therefore, be detected in groundwater as well as in many other environmental matrices. The German States' Water and Soil Consortia have compiled 'significance thresholds' (GFS) to assess groundwater contaminated with PFC. The GFS serve as criteria for the decision whether actions to remediate polluted groundwater are necessary. Thirteen of these PFC had been detected in groundwater at levels above their limit of quantitation and were assigned first priority. RESULTS The data regarding human health effects were sufficient to derive guide values according to the criteria of the German Drinking Water Ordinance for 7 of the 13 first-priority PFC. With regard to available ecotoxicological data, predicted no-effect concentration values from official risk assessments existed for 2 of the 13 first-priority PFC. A predicted no-effect concentration for protection of the aquatic biocenosis could be derived for eight more substances. CONCLUSIONS After evaluation of data from available literature regarding both human health and ecotoxicological effects, significance thresholds ranging from 0.06 to 10.0 µg/L could be derived for 7 of the 13 priority PFC in groundwater. As a practical guide valid solely for human health-based values, a summation rule was proposed for exposures to mixtures of these seven PFC.
Collapse
Affiliation(s)
- Karl Theo von der Trenck
- LUBW-State Institute for the Environment of the Federal State of Baden-Wuerttemberg, Griesbachstr. 1-3, 76185 Karlsruhe, Germany
- Present Address: Birkenweg 33, 69469 Weinheim, Germany
| | - Rainer Konietzka
- German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | | | - Jan Brodsky
- Hessian Agency for Nature Conservation, Environment and Geology, Rheingaustr. 186, 65203 Wiesbaden, Germany
| | - Andrea Hädicke
- Department 32: Soil Protection, Contaminated Sites, Ecotoxicology, North Rhine Westphalian State Agency for Nature, Environment and Consumer Protection, Wallneyer Str. 6, 45133 Essen, Germany
| | - Arnold Quadflieg
- Hessian Ministry for Environment, Climate Protection, Agriculture and Consumer Protection, Mainzer Str. 80, 65189 Wiesbaden, Germany
| | - Rudolf Stockerl
- Bavarian Environment Agency, Bürgermeister-Ulrich-Str. 160, 86179 Augsburg, Germany
| | - Thorsten Stahl
- Hessian State Laboratory, Am Versuchsfeld 11, 34128 Kassel, Germany
| |
Collapse
|
14
|
Abstract
Endocrine disrupting chemicals (EDCs) are compounds that alter the structure and function of the endocrine system and may be contributing to disorders of the reproductive, metabolic, neuroendocrine and other complex systems. Typically, these outcomes cannot be modeled in cell-based or other simple systems necessitating the use of animal testing. Appropriate animal model selection is required to effectively recapitulate the human experience, including relevant dosing and windows of exposure, and ensure translational utility and reproducibility. While classical toxicology heavily relies on inbred rats and mice, and focuses on apical endpoints such as tumor formation or birth defects, EDC researchers have used a greater diversity of species to effectively model more subtle but significant outcomes such as changes in pubertal timing, mammary gland development, and social behaviors. Advances in genomics, neuroimaging and other tools are making a wider range of animal models more widely available to EDC researchers.
Collapse
Affiliation(s)
- Heather B Patisaul
- Center for Human Health and the Environment, W.M. Keck Center for Behavioral Biology, Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Suzanne E Fenton
- Division of the National Toxicology Program (DNTP), NTP Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health (NIH), Research Triangle Park, NC, 27709, USA.
