1
|
Mary VS, Vélez PA, Quiroz S, Beccacece I, Otaiza-González SN, Chiapello LS, Rubinstein HR, Theumer MG. Involvement of aryl hydrocarbon receptor in the aflatoxin B 1 and fumonisin B 1 effects on in vitro differentiation of murine regulatory-T and Th17 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48758-48772. [PMID: 39039370 DOI: 10.1007/s11356-024-34421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are mycotoxins widely found as cereal contaminants, and their co-consumption is associated with liver cancer. Both are immunotoxic, but their interactions have been little studied. This work was aimed to evaluate in mouse spleen mononuclear cells (SMC) the effects of the exposure to AFB1 (5-50 µM), FB1 (25-250 µM), and AFB1-FB1 mixtures (MIX) on the in vitro differentiation of regulatory T cells (Treg and Tr1-like) and Th17 cells, as well as elucidate the contribution of aryl hydrocarbon receptor (Ahr) in such effects. AFB1 and mainly MIX induced cytotoxicity in activated CD4 cells via Ahr signaling. AFB1 (5 µM) increased the Treg cell differentiation, but its combination with FB1 (25 µM) also reduced Th17 cell expansion by Ahr-dependent mechanisms. Therefore, this mixture could enhance the Treg/Th17 cell ratio and favor immunosuppression and escape from tumor immunosurveillance to a greater extent than individual mycotoxins. Whereas, AFB1-FB1 mixtures at medium-high doses inhibited the Tr1-like cell expansion induced by the individual mycotoxins and affected Treg and Th17 cell differentiation in Ahr-independent and dependent manners, respectively, which could alter anti-inflammatory and Th17 immune responses. Moreover, individual FB1 altered regulatory T and Th17 cell development independently of Ahr. In conclusion, AFB1 and FB1 interact by modifying Ahr signaling, which is involved in the immunotoxicity as well as in the alteration of the differentiation of Treg, Tr1-like, and Th17 cells induced by AFB1-FB1 mixtures. Therefore, Ahr is implicated in the regulation of the anti- and pro-inflammatory responses caused by the combination of AFB1 and FB1.
Collapse
Affiliation(s)
- Verónica Sofía Mary
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Pilar Andrea Vélez
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Sol Quiroz
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Ignacio Beccacece
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Santiago Nicolás Otaiza-González
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Laura Silvina Chiapello
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Héctor Ramón Rubinstein
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Martín Gustavo Theumer
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI, UNC-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
2
|
Piwarski SA, Salisbury TB. The effects of environmental aryl hydrocarbon receptor ligands on signaling and cell metabolism in cancer. Biochem Pharmacol 2023; 216:115771. [PMID: 37652105 DOI: 10.1016/j.bcp.2023.115771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Dioxin and dioxin-like compounds are chlorinated organic pollutants formed during the manufacturing of other chemicals. Dioxins are ligands of the aryl hydrocarbon receptor (AHR), that induce AHR-mediated biochemical and toxic responses and are persistent in the environment. 2,3,7,8- tetrachlorodibenzo para dioxin (TCDD) is the prototypical AHR ligand and its effects represent dioxins. TCDD induces toxicity, immunosuppression and is a suspected tumor promoter. The role of TCDD in cancer however is debated and context-dependent. Environmental particulate matter, polycyclic aromatic hydrocarbons, perfluorooctane sulfonamide, endogenous AHR ligands, and cAMP signaling activate AHR through TCDD-independent pathways. The effect of activated AHR in cancer is context-dependent. The ability of FDA-approved drugs to modulate AHR activity has sparked interest in their repurposing for cancer therapy. TCDD by interfering with endogenous pathways, and overstimulating other endogenous pathways influences all stages of cancer. Herein we review signaling mechanisms that activate AHR and mechanisms by which activated AHR modulates signaling in cancer including affected metabolic pathways.
Collapse
Affiliation(s)
- Sean A Piwarski
- Duke Cancer Institute, Department of GU Oncology, Duke University Medical Center, 905 South Lasalle Street, Durham, NC 27710, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
3
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Female-to-male differential transcription patterns of miRNA-mRNA networks in the livers of dioxin-exposed mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:2310-2331. [PMID: 37318321 DOI: 10.1002/tox.23868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/14/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Non-coding microRNAs (miRNAs) have important roles in regulating the expression of liver mRNAs in response to xenobiotic-exposure, but their roles concerning dioxins such as TCDD (2,3,7,8-Tetrachlorodibenzo-p-dioxin) are less clear. This report concerns the potential implication of liver (class I) and circulating (class II) miRNAs in hepatotoxicity of female and male mice after acute exposure to TCDD. The data show that, of a total of 38 types of miRNAs, the expression of eight miRNAs were upregulated in both female and male mice exposed to TCDD. Inversely, the expression of nine miRNAs were significantly downregulated in both animal genders. Moreover, certain miRNAs were preferentially induced in either females or males. The potential downstream regulatory effects of miRNAs on their target genes was evaluated by determining the expression of three group of genes that are potentially involved in cancer biogenesis, other diseases and in hepatotoxicity. It was found that certain cancer-related genes were more highly expressed females rather than males after exposure to TCDD. Furthermore, a paradoxical female-to-male transcriptional pattern was found for several disease-related and hepatotoxicity-related genes. These results suggest the possibility of developing of new miRNA-specific interfering molecules to address their dysfunctions as caused by TCDD.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, UK
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
4
|
Karri K, Waxman DJ. TCDD dysregulation of lncRNA expression, liver zonation and intercellular communication across the liver lobule. Toxicol Appl Pharmacol 2023; 471:116550. [PMID: 37172768 PMCID: PMC10330769 DOI: 10.1016/j.taap.2023.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and subchronic (4 wk) TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of lncRNAs. TCDD dysregulated >4000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 lncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cell-cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolism. Networks were validated by the striking enrichments that predicted regulatory lncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.
Collapse
Affiliation(s)
- Kritika Karri
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
5
|
Karri K, Waxman DJ. TCDD dysregulation of lncRNA expression, liver zonation and intercellular communication across the liver lobule. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523119. [PMID: 36711947 PMCID: PMC9881922 DOI: 10.1101/2023.01.07.523119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo- p -dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and chronic TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of IncRNAs. TCDD dysregulated >4,000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 IncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cellâ€"cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolic. Networks were validated by the striking enrichments that predicted regulatory IncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.
Collapse
|
6
|
Dobrzyński M, Madej JP, Leśków A, Tarnowska M, Majda J, Szopa M, Gamian A, Kuropka P. The Improvement of the Adaptation Process of Tocopherol and Acetylsalicylic Acid in Offspring of Mothers Exposed to TCDD. Animals (Basel) 2021; 11:ani11123430. [PMID: 34944207 PMCID: PMC8698147 DOI: 10.3390/ani11123430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Dioxins are proinflammatory factors that may be transferred to offspring through the placenta during pregnancy. α-tocopherol and acetylsalicylic acid are popular agents that limit the spread of inflammation. A histopathological and biochemical analysis was performed to reveal possible changes in liver and blood plasma in response to dioxins, α-tocopherol, and acetylsalicylic acid. The conducted research demonstrated the presence of negative effects on the liver morphology and blood plasma proteins of offspring, due to dioxins that were derived from the mother. However, the use of both drugs can significantly reduce the negative effects on offspring whose mothers have been treated with dioxins. Abstract Dioxins are chemical compounds that may cause an inflammatory reaction. During dioxin-induced inflammation, generated reactive oxygen species lead to morphological changes in various tissues and in biochemical parameters. The aim of this study was to demonstrate the changes in the livers of rats whose mothers were exposed to dioxins and the protective role of α-tocopherol and acetylsalicylic acid in liver inflammation. The study material consisted of Buffalo rats who were the offspring of females treated with dioxin, dioxin + α-tocopherol, or dioxin + acetylsalicylic acid. Livers and blood samples were taken from the rats’ offspring, and then histopathological and biochemical analyses were performed. The histopathological analysis showed that the changes observed in the livers of neonates were the result of the dioxins derived from their mother. The biochemical analysis showed that the morphological changes in the liver affected its function, which manifested in a higher total protein concentration in the dioxin-treated group, and that the creatinine level in this group was significantly higher than that in the other groups. This effect was reduced by the protective role of α-tocopherol and acetylsalicylic acid. Based on these results, we came to the conclusion that dioxins significantly affect the structure of the liver, which negatively affects its function, mainly in the scope of the metabolism of plasma proteins and hepatic enzymes.
Collapse
Affiliation(s)
- Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Faculty of Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
- Correspondence: (M.D.); (A.L.)
| | - Jan P. Madej
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland; (J.P.M.); (P.K.)
| | - Anna Leśków
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Grunwaldzka 2, 50-368 Wroclaw, Poland;
- Correspondence: (M.D.); (A.L.)
| | - Małgorzata Tarnowska
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Grunwaldzka 2, 50-368 Wroclaw, Poland;
| | - Jacek Majda
- Department of Laboratory Diagnostics, 4th Military Hospital, Weigla 5, 50-981 Wroclaw, Poland;
| | - Monika Szopa
- Military Center for Preventive Medicine, Slezna 158, 50-984 Wroclaw, Poland;
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland;
| | - Piotr Kuropka
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland; (J.P.M.); (P.K.)
| |
Collapse
|
7
|
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that is a member of the PER-ARNT-SIM superfamily of environmental sensors. This receptor has been a molecule of interest for many years in the field of toxicology, as it was originally discovered to mediate the toxic effects of certain environmental pollutants like benzo(a)pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin. While all animals express this protein, there is naturally occurring variability in receptor size and responsiveness to ligand. This naturally occurring variation, particularly in mice, has been an essential tool in the discovery and early characterization of the AHR. Genetic models including congenic mice and induced mutations at the Ahr locus have proven invaluable in further understanding the role of the AHR in adaptive metabolism and TCDD-induced toxicity. The creation and examination of Ahr null mice revealed an important physiological role for the AHR in vascular and hepatic development and mediation of the immune system. In this review, we attempt to provide an overview to many of the AHR models that have aided in the understanding of AHR biology thus far. We describe the naturally occurring polymorphisms, congenic models, induced mutations at the Ahr locus and at the binding partner Ah Receptor Nuclear Translocator and chaperone, Ah receptor associated 9 loci in mice, with a brief description of naturally occurring and induced mutations in rats.
Collapse
Affiliation(s)
- Rachel H Wilson
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Christopher A Bradfield
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.,Biotechnology Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
8
|
Wilson RH, Carney PR, Glover E, Parrott JC, Rojas BL, Moran SM, Yee JS, Nukaya M, Goetz NA, Rubinstein CD, Krentz KJ, Xing Y, Bradfield CA. Generation of an Allelic Series at the Ahr Locus Using an Edited Recombinant Approach. Toxicol Sci 2021; 180:239-251. [PMID: 33480436 DOI: 10.1093/toxsci/kfab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor and a member of the PER-ARNT-SIM (PAS) superfamily of environmental sensors. The AHR is involved in a series of biological processes including adaptive metabolism of xenobiotics, toxicity of certain environmental pollutants, vascular development, fertility, and immune function. Mouse models, including the Ahr null and Ahr conditional null (Ahrfx) mice, are widely used for the study of AHR-mediated biology and toxicity. The Ahr conditional null mouse harbors the low-affinity Ahrd allele that exhibits approximately a 10-fold lower binding affinity for certain xenobiotic AHR ligands than the widely used C57BL/6 mouse that harbors the higher affinity Ahrb1 allele. Here, we report a novel mouse model that introduces a V375A polymorphism that converts the low-affinity allele into a high-affinity allele, offering a more sensitive conditional model. In the generation of this novel conditional allele, two additional mutants arose, including a 3-bp deletion in the PAS-B domain (AhrNG367R) and an early termination codon in the PAS-B domain (AhrTer383). The AhrNG367R allele presents as a phenocopy of the null and the AhrTer383 allele presents as an antimorph when assessing for the ductus venosus and liver lobe weight endpoints. These new models represent a series of tools that will be useful in further characterizing AHR biology.
Collapse
Affiliation(s)
- Rachel H Wilson
- Molecular and Environmental Toxicology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Patrick R Carney
- Molecular and Environmental Toxicology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Edward Glover
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jessica C Parrott
- Molecular and Environmental Toxicology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Brenda L Rojas
- Molecular and Environmental Toxicology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Susan M Moran
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jeremiah S Yee
- Molecular and Environmental Toxicology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Manabu Nukaya
- Molecular and Environmental Toxicology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Nicholas A Goetz
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Clifford D Rubinstein
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kathy J Krentz
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yongna Xing
- Molecular and Environmental Toxicology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Christopher A Bradfield
- Molecular and Environmental Toxicology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
9
|
Abstract
Laos is a landlocked country in South East Asia, ranking fifth for primary liver cancer incidence worldwide. Risk factors that might explain this worrying situation are poorly known. We conducted a review of the literature concerning the etiologies of terminal liver diseases in Laos. A double infectious burden with hepatitis B and C viruses and the liver fluke Opisthorchis viverrini seems to be the main cause of the high liver cancer incidence. Moreover, it was also suggested that mutagenic substances frequently found in tobacco, alcoholic beverages, fermented fish, and mold-contaminated cereals or nuts, which are all substances heavily consumed by Lao people, lead to the accumulation of DNA mutations in the liver cell genome causing tumor processes. However, the respective proportions of liver cancer cases attributable to each category of infections and substances consumed, as well as the histological nature of the neoplasia are still not precisely documented in Laos. The international medical and scientific communities as well as public health stakeholders should urgently consider the alarming situation of liver health in Laos to stimulate both research and subsequent implementation of prevention policies.
Collapse
|
10
|
Che X, Dai W. Aryl Hydrocarbon Receptor: Its Regulation and Roles in Transformation and Tumorigenesis. Curr Drug Targets 2020; 20:625-634. [PMID: 30411679 DOI: 10.2174/1389450120666181109092225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023]
Abstract
AhR is an environmental response gene that mediates cellular responses to a variety of xenobiotic compounds that frequently function as AhR ligands. Many AhR ligands are classified as carcinogens or pro-carcinogens. Thus, AhR itself acts as a major mediator of the carcinogenic effect of many xenobiotics in vivo. In this concise review, mechanisms by which AhR trans-activates downstream target gene expression, modulates immune responses, and mediates malignant transformation and tumor development are discussed. Moreover, activation of AhR by post-translational modifications and crosstalk with other transcription factors or signaling pathways are also summarized.
Collapse
Affiliation(s)
- Xun Che
- Department of Environmental Medicine, New York University Langone Health, New York, NY 10010, United States
| | - Wei Dai
- Department of Environmental Medicine, New York University Langone Health, New York, NY 10010, United States
| |
Collapse
|
11
|
Matsuzaka Y, Hosaka T, Ogaito A, Yoshinari K, Uesawa Y. Prediction Model of Aryl Hydrocarbon Receptor Activation by a Novel QSAR Approach, DeepSnap-Deep Learning. Molecules 2020; 25:molecules25061317. [PMID: 32183141 PMCID: PMC7144728 DOI: 10.3390/molecules25061317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that senses environmental exogenous and endogenous ligands or xenobiotic chemicals. In particular, exposure of the liver to environmental metabolism-disrupting chemicals contributes to the development and propagation of steatosis and hepatotoxicity. However, the mechanisms for AhR-induced hepatotoxicity and tumor propagation in the liver remain to be revealed, due to the wide variety of AhR ligands. Recently, quantitative structure–activity relationship (QSAR) analysis using deep neural network (DNN) has shown superior performance for the prediction of chemical compounds. Therefore, this study proposes a novel QSAR analysis using deep learning (DL), called the DeepSnap–DL method, to construct prediction models of chemical activation of AhR. Compared with conventional machine learning (ML) techniques, such as the random forest, XGBoost, LightGBM, and CatBoost, the proposed method achieves high-performance prediction of AhR activation. Thus, the DeepSnap–DL method may be considered a useful tool for achieving high-throughput in silico evaluation of AhR-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, 204-8588 Tokyo, Japan;
| | - Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8529, Japan; (T.H.); (A.O.); (K.Y.)
| | - Anna Ogaito
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8529, Japan; (T.H.); (A.O.); (K.Y.)
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8529, Japan; (T.H.); (A.O.); (K.Y.)
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, 204-8588 Tokyo, Japan;
- Correspondence:
| |
Collapse
|
12
|
Lu P, Cai X, Guo Y, Xu M, Tian J, Locker J, Xie W. Constitutive Activation of the Human Aryl Hydrocarbon Receptor in Mice Promotes Hepatocarcinogenesis Independent of Its Coactivator Gadd45b. Toxicol Sci 2020; 167:581-592. [PMID: 30346592 DOI: 10.1093/toxsci/kfy263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), or dioxin, is a potent liver cancer promoter through its sustained activation of the aryl hydrocarbon receptor (Ahr) in rodents. However, the carcinogenic effect of TCDD and AHR in humans has been controversial. It has been suggested that the inter-species difference in the carcinogenic activity of AhR is largely due to different ligand affinity in that TCDD has a 10-fold lower affinity for the human AHR compared with the mouse Ahr. It remains unclear whether the activation of human AHR is sufficient to promote hepatocellular carcinogenesis. The goal of this study is to clarify whether activation of human AHR can promote hepatocarcinogenesis. Here we reported the oncogenic activity of human AHR in promoting hepatocellular carcinogenesis. Constitutive activation of the human AHR in transgenic mice was as efficient as its mouse counterpart in promoting diethylnitrosamine (DEN)-initiated hepatocellular carcinogenesis. The growth arrest and DNA damage-inducible gene 45 β (Gadd45b), a signaling molecule inducible by external stress and UV irradiation, is highly induced upon AHR activation. Further analysis revealed that Gadd45b is a novel AHR target gene and a transcriptional coactivator of AHR. Interestingly, ablation of Gadd45b in mice did not abolish the tumor promoting effects of the human AHR. Collectively, our findings suggested that constitutive activation of human AHR was sufficient to promote hepatocarcinogenesis.
Collapse
Affiliation(s)
- Peipei Lu
- Center for Pharmacogenetics.,Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Xinran Cai
- Center for Pharmacogenetics.,Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Yan Guo
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China 200025
| | - Meishu Xu
- Center for Pharmacogenetics.,Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | | | | | - Wen Xie
- Center for Pharmacogenetics.,Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
13
|
van der Vorst EPC, Weber C. Novel Features of Monocytes and Macrophages in Cardiovascular Biology and Disease. Arterioscler Thromb Vasc Biol 2019; 39:e30-e37. [PMID: 30673349 DOI: 10.1161/atvbaha.118.312002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Emiel P C van der Vorst
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany (E.P.C.v.d.V., C.W.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany (E.P.C.v.d.V., C.W.).,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (C.W.).,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (C.W.)
| |
Collapse
|
14
|
Vorontsova JE, Cherezov RO, Kuzin BA, Simonova OB. Aryl-Hydrocarbon Receptor as a Potential Target for Anticancer Therapy. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2019. [DOI: 10.1134/s1990750819010116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Vogel CFA, Ishihara Y, Campbell CE, Kado SY, Nguyen-Chi A, Sweeney C, Pollet M, Haarmann-Stemmann T, Tuscano JM. A Protective Role of Aryl Hydrocarbon Receptor Repressor in Inflammation and Tumor Growth. Cancers (Basel) 2019; 11:cancers11050589. [PMID: 31035533 PMCID: PMC6563059 DOI: 10.3390/cancers11050589] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 01/02/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is known for mediating the toxicity of environmental pollutants such as dioxins and numerous dioxin-like compounds, and is associated with the promotion of various malignancies, including lymphoma. The aryl hydrocarbon receptor repressor (AhRR), a ligand-independent, transcriptionally inactive AhR-like protein is known to repress AhR signaling through its ability to compete with the AhR for dimerization with the AhR nuclear translocator (ARNT). While AhRR effectively blocks AhR signaling, several aspects of the mechanism of AhRR’s functions are poorly understood, including suppression of inflammatory responses and its putative role as a tumor suppressor. In a transgenic mouse that overexpresses AhRR (AhRR Tg) we discovered that these mice suppress 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)- and inflammation-induced tumor growth after subcutaneous challenge of EL4 lymphoma cells. Using mouse embryonic fibroblasts (MEF) we found that AhRR overexpression suppresses the AhR-mediated anti-apoptotic response. The AhRR-mediated inhibition of apoptotic resistance was associated with a suppressed expression of interleukin (IL)-1β and cyclooxygenase (COX)-2, which was dependent on activation of protein kinase A (PKA) and the CAAT-enhancer-binding protein beta (C/EBPβ). These results provide mechanistic insights into the role of the AhRR to suppress inflammation and highlight the AhRR as a potential therapeutic target to suppress tumor growth.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA 95616, USA.
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Yasuhiro Ishihara
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA.
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan.
| | - Claire E Campbell
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Sarah Y Kado
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Aimy Nguyen-Chi
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Colleen Sweeney
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA.
| | - Marius Pollet
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA 95616, USA.
- Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany.
| | | | - Joseph M Tuscano
- Division of Hematology & Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA.
| |
Collapse
|
16
|
Leijs MM, Esser A, Amann PM, Schettgen T, Heise R, Fietkau K, Gube M, Merk HF, Kraus T, Baron JM. Expression of CYP1A1, CYP1B1 and IL-1β in PBMCs and skin samples of PCB exposed individuals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1429-1438. [PMID: 30045523 DOI: 10.1016/j.scitotenv.2018.06.136] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Polychlorinated biphenyls (PCBs) are well- known man-made persistent environmental pollutants and endocrine disruptors. As a result of mass production in the past, background levels of these compounds can be measured in human blood worldwide. In 2010 high internal levels of PCBs were discovered in workers of a transformer-recycling company in Germany. Our aim was to measure, whether the expression of CYP1A1, CYP1B1, and IL-1β is dysregulated in peripheral blood mononuclear cells (PBMCs) of the exposed individuals (n = max 308). Further, we measured the regulation of CYP1A1, CYP1B1, AHRR (aromatic hydrocarbon receptor repressor) and IL-1β in skin samples of 25 workers with elevated plasma PCB levels using quantitative PCR (q-RT-PCR). We found a significant correlation between the regulation of IL-1β in skin samples and lipid adjusted PCB levels. In the PBMCs, the expression levels of CYP1A1, CYP1B1 and IL-1β decreased over time with decreasing PCB plasma levels. The upregulation of the cytokine IL-1β in exposed individuals with higher PCB plasma levels warrants further investigation in order to examine its role in the pathophysiology of autoimmune disorders and tumor promotion.
Collapse
Affiliation(s)
- Marike M Leijs
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany.
| | - André Esser
- Institute for Occupational and Social Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Philipp M Amann
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany; Department of Dermatology, SLK Hospital Heilbronn, Germany
| | - Thomas Schettgen
- Institute for Occupational and Social Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Ruth Heise
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany
| | - Katharina Fietkau
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany
| | - Monika Gube
- Institute for Occupational and Social Medicine, RWTH Aachen University, 52074 Aachen, Germany; Health Office of the city and area of Aachen, Trierer Straße 1, 52078 Aachen, Germany
| | - Hans F Merk
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas Kraus
- Institute for Occupational and Social Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Jens M Baron
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
17
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Fürst P, Håkansson H, Halldorsson T, Lundebye AK, Pohjanvirta R, Rylander L, Smith A, van Loveren H, Waalkens-Berendsen I, Zeilmaker M, Binaglia M, Gómez Ruiz JÁ, Horváth Z, Christoph E, Ciccolallo L, Ramos Bordajandi L, Steinkellner H, Hoogenboom LR. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J 2018; 16:e05333. [PMID: 32625737 PMCID: PMC7009407 DOI: 10.2903/j.efsa.2018.5333] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of dioxins (PCDD/Fs) and DL-PCBs in feed and food. The data from experimental animal and epidemiological studies were reviewed and it was decided to base the human risk assessment on effects observed in humans and to use animal data as supportive evidence. The critical effect was on semen quality, following pre- and postnatal exposure. The critical study showed a NOAEL of 7.0 pg WHO2005-TEQ/g fat in blood sampled at age 9 years based on PCDD/F-TEQs. No association was observed when including DL-PCB-TEQs. Using toxicokinetic modelling and taking into account the exposure from breastfeeding and a twofold higher intake during childhood, it was estimated that daily exposure in adolescents and adults should be below 0.25 pg TEQ/kg bw/day. The CONTAM Panel established a TWI of 2 pg TEQ/kg bw/week. With occurrence and consumption data from European countries, the mean and P95 intake of total TEQ by Adolescents, Adults, Elderly and Very Elderly varied between, respectively, 2.1 to 10.5, and 5.3 to 30.4 pg TEQ/kg bw/week, implying a considerable exceedance of the TWI. Toddlers and Other Children showed a higher exposure than older age groups, but this was accounted for when deriving the TWI. Exposure to PCDD/F-TEQ only was on average 2.4- and 2.7-fold lower for mean and P95 exposure than for total TEQ. PCDD/Fs and DL-PCBs are transferred to milk and eggs, and accumulate in fatty tissues and liver. Transfer rates and bioconcentration factors were identified for various species. The CONTAM Panel was not able to identify reference values in most farm and companion animals with the exception of NOAELs for mink, chicken and some fish species. The estimated exposure from feed for these species does not imply a risk.
Collapse
|
18
|
Vorontsova JE, Cherezov RO, Kuzin BA, Simonova OB. [Aryl-hydrocarbon receptor as a potential target for anticancer therapy]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2018; 64:397-415. [PMID: 30378556 DOI: 10.18097/pbmc20186405397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aryl-hydrocarbon receptor (Aryl Hydrocarbon Receptor, AHR) is a ligand-dependent transcription factor, whose functions are related to xenobiotic detoxification, response to inflammation, and maintenance of tissue homeostasis. Recent investigations suggest that AHR also plays an important role in the processes of carcinogenesis. Increased expression of AHR is observed in several types of tumors and tumor cell lines. In addition, it turned out that the composition of pharmaceutical drugs used in oncotherapy includes some ligands AHR. These facts allow us to consider an aryl-hydrocarbon receptor as a potential target for anticancer therapy, especially for the treatment of severe cancers whose treatment options are very limited or do not exist at all. In this review the examples of AHR ligands' effect on tumor cell cultures and on model mice lines with AHR-dependent response are discussed.
Collapse
Affiliation(s)
- J E Vorontsova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - R O Cherezov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - B A Kuzin
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - O B Simonova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
19
|
Smith AG, Foster JR. The association between chemical-induced porphyria and hepatic cancer. Toxicol Res (Camb) 2018; 7:647-663. [PMID: 30090612 PMCID: PMC6060669 DOI: 10.1039/c8tx00019k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/04/2018] [Indexed: 01/24/2023] Open
Abstract
The haem biosynthetic pathway is of fundamental importance for cellular metabolism both for the erythroid and nonerythroid tissues. There are several genetic variants of the pathway in the human population that cause dysfunction of one or other of the enzymes resulting in porphyrias of varying severity. Serious chronic hepatic and systemic diseases may result. Some of these can be precipitated by exposure to drugs including hormones, barbiturates and antibiotics, as well as alcohol and particular chlorinated aromatic chemicals. In experimental animals some of the steps of this pathway can also be severely disrupted by a variety of environmental chemicals, potential drugs and pesticides, especially in the liver, leading to the accumulation of uroporphyrins derived from the intermediate uroporphyrinogens or protoporphyrin IX, the immediate precursor of haem. With some of these chemicals this also leads to cholestasis and liver cell injury and eventually hepatic tumours. The review evaluates the available evidence linking hepatic porphyria with carcinogenesis in naturally occurring human genetic conditions and in chemically-induced porphyrias in laboratory animals. The existing data showing gender, strain, and species differences in sensitivity to the chemical-induced porphyrias, liver injury and liver tumours are discussed and the role that transgenically altered mouse models have played in defining the varying mechanisms. Finally, the review proposes a novel, unifying hypothesis linking the hepatotoxicity induced by the accumulation of various porphyrins, with the increased risk of developing hepatic cancer as a long term consequence.
Collapse
Affiliation(s)
- Andrew G Smith
- MRC Toxicology Unit , Hodgkin Building , University of Leicester , Lancaster Road , Leicester LE2 4UA , UK .
| | - John R Foster
- ToxPath Sciences Ltd , 1 Troutbeck Avenue , Congleton , Cheshire , CW12 4JA , UK
| |
Collapse
|
20
|
Luo JJ, Su DS, Xie SL, Liu Y, Liu P, Yang XJ, Pei DS. Hypersensitive assessment of aryl hydrocarbon receptor transcriptional activity using a novel truncated cyp1a promoter in zebrafish. FASEB J 2018; 32:2814-2826. [PMID: 29298861 DOI: 10.1096/fj.201701171r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent organic pollutant (POP), an unintentional byproduct of various industrial processes, and a human carcinogen. The expression of the cytochrome P450 1A (cyp1a) gene is upregulated in the presence of TCDD through activating the aryl hydrocarbon receptor pathway in a dose-dependent manner. Several essential response elements, including the 8 potential xenobiotic response elements in the cyp1a promoter region, have been identified to be the main functional parts for the response to TCDD. Thus, we aimed to develop a convenient and sensitive biomonitoring tool to examine the level of POPs in the environment and evaluate its potential human health risks by TCDD. Here, we established a transgenic zebrafish model with a red fluorescent reporter gene ( mCherry) using the truncated cyp1a promoter. Under exposure to TCDD, the expression pattern of mCherry in the reporter zebrafish mirrored that of endogenous cyp1a mRNA, and the primary target tissues for TCDD were the brain vessels, liver, gut, cloaca, and skin. Our results indicated that exposure of the embryos to TCDD at concentrations as low as 0.005 nM for 48 h, which did not elicit morphologic abnormalities in the embryos, markedly increased mCherry expression. In addition, the reporter embryos responded to other POPs, and primary liver cell culture of zebrafish revealed that Cyp1a protein was mainly expressed in the cytoplasm of liver cells. Furthermore, our transgenic fish embryos demonstrated that TCDD exposure can regulate the expression levels of several tumor-related factors, including epidermal growth factor, TNF-α, C-myc, proliferating cell nuclear antigen, TGF-β, serine/threonine kinase (Akt), and phosphorylated Akt, suggesting that our transgenic fish can be used as a sensitive model to evaluate the carcinogenicity induced by TCDD exposure.-Luo, J.-J., Su, D.-S., Xie, S.-L., Liu, Y., Liu, P., Yang, X.-J., Pei D.-S. Hypersensitive assessment of aryl hydrocarbon receptor transcriptional activity using a novel truncated cyp1a promoter in zebrafish.
Collapse
Affiliation(s)
- Juan-Juan Luo
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Dong-Sheng Su
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Shao-Lin Xie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yi Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Pei Liu
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Xiao-Jun Yang
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
21
|
Jiang X, Hao Y. Analysis of expression profile data identifies key genes and pathways in hepatocellular carcinoma. Oncol Lett 2018; 15:2625-2630. [PMID: 29434983 DOI: 10.3892/ol.2017.7534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 07/20/2017] [Indexed: 12/12/2022] Open
Abstract
The aims of the present study were to identify key genes and pathways associated with hepatocellular carcinoma (HCC) progression and predict compounds potentially associated with this type of carcinogenesis. The gene expression profile data of the GSE49515 dataset was obtained from the Gene Expression Omnibus database. The limma software package was used to identify the differentially expressed genes (DEGs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using the Biological Networks Gene Ontology tool and the Database for Annotation, Visualization and Integrated Discovery, respectively. The Michigan Molecular Interactions database plugin within the Cytoscape software platform was used to perform protein-protein interaction (PPI) network analysis. Chemical-gene interaction data for HCC were obtained from the Comparative Toxicogenomics Database to evaluate the associations between drugs and specific genes. A total of 302 DEGs, including 231 downregulated and 71 upregulated, were identified. Cytokine-cytokine receptor interaction and chemokine signaling were the significantly enriched pathways. Additionally, PPI network analysis indicated a total of 13 highest degree hub nodes, including FBJ murine osteosarcoma viral oncogene homolog (FOS) and DNA damage-inducible transcript 3 protein (DDIT3). Chemical-gene interaction analysis revealed that FUN and FOS were targeted by >500 compounds, while >200 genes were targeted by 2,3,7,8-tetrachlorodibenzodioxin and benzo(α)pyrene. In conclusion, the present study demonstrated that FOS, DDIT3, the cytokine-cytokine receptor interaction pathway and the chemokine signaling pathway may be key genes and pathways associated with the development of HCC. Furthermore, exposure to 2,3,7,8-tetrachlorodibenzodioxin or benzo(α)pyrene may lead to hepatocarcinogenesis.
Collapse
Affiliation(s)
- Xuwei Jiang
- Department of General Surgery, Shanghai, Baoshan District Hospital of Integrated Traditional and Western Medicine, Shanghai 201900, P.R. China
| | - Yuqing Hao
- Department of General Surgery, Shanghai, Baoshan District Hospital of Integrated Traditional and Western Medicine, Shanghai 201900, P.R. China
| |
Collapse
|
22
|
Xue P, Fu J, Zhou Y. The Aryl Hydrocarbon Receptor and Tumor Immunity. Front Immunol 2018; 9:286. [PMID: 29487603 PMCID: PMC5816799 DOI: 10.3389/fimmu.2018.00286] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/31/2018] [Indexed: 01/31/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an important cytosolic, ligand-dependent transcription factor. Emerging evidence suggests the promoting role of the AhR in the initiation, promotion, progression, invasion, and metastasis of cancer cells. Studies on various tumor types and tumor cell lines have shown high AhR expression, suggesting that AhR is activated constitutively in tumors and facilitates their growth. Interestingly, immune evasion has been recognized as an emerging hallmark feature of cancer. A connection between the AhR and immune system has been recognized, which has been suggested as an immunosuppressive effector on different types of immune cells. Certain cancers can escape immune recognition via AhR signaling pathways. This review discusses the role of the AhR in tumor immunity and its potential mechanism of action in the tumor microenvironment.
Collapse
Affiliation(s)
- Ping Xue
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinrong Fu
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yufeng Zhou
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai, China
| |
Collapse
|
23
|
Liu KY, Wang LT, Hsu SH. Modification of Epigenetic Histone Acetylation in Hepatocellular Carcinoma. Cancers (Basel) 2018; 10:cancers10010008. [PMID: 29301348 PMCID: PMC5789358 DOI: 10.3390/cancers10010008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/19/2017] [Accepted: 12/30/2017] [Indexed: 12/14/2022] Open
Abstract
Cells respond to various environmental factors such as nutrients, food intake, and drugs or toxins by undergoing dynamic epigenetic changes. An imbalance in dynamic epigenetic changes is one of the major causes of disease, oncogenic activities, and immunosuppressive effects. The aryl hydrocarbon receptor (AHR) is a unique cellular chemical sensor present in most organs, and its dysregulation has been demonstrated in multiple stages of tumor progression in humans and experimental models; however, the effects of the pathogenic mechanisms of AHR on epigenetic regulation remain unclear. Apart from proto-oncogene activation, epigenetic repressions of tumor suppressor genes are involved in tumor initiation, procession, and metastasis. Reverse epigenetic repression of the tumor suppressor genes by epigenetic enzyme activity inhibition and epigenetic enzyme level manipulation is a potential path for tumor therapy. Current evidence and our recent work on deacetylation of histones on tumor-suppressive genes suggest that histone deacetylase (HDAC) is involved in tumor formation and progression, and treating hepatocellular carcinoma with HDAC inhibitors can, at least partially, repress tumor proliferation and transformation by recusing the expression of tumor-suppressive genes such as TP53 and RB1.
Collapse
Affiliation(s)
- Kwei-Yan Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Li-Ting Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
24
|
Role of the aryl hydrocarbon receptor in carcinogenesis and potential as an anti-cancer drug target. Arch Toxicol 2017; 91:2497-2513. [PMID: 28508231 DOI: 10.1007/s00204-017-1981-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
Abstract
The aryl hydrocarbon receptor (AhR) was initially identified as the receptor that binds and mediates the toxic effects induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and structurally related halogenated aromatics. Other toxic compounds including some polynuclear aromatic hydrocarbons act through the AhR; however, during the last 25 years, it has become apparent that the AhR plays an essential role in maintaining cellular homeostasis. Moreover, the scope of ligands that bind the AhR includes endogenous compounds such as multiple tryptophan metabolites, other endogenous biochemicals, pharmaceuticals and health-promoting phytochemicals including flavonoids, indole-3-carbinol and its metabolites. It has also been shown that like other receptors, the AhR is a drug target for multiple diseases including cancer, where both AhR agonists and antagonists effectively block many of the critical hallmarks of cancer in multiple tumor types. This review describes the anti-cancer activities of AhR ligands and demonstrates that it is time to separate the AhR from TCDD and exploit the potential of the AhR as a novel target for cancer chemotherapy.
Collapse
|
25
|
Takeda T, Komiya Y, Koga T, Ishida T, Ishii Y, Kikuta Y, Nakaya M, Kurose H, Yokomizo T, Shimizu T, Uchi H, Furue M, Yamada H. Dioxin-induced increase in leukotriene B4 biosynthesis through the aryl hydrocarbon receptor and its relevance to hepatotoxicity owing to neutrophil infiltration. J Biol Chem 2017; 292:10586-10599. [PMID: 28487374 DOI: 10.1074/jbc.m116.764332] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 05/02/2017] [Indexed: 12/20/2022] Open
Abstract
Dioxin and related chemicals alter the expression of a number of genes by activating the aryl hydrocarbon receptors (AHR) to produce a variety of disorders including hepatotoxicity. However, it remains largely unknown how these changes in gene expression are linked to toxicity. To address this issue, we initially examined the effect of 2,3,7,8-tetrachrolodibenzo-p-dioxin (TCDD), a most toxic dioxin, on the hepatic and serum metabolome in male pubertal rats and found that TCDD causes many changes in the level of fatty acids, bile acids, amino acids, and their metabolites. Among these findings was the discovery that TCDD increases the content of leukotriene B4 (LTB4), an inducer of inflammation due to the activation of leukocytes, in the liver of rats and mice. Further analyses suggested that an increase in LTB4 comes from a dual mechanism consisting of an induction of arachidonate lipoxygenase-5, a rate-limiting enzyme in LTB4 synthesis, and the down-regulation of LTC4 synthase, an enzyme that converts LTA4 to LTC4. The above changes required AHR activation, because the same was not observed in AHR knock-out rats. In agreement with LTB4 accumulation, TCDD caused the marked infiltration of neutrophils into the liver. However, deleting LTB4 receptors (BLT1) blocked this effect. A TCDD-produced increase in the mRNA expression of inflammatory markers, including tumor-necrosis factor and hepatic damage, was also suppressed in BLT1-null mice. The above observations focusing on metabolomic changes provide novel evidence that TCDD accumulates LTB4 in the liver by an AHR-dependent induction of LTB4 biosynthesis to cause hepatotoxicity through neutrophil activation.
Collapse
Affiliation(s)
| | | | | | | | - Yuji Ishii
- From the Laboratory of Molecular Life Sciences and
| | - Yasushi Kikuta
- the Department of Applied Biological Science, Fukuyama University, Hiroshima 729-0292, Japan
| | - Michio Nakaya
- the Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hitoshi Kurose
- the Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takehiko Yokomizo
- the Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takao Shimizu
- the Department of Lipid Signaling, Research Institute National Center for Global Health and Medicine, Tokyo 162-8655, Japan.,the Department of Lipidomics, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan, and
| | - Hiroshi Uchi
- the Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masutaka Furue
- the Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,the Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | | |
Collapse
|
26
|
Vogel CFA, Haarmann-Stemmann T. The aryl hydrocarbon receptor repressor - More than a simple feedback inhibitor of AhR signaling: Clues for its role in inflammation and cancer. CURRENT OPINION IN TOXICOLOGY 2017; 2:109-119. [PMID: 28971163 DOI: 10.1016/j.cotox.2017.02.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aryl hydrocarbon receptor repressor (AhRR) was first described as a specific competitive repressor of aryl hydrocarbon receptor (AhR) activity based on its ability to dimerize with the AhR nuclear translocator (ARNT) and through direct competition of AhR/ARNT and AhRR/ARNT complexes for binding to dioxin-responsive elements (DREs). Like AhR, AhRR belongs to the basic Helix-Loop-Helix/Per-ARNT-Sim (bHLH/PAS) protein family but lacks functional ligand-binding and transactivation domains. Transient transfection experiments with ARNT and AhRR mutants examining the inhibitory mechanism of AhRR suggested a more complex mechanism than the simple mechanism of negative feedback through sequestration of ARNT to regulate AhR signaling. Recently, AhRR has been shown to act as a tumor suppressor gene in several types of cancer cells. Furthermore, epidemiological studies have found epigenetic changes and silencing of AhRR associated with exposure to cigarette smoke and cancer development. Additional studies from our laboratories have demonstrated that AhRR represses other signaling pathways including NF-κB and is capable of regulating inflammatory responses. A better understanding of the regulatory mechanisms of AhRR in AhR signaling and adverse outcome pathways leading to deregulated inflammatory responses contributing to tumor promotion and other adverse health effects is expected from future studies. This review article summarizes the characteristics of AhRR as an inhibitor of AhR activity and highlights more recent findings pointing out the role of AhRR in inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
27
|
Vogel CF, Chang WW, Kado S, McCulloh K, Vogel H, Wu D, Haarmann-Stemmann T, Yang G, Leung PS, Matsumura F, Gershwin ME. Transgenic Overexpression of Aryl Hydrocarbon Receptor Repressor (AhRR) and AhR-Mediated Induction of CYP1A1, Cytokines, and Acute Toxicity. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1071-1083. [PMID: 26862745 PMCID: PMC4937866 DOI: 10.1289/ehp.1510194] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/03/2015] [Accepted: 01/13/2016] [Indexed: 05/30/2023]
Abstract
BACKGROUND The aryl hydrocarbon receptor repressor (AhRR) is known to repress aryl hydrocarbon receptor (AhR) signaling, but very little is known regarding the role of the AhRR in vivo. OBJECTIVE This study tested the role of AhRR in vivo in AhRR overexpressing mice on molecular and toxic end points mediated through a prototypical AhR ligand. METHODS We generated AhRR-transgenic mice (AhRR Tg) based on the genetic background of C57BL/6J wild type (wt) mice. We tested the effect of the prototypical AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the expression of cytochrome P450 (CYP)1A1 and cytokines in various tissues of mice. We next analyzed the infiltration of immune cells in adipose tissue of mice after treatment with TCDD using flow cytometry. RESULTS AhRR Tg mice express significantly higher levels of AhRR compared to wt mice. Activation of AhR by TCDD caused a significant increase of the inflammatory cytokines Interleukin (IL)-1β, IL-6 and IL-10, and CXCL chemokines in white epididymal adipose tissue from both wt and AhRR Tg mice. However, the expression of IL-1β, CXCL2 and CXCL3 were significantly lower in AhRR Tg versus wt mice following TCDD treatment. Exposure to TCDD caused a rapid accumulation of neutrophils and macrophages in white adipose tissue of wt and AhRR Tg mice. Furthermore we found that male AhRR Tg mice were protected from high-dose TCDD-induced lethality associated with a reduced inflammatory response and liver damage as indicated by lower levels of TCDD-induced alanine aminotransferase and hepatic triglycerides. Females from both wt and AhRR Tg mice were less sensitive than male mice to acute toxicity induced by TCDD. CONCLUSION In conclusion, the current study identifies AhRR as a previously uncharacterized regulator of specific inflammatory cytokines, which may protect from acute toxicity induced by TCDD. CITATION Vogel CF, Chang WL, Kado S, McCulloh K, Vogel H, Wu D, Haarmann-Stemmann T, Yang GX, Leung PS, Matsumura F, Gershwin ME. 2016. Transgenic overexpression of aryl hydrocarbon receptor repressor (AhRR) and AhR-mediated induction of CYP1A1, cytokines, and acute toxicity. Environ Health Perspect 124:1071-1083; http://dx.doi.org/10.1289/ehp.1510194.
Collapse
Affiliation(s)
| | - W.L. William Chang
- Center for Comparative Medicine, University of California, Davis, Davis, California, USA
| | | | | | | | - Dalei Wu
- Center for Health and the Environment,
| | | | - GuoXiang Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, California, USA
| | - Patrick S.C. Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, California, USA
| | - Fumio Matsumura
- Department of Environmental Toxicology,
- Center for Health and the Environment,
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, California, USA
| |
Collapse
|
28
|
Environmental Ligands of the Aryl Hydrocarbon Receptor and Their Effects in Models of Adult Liver Progenitor Cells. Stem Cells Int 2016; 2016:4326194. [PMID: 27274734 PMCID: PMC4870370 DOI: 10.1155/2016/4326194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022] Open
Abstract
The toxicity of environmental and dietary ligands of the aryl hydrocarbon receptor (AhR) in mature liver parenchymal cells is well appreciated, while considerably less attention has been paid to their impact on cell populations exhibiting phenotypic features of liver progenitor cells. Here, we discuss the results suggesting that the consequences of the AhR activation in the cellular models derived from bipotent liver progenitors could markedly differ from those in hepatocytes. In contact-inhibited liver progenitor cells, the AhR agonists induce a range of effects potentially linked with tumor promotion. They can stimulate cell cycle progression/proliferation and deregulate cell-to-cell communication, which is associated with downregulation of proteins forming gap junctions, adherens junctions, and desmosomes (such as connexin 43, E-cadherin, β-catenin, and plakoglobin), as well as with reduced cell adhesion and inhibition of intercellular communication. At the same time, toxic AhR ligands may affect the activity of the signaling pathways contributing to regulation of liver progenitor cell activation and/or differentiation, such as downregulation of Wnt/β-catenin and TGF-β signaling, or upregulation of transcriptional targets of YAP/TAZ, the effectors of Hippo signaling pathway. These data illustrate the need to better understand the potential role of liver progenitors in the AhR-mediated liver carcinogenesis and tumor promotion.
Collapse
|
29
|
Ronnekleiv-Kelly SM, Nukaya M, Díaz-Díaz CJ, Megna BW, Carney PR, Geiger PG, Kennedy GD. Aryl hydrocarbon receptor-dependent apoptotic cell death induced by the flavonoid chrysin in human colorectal cancer cells. Cancer Lett 2015; 370:91-9. [PMID: 26515162 DOI: 10.1016/j.canlet.2015.10.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 01/04/2023]
Abstract
The polyphenolic flavone chrysin has been evaluated as a natural chemopreventive agent due to its anti-cancer effects in a variety of cancer cell lines. However, the mechanism of the chemopreventive effect has been not well established, especially in human colorectal cancer cells. We evaluated the chemopreventive effect of chrysin in three different human colorectal cancer cell lines. We found that chrysin treatment consequently reduced cell viability via induction of apoptosis. We identified that the involvement of up-regulation of pro-apoptotic cytokines tumor necrosis factor (Tnf) α and β genes and consequent activation of the TNF-mediated transcriptional pathway in chrysin-induced apoptosis. Using our generated AHR siRNA expressing colorectal cancer cells, we demonstrated that the chrysin-induced up-regulation of Tnfα and β gene expression was dependent on the aryl hydrocarbon receptor (AHR), which is a ligand-receptor for chrysin. Subsequently, we found that the AHR siRNA expressing colorectal cancer cells were resistant to chrysin-induced apoptosis. Therefore, we concluded that AHR is required for the chrysin-induced apoptosis and the up-regulation of Tnfα and β gene expression in human colorectal cancer cells.
Collapse
Affiliation(s)
- Sean M Ronnekleiv-Kelly
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, G4/701A CSC, Madison, WI 53792, USA
| | - Manabu Nukaya
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, G4/701A CSC, Madison, WI 53792, USA
| | - Carol J Díaz-Díaz
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, G4/701A CSC, Madison, WI 53792, USA
| | - Bryant W Megna
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, G4/701A CSC, Madison, WI 53792, USA
| | - Patrick R Carney
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, G4/701A CSC, Madison, WI 53792, USA
| | - Peter G Geiger
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, G4/701A CSC, Madison, WI 53792, USA
| | - Gregory D Kennedy
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, G4/701A CSC, Madison, WI 53792, USA.
| |
Collapse
|
30
|
Jackson DP, Joshi AD, Elferink CJ. Ah Receptor Pathway Intricacies; Signaling Through Diverse Protein Partners and DNA-Motifs. Toxicol Res (Camb) 2015; 4:1143-1158. [PMID: 26783425 PMCID: PMC4714567 DOI: 10.1039/c4tx00236a] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Ah receptor is a transcription factor that modulates gene expression via interactions with multiple protein partners; these are reviewed, including the novel NC-XRE pathway involving KLF6.
Collapse
|
31
|
Yan Y, Chen N, Wang Y, Wang K. The application of antitumor drug-targeting models on liver cancer. Drug Deliv 2015; 23:1667-75. [PMID: 26289213 DOI: 10.3109/10717544.2015.1064188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hepatocarcinoma animal models, such as the induced tumor model, transplanted tumor model, gene animal model, are significant experimental tools for the evaluation of targeting drug delivery system as well as the pre-clinical studies of liver cancer. The application of antitumor drug-targeting models not only furnishes similar biological characteristics to human liver cancer but also offers guarantee of pharmacokinetic indicators of the liver-targeting preparations. In this article, we have reviewed some kinds of antitumor drug-targeting models of hepatoma and speculated that the research on this field would be capable of attaining a deeper level and expecting a superior achievement in the future.
Collapse
Affiliation(s)
- Yan Yan
- a School of Pharmacy, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Ningbo Chen
- b Surgical Department of Emergency Center, The People's Hospital of Sichuan Province , Sichuan , China and
| | - Yunbing Wang
- c National Engineering Research Center in Biomaterials, Sichuan University , Chengdu , Sichuan , China
| | - Ke Wang
- a School of Pharmacy, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| |
Collapse
|
32
|
Harrill JA, Layko D, Nyska A, Hukkanen RR, Manno RA, Grassetti A, Lawson M, Martin G, Budinsky RA, Rowlands JC, Thomas RS. Aryl hydrocarbon receptor knockout rats are insensitive to the pathological effects of repeated oral exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Appl Toxicol 2015; 36:802-14. [PMID: 26278112 DOI: 10.1002/jat.3211] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/24/2015] [Accepted: 06/14/2015] [Indexed: 12/31/2022]
Abstract
Sustained activation of the aryl hydrocarbon receptor (AHR) is believed to be the initial key event in AHR receptor-mediated tumorigenesis in the rat liver. The role of AHR in mediating pathological changes in the liver prior to tumor formation was investigated in a 4-week, repeated-dose study using adult female wild-type (WT) and AHR knockout (AHR-KO) rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Beginning at 8 weeks of age, AHR-KO and WT rats were dosed by oral gavage with varying concentrations of TCDD (0, 3, 22, 100, 300 and 1000 ng kg(-1) day(-1) ). Lung, liver and thymus histopathology, hematology, serum chemistry and the distribution of TCDD in liver and adipose tissue were examined. Treatment-related increases in the severity of liver and thymus pathology were observed in WT, but not AHR-KO rats. In the liver, these included hepatocellular hypertrophy, bile duct hyperplasia, multinucleated hepatocytes and inflammatory cell foci. A loss of cellularity in the thymic cortex and thymic atrophy was observed. Treatment-related changes in serum chemistry parameters were also observed in WT, but not AHR-KO rats. Finally, dose-dependent accumulation of TCDD was observed primarily in the liver of WT rats and primarily in the adipose tissue of AHR-KO rats. The results suggest that AHR activation is the initial key event underlying the progression of histological effects leading to liver tumorigenesis following TCDD treatment. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Joshua A Harrill
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, NC, 27709, USA
| | - Debra Layko
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, NC, 27709, USA
| | - Abraham Nyska
- Consultant in Toxicologic Pathology, Sackler School of Medicine, Tel Aviv University, Timrat, 36576, Israel
| | | | | | | | - Marie Lawson
- The Dow Chemical Company, Midland, MI, 48640, USA
| | - Greg Martin
- The Dow Chemical Company, Midland, MI, 48640, USA
| | | | | | - Russell S Thomas
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
33
|
Patlewicz G, Simon TW, Rowlands JC, Budinsky RA, Becker RA. Proposing a scientific confidence framework to help support the application of adverse outcome pathways for regulatory purposes. Regul Toxicol Pharmacol 2015; 71:463-77. [PMID: 25707856 DOI: 10.1016/j.yrtph.2015.02.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
Abstract
An adverse outcome pathway (AOP) describes the causal linkage between initial molecular events and an adverse outcome at individual or population levels. Whilst there has been considerable momentum in AOP development, far less attention has been paid to how AOPs might be practically applied for different regulatory purposes. This paper proposes a scientific confidence framework (SCF) for evaluating and applying a given AOP for different regulatory purposes ranging from prioritizing chemicals for further evaluation, to hazard prediction, and ultimately, risk assessment. The framework is illustrated using three different AOPs for several typical regulatory applications. The AOPs chosen are ones that have been recently developed and/or published, namely those for estrogenic effects, skin sensitisation, and rodent liver tumor promotion. The examples confirm how critical the data-richness of an AOP is for driving its practical application. In terms of performing risk assessment, human dosimetry methods are necessary to inform meaningful comparisons with human exposures; dosimetry is applied to effect levels based on non-testing approaches and in vitro data. Such a comparison is presented in the form of an exposure:activity ratio (EAR) to interpret biological activity in the context of exposure and to provide a basis for product stewardship and regulatory decision making.
Collapse
Affiliation(s)
- Grace Patlewicz
- DuPont Haskell Global Centers for Health and Environmental Sciences, 1090 Elkton Road, Newark, DE 19711, USA.
| | - Ted W Simon
- Ted Simon LLC, 4184 Johnston Road, Winston, GA 30187, USA
| | - J Craig Rowlands
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| | - Robert A Budinsky
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| | - Richard A Becker
- Regulatory and Technical Affairs Department, American Chemistry Council (ACC), Washington, DC 20002, USA
| |
Collapse
|
34
|
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is best known for mediating the toxicity and tumour-promoting properties of the carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin, commonly referred to as ‘dioxin’. AHR influences the major stages of tumorigenesis — initiation, promotion, progression and metastasis — and physiologically relevant AHR ligands are often formed during disease states or during heightened innate and adaptive immune responses. Interestingly, ligand specificity and affinity vary between rodents and humans. Studies of aggressive tumours and tumour cell lines show increased levels of AHR and constitutive localization of this receptor in the nucleus. This suggests that the AHR is chronically activated in tumours, thus facilitating tumour progression. This Review discusses the role of AHR in tumorigenesis and the potential for therapeutic modulation of its activity in tumours.
Collapse
|
35
|
Liu G, Asanoma K, Takao T, Tsukimori K, Uchi H, Furue M, Kato K, Wake N. Aryl hydrocarbon receptor SNP -130 C/T associates with dioxins susceptibility through regulating its receptor activity and downstream effectors including interleukin 24. Toxicol Lett 2014; 232:384-92. [PMID: 25445724 DOI: 10.1016/j.toxlet.2014.11.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 12/25/2022]
Abstract
Dioxins are persistent environmental pollutants that cause multiple adverse health effects in humans, mainly through binding to the ligand-activated transcription factor, aryl hydrocarbon receptor (AhR). Genetic variation in AhR may modulate the susceptibility to dioxins. In this study, we aimed to evaluate the effects of the single nucleotide polymorphism (SNP) -130 C/T in the AhR promoter on dioxin-inducible gene transcription, and to investigate interleukin-24 (IL-24) and interleukin-1β (IL-1β) as proxies for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. Using primary human chorionic stromal cells, we found that cells with the TT genotype showed higher AhR mRNA and protein levels than did those of the CC genotype. Microarray was carried out to analyze the gene expression profiles of cells (CC and TT genotype) after exposing the cells to TCDD. Several genes associated with human disorders were more highly up-regulated in cells of the TT genotype. Higher up-regulation of IL-24 and IL-1β mRNA in cells with the TT genotype was observed. Furthermore, blood samples from 64 Yusho patients who were accidentally exposed to high concentrations of dioxins were analyzed for the genotype, dioxins concentrations and serum levels of IL-24 and IL-1β. We observed higher serum IL-24 levels and lower serum IL-1β levels in Yusho patients with the TT genotype than in those with the CC genotype. AhR SNP -130 C/T affects serum IL-24 and IL-1β levels, independently of serum dioxins concentrations in Yusho patients. Our observations demonstrate that SNP -130 C/T modulates AhR expression and expression levels of IL-24 and IL-1β, and suggest an association of AhR SNP -130 C/T with the susceptibility to dioxins.
Collapse
Affiliation(s)
- Ge Liu
- Department of Genomic Epidemiology, Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuo Asanoma
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Tomoka Takao
- Department of Genomic Epidemiology, Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyomi Tsukimori
- Department of Obstetrics, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Hiroshi Uchi
- Research and Clinical Center for Yusho and Dioxins, Kyushu University Hospital, Fukuoka, Japan; Department of Dermatology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Masutaka Furue
- Research and Clinical Center for Yusho and Dioxins, Kyushu University Hospital, Fukuoka, Japan; Department of Dermatology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Norio Wake
- Department of Genomic Epidemiology, Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|