1
|
Luo G, Kumar H, Aldridge K, Rieger S, Han E, Jiang E, Chan ER, Soliman A, Mahdi H, Letterio JJ. A Core NRF2 Gene Set Defined Through Comprehensive Transcriptomic Analysis Predicts Selective Drug Resistance and Poor Multicancer Prognosis. Antioxid Redox Signal 2024; 41:1031-1050. [PMID: 39028025 DOI: 10.1089/ars.2023.0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Aims: The nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (NRF2-KEAP1) pathway plays an important role in the cellular response to oxidative stress but may also contribute to metabolic changes and drug resistance in cancer. However, despite its pervasiveness and important role, most of nuclear factor erythroid 2-related factor 2 (NRF2) target genes are defined in context-specific experiments and analysis, making it difficult to translate from one situation to another. Our study investigates whether a core NRF2 gene signature can be derived and used to represent NRF2 activation in various contexts, allowing better reproducibility and understanding of NRF2. Results: We define a core set of 14 upregulated NRF2 target genes from 7 RNA-sequencing datasets that we generated and analyzed. This NRF2 gene signature was validated using analyses of published datasets and gene sets. An NRF2 activity score based on expression of these core target genes correlates with resistance to drugs such as PX-12 and necrosulfonamide but not to paclitaxel or bardoxolone methyl. We validated these findings in our Kelch-like ECH-associated protein 1 (KEAP1) knockout cancer cell lines. Finally, our NRF2 score is prognostic for cancer survival and validated in additional independent cohorts for lung adenocarcinoma and also novel cancer types not associated with NRF2-KEAP1 mutations such as clear cell renal carcinoma, hepatocellular carcinoma, and acute myeloid leukemia. Innovation and Conclusions: These analyses define a core NRF2 gene signature that is robust, versatile, and useful for evaluating NRF2 activity and for predicting drug resistance and cancer prognosis. Using this gene signature, we uncovered novel selective drug resistance and cancer prognosis associated with NRF2 activation. Antioxid. Redox Signal. 41, 1031-1050.
Collapse
Affiliation(s)
- George Luo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Harshita Kumar
- Department of Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Stevie Rieger
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - EunHyang Han
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Ethan Jiang
- Booth School of Business, University of Chicago, Chicago, Illinois, USA
| | - Ernest R Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ahmed Soliman
- Department of Pediatrics, SUNY Downstate Hospital, Brooklyn, New York, USA
| | - Haider Mahdi
- Magee Women's Research Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Magee Women's Hospital, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John J Letterio
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
- The Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Wang T, Liu M, Li X, Zhang S, Gu H, Wei X, Wang X, Xu Z, Shen T. Naturally-derived modulators of the Nrf2 pathway and their roles in the intervention of diseases. Free Radic Biol Med 2024; 225:560-580. [PMID: 39368519 DOI: 10.1016/j.freeradbiomed.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Cumulative evidence has verified that persistent oxidative stress is involved in the development of various chronic diseases, including pulmonary, neurodegenerative, kidney, cardiovascular, and liver diseases, as well as cancers. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in regulating cellular oxidative stress and inflammatory reactions, making it a focal point for disease prevention and treatment strategies. Natural products are essential resources for discovering leading molecules for new drug research and development. In this review, we comprehensively outlined the progression of the knowledge on the Nrf2 pathway, Nrf2 activators in clinical trials, the naturally-derived Nrf2 modulators (particularly from 2014-present), as well as their effects on the pathogenesis of chronic diseases.
Collapse
Affiliation(s)
- Tian Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Mingjie Liu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xinyu Li
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Sen Zhang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Haoran Gu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xuan Wei
- Shandong Center for Food and Drug Evaluation and Inspection, Jinan, Shandong, PR China
| | - Xiaoning Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zhenpeng Xu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
3
|
Siricilla S, Hansen CJ, Rogers JH, De D, Simpson CL, Waterson AG, Sulikowski GA, Crockett SL, Boatwright N, Reese J, Paria BC, Newton J, Herington JL. Arrest of mouse preterm labor until term delivery by combination therapy with atosiban and mundulone, a natural product with tocolytic efficacy. Pharmacol Res 2023; 195:106876. [PMID: 37536638 PMCID: PMC10712649 DOI: 10.1016/j.phrs.2023.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
There is a lack of FDA-approved tocolytics for the management of preterm labor (PL). In prior drug discovery efforts, we identified mundulone and mundulone acetate (MA) as inhibitors of in vitro intracellular Ca2+-regulated myometrial contractility. In this study, we probed the tocolytic potential of these compounds using human myometrial samples and a mouse model of preterm birth. In a phenotypic assay, mundulone displayed greater efficacy, while MA showed greater potency and uterine-selectivity in the inhibition of intracellular-Ca2+ mobilization. Cell viability assays revealed that MA was significantly less cytotoxic. Organ bath and vessel myography studies showed that only mundulone exerted inhibition of myometrial contractions and that neither compounds affected vasoreactivity of ductus arteriosus. A high-throughput combination screen identified that mundulone exhibits synergism with two clinical-tocolytics (atosiban and nifedipine), and MA displayed synergistic efficacy with nifedipine. Of these combinations, mundulone+atosiban demonstrated a significant improvement in the in vitro therapeutic index compared to mundulone alone. The ex vivo and in vivo synergism of mundulone+atosiban was substantiated, yielding greater tocolytic efficacy and potency on myometrial tissue and reduced preterm birth rates in a mouse model of PL compared to each single agent. Treatment with mundulone after mifepristone administration dose-dependently delayed the timing of delivery. Importantly, mundulone+atosiban permitted long-term management of PL, allowing 71% dams to deliver viable pups at term (>day 19, 4-5 days post-mifepristone exposure) without visible maternal and fetal consequences. Collectively, these studies provide a strong foundation for the development of mundulone as a single or combination tocolytic for management of PL.
Collapse
Affiliation(s)
- Shajila Siricilla
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher J Hansen
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jackson H Rogers
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Debasmita De
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carolyn L Simpson
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alex G Waterson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Gary A Sulikowski
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Stacey L Crockett
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naoko Boatwright
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeff Reese
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Bibhash C Paria
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J Newton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer L Herington
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Luo G, Kumar H, Alridge K, Rieger S, Jiang E, Chan ER, Soliman A, Mahdi H, Letterio JJ. A core NRF2 gene set defined through comprehensive transcriptomic analysis predicts selective drug resistance and poor multi-cancer prognosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537691. [PMID: 37131828 PMCID: PMC10153264 DOI: 10.1101/2023.04.20.537691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The NRF2-KEAP1 pathway plays an important role in the cellular response to oxidative stress but may also contribute to metabolic changes and drug resistance in cancer. We investigated the activation of NRF2 in human cancers and fibroblast cells through KEAP1 inhibition and cancer associated KEAP1/NRF2 mutations. We define a core set of 14 upregulated NRF2 target genes from seven RNA-Sequencing databases that we generated and analyzed, which we validated this gene set through analyses of published databases and gene sets. An NRF2 activity score based on expression of these core target genes correlates with resistance to drugs such as PX-12 and necrosulfonamide but not to paclitaxel or bardoxolone methyl. We validated these findings and also found NRF2 activation led to radioresistance in cancer cell lines. Finally, our NRF2 score is prognostic for cancer survival and validated in additional independent cohorts for novel cancers types not associated with NRF2-KEAP1 mutations. These analyses define a core NRF2 gene set that is robust, versatile, and useful as a NRF2 biomarker and for predicting drug resistance and cancer prognosis.
Collapse
|
5
|
Siricilla S, Hansen CJ, Rogers JH, De D, Simpson CL, Waterson AG, Sulikowski GA, Crockett SL, Boatwright N, Reese J, Paria BC, Newton J, Herington JL. Arrest of mouse preterm labor until term delivery by combination therapy with atosiban and mundulone, a natural product with tocolytic efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543921. [PMID: 37333338 PMCID: PMC10274706 DOI: 10.1101/2023.06.06.543921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Currently, there is a lack of FDA-approved tocolytics for the management of preterm labor (PL). In prior drug discovery efforts, we identified mundulone and its analog mundulone acetate (MA) as inhibitors of in vitro intracellular Ca 2+ -regulated myometrial contractility. In this study, we probed the tocolytic and therapeutic potential of these small molecules using myometrial cells and tissues obtained from patients receiving cesarean deliveries, as well as a mouse model of PL resulting in preterm birth. In a phenotypic assay, mundulone displayed greater efficacy in the inhibition of intracellular-Ca 2+ from myometrial cells; however, MA showed greater potency and uterine-selectivity, based IC 50 and E max values between myometrial cells compared to aorta vascular smooth muscle cells, a major maternal off-target site of current tocolytics. Cell viability assays revealed that MA was significantly less cytotoxic. Organ bath and vessel myography studies showed that only mundulone exerted concentration-dependent inhibition of ex vivo myometrial contractions and that neither mundulone or MA affected vasoreactivity of ductus arteriosus, a major fetal off-target of current tocolytics. A high-throughput combination screen of in vitro intracellular Ca 2+ -mobilization identified that mundulone exhibits synergism with two clinical-tocolytics (atosiban and nifedipine), and MA displayed synergistic efficacy with nifedipine. Of these synergistic combinations, mundulone + atosiban demonstrated a favorable in vitro therapeutic index (TI)=10, a substantial improvement compared to TI=0.8 for mundulone alone. The ex vivo and in vivo synergism of mundulone and atosiban was substantiated, yielding greater tocolytic efficacy and potency on isolated mouse and human myometrial tissue and reduced preterm birth rates in a mouse model of PL compared to each single agent. Treatment with mundulone 5hrs after mifepristone administration (and PL induction) dose-dependently delayed the timing of delivery. Importantly, mundulone in combination with atosiban (FR 3.7:1, 6.5mg/kg + 1.75mg/kg) permitted long-term management of PL after induction with 30 μg mifepristone, allowing 71% dams to deliver viable pups at term (> day 19, 4-5 days post-mifepristone exposure) without any visible maternal and fetal consequences. Collectively, these studies provide a strong foundation for the future development of mundulone as a stand-alone single- and/or combination-tocolytic therapy for management of PL.
Collapse
|
6
|
Ulasov AV, Rosenkranz AA, Georgiev GP, Sobolev AS. Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci 2022; 291:120111. [PMID: 34732330 PMCID: PMC8557391 DOI: 10.1016/j.lfs.2021.120111] [Citation(s) in RCA: 222] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
The Nrf2 transcription factor governs the expression of hundreds genes involved in cell defense against oxidative stress, the hallmark of numerous diseases such as neurodegenerative, cardiovascular, some viral pathologies, diabetes and others. The main route for Nrf2 activity regulation is via interactions with the Keap1 protein. Under the normoxia the Keap1 binds the Nrf2 and targets it to the proteasomal degradation, while the Keap1 is regenerated. Upon oxidative stress the interactions between Nrf2 and Keap1 are interrupted and the Nrf2 activates the transcription of the protective genes. Currently, the Nrf2 system activation is considered as a powerful cytoprotective strategy for treatment of different pathologies, which pathogenesis relies on oxidative stress including viral diseases of pivotal importance such as COVID-19. The implementation of this strategy is accomplished mainly through the inactivation of the Keap1 "guardian" function. Two approaches are now developing: the Keap1 modification via electrophilic agents, which leads to the Nrf2 release, and direct interruption of the Nrf2:Keap1 protein-protein interactions (PPI). Because of theirs chemical structure, the Nrf2 electrophilic inducers could non-specifically interact with others cellular proteins leading to undesired effects. Whereas the non-electrophilic inhibitors of the Nrf2:Keap1 PPI could be more specific, thereby widening the therapeutic window.
Collapse
Affiliation(s)
- Alexey V Ulasov
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia.
| | - Andrey A Rosenkranz
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia
| | - Georgii P Georgiev
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Alexander S Sobolev
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia
| |
Collapse
|
7
|
McCord JM, Hybertson BM, Cota-Gomez A, Gao B. Nrf2 activator PB125® as a carnosic acid-based therapeutic agent against respiratory viral diseases, including COVID-19. Free Radic Biol Med 2021; 175:56-64. [PMID: 34058321 PMCID: PMC8413148 DOI: 10.1016/j.freeradbiomed.2021.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022]
Abstract
PB125® is a phytochemical composition providing potent Nrf2 activation as well as a number of direct actions that do not involve Nrf2. Nrf2 is a transcription actor that helps maintain metabolic balance by providing redox-sensitive expression of numerous genes controlling normal day-to-day metabolic pathways. When ordinary metabolism is upset by extraordinary events such as injury, pathogenic infection, air or water pollution, ingestion of toxins, or simply by the slow but incessant changes brought about by aging and genetic variations, Nrf2 may also be called into action by the redox changes resulting from these events, whether acute or chronic. A complicating factor in all of this is that Nrf2 levels decline with aging, leaving the elderly less able to maintain proper redox balance. The dysregulated gene expression that results can cause or exacerbate a wide variety of pathological conditions, including susceptibility to viral infections. This review examines the characteristics desirable in Nrf2 activators that have therapeutic potential, as well as some of the patterns of dysregulated gene expression commonly observed during pulmonary infections and the normalizing effects possible by judicious use of phytochemicals to increase the activation level of available Nrf2.
Collapse
Affiliation(s)
- Joe M McCord
- Pathways Bioscience, Aurora, CO, 80045, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Brooks M Hybertson
- Pathways Bioscience, Aurora, CO, 80045, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Adela Cota-Gomez
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO, 80045, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
8
|
Chan BKY, Elmasry M, Forootan SS, Russomanno G, Bunday TM, Zhang F, Brillant N, Starkey Lewis PJ, Aird R, Ricci E, Andrews TD, Sison-Young RL, Schofield AL, Fang Y, Lister A, Sharkey JW, Poptani H, Kitteringham NR, Forbes SJ, Malik HZ, Fenwick SW, Park BK, Goldring CE, Copple IM. Pharmacological Activation of Nrf2 Enhances Functional Liver Regeneration. Hepatology 2021; 74:973-986. [PMID: 33872408 DOI: 10.1002/hep.31859] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates an array of cytoprotective genes, yet studies in transgenic mice have led to conflicting reports on its role in liver regeneration. We aimed to test the hypothesis that pharmacological activation of Nrf2 would enhance liver regeneration. APPROACH AND RESULTS Wild-type and Nrf2 null mice were administered bardoxolone methyl (CDDO-Me), a potent activator of Nrf2 that has entered clinical development, and then subjected to two-thirds partial hepatectomy. Using translational noninvasive imaging techniques, CDDO-Me was shown to enhance the rate of restoration of liver volume (MRI) and improve liver function (multispectral optoacoustic imaging of indocyanine green clearance) in wild-type, but not Nrf2 null, mice following partial hepatectomy. Using immunofluorescence imaging and whole transcriptome analysis, these effects were found to be associated with an increase in hepatocyte hypertrophy and proliferation, the suppression of immune and inflammatory signals, and metabolic adaptation in the remnant liver tissue. Similar processes were modulated following exposure of primary human hepatocytes to CDDO-Me, highlighting the potential relevance of our findings to patients. CONCLUSIONS Our results indicate that pharmacological activation of Nrf2 is a promising strategy for enhancing functional liver regeneration. Such an approach could therefore aid the recovery of patients undergoing liver surgery and support the treatment of acute and chronic liver disease.
Collapse
Affiliation(s)
- Benjamin K Y Chan
- Medical Research Council Centre for Drug Safety ScienceDepartment of Pharmacology & TherapeuticsInstitute of SystemsMolecular & Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
- Department of Hepatobiliary SurgeryAintree University HospitalLiverpool University Hospitals NHS Foundation TrustLiverpoolUnited Kingdom
| | - Mohamed Elmasry
- Medical Research Council Centre for Drug Safety ScienceDepartment of Pharmacology & TherapeuticsInstitute of SystemsMolecular & Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Shiva S Forootan
- Medical Research Council Centre for Drug Safety ScienceDepartment of Pharmacology & TherapeuticsInstitute of SystemsMolecular & Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Giusy Russomanno
- Medical Research Council Centre for Drug Safety ScienceDepartment of Pharmacology & TherapeuticsInstitute of SystemsMolecular & Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Tobias M Bunday
- Medical Research Council Centre for Drug Safety ScienceDepartment of Pharmacology & TherapeuticsInstitute of SystemsMolecular & Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Fang Zhang
- Medical Research Council Centre for Drug Safety ScienceDepartment of Pharmacology & TherapeuticsInstitute of SystemsMolecular & Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Nathalie Brillant
- Medical Research Council Centre for Drug Safety ScienceDepartment of Pharmacology & TherapeuticsInstitute of SystemsMolecular & Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Philip J Starkey Lewis
- Medical Research Council Centre for Regenerative MedicineEdinburgh BioQuarterLittle France DriveUniversity of EdinburghEdinburghUnited Kingdom
| | - Rhona Aird
- Medical Research Council Centre for Regenerative MedicineEdinburgh BioQuarterLittle France DriveUniversity of EdinburghEdinburghUnited Kingdom
| | - Emanuele Ricci
- Department of Veterinary AnatomyPhysiology & PathologyInstitute of InfectionVeterinary & Ecological SciencesUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Timothy D Andrews
- Department of PathologyRoyal Liverpool University HospitalLiverpool University Hospitals NHS Foundation TrustLiverpoolUnited Kingdom
| | - Rowena L Sison-Young
- Medical Research Council Centre for Drug Safety ScienceDepartment of Pharmacology & TherapeuticsInstitute of SystemsMolecular & Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Amy L Schofield
- Medical Research Council Centre for Drug Safety ScienceDepartment of Pharmacology & TherapeuticsInstitute of SystemsMolecular & Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Yongxiang Fang
- Centre for Genomic ResearchInstitute of SystemsMolecular & Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Adam Lister
- Medical Research Council Centre for Drug Safety ScienceDepartment of Pharmacology & TherapeuticsInstitute of SystemsMolecular & Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Jack W Sharkey
- Centre for Preclinical ImagingInstitute of SystemsMolecular & Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Harish Poptani
- Centre for Preclinical ImagingInstitute of SystemsMolecular & Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Neil R Kitteringham
- Medical Research Council Centre for Drug Safety ScienceDepartment of Pharmacology & TherapeuticsInstitute of SystemsMolecular & Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Stuart J Forbes
- Medical Research Council Centre for Regenerative MedicineEdinburgh BioQuarterLittle France DriveUniversity of EdinburghEdinburghUnited Kingdom
| | - Hassan Z Malik
- Department of Hepatobiliary SurgeryAintree University HospitalLiverpool University Hospitals NHS Foundation TrustLiverpoolUnited Kingdom
| | - Stephen W Fenwick
- Department of Hepatobiliary SurgeryAintree University HospitalLiverpool University Hospitals NHS Foundation TrustLiverpoolUnited Kingdom
| | - B Kevin Park
- Medical Research Council Centre for Drug Safety ScienceDepartment of Pharmacology & TherapeuticsInstitute of SystemsMolecular & Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Christopher E Goldring
- Medical Research Council Centre for Drug Safety ScienceDepartment of Pharmacology & TherapeuticsInstitute of SystemsMolecular & Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Ian M Copple
- Medical Research Council Centre for Drug Safety ScienceDepartment of Pharmacology & TherapeuticsInstitute of SystemsMolecular & Integrative BiologyUniversity of LiverpoolLiverpoolUnited Kingdom
| |
Collapse
|
9
|
Rather MA, Khan A, Alshahrani S, Rashid H, Qadri M, Rashid S, Alsaffar RM, Kamal MA, Rehman MU. Inflammation and Alzheimer's Disease: Mechanisms and Therapeutic Implications by Natural Products. Mediators Inflamm 2021; 2021:9982954. [PMID: 34381308 PMCID: PMC8352708 DOI: 10.1155/2021/9982954] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/24/2021] [Accepted: 07/10/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with no clear causative event making the disease difficult to diagnose and treat. The pathological hallmarks of AD include amyloid plaques, neurofibrillary tangles, and widespread neuronal loss. Amyloid-beta has been extensively studied and targeted to develop an effective disease-modifying therapy, but the success rate in clinical practice is minimal. Recently, neuroinflammation has been focused on as the event in AD progression to be targeted for therapies. Various mechanistic pathways including cytokines and chemokines, complement system, oxidative stress, and cyclooxygenase pathways are linked to neuroinflammation in the AD brain. Many cells including microglia, astrocytes, and oligodendrocytes work together to protect the brain from injury. This review is focused to better understand the AD inflammatory and immunoregulatory processes to develop novel anti-inflammatory drugs to slow down the progression of AD.
Collapse
Affiliation(s)
- Mashoque Ahmad Rather
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Marwa Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Rana M. Alsaffar
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Repash EM, Pensabene KM, Palenchar PM, Eggler AL. Solving the Problem of Assessing Synergy and Antagonism for Non-Traditional Dosing Curve Compounds Using the DE/ZI Method: Application to Nrf2 Activators. Front Pharmacol 2021; 12:686201. [PMID: 34163365 PMCID: PMC8215699 DOI: 10.3389/fphar.2021.686201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/19/2021] [Indexed: 01/25/2023] Open
Abstract
Multi-drug combination therapy carries significant promise for pharmacological intervention, primarily better efficacy with less toxicity and fewer side effects. However, the field lacks methodology to assess synergistic or antagonistic interactions for drugs with non-traditional dose response curves. Specifically, our goal was to assess small-molecule modulators of antioxidant response element (ARE)-driven gene expression, which is largely regulated by the Nrf2 transcription factor. Known as Nrf2 activators, this class of compounds upregulates a battery of cytoprotective genes and shows significant promise for prevention of numerous chronic diseases. For example, sulforaphane sourced from broccoli sprouts is the subject of over 70 clinical trials. Nrf2 activators generally have non-traditional dose response curves that are hormetic, or U-shaped. We introduce a method based on the principles of Loewe Additivity to assess synergism and antagonism for two compounds in combination. This method, termed Dose-Equivalence/Zero Interaction (DE/ZI), can be used with traditional Hill-slope response curves, and it also can assess interactions for compounds with non-traditional curves, using a nearest-neighbor approach. Using a Monte-Carlo method, DE/ZI generates a measure of synergy or antagonism for each dosing pair with an associated error and p-value, resulting in a 3D response surface. For the assessed Nrf2 activators, sulforaphane and di-tert-butylhydroquinone, this approach revealed synergistic interactions at higher dosing concentrations consistently across data sets and potential antagonistic interactions at lower concentrations. DE/ZI eliminates the need to determine the best fit equation for a given data set and values experimentally-derived results over formulated fits.
Collapse
Affiliation(s)
- Elizabeth M Repash
- Department of Chemistry, Villanova University, Villanova, PA, United States
| | | | - Peter M Palenchar
- Department of Chemistry, Villanova University, Villanova, PA, United States
| | - Aimee L Eggler
- Department of Chemistry, Villanova University, Villanova, PA, United States
| |
Collapse
|
11
|
Stenvinkel P, Meyer CJ, Block GA, Chertow GM, Shiels PG. Understanding the role of the cytoprotective transcription factor nuclear factor erythroid 2-related factor 2-lessons from evolution, the animal kingdom and rare progeroid syndromes. Nephrol Dial Transplant 2021; 35:2036-2045. [PMID: 31302696 PMCID: PMC7716811 DOI: 10.1093/ndt/gfz120] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
The cytoprotective transcriptor factor nuclear factor erythroid 2– related factor 2 (NRF2) is part of a complex regulatory network that responds to environmental cues. To better understand its role in a cluster of inflammatory and pro-oxidative burden of lifestyle diseases that accumulate with age, lessons can be learned from evolution, the animal kingdom and progeroid syndromes. When levels of oxygen increased in the atmosphere, mammals required ways to protect themselves from the metabolic toxicity that arose from the production of reactive oxygen species. The evolutionary origin of the NRF2–Kelch-like ECH-associated protein 1 (KEAP1) signalling pathway from primitive origins has been a prerequisite for a successful life on earth, with checkpoints in antioxidant gene expression, inflammation, detoxification and protein homoeostasis. Examples from the animal kingdom suggest that superior antioxidant defense mechanisms with enhanced NRF2 expression have been developed during evolution to protect animals during extreme environmental conditions, such as deep sea diving, hibernation and habitual hypoxia. The NRF2–KEAP1 signalling pathway is repressed in progeroid (accelerated ageing) syndromes and a cluster of burden of lifestyle disorders that accumulate with age. Compelling links exist between tissue hypoxia, senescence and a repressed NRF2 system. Effects of interventions that activate NRF2, including nutrients, and more potent (semi)synthetic NRF2 agonists on clinical outcomes are of major interest. Given the broad-ranging actions of NRF2, we need to better understand the mechanisms of activation, biological function and regulation of NRF2 and its inhibitor, KEAP1, in different clinical conditions to ensure that modulation of this thiol-based system will not result in major adverse effects. Lessons from evolution, the animal kingdom and conditions of accelerated ageing clarify a major role of a controlled NRF2–KEAP1 system in healthy ageing and well-being.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Glenn M Chertow
- Department of Medicine, Division of Nephrology, Stanford University, Stanford, CA, USA
| | - Paul G Shiels
- Institute of Cancer Sciences, Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| |
Collapse
|
12
|
Plant-Derived Bioactives and Oxidative Stress-Related Disorders: A Key Trend towards Healthy Aging and Longevity Promotion. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030947] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plants and their corresponding botanical preparations have been used for centuries due to their remarkable potential in both the treatment and prevention of oxidative stress-related disorders. Aging and aging-related diseases, like cardiovascular disease, cancer, diabetes, and neurodegenerative disorders, which have increased exponentially, are intrinsically related with redox imbalance and oxidative stress. Hundreds of biologically active constituents are present in each whole plant matrix, providing promissory bioactive effects for human beings. Indeed, the worldwide population has devoted increased attention and preference for the use of medicinal plants for healthy aging and longevity promotion. In fact, plant-derived bioactives present a broad spectrum of biological effects, and their antioxidant, anti-inflammatory, and, more recently, anti-aging effects, are considered to be a hot topic among the medical and scientific communities. Nonetheless, despite the numerous biological effects, it should not be forgotten that some bioactive molecules are prone to oxidation and can even exert pro-oxidant effects. In this sense, the objective of the present review is to provide a detailed overview of plant-derived bioactives in age-related disorders. Specifically, the role of phytochemicals as antioxidants and pro-oxidant agents is carefully addressed, as is their therapeutic relevance in longevity, aging-related disorders, and healthy-aging promotion. Finally, an eye-opening look into the overall evidence of plant compounds related to longevity is presented.
Collapse
|
13
|
SFX-01 reduces residual disability after experimental autoimmune encephalomyelitis. Mult Scler Relat Disord 2019; 30:257-261. [DOI: 10.1016/j.msard.2019.02.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/01/2018] [Accepted: 02/25/2019] [Indexed: 11/22/2022]
|
14
|
Bauman BM, Jeong C, Savage M, Briker AL, Janigian NG, Nguyen LL, Kemmerer ZA, Eggler AL. Dr. Jekyll and Mr. Hyde: Oxidizable phenol-generated reactive oxygen species enhance sulforaphane's antioxidant response element activation, even as they suppress Nrf2 protein accumulation. Free Radic Biol Med 2018; 124:532-540. [PMID: 29969714 DOI: 10.1016/j.freeradbiomed.2018.06.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022]
Abstract
The transcription factor Nrf2 is a master regulator of antioxidant and cytoprotective genes, binding to antioxidant response elements (AREs) in their promoter regions. Due to the therapeutic role of the Nrf2/ARE system in oxidative homeostasis, its activation has been investigated in many pre-clinical and clinical trials for common chronic diseases. One of the most promising Nrf2 activators is sulforaphane, the subject of over 50 clinical trials. In this work, we examine the effect of reactive oxygen species (ROS) on sulforaphane's Nrf2/ARE activation in the non-tumorigenic keratinocyte cell line HaCaT, with the non-arylating oxidizable phenol, 2,5-di-tert-butylhydroquinone (dtBHQ), as the source of ROS. We find that, in combination with 2.5 µM sulforaphane, dtBHQ markedly enhances ARE-regulated gene expression, including expression of the cytoprotective proteins aldo-keto reductase family 1 member C1 (AKR1C1) and heme oxygenase-1 (HO-1). Additionally, sulforaphane's therapeutic window is widened by 12.5 µM dtBHQ. Our data suggest that H2O2 generated by dtBHQ oxidation is responsible for these effects, as shown by inclusion of catalase and by co-treatment with sulforaphane and H2O2. While sulforaphane treatment causes Nrf2 protein to accumulate as expected, interestingly, dtBHQ and H2O2 appear to act on targets downstream of Nrf2 protein accumulation to enhance sulforaphane's ARE-regulated gene expression. Inclusion of dtBHQ or H2O2 with sulforaphane does not increase Nrf2 protein levels, and catalase has little effect on Nrf2 protein levels in the presence of sulforaphane and dtBHQ. Surprisingly, dtBHQ suppresses Nrf2 protein synthesis. Inclusion of a superoxide dismutase mimetic with sulforaphane and dtBHQ partly rescues Nrf2 suppression and significantly further increases sulforaphane's efficacy for ARE-reporter expression. Thus, there is a "Dr. Jekyll and Mr. Hyde" effect of ROS: ROS enhance sulforaphane's ARE-regulated gene expression even as they also inhibit Nrf2 protein synthesis. This unexpected finding reveals the degree to which targets in the ARE pathway downstream of Nrf2 protein accumulation contribute to gene expression. The results presented here provide a model system for significant enhancement of sulforaphane's potency with small molecule co-treatment.
Collapse
Affiliation(s)
- Bradly M Bauman
- Department of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, United States
| | - Chang Jeong
- Department of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, United States
| | - Matthew Savage
- Department of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, United States
| | - Anna L Briker
- Department of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, United States
| | - Nicholas G Janigian
- Department of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, United States
| | - Linda L Nguyen
- Department of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, United States
| | - Zachary A Kemmerer
- Department of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, United States
| | - Aimee L Eggler
- Department of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, United States.
| |
Collapse
|
15
|
Shekh-Ahmad T, Eckel R, Dayalan Naidu S, Higgins M, Yamamoto M, Dinkova-Kostova AT, Kovac S, Abramov AY, Walker MC. KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy. Brain 2018; 141:1390-1403. [PMID: 29538645 DOI: 10.1093/brain/awy071] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/19/2018] [Indexed: 02/11/2024] Open
Abstract
Hippocampal sclerosis is a common acquired disease that is a major cause of drug-resistant epilepsy. A mechanism that has been proposed to lead from brain insult to hippocampal sclerosis is the excessive generation of reactive oxygen species, and consequent mitochondrial failure. Here we use a novel strategy to increase endogenous antioxidant defences using RTA 408, which we show activates nuclear factor erythroid 2-related factor 2 (Nrf2, encoded by NFE2L2) through inhibition of kelch like ECH associated protein 1 (KEAP1) through its primary sensor C151. Activation of Nrf2 with RTA 408 inhibited reactive oxygen species production, mitochondrial depolarization and cell death in an in vitro model of seizure-like activity. RTA 408 given after status epilepticus in vivo increased ATP, prevented neuronal death, and dramatically reduced (by 94%) the frequency of late spontaneous seizures for at least 4 months following status epilepticus. Thus, acute KEAP1 inhibition following status epilepticus exerts a neuroprotective and disease-modifying effect, supporting the hypothesis that reactive oxygen species generation is a key event in the development of epilepsy.
Collapse
Affiliation(s)
- Tawfeeq Shekh-Ahmad
- UCL Institute of Neurology, University College London, Queen Square, London WC1N, UK
| | - Ramona Eckel
- UCL Institute of Neurology, University College London, Queen Square, London WC1N, UK
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, Scotland, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stjepana Kovac
- UCL Institute of Neurology, University College London, Queen Square, London WC1N, UK
- Department of Neurology, University of Muenster, Muenster 48149, Germany
| | - Andrey Y Abramov
- UCL Institute of Neurology, University College London, Queen Square, London WC1N, UK
| | - Matthew C Walker
- UCL Institute of Neurology, University College London, Queen Square, London WC1N, UK
| |
Collapse
|
16
|
A novel in vitro metric predicts in vivo efficacy of inhaled silver-based antimicrobials in a murine Pseudomonas aeruginosa pneumonia model. Sci Rep 2018; 8:6376. [PMID: 29686296 PMCID: PMC5913254 DOI: 10.1038/s41598-018-24200-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/19/2018] [Indexed: 11/08/2022] Open
Abstract
To address the escalating problem of antimicrobial resistance and the dwindling antimicrobial pipeline, we have developed a library of novel aerosolizable silver-based antimicrobials, particularly for the treatment of pulmonary infections. To rapidly screen this library and identify promising candidates, we have devised a novel in vitro metric, named the “drug efficacy metric” (DEM), which integrates both the antibacterial activity and the on-target, host cell cytotoxicity. DEMs calculated using an on-target human bronchial epithelial cell-line correlates well (R2 > 0.99) with in vivo efficacy, as measured by median survival hours in a Pseudomonas aeruginosa pneumonia mouse model following aerosolized antimicrobial treatment. In contrast, DEMs derived using off-target primary human dermal fibroblasts correlate poorly (R2 = 0.0595), which confirms our hypothesis. SCC1 and SCC22 have been identified as promising drug candidates through these studies, and SCC22 demonstrates a dose-dependent survival advantage compared to sham treatment. Finally, silver-bearing biodegradable nanoparticles were predicted to exhibit excellent in vivo efficacy based on its in vitro DEM value, which was confirmed in our mouse pneumonia model. Thus, the DEM successfully predicted the efficacy of various silver-based antimicrobials, and may serve as an excellent tool for the rapid screening of potential antimicrobial candidates without the need for extensive animal experimentation.
Collapse
|
17
|
Sawikr Y, Yarla NS, Peluso I, Kamal MA, Aliev G, Bishayee A. Neuroinflammation in Alzheimer's Disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 108:33-57. [PMID: 28427563 DOI: 10.1016/bs.apcsb.2017.02.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Development of Keap1-interactive small molecules that regulate Nrf2 transcriptional activity. CURRENT OPINION IN TOXICOLOGY 2016. [DOI: 10.1016/j.cotox.2016.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Serafini M, Peluso I. Functional Foods for Health: The Interrelated Antioxidant and Anti-Inflammatory Role of Fruits, Vegetables, Herbs, Spices and Cocoa in Humans. Curr Pharm Des 2016; 22:6701-6715. [PMID: 27881064 PMCID: PMC5427773 DOI: 10.2174/1381612823666161123094235] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/15/2016] [Indexed: 01/18/2023]
Abstract
The health benefits of plant food-based diets could be related to both integrated antioxidant and antiinflammatory mechanisms exerted by a wide array of phytochemicals present in fruit, vegetables, herbs and spices. Therefore, there is mounting interest in identifying foods, food extracts and phytochemical formulations from plant sources which are able to efficiently modulate oxidative and inflammatory stress to prevent diet-related diseases. This paper reviews available evidence about the effect of supplementation with selected fruits, vegetables, herbs, spices and their extracts or galenic formulation on combined markers of redox and inflammatory status in humans.
Collapse
Affiliation(s)
- Mauro Serafini
- Functional Foods and Metabolic Stress Prevention Laboratory, Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Ilaria Peluso
- Functional Foods and Metabolic Stress Prevention Laboratory, Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| |
Collapse
|
20
|
Value of monitoring Nrf2 activity for the detection of chemical and oxidative stress. Biochem Soc Trans 2015; 43:657-62. [PMID: 26551708 PMCID: PMC4613517 DOI: 10.1042/bst20150044] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Indexed: 02/08/2023]
Abstract
Beyond specific limits of exposure, chemical entities can provoke deleterious effects in mammalian cells via direct interaction with critical macromolecules or by stimulating the accumulation of reactive oxygen species (ROS). In particular, these chemical and oxidative stresses can underpin adverse reactions to therapeutic drugs, which pose an unnecessary burden in the clinic and pharmaceutical industry. Novel pre-clinical testing strategies are required to identify, at an earlier stage in the development pathway, chemicals and drugs that are likely to provoke toxicity in humans. Mammalian cells can adapt to chemical and oxidative stress via the action of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which up-regulates the expression of numerous cell defence genes and has been shown to protect against a variety of chemical toxicities. Here, we provide a brief overview of the Nrf2 pathway and summarize novel experimental models that can be used to monitor changes in Nrf2 pathway activity and thus understand the functional consequences of such perturbations in the context of chemical and drug toxicity. We also provide an outlook on the potential value of monitoring Nrf2 activity for improving the pre-clinical identification of chemicals and drugs with toxic liability in humans.
Collapse
|
21
|
Richardson BG, Jain AD, Speltz TE, Moore TW. Non-electrophilic modulators of the canonical Keap1/Nrf2 pathway. Bioorg Med Chem Lett 2015; 25:2261-8. [PMID: 25937010 PMCID: PMC4643947 DOI: 10.1016/j.bmcl.2015.04.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/30/2022]
Abstract
Nrf2 is the major transcription factor that regulates many of the cytoprotective enzymes involved in the adaptive stress response. Modulation of Nrf2 could be therapeutically useful in a number of disease states. Activation can occur through either an electrophilic or non-electrophilic mechanism. To date, most of the research has focused on electrophilic Nrf2 activators, but there is increasing interest in non-electrophilic modulators of Nrf2. This Digest examines the current selection of small molecules that modulate Nrf2 through non-electrophilic mechanisms, and it highlights new opportunities for this important therapeutic target.
Collapse
Affiliation(s)
- B G Richardson
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, 833 S. Wood St., Chicago, IL 60612, United States
| | - A D Jain
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, 833 S. Wood St., Chicago, IL 60612, United States
| | - T E Speltz
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, 833 S. Wood St., Chicago, IL 60612, United States
| | - T W Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, 833 S. Wood St., Chicago, IL 60612, United States; University of Illinois Cancer Center, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, United States.
| |
Collapse
|
22
|
Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants (Basel) 2015; 4:204-47. [PMID: 26785346 PMCID: PMC4665566 DOI: 10.3390/antiox4010204] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/06/2015] [Accepted: 03/09/2015] [Indexed: 12/16/2022] Open
Abstract
Silymarin (SM), an extract from the Silybum marianum (milk thistle) plant containing various flavonolignans (with silybin being the major one), has received a tremendous amount of attention over the last decade as a herbal remedy for liver treatment. In many cases, the antioxidant properties of SM are considered to be responsible for its protective actions. Possible antioxidant mechanisms of SM are evaluated in this review. (1) Direct scavenging free radicals and chelating free Fe and Cu are mainly effective in the gut. (2) Preventing free radical formation by inhibiting specific ROS-producing enzymes, or improving an integrity of mitochondria in stress conditions, are of great importance. (3) Maintaining an optimal redox balance in the cell by activating a range of antioxidant enzymes and non-enzymatic antioxidants, mainly via Nrf2 activation is probably the main driving force of antioxidant (AO) action of SM. (4) Decreasing inflammatory responses by inhibiting NF-κB pathways is an emerging mechanism of SM protective effects in liver toxicity and various liver diseases. (5) Activating vitagenes, responsible for synthesis of protective molecules, including heat shock proteins (HSPs), thioredoxin and sirtuins and providing additional protection in stress conditions deserves more attention. (6) Affecting the microenvironment of the gut, including SM-bacteria interactions, awaits future investigations. (7) In animal nutrition and disease prevention strategy, SM alone, or in combination with other hepatho-active compounds (carnitine, betaine, vitamin B12, etc.), might have similar hepatoprotective effects as described in human nutrition.
Collapse
|