| | - David Aylor
- Center for Human Health and the Environment, Bioinformatics Research Center, W.M. Keck Center for Behavioral Biology, Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
15
|
Convertino M, Church TR, Olsen GW, Liu Y, Doyle E, Elcombe CR, Barnett AL, Samuel LM, MacPherson IR, Evans TRJ. Stochastic Pharmacokinetic-Pharmacodynamic Modeling for Assessing the Systemic Health Risk of Perfluorooctanoate (PFOA). Toxicol Sci 2018; 163:293-306. [PMID: 29462473 PMCID: PMC5920327 DOI: 10.1093/toxsci/kfy035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A phase 1 dose-escalation trial assessed the chemotherapeutic potential of ammonium perfluorooctanoate (APFO). Forty-nine primarily solid-tumor cancer patients who failed standard therapy received weekly APFO doses (50-1200 mg) for 6 weeks. Clinical chemistries and plasma PFOA (anionic APFO) were measured predose and weekly thereafter. Several clinical measures including total cholesterol, high-density lipoproteins (HDLs), thyroid stimulating hormone (TSH), and free thyroxine (fT4), relative to PFOA concentrations were examined by: Standard statistical analyses using generalized estimating equations (GEE) and a probabilistic analysis using probability distribution functions (pdf) at various PFOA concentrations; and a 2-compartment pharmacokinetic/pharmacodynamic (PK/PD) model to directly estimate mean changes. Based on the GEE, the average rates of change in total cholesterol and fT4 associated with increasing PFOA were approximately -1.2×10-3 mmol/l/μM and 2.8×10-3 pmol/l/μM, respectively. The PK/PD model predicted more closely the trends observed in the data as well as the pdfs of biomarkers. A decline in total cholesterol was observed, with a clear transition in shape and range of the pdfs, manifested by the maximum value of the Kullback-Leibler (KL) divergence, that occurred at plasma PFOA between 420 and 565 μM (175 000-230 000 ng/ml). High-density lipoprotein was unchanged. An increase in fT4 was observed at a higher PFOA transition point, albeit TSH was unchanged. Our findings are consistent with some animal models and may motivate re-examination of the epidemiologic studies to PFOA at levels several orders of magnitude lower than this study. These observational studies have reported contrary associations, but currently understood biology does not support the existence of such conflicting effects.
Collapse
Affiliation(s)
- Matteo Convertino
- Division of Environmental Health Sciences and Public Health Informatics Program, HumNat Lab, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455
- Institute on the Environment, University of Minnesota, St. Paul, Minnesota 55455
- Institute for Engineering in Medicine
- Biomedical Informatics and Computational Biology Program
| | - Timothy R Church
- Division of Environmental Health Sciences, School of Public Health
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Geary W Olsen
- Medical Department, 3M Company, St. Paul, Minnesota 55144
| | - Yang Liu
- Division of Environmental Health Sciences and Public Health Informatics Program, HumNat Lab, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455
| | | | | | | | | | - Iain R MacPherson
- Institute of Cancer Sciences, CR-UK Beatson Institute, University of Glasgow, Glasgow G12 8Q, UK
| | - Thomas R J Evans
- Institute of Cancer Sciences, CR-UK Beatson Institute, University of Glasgow, Glasgow G12 8Q, UK
| |
Collapse
|
16
|
PPARα-independent transcriptional targets of perfluoroalkyl acids revealed by transcript profiling. Toxicology 2017; 387:95-107. [PMID: 28558994 DOI: 10.1016/j.tox.2017.05.013] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are ubiquitous and persistent environmental contaminants. Compounds such as perfluoroocanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS) are readily found in the tissues of humans and wildlife. While PFOA and PFOS have been the subject of numerous studies since they were first described over a decade ago, less is known about the biological activity of PFHxS and PFNA. Most PFAAs are activators of peroxisome proliferator-activated receptor α (PPARα), although the biological effects of these compounds are likely mediated by other factors in addition to PPARα. To evaluate the effects of PFHxS and PFNA, male wild-type and Pparα-null mice were dosed by oral gavage with PFHxS (3 or 10mg/kg/day), PFNA (1 or 3mg/kg/day), or vehicle for 7days, and liver gene expression was evaluated by full-genome microarrays. Gene expression patterns were then compared to historical in-house data for PFOA and PFOS in addition to the experimental hypolipidemic agent, WY-14,643. While WY-14,643 altered most genes in a PPARα-dependent manner, approximately 11-24% of regulated genes in PFAA-treated mice were independent of PPARα. The possibility that PFAAs regulate gene expression through other molecular pathways was evaluated. Using data available through a microarray database, PFAA gene expression profiles were found to exhibit significant similarity to profiles from mouse tissues exposed to agonists of the constitutive activated receptor (CAR), estrogen receptor α (ERα), and PPARγ. Human PPARγ and ERα were activated by all four PFAAs in trans-activation assays from the ToxCast screening program. Predictive gene expression biomarkers showed that PFAAs activate CAR in both genotypes and cause feminization of the liver transcriptome through suppression of signal transducer and activator of transcription 5B (STAT5B). These results indicate that, in addition to activating PPARα as a primary target, PFAAs also have the potential to activate CAR, PPARγ, and ERα as well as suppress STAT5B.
Collapse
|
17
|
Recent experimental results of effects of perfluoroalkyl substances in laboratory animals - Relation to current regulations and guidance values. Int J Hyg Environ Health 2017; 220:766-775. [PMID: 28286084 DOI: 10.1016/j.ijheh.2017.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 02/23/2017] [Accepted: 03/01/2017] [Indexed: 01/27/2023]
Abstract
The detection of perfluoroalkyl substances (PFAS) in surface and drinking water from various countries raised the attention to the presence of these chemicals in environmental probes and led to several regulatory actions to limit exposure in human beings. There was particular concern about perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), due to their former wide-spread use. Recently, several institutions published revisions of former regulatory or recommended maximum concentrations in drinking water and food, which are markedly lower than the former values. The present short overview describes the current regulations for PFAS and compares them with the outcome of several experimental studies in laboratory animals at low-level exposure to PFOA and PFOS. In addition, regulations for short-chain PFAS are presented which, due to lack of toxicological information, are evaluated according to the concepts of Threshold of Toxicological Concern (TTC) or the Health-related Indication Values (HRIV).
Collapse
|
18
|
Negri E, Metruccio F, Guercio V, Tosti L, Benfenati E, Bonzi R, La Vecchia C, Moretto A. Exposure to PFOA and PFOS and fetal growth: a critical merging of toxicological and epidemiological data. Crit Rev Toxicol 2017; 47:482-508. [PMID: 28617200 DOI: 10.1080/10408444.2016.1271972] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Toxicological and epidemiological evidence on the association between perfluorooctanoic acid (PFOA) or perfluorooctane sulfonic acid (PFOS) and birth/fetal weight was assessed. An extensive search for toxicological information in rats and mice, and a systematic search for epidemiological evidence were conducted. The linear regression coefficient (LRC) of birth weight (BrthW) on PFOA/PFOS was considered, and separate random effects meta-analyses for untransformed (i.e. not mathematically transformed) and log-transformed values were performed. Toxicological evidence: PFOA: 12 studies (21 datasets) in mice showed statistically significant lower birth/fetal weights from 5 mg/kg body weight per day. PFOS: most of the 13 studies (19 datasets) showed lower birth/fetal weights following in utero exposure. Epidemiological evidence: Sixteen articles were considered. The pooled LRC for a 1 ng/mL increase in untransformed PFOA (12 studies) in maternal plasma/serum was -12.8 g (95% CI -23.2; 2.4), and -27.1 g (95% CI -50.6; -3.6) for an increase of 1 loge ng/mL PFOA (nine studies). The pooled LRC for untransformed PFOS (eight studies) was -0.92 g (95%CI -3.4; 1.6), and for an increase of 1 loge ng/mL was -46.1(95% CI -80.3; -11.9). No consistent pattern emerged for study location or timing of blood sampling. CONCLUSIONS Epidemiological and toxicological evidence suggests that PFOA and PFOS elicit a decrease in BrthW both in humans and rodents. However, the effective animal extrapolated serum concentrations are 102-103 times higher than those in humans. Thus, there is no quantitative toxicological evidence to support the epidemiological association, thus reducing the biological plausibility of a causal relationship.
Collapse
Affiliation(s)
- Eva Negri
- a IRCCS - Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Francesca Metruccio
- b ICPS-International Centre for Pesticides and Health Risk Prevention , ASST Fatebenefratelli Sacco , Milan , Italy
| | - Valentina Guercio
- a IRCCS - Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy.,c Dipartimento di Scienze Cliniche e di Comunità , Università degli Studi di Milano , Milan , Italy
| | - Luca Tosti
- b ICPS-International Centre for Pesticides and Health Risk Prevention , ASST Fatebenefratelli Sacco , Milan , Italy
| | - Emilio Benfenati
- a IRCCS - Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Rossella Bonzi
- c Dipartimento di Scienze Cliniche e di Comunità , Università degli Studi di Milano , Milan , Italy
| | - Carlo La Vecchia
- c Dipartimento di Scienze Cliniche e di Comunità , Università degli Studi di Milano , Milan , Italy
| | - Angelo Moretto
- b ICPS-International Centre for Pesticides and Health Risk Prevention , ASST Fatebenefratelli Sacco , Milan , Italy.,d Dipartimento di Scienze Biomediche e Cliniche , Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
19
|
Li K, Gao P, Xiang P, Zhang X, Cui X, Ma LQ. Molecular mechanisms of PFOA-induced toxicity in animals and humans: Implications for health risks. ENVIRONMENT INTERNATIONAL 2017; 99:43-54. [PMID: 27871799 DOI: 10.1016/j.envint.2016.11.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/13/2016] [Accepted: 11/13/2016] [Indexed: 05/22/2023]
Abstract
As an emerging persistent organic pollutant (POP), perfluorooctanoate (PFOA) is one of the most abundant perfluorinated compounds (PFCs) in the environment. This review summarized the molecular mechanisms and signaling pathways of PFOA-induced toxicity in animals and humans as well as their implications for health risks in humans. Traditional PFOA-induced signal pathways such as peroxisome proliferating receptor alpha (PPARα), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), and pregnane-X receptor (PXR) may not be important for PFOA-induced health effects on humans. Instead, pathways including p53/mitochondrial pathway, nuclear lipid hyperaccumulation, phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT), and tumor necrosis factor-α/nuclear factor κB (TNF-α/NF-κB) may play an important role for PFOA-induced health risks in humans. Both in vivo and in vitro studies are needed to better understand the PFOA-induced toxicity mechanisms as well as the associated health risk in humans.
Collapse
Affiliation(s)
- Kan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Peng Gao
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States
| | - Ping Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
20
|
Li Y, Mao H, Xu Y, Li X, Pan L, Wu X, Li Y, Li Y, He J. Application research on PPARα-transgenic mice in preclinical safety evaluation of gemfibrozil. Toxicol Res (Camb) 2017; 6:98-104. [PMID: 30090481 PMCID: PMC6061148 DOI: 10.1039/c6tx00271d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 11/04/2016] [Indexed: 12/19/2022] Open
Abstract
To explore the feasibility of peroxisome proliferator-activated receptor (PPAR)α transgenic mice applying in preclinical safety evaluation for peroxisome proliferators (PPs). Both PPARα transgenic mice and C57BL/6J mice were assigned as treated groups (PT and CT groups) and control groups (PC and CC groups). Gemfibrozil was administered into treated groups for 4 weeks. Body weight, blood biochemistry, enzyme activity and histological examinations were performed at scheduled time. The results showed that significant hypolipidaemic effects were induced in the treated groups after gemfibrozil treatment whereas the changes of non-esterified fatty acid and high density lipoproteincholesterol were different between the two treated groups. All the enzyme activities examined increased significantly in PT and CT groups except catalase which displayed no obvious change in the PT group. Pathology results showed a significant increase of the liver weight and the liver weight ratio in the CT group while no obvious changes were observed in the PT group. Hypertrophy of hepatocytes was discovered in CT and PT groups in histological examination, while the extent and incidence of hepatocyte hypertrophy in the CT group were higher than those in the PT group. The data suggest that PPARα transgenic mice could serve as a useful tool for preclinical safety assessment of PP drugs.
Collapse
Affiliation(s)
- Yan Li
- National Institute for Nutrition and Health , Chinese Center for Disease Control and Prevention , Beijing 100050 , Beijing , China
| | - Hongmei Mao
- National Institute for Nutrition and Health , Chinese Center for Disease Control and Prevention , Beijing 100050 , Beijing , China
| | - Yanfeng Xu
- Institute of Laboratory Animal Sciences , Chinese Academy of Medical Science and Peking Union Medical College , Beijing 100050 , Beijing , China .
| | - Xiaocen Li
- Institute of Laboratory Animal Sciences , Chinese Academy of Medical Science and Peking Union Medical College , Beijing 100050 , Beijing , China .
| | - Lishan Pan
- Institute of Laboratory Animal Sciences , Chinese Academy of Medical Science and Peking Union Medical College , Beijing 100050 , Beijing , China .
| | - Xin Wu
- Institute of Laboratory Animal Sciences , Chinese Academy of Medical Science and Peking Union Medical College , Beijing 100050 , Beijing , China .
| | - Yang Li
- Institute of Laboratory Animal Sciences , Chinese Academy of Medical Science and Peking Union Medical College , Beijing 100050 , Beijing , China .
| | - Yi Li
- Institute of Laboratory Animal Sciences , Chinese Academy of Medical Science and Peking Union Medical College , Beijing 100050 , Beijing , China .
| | - Jun He
- Institute of Laboratory Animal Sciences , Chinese Academy of Medical Science and Peking Union Medical College , Beijing 100050 , Beijing , China .
| |
Collapse
|
21
|
Mattsson A, Kärrman A, Pinto R, Brunström B. Metabolic Profiling of Chicken Embryos Exposed to Perfluorooctanoic Acid (PFOA) and Agonists to Peroxisome Proliferator-Activated Receptors. PLoS One 2015; 10:e0143780. [PMID: 26624992 PMCID: PMC4666608 DOI: 10.1371/journal.pone.0143780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/09/2015] [Indexed: 01/09/2023] Open
Abstract
Untargeted metabolic profiling of body fluids in experimental animals and humans exposed to chemicals may reveal early signs of toxicity and indicate toxicity pathways. Avian embryos develop separately from their mothers, which gives unique possibilities to study effects of chemicals during embryo development with minimal confounding factors from the mother. In this study we explored blood plasma and allantoic fluid from chicken embryos as matrices for revealing metabolic changes caused by exposure to chemicals during embryonic development. Embryos were exposed via egg injection on day 7 to the environmental pollutant perfluorooctanoic acid (PFOA), and effects on the metabolic profile on day 12 were compared with those caused by GW7647 and rosiglitazone, which are selective agonists to peroxisome-proliferator activated receptor α (PPARα) and PPARγ, respectively. Analysis of the metabolite concentrations from allantoic fluid by Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) showed clear separation between the embryos exposed to GW7647, rosiglitazone, and vehicle control, respectively. In blood plasma only GW7647 caused a significant effect on the metabolic profile. PFOA induced embryo mortality and increased relative liver weight at the highest dose. Sublethal doses of PFOA did not significantly affect the metabolic profile in either matrix, although single metabolites appeared to be altered. Neonatal mortality by PFOA in the mouse has been suggested to be mediated via activation of PPARα. However, we found no similarity in the metabolite profile of chicken embryos exposed to PFOA with those of embryos exposed to PPAR agonists. This indicates that PFOA does not activate PPAR pathways in our model at concentrations in eggs and embryos well above those found in wild birds. The present study suggests that allantoic fluid and plasma from chicken embryos are useful and complementary matrices for exploring effects on the metabolic profile resulting from chemical exposure during embryonic development.
Collapse
Affiliation(s)
- Anna Mattsson
- Department of Environmental Toxicology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Anna Kärrman
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Rui Pinto
- Computational Life Science Cluster (CLiC), Chemistry department (KBC) - Umeå University, Umeå, Sweden
- Bioinformatics Infrastructure for Life Sciences, Sweden
| | - Björn Brunström
- Department of Environmental Toxicology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1318] [Impact Index Per Article: 146.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
23
|
Contreras AV, Rangel-Escareño C, Torres N, Alemán-Escondrillas G, Ortiz V, Noriega LG, Torre-Villalvazo I, Granados O, Velázquez-Villegas LA, Tobon-Cornejo S, González-Hirschfeld D, Recillas-Targa F, Tejero-Barrera E, Gonzalez FJ, Tovar AR. PPARα via HNF4α regulates the expression of genes encoding hepatic amino acid catabolizing enzymes to maintain metabolic homeostasis. GENES AND NUTRITION 2015; 10:452. [PMID: 25576393 DOI: 10.1007/s12263-014-0452-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/16/2014] [Indexed: 11/26/2022]
Abstract
The liver is the main organ involved in the metabolism of amino acids (AA), which are oxidized by amino acid catabolizing enzymes (AACE). Peroxisome proliferator-activated receptor-α (PPARα) stimulates fatty acid β-oxidation, and there is evidence that it can modulate hepatic AA oxidation during the transition of energy fuels. To understand the role and mechanism of PPARα's regulation of AA catabolism, the metabolic and molecular adaptations of Ppara-null mice were studied. The role of PPARα on AA metabolism was examined by in vitro and in vivo studies. In wild-type and Ppara-null mice, fed increasing concentrations of the dietary protein/carbohydrate ratio, we measured metabolic parameters, and livers were analyzed by microarray analysis, histology and Western blot. Functional enrichment analysis, EMSA and gene reporter assays were performed. Ppara-null mice presented increased expression of AACE in liver affecting AA, lipid and carbohydrate metabolism. Ppara-null mice had increased glucagon/insulin ratio (7.2-fold), higher serum urea (73.1 %), lower body protein content (19.7 %) and decreased several serum AA in response to a high-protein/low-carbohydrate diet. A functional network of differentially expressed genes, suggested that changes in the expression of AACE were regulated by an interrelationship between PPARα and HNF4α. Our data indicated that the expression of AACE is down-regulated through PPARα by attenuating HNF4α transcriptional activity as observed in the serine dehydratase gene promoter. PPARα via HNF4α maintains body protein metabolic homeostasis by down-regulating genes involved in amino acid catabolism for preserving body nitrogen.
Collapse
Affiliation(s)
- Alejandra V Contreras
- Facultad de Medicina, Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico, D.F., Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hayashi Y, Ito Y, Nakajima T. Effects of exposure to Di(2-ethylhexyl)phthalate
during fetal period on next generation. Nihon Eiseigaku Zasshi 2015; 69:86-91. [PMID: 24858501 DOI: 10.1265/jjh.69.86] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The concept of the Developmental Origins of Health and Disease (DOHaD) is bringing new insights into the origin of lifestyle diseases: unbalanced nutrition in utero and during infancy is associated with an increased risk of lifestyle diseases. In order to clarify this association, experimental and epidemiological studies have been conducted. Maternal exposure to di(2-ethylhexyl)phthalate (DEHP), an agonist of peroxisome proliferator-activated receptor α (PPARα), decreases the number of live fetuses and newborn pups, and their body weights, and it enhances fetal desorption in wild-type mice. Similarly, these DEHP were also observed in mice expressing human PPARα, but not in PPARα-null mice. These results suggest that the DEHP toxicity in offspring is caused dependently on PPARα. DEHP suppresses the increase in the levels of plasma triglyceride (TG)/fatty acids (FAs) only in wild-type pregnant mice, suggesting that the decreased lipid levels in utero may affect the fetus development, because TG/FAs are essential in the development of fetuses. Additionally, maternal DEHP exposure decreases estrogen and progesterone balances, which may also explain the effects on fetuses and pups mentioned above. Indeed, DEHP itself or metabolite(s) may induce the toxicity, because a difference in the metabolic route is observed between the wild-type and PPARα-null mice. Thus, we were unable to conclude the causal factor(s) for the DEHP-induced offspring toxicity, that is, whether it is a direct or an indirect effect of the chemical or metabolite(s) via the toxic effects on maternal mice; however, PPARα is indeed associated with in offspring toxicity.
Collapse
Affiliation(s)
- Yumi Hayashi
- Pathophysiological Laboratory Sciences, Department of Radiological and Medical Laboratory Sciences, Nagoya University
Graduate School of Medicine
| | | | | |
Collapse
|
25
|
Rigden M, Pelletier G, Poon R, Zhu J, Auray-Blais C, Gagnon R, Kubwabo C, Kosarac I, Lalonde K, Cakmak S, Xiao B, Leingartner K, Ku KL, Bose R, Jiao J. Assessment of urinary metabolite excretion after rat acute exposure to perfluorooctanoic acid and other peroxisomal proliferators. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 68:148-58. [PMID: 25015730 DOI: 10.1007/s00244-014-0058-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/26/2014] [Indexed: 05/28/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent environmental contaminant. Activation of the peroxisome proliferator activated receptor alpha (PPARα) resulting from exposure to PFOA has been extensively studied in rodents. However, marked differences in response to peroxisome proliferators prevent extrapolation of rodent PPARα activation to human health risks and additional molecular mechanisms may also be involved in the biological response to PFOA exposure. To further explore the potential involvement of such additional pathways, the effects of PFOA exposure on urinary metabolites were directly compared with those of other well-known PPARα agonists. Male rats were administered PFOA (10, 33, or 100 mg/kg/d), fenofibrate (100 mg/kg/d), or di(2-ethylhexyl) phthalate (100 mg/kg/d) by gavage for 3 consecutive days and allowed to recover for 4 days, and overnight urine was collected. Greater urinary output was observed exclusively in PFOA-treated rats as the total fraction of PFOA excreted in urine increased with the dose administered. Assessment of urinary metabolites (ascorbic acid, quinolinic acid, 8-hydroxy-2'-deoxyguanosine, and malondialdehyde) provided additional information on PFOA's effects on hepatic glucuronic acid and tryptophan-nicotinamide adenine dinucleotide (NAD) pathways and on oxidative stress, whereas increased liver weight and palmitoyl-CoA oxidase activity indicative of PPARα activation and peroxisomal proliferation persisted up to day five after the last exposure.
Collapse
|
26
|
Retraction. Prenatal PFOA exposure alters gene expression pathways in murine mammary gland. Toxicol Sci 2014; 145:211. [PMID: 25490953 DOI: 10.1093/toxsci/kfu253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
27
|
Filgo AJ, Quist EM, Hoenerhoff MJ, Brix AE, Kissling GE, Fenton SE. Perfluorooctanoic Acid (PFOA)-induced Liver Lesions in Two Strains of Mice Following Developmental Exposures: PPARα Is Not Required. Toxicol Pathol 2014; 43:558-68. [PMID: 25398757 DOI: 10.1177/0192623314558463] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a ubiquitous pollutant that causes liver toxicity in rodents, a process believed to be dependent on peroxisome proliferator-activated receptor-alpha (PPARα) activation. Differences between humans and rodents have made the human relevance of some health effects caused by PFOA controversial. We analyzed liver toxicity at 18 months following gestational PFOA exposure in CD-1 and 129/Sv strains of mice and compared PFOA-induced effects between strains and in wild type (WT) and PPARα-knockout (KO) 129/Sv mice. Pregnant mice were exposed daily to doses (0.01-5 mg/kg/BW) of PFOA from gestation days 1 to 17. The female offspring were necropsied at 18 months, and liver sections underwent a full pathology review. Hepatocellular adenomas formed in PFOA-exposed PPARα-KO 129/Sv and CD-1 mice and were absent in untreated controls from those groups and WT 129/Sv. Hepatocellular hypertrophy was significantly increased by PFOA exposure in CD-1, and an increased severity was found in WT 129/Sv mice. PFOA significantly increased nonneoplastic liver lesions in PPARα-KO mice (hepatocyte hypertrophy, bile duct hyperplasia, and hematopoietic cell proliferation). Low-dose gestational exposures to PFOA induced latent PPARα-independent liver toxicity that was observed in aged mice. Evidence of liver toxicity in PPARα-KO mice warrants further investigation into PPARα-independent pathways.
Collapse
Affiliation(s)
- Adam J Filgo
- Curriculum in Toxicology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA NTP Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Erin M Quist
- NTP Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA Comparative Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA Cellular and Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Mark J Hoenerhoff
- Cellular and Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Amy E Brix
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Grace E Kissling
- Biostatistics Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Suzanne E Fenton
- NTP Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
28
|
Yao PL, Ehresman DJ, Rae JMC, Chang SC, Frame SR, Butenhoff JL, Kennedy GL, Peters JM. Comparative in vivo and in vitro analysis of possible estrogenic effects of perfluorooctanoic acid. Toxicology 2014; 326:62-73. [PMID: 25456267 DOI: 10.1016/j.tox.2014.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/09/2014] [Accepted: 10/17/2014] [Indexed: 11/25/2022]
Abstract
Previous studies suggested that perfluorooctanoate (PFOA) could activate the estrogen receptor (ER). The present study examined the hypothesis that PFOA can activate ER using an in vivo uterotrophic assay in CD-1 mice and an in vitro reporter assay. Pre-pubertal female CD-1 mice fed an estrogen-free diet from postnatal day (PND)14 through weaning on PND18 were administered 0, 0.005, 0.01, 0.02, 0.05, 0.1, or 1mg/kg PFOA or 17β-estradiol (E2, 0.5mg/kg) from PND18-20. In contrast to E2, PFOA caused no changes in the relative uterine weight, the expression of ER target genes, or the morphology of the uterus/cervix and/or vagina on PND21. Treatment of a stable human cell line containing an ER-dependent luciferase reporter construct with a broad concentration range of PFOA caused no change in ER-dependent luciferase activity; whereas E2 caused a marked increase of ER-dependent luciferase activity. These data indicate that PFOA does not activate mouse or human ER.
Collapse
Affiliation(s)
- Pei-Li Yao
- Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | - Steven R Frame
- Haskell Global Centers for Health and Environmental Sciences, Newark, DE 19701, USA
| | | | | | - Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
29
|
Cizkova K, Rajdova A, Ehrmann J. Spatio-temporal expression of peroxisome proliferator-activated receptor α during human prenatal development. Basic Clin Pharmacol Toxicol 2014; 116:361-6. [PMID: 25225039 DOI: 10.1111/bcpt.12326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/15/2014] [Indexed: 11/30/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a ligand-dependent transcription factor which is activated by various endogenous as well as exogenous compounds. It is involved in the regulation of a variety of biological processes, such as nutrient metabolism, energy homoeostasis, immunological response and xenobiotic metabolism. Little is known about its expression during human prenatal development. We examined the spatio-temporal expression pattern of PPARα in human embryonic/foetal intestines, liver and kidney from the 5th to 20th week of prenatal life by indirect two-step immunohistochemistry. PPARα expression can already be detected in the early stages of prenatal development; as early as the 7th week of intrauterine development (IUD) in the intestines, 5th week of IUD in the liver and 6th week of IUD in the kidney. We found age-dependent changes in the PPARα expression pattern in the intestines and kidney. These events occur approximately at the commencement of function of these organs. In the intestines, we detected an obvious change of the PPARα expression pattern along the crypt-villous axis in the 11th week of IUD. In the kidney, the most apparent change was increased expression of PPARα in glomeruli in the 12th week of IUD. Moreover, in the liver, we detected a strong positivity in part of the developing blood elements. Information about the spatio-temporal expression pattern of PPARα could be the first step in evaluating the potential harmful impact of a wide range of environmental or pharmaceutical compounds which serve as PPARα ligands on the developing human organism.
Collapse
Affiliation(s)
- Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | | | | |
Collapse
|
30
|
Hu J, Li J, Wang J, Zhang A, Dai J. Synergistic effects of perfluoroalkyl acids mixtures with J-shaped concentration-responses on viability of a human liver cell line. CHEMOSPHERE 2014; 96:81-8. [PMID: 23942018 DOI: 10.1016/j.chemosphere.2013.07.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 07/10/2013] [Accepted: 07/13/2013] [Indexed: 05/22/2023]
Abstract
Some perfluoroalkyl acids (PFAAs) are highly persistent and bioaccumulative, resulting in their broad coexisting distribution in humans and the environment. Our aim was to investigate the individual and joint effects of PFAAs on cellular viability of a human liver cell line (HL-7702) using the MTT assay. Equipartition ray design and equivalent-effect concentration ratio (EECR) mixtures were used to investigate the binary and multiple effects of PFAAs, respectively. All tested PFAAs mixtures and the individuals (except perfluorododecanoic acid (PFDoDA) and perfluorotetradecanoic acid (PFTeDA)) showed obvious non-monotonic J-shaped concentration-response curves (CRC) on HL-7702. The inhibitory effect of individual PFAAs increased with the elongation of the carbon chain and was dominated by their molecular volume. The three binary mixtures (PFOA/S, PFHxA/S and PFBA/S) showed that synergistic effects occurred under effective inhibitory concentrations (IC) of IC0, IC10, and IC50 in mixtures, while for IC-20 the synergistic effect only occurred under higher PFSA proportion in mixtures. Furthermore, EECR mixtures of the nine individual PFAAs with J-shaped CRC also showed synergistic effects. However, mixtures of the eleven individual PFAAs including those with S-shaped CRC resulted in partial addition effects on HL-7702. Our results indicated that the individual stimulatory responses of HL-7702 to PFAA may produce adverse effects in mixtures at relevant dose levels.
Collapse
Affiliation(s)
- Jiayue Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100080, PR China
| | | | | | | | | |
Collapse
|
31
|
Borg D, Lund BO, Lindquist NG, Håkansson H. Cumulative health risk assessment of 17 perfluoroalkylated and polyfluoroalkylated substances (PFASs) in the Swedish population. ENVIRONMENT INTERNATIONAL 2013; 59:112-123. [PMID: 23792420 DOI: 10.1016/j.envint.2013.05.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
Humans are simultaneously exposed to a multitude of chemicals. Human health risk assessment of chemicals is, however, normally performed on single substances, which may underestimate the total risk, thus bringing a need for reliable methods to assess the risk of combined exposure to multiple chemicals. Per- and polyfluoroalkylated substances (PFASs) is a large group of chemicals that has emerged as global environmental contaminants. In the Swedish population, 17 PFASs have been measured, of which the vast majority lacks human health risk assessment information. The objective of this study was to for the first time perform a cumulative health risk assessment of the 17 PFASs measured in the Swedish population, individually and in combination, using the Hazard Index (HI) approach. Swedish biomonitoring data (blood/serum concentrations of PFASs) were used and two study populations identified: 1) the general population exposed indirectly via the environment and 2) occupationally exposed professional ski waxers. Hazard data used were publicly available toxicity data for hepatotoxicity and reproductive toxicity as well as other more sensitive toxic effects. The results showed that PFASs concentrations were in the low ng/ml serum range in the general population, reaching high ng/ml and low μg/ml serum concentrations in the occupationally exposed. For those congeners lacking toxicity data with regard to hepatotoxicity and reproductive toxicity read-across extrapolations was performed. Other effects at lower dose levels were observed for some well-studied congeners. The risk characterization showed no concern for hepatotoxicity or reproductive toxicity in the general population except in a subpopulation eating PFOS-contaminated fish, illustrating that high local exposure may be of concern. For the occupationally exposed there was concern for hepatotoxicity by PFOA and all congeners in combination as well as for reproductive toxicity by all congeners in combination, thus a need for reduced exposure was identified. Concern for immunotoxicity by PFOS and for disrupted mammary gland development by PFOA was identified in both study populations as well as a need of additional toxicological data for many PFAS congeners with respect to all assessed endpoints.
Collapse
Affiliation(s)
- Daniel Borg
- Institute of Environmental Medicine (IMM), Department of Environmental Health Risk Assessment, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | | | | | | |
Collapse
|