1
|
Haque F, Akhtar E, Chanda BC, Ara A, Haq MA, Sarker P, Kippler M, Wagatsuma Y, von Ehrenstein OS, Raqib R. Association of chronic arsenic exposure with cellular immune profile in MINIMat adolescents: A birth cohort in Bangladesh. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104583. [PMID: 39481821 DOI: 10.1016/j.etap.2024.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
Chronic arsenic exposure is known to affect the immune system. We aimed to evaluate the association between arsenic exposure and immune cell profile in 15 years old adolescents (n=389) in rural Bangladesh, with chronic exposure to groundwater arsenic. Single blood and urine were collected. Urinary arsenic (U-As) concentration was measured using atomic absorption spectrometry. Peripheral blood mononuclear cells (PBMC) were analyzed by flow cytometry. Non-linear association was found between U-As (median, 24.9 µg/L) and immune cells with a cut-off at U-As 20 µg/L. U-As (<20 µg/L) were significantly associated with increases in CD8+T (21 %), naïve CD8+T (42 %) and early B cells (40 %), and classical monocytes (55 %), but reduction in CD3+T cells (37%) and intermediate-monocytes (56 %). U-As (>20 µg/L) were associated with a 3 % reduction in memory B cells. Arsenic exposure was associated with altered immune cell profile in adolescents likely rendering them vulnerable to adverse health effects in later life.
Collapse
Affiliation(s)
- Farjana Haque
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | - Evana Akhtar
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | | | - Anjuman Ara
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | - Md Ahsanul Haq
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | - Protim Sarker
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, SE, Stockholm 171 77, Sweden
| | - Yukiko Wagatsuma
- Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukaba, Japan
| | | | - Rubhana Raqib
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh.
| |
Collapse
|
2
|
Ran X, Yan X, Ma G, Liang Z, Zhuang H, Tang X, Chen X, Cao X, Liu X, Huang Y, Wang Y, Zhang X, Luo P, Shen L. Integration of proteomics and metabolomics analysis investigate mechanism of As-induced immune injury in rat spleen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116913. [PMID: 39208582 DOI: 10.1016/j.ecoenv.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Arsenic (As) is a widespread metalloid and human carcinogen found in the natural environment, and multiple toxic effects have been shown to be associated with As exposure. As can be accumulated in the spleen, the largest peripheral lymphatic organ, and long-term exposure to As can lead to splenic injury. In this study, a Sprague-Dawley (SD) rat model of As-poisoned was established, aiming to explore the molecular mechanism of As-induced immune injury through the combined analysis of proteomics and metabolomics of rats' spleen. After feeding the rats with As diet (50 mg/kg) for 90 days, the spleen tissue of the rats in the As-poisoned group was damaged, the level of As was significantly higher than that of the control group (P < 0.001), and the level of inflammatory cytokine interleukin-6 (IL-6) was decreased (P < 0.01). Proteomics and metabolomics results showed that a total of 134 differentially expressed proteins (DEPs) (P < 0.05 and fold change > 1.2) and 182 differentially expressed metabolites (DEMs) (VIP >1 and P < 0.05) were identified in the spleens of the As poisoned group compared to the control group (As/Ctrl). The proteomic results highlight the role of hypoxia-inducible factors (HIF), natural killer cell mediated cytotoxicity, and ribosomes. The major pathways of metabolic disruption included arachidonic acid (AA) metabolism, glycerophospholipid metabolism and folate single-carbon pool. The integrated analysis of these two omics suggested that Hmox1, Stat3, arachidonic acid, phosphatidylcholine and leukotriene B4 may play key roles in the mechanism of immune injury to the spleen by As exposure. The results indicate that As exposure can cause spleen damage in rats. Through proteomic and metabolomic analysis, the key proteins and metabolites and their associated mechanisms were obtained, which provided a basis for further understanding of the molecular mechanism of spleen immune damage caused by As exposure.
Collapse
Affiliation(s)
- Xiaoqian Ran
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xi Yan
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Guanwei Ma
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaolu Chen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yuhan Huang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yi Wang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xinglai Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Peng Luo
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China; Guizhou Ecological Food Innovation Engineering Research Center, Guiyang 561113, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
| | - Liming Shen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
3
|
Beene D, Miller C, Gonzales M, Kanda D, Francis I, Erdei E. Spatial nonstationarity and the role of environmental metal exposures on COVID-19 mortality in New Mexico. APPLIED GEOGRAPHY (SEVENOAKS, ENGLAND) 2024; 171:103400. [PMID: 39463888 PMCID: PMC11501077 DOI: 10.1016/j.apgeog.2024.103400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Worldwide, the COVID-19 pandemic has been influenced by a combination of environmental and sociodemographic drivers. To date, population studies have overwhelmingly focused on the impact of societal factors. In New Mexico, the rate of COVID-19 infection and mortality varied significantly among the state's geographically dispersed, and racially and ethnically diverse populations who are exposed to unique environmental contaminants related to resource extraction industries (e.g. fracking, mining, oil and gas exploration). By looking at local patterns of COVID-19 disease severity, we sought to uncover the spatially varying factors underlying the pandemic. We further explored the compounding role of potential long-term exposures to various environmental contaminants on COVID-19 mortality prior to widespread applications of vaccinations. To illustrate the spatial heterogeneity of these complex associations, we leveraged multiple modeling approaches to account for spatial non-stationarity in model terms. Multiscale geographically weighted regression (MGWR) results indicate that increased potential exposure to fugitive mine waste is significantly associated with COVID-19 mortality in areas of the state where socioeconomically disadvantaged populations were among the hardest hit in the early months of the pandemic. This relationship is paradoxically reversed in global models, which fail to account for spatial relationships between variables. This work contributes both to environmental health sciences and the growing body of literature exploring the implications of spatial nonstationarity in health research.
Collapse
Affiliation(s)
- Daniel Beene
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Geography & Environmental Studies, University of New Mexico, Albuquerque, NM, USA
| | - Curtis Miller
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Melissa Gonzales
- Department of Environmental Health Studies, Tulane University School of Public Health & Tropical Medicine, New Orleans, LA, USA
| | - Deborah Kanda
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Isaiah Francis
- Division of Epidemiology and Response, New Mexico Department of Health, Santa Fe, NM, USA
| | - Esther Erdei
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
4
|
Maity J, Pal P, Ghosh M, Naskar B, Chakraborty S, Pal R, Mukhopadhyay PK. Molecular Dissection of the Arsenic-Induced Leukocyte Incursion into the Inflamed Thymus and Spleen and Its Amelioration by Co-supplementation of L-Ascorbic Acid and α-Tocopherol. Biol Trace Elem Res 2024:10.1007/s12011-024-04378-z. [PMID: 39325335 DOI: 10.1007/s12011-024-04378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Arsenic, a surreptitious presence in our environment, perpetuates a persistent global menace with its deleterious impacts. It possesses the capability to trigger substantial immunosuppression by instigating inflammation in critical organs like the thymus and spleen. L-Ascorbic acid (L-AA) exhibits robust immunoregulatory prowess by orchestrating the epigenetic terrain through TET and JHDM pathways. Conversely, α-tocopherol (α-T) demonstrates the capacity to dampen the production of pro-inflammatory cytokines by modulating the PI3K-Akt axis. Given these insights, this inquiry embarks on exploring the mitigative potential of L-AA and α-T co-supplementation at the transcriptome level within leukocytes under arsenic exposure. Concurrently, the research endeavours to unravel the potent anti-inflammatory effects of administering α-T and L-AA, alleviating inflammation within the spleen and thymus amidst arsenic-induced insult and delving deeply into their immunomodulatory mechanisms. The rats were randomly allocated into eight distinct groups for subsequent experimentation: (I) the control group was administered solely with distilled water as the vehicle (control); (II) NaAsO2-treated group (As); (III) NaAsO2 treated along with L-ascorbic acid and α-tocopherol supplemented group (As + L-AA + α-T); (IV) L-ascorbic acid and α-tocopherol supplemented group (L-AA + α-T); (V) NaAsO2 treated along with L-ascorbic acid supplemented group (As + L-AA); (VI) only L-ascorbic acid supplemented group (L-AA); (VII) NaAsO2 treated along with α-tocopherol supplemented group (As + α-T); (VIII) only α-tocopherol supplemented group (α-T). Rats treated with NaAsO2 exhibited an increased neutrophil count in their bloodstream, as revealed by a comprehensive transcriptomic analysis showcasing heightened expressions of ItgaM, MMP9, and Itga4 within circulating leukocytes under arsenic exposure. Concurrently, arsenic heightened the expression of pro-inflammatory cytokines within the thymus and spleen. This elevated cytokine activity promoted the upregulation of ICAM-1 on vascular endothelial cells, facilitating the infiltration of Ly6g + leukocytes into the afflicted thymus and spleen. Remarkably, the combination of L-AA acid and α-T demonstrated substantial therapeutic efficacy, adeptly reducing the influx of Ly6g + leukocytes into these immune sites and subsequent reduction of excessive collagen deposition. The dynamic duo of L-AA and α-T achieved this amelioration by suppressing the expression of ItgaM, MMP9, and Itga4 mRNA within circulating leukocytes and moderating tissue levels of pro-inflammatory cytokines in arsenic-exposed thymus and spleen.
Collapse
Affiliation(s)
- Jeet Maity
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Priyankar Pal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
- School of Life Science, Department of Biotechnology, Swami Vivekananda University, Barrackpore, India
| | - Madhurima Ghosh
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Bhagyashree Naskar
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Santanu Chakraborty
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Ranjana Pal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | | |
Collapse
|
5
|
Zhao X, Chen K, Wang J, Qiu Y. Analysis of Prospective Genetic Indicators for Prenatal Exposure to Arsenic in Newborn Cord Blood of Using Machine Learning. Biol Trace Elem Res 2024; 202:2466-2473. [PMID: 37740142 DOI: 10.1007/s12011-023-03863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
Using a machine learning methods, we aim to find biological effect biomarkers of prenatal arsenic exposure in newborn cord blood. From the Gene Expression Omnibus (GEO) database, two datasets (GSE48354 and GSE7967) pertaining to cord blood sequencing while exposed to arsenic were retrieved and merged for additional study. Using the "limma" package in the R, differentially expressed genes (DEGs) were eliminated. Machine learning techniques of the LASSO regression algorithm and SVM-RFE algorithm were used to find potential biological effect biomarkers for cord blood sequencing in pregnant women exposed to arsenic. To evaluate the efficacy of biomarkers, a receiver operating characteristic (ROC) curve was used. Furthermore, we investigated the proportion of invading immune cells in each sample using CIBERSORT, and we investigated the relationship between biomarkers and immune cells using the Spearman approach. Using LASSO regression and the SVM-RFE technique, 28 DEGs were discovered, and the main biomarkers of cord blood exposed to arsenic were discovered to be DENND2D, OLIG1, RGS18, CXCL16, DDIT4, FOS, G0S2, GPR183, JMJD6, and SOCS3. According to an immune infiltration analysis and correlation analysis, key biomarkers were substantially associated with the invading immune cells. Ten genes are important biomarkers of cord blood exposed to arsenic connected with infiltrating immune cells, and infiltrating immune cells may play important roles in cord blood exposed to arsenic, according to the study's findings.
Collapse
Affiliation(s)
- Xiaotian Zhao
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xinjian Nan Road, Taiyuan, CN 030001, China
| | - Kun Chen
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xinjian Nan Road, Taiyuan, CN 030001, China
| | - Jing Wang
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xinjian Nan Road, Taiyuan, CN 030001, China
| | - Yulan Qiu
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xinjian Nan Road, Taiyuan, CN 030001, China.
| |
Collapse
|
6
|
Feiler MO, Kulick ER, Sinclair K, Spiegel N, Habel S, Castello OG. Toxic metals and pediatric clinical immune dysfunction: A systematic review of the epidemiological evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172303. [PMID: 38599398 DOI: 10.1016/j.scitotenv.2024.172303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Children are at high risk for exposure to toxic metals and are vulnerable to their effects. Significant research has been conducted evaluating the role of these metals on immune dysfunction, characterized by biologic and clinical outcomes. However, there are inconsistencies in these studies. The objective of the present review is to critically evaluate the existing literature on the association between toxic metals (lead, mercury, arsenic, and cadmium) and pediatric immune dysfunction. METHODS Seven databases (PubMed (NLM), Embase (Elsevier), CINAHL (Ebsco), Web of Science (Clarivate Analytics), ProQuest Public Health Database, and ProQuest Environmental Science Collection) were searched following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in February 2024. Rayaan software identified duplicates and screened by title and abstract in a blinded and independent review process. The remaining full texts were reviewed for content and summarized. Exclusions during the title, abstract, and full-text reviews included: 1) not original research, 2) not epidemiology, 3) did not include toxic metals, 4) did not examine an immune health outcome, or 5) not pediatric (>18 years). This systematic review protocol followed the PRISMA guidelines. Rayaan was used to screen records using title and abstract by two blinded and independent reviewers. This process was repeated for full-text article screening selection. RESULTS The search criteria produced 7906 search results; 2456 duplicate articles were removed across search engines. In the final review, 79 studies were included which evaluated the association between toxic metals and outcomes indicative of pediatric immune dysregulation. CONCLUSIONS The existing literature suggests an association between toxic metals and pediatric immune dysregulation. Given the imminent threat of infectious diseases demonstrated by the recent COVID-19 epidemic in addition to increases in allergic disease, understanding how ubiquitous exposure to these metals in early life can impact immune response, infection risk, and vaccine response is imperative.
Collapse
Affiliation(s)
- Marina Oktapodas Feiler
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, United States of America; Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America.
| | - Erin R Kulick
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America
| | - Krystin Sinclair
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America
| | - Nitzana Spiegel
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America
| | - Sonia Habel
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America
| | - Olivia Given Castello
- Charles Library, Temple University Libraries, Temple University, United States of America
| |
Collapse
|
7
|
Sanyal T, Das A, Bhattacharjee S, Gump BB, Bendinskas K, Bhattacharjee P. Targeting the 'DNA methylation mark': Analysis of early epigenetic-alterations in children chronically exposed to arsenic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169049. [PMID: 38052388 DOI: 10.1016/j.scitotenv.2023.169049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
Chronic exposure to arsenic causes adverse health effects in children. Aberrant epigenetic modifications including altered DNA methylation pattern are one of the major steps towards malignant transformation of cells. Our group has previously identified significant alteration in DNA methylation mark in arsenic exposed adults, affecting major biological pathways. Till date, no information is available exploring the altered DNA methylation mark in telomere regulation and altered mitochondrial functionality in association with DNA damage in arsenic-exposed children. Our study aims in identifying signature epigenetic pattern associated with telomere lengthening, mitochondrial functionality and DNA damage repair in children with special emphasis on DNA methylation. Biological samples (blood and urine) and drinking water were collected from the children aged between 5 and 16 years of arsenic exposed areas (N = 52) of Murshidabad district and unexposed areas (N = 50) of East Midnapur districts, West Bengal, India. Methylation-specific PCR was performed to analyse subtelomeric methylation status and promoter methylation status of target genes. Results revealed altered DNA methylation profile in the exposed children compared to unexposed. Promoter hypermethylation was observed in MLH1 and MSH2 (p < 0.05 and p < 0.001) indicating inefficiency in DNA damage repair. Hypomethylation in mitochondrial D-loop (p < 0.05) and TFAM promoter region (p < 0.05) along with increased mitochondrial DNA copy number among exposed children was also observed. Significant increase in telomere length and region specific subtelomeric hypermethylation (XpYp, p < 0.05) was found. Analysis of S-Adenosyl Methionine (SAM) and 8-oxoDG level revealed significant depletion of SAM (p < 0.001) and elevated oxidative DNA damage (p < 0.001) respectively in arsenic toxicity. Our study identified key methylation patterns in arsenic-exposed children which may act as an early predictive biomarker in the near future. Further in-depth studies involving large sample size and transcriptomic analysis are required for understanding the mechanistic details.
Collapse
Affiliation(s)
- Tamalika Sanyal
- Department of Zoology, University of Calcutta, Kolkata 700019, India; Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | - Ankita Das
- Department of Zoology, University of Calcutta, Kolkata 700019, India; Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | | | - Brooks B Gump
- Department of Chemistry, State University of New York College at Oswego, Oswego, NY 13126, USA
| | - Kestutis Bendinskas
- Falk College of Sport and Human Dynamics, Department of Public Health, Syracuse University, Syracuse, NY 13244, USA
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
8
|
Roh T, Regan AK, Johnson NM, Hasan NT, Trisha NF, Aggarwal A, Han D. Association of arsenic exposure with measles antibody titers in US children: Influence of sex and serum folate levels. ENVIRONMENT INTERNATIONAL 2024; 183:108329. [PMID: 38071850 DOI: 10.1016/j.envint.2023.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
Exposure to arsenic during childhood is associated with various adverse health conditions. However, little is known about the effect of arsenic exposure on vaccine-related humoral immunity in children. We analyzed data from the National Health and Nutrition Examination Survey (2003-2004 and 2009-2010) to study the relationship between urinary arsenic and measles antibody levels in 476 US children aged 6-11. Multivariable linear regression was used to evaluate the association, adjusting for cycle, age, race, body mass index (BMI), serum cotinine, poverty index ratio, and vitamin B12 and selenium intakes. Stratified analyses were conducted by sex and serum folate levels using the median as cutoff (18.7 ng/mL). The measles antibody concentrations in the 3rd and 4th quartiles were found to have significantly decreased by 28.5 % (95 % Confidence Interval (CI) -47.6, -2.28) and 36.8 % (95 % CI -50.2, -19.5), compared to the lowest quartile among boys with serum folate levels lower than 18.7 ng/ml. The serum measles antibody titers significantly decreased by 16.7 % (95 %CI -25.0, -7.61) for each doubling of creatinine-corrected urinary total inorganic arsenic concentrations in the same group. No associations were found in boys with high serum folate levels or in girls. Further prospective studies are needed to validate these findings and develop interventions to protect children from infectious diseases.
Collapse
Affiliation(s)
- Taehyun Roh
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA.
| | - Annette K Regan
- School of Nursing and Health Professions, University of San Francisco, San Francisco, CA 94117, USA
| | - Natalie M Johnson
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Nishat Tasnim Hasan
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Nusrat Fahmida Trisha
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Anisha Aggarwal
- Department of Health Behavior, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Daikwon Han
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Cheff DM, Skröder H, Akhtar E, Cheng Q, Hall MD, Raqib R, Kippler M, Vahter M, Arnér ES. Arsenic exposure and increased C-reactive protein are independently associated with lower erythrocyte glutathione peroxidase activity in Bangladeshi children. REDOX BIOCHEMISTRY AND CHEMISTRY 2023; 5-6:100015. [PMID: 37908807 PMCID: PMC10613583 DOI: 10.1016/j.rbc.2023.100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Toxic metal contaminants present in food and water have widespread effects on health and disease. Chalcophiles, such as arsenic, cadmium, and mercury, show a high affinity to selenium and exposure to these metals could have a modulating effect on enzymes dependent on selenocysteine in their active sites. The aim of this study was to assess the influence of these metals on the activity of the selenoprotein glutathione peroxidase 1 (GPX1) in erythrocytes of 100 children residing in rural Bangladesh, where drinking water often contains arsenic. GPX1 expression, as measured using high-throughput immunoblotting, showed little correlation with GPX activity (rs = 0.02, p = 0.87) in blood samples. Toxic metals and selenium measured in erythrocytes using inductively coupled plasma mass spectrometry (ICP-MS) and C-reactive protein (CRP) measured in plasma, were all considered as effectors of this divergence in GPX enzymatic activity. Arsenic concentrations in erythrocytes were most influential for GPX1 activity (rs = -0.395, p < 0.0001), and CRP levels also negatively impacted GPX1 activity (rs = -0.443, p < 0.0001). These effects appear independent of each other as arsenic concentrations and CRP showed no correlation (rs = 0.124, p = 0.2204). Erythrocyte selenium, cadmium, and mercury did not show any correlation with GPX1 activity, nor with CRP or arsenic. Our findings suggest that childhood exposure to inorganic arsenic, as well as inflammation triggering the release of CRP, may negatively affect GPX1 activity in erythrocytes.
Collapse
Affiliation(s)
- Dorian M. Cheff
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE, 171 77, Stockholm, Sweden
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Helena Skröder
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE, 171 77, Stockholm, Sweden
| | - Evana Akhtar
- International Center for Diarrheal Disease Research, GPO Box 128, Dhaka, 1000, Bangladesh
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE, 171 77, Stockholm, Sweden
| | - Matthew D. Hall
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, United States
| | - Rubhana Raqib
- International Center for Diarrheal Disease Research, GPO Box 128, Dhaka, 1000, Bangladesh
| | - Maria Kippler
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE, 171 77, Stockholm, Sweden
| | - Marie Vahter
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE, 171 77, Stockholm, Sweden
| | - Elias S.J. Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE, 171 77, Stockholm, Sweden
- Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| |
Collapse
|
10
|
Kampouri M, Gustin K, Stråvik M, Barman M, Sandin A, Sandberg AS, Wold AE, Vahter M, Kippler M. Associations of gestational and early-life exposure to toxic metals and fluoride with a diagnosis of food allergy or atopic eczema at 1 year of age. ENVIRONMENT INTERNATIONAL 2023; 178:108071. [PMID: 37422976 DOI: 10.1016/j.envint.2023.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Studies have indicated that early-life exposure to toxic metals and fluoride affects the immune system, but evidence regarding their role in allergic disease development is scarce. We aimed to evaluate the relations of exposure to such compounds in 482 pregnant women and their infants (4 months of age) with food allergy and atopic eczema diagnosed by a paediatric allergologist at 1 year of age within the Swedish birth-cohort NICE (Nutritional impact on Immunological maturation during Childhood in relation to the Environment). Urinary cadmium and erythrocyte cadmium, lead, and mercury concentrations were measured by inductively coupled plasma mass spectrometry (ICP-MS), urinary inorganic arsenic metabolites by ICP-MS after separation by ion exchange chromatography, and urinary fluoride by an ion-selective electrode. The prevalence of food allergy and atopic eczema was 8 and 7%, respectively. Gestational urinary cadmium, reflecting chronic exposure, was associated with increased odds of infant food allergy (OR [95% CI]: 1.34 [1.09, 1.66] per IQR [0.08 μg/L]). Both gestational and infant urinary fluoride were associated, albeit at a statistically non-significant level, with increased atopic eczema odds (1.48 [0.98, 2.25], 1.36 [0.95, 1.95], per doubling, respectively). By contrast, gestational and infant erythrocyte lead was associated with decreased odds of atopic eczema (0.48 [0.26, 0.87] per IQR [6.6 μg/kg] and 0.38 [0.16, 0.91] per IQR [5.94 μg/kg], respectively), and infant lead with decreased odds of food allergy (0.39 [0.16, 0.93] per IQR [5.94 μg/kg]). Multivariable adjustment had marginal impact on the estimates above. After additional adjustment for fish intake biomarkers, the methylmercury associated atopic-eczema odds were considerably increased (1.29 [0.80, 2.06] per IQR [1.36 μg/kg]). In conclusion, our results indicate that gestational cadmium exposure might be associated with food allergy at 1 year of age and, possibly, early-life exposure to fluoride with atopic eczema. Further prospective and mechanistic studies are needed to establish causality.
Collapse
Affiliation(s)
- Mariza Kampouri
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Klara Gustin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mia Stråvik
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Malin Barman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Sandin
- Department of Clinical Science, Pediatrics, Sunderby Research Unit, Umeå University, Sweden
| | - Ann-Sofie Sandberg
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Agnes E Wold
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Erdei E, Shuey C, Miller C, Hoover J, Cajero M, Lewis J. Metal mixture exposures and multiplexed autoantibody screening in Navajo communities exposed to uranium mine wastes. J Transl Autoimmun 2023; 6:100201. [PMID: 37169001 PMCID: PMC10165442 DOI: 10.1016/j.jtauto.2023.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023] Open
Abstract
Background Environmental exposures to metals in uranium mining wastes and drinking water were documented in more than half of the 1304 Navajo community members of the Diné Network for Environmental Health (DiNEH) Project, the first comprehensive assessment of exposures to these metals and community health on the Navajo Nation. Objective Evaluate environmental exposures among participants who provided blood and urine samples using multiplexed autoantibody positivity as an early effect biomarker. Methods Survey and geospatial location data, well water quality, and metals biomonitoring were used to assess exposures to mixed-metal wastes from 100 abandoned uranium waste sites. Results We observed that the prevalence of multiplexed autoantibody positivity in 239 participants was more than double that reported for the U.S. population (27.2% v. 13.8%) even though the national prevalence was generated using a different assay, the HEp-2 cell-based antinuclear antibody test. Increased risk of multiplexed autoantibody screening positivity (OR = 3.07,95%CI 1.15-8.22) was found among DiNEH study people who lived close to uranium mine and milling wastes and consumed metals in drinking water. Associations for females were even stronger when they lived closed to contaminated uranium mining and milling sites. Anti-U1-RNP antibodies were associated with water consumption of nickel. Conclusion Proximity to waste sites and consumption of metals in water even below current drinking water standards were associated with perturbations of immune tolerance. These findings are consistent with previous studies of autoimmunity in the local population and demonstrate that multiplexed autoantibody screening method has a potential as sentinel indicator of exposures to environmental metals. Impact statement This is the first, community-engaged environmental health study in exposed Navajo communities that applied clinical multiplexed testing in risk assessment of environmental metals associated with abandoned, unremediated uranium mining and milling waste sites. Routine clinical autoimmunity measures could be used as early effect biomarkers of environmental metal exposures.
Collapse
Affiliation(s)
- Esther Erdei
- Community Environmental Health Program, Dept. of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, College of Pharmacy, 1 MSC 09 5360, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Chris Shuey
- Southwest Research and Information Center, 105 Stanford Drive, SE, Albuquerque, NM, 87106, USA
| | - Curtis Miller
- Community Environmental Health Program, Dept. of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, College of Pharmacy, 1 MSC 09 5360, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Joseph Hoover
- University of Arizona Department of Environmental Sciences, 1177 E 4th Street, Tucson, AZ, 85721, USA
| | - Miranda Cajero
- Community Environmental Health Program, Dept. of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, College of Pharmacy, 1 MSC 09 5360, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Johnnye Lewis
- Community Environmental Health Program, Dept. of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, College of Pharmacy, 1 MSC 09 5360, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
12
|
Zheng K, Zeng Z, Tian Q, Huang J, Zhong Q, Huo X. Epidemiological evidence for the effect of environmental heavy metal exposure on the immune system in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161691. [PMID: 36669659 DOI: 10.1016/j.scitotenv.2023.161691] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/28/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Heavy metals exist widely in daily life, and exposure to heavy metals caused by environmental pollution has become a serious public health problem worldwide. Due to children's age-specific behavioral characteristics and imperfect physical function, the adverse health effects of heavy metals on children are much higher than in adults. Studies have found that heavy metal exposure is associated with low immune function in children. Although there are reviews describing the evidence for the adverse effects of heavy metal exposure on the immune system in children, the summary of evidence from epidemiological studies involving the level of immune molecules is not comprehensive. Therefore, this review summarizes the current epidemiological study on the effect of heavy metal exposure on childhood immune function from multiple perspectives, emphasizing its risks to the health of children's immune systems. It focuses on the effects of six heavy metals (lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), nickel (Ni), and manganese (Mn)) on children's innate immune cells, lymphocytes and their subpopulations, cytokines, total and specific immunoglobulins, and explores the immunotoxicological effects of heavy metals. The review finds that exposure to heavy metals, particularly Pb, Cd, As, and Hg, not only reduced lymphocyte numbers and suppressed adaptive immune responses in children, but also altered the innate immune response to impair the body's ability to fight pathogens. Epidemiological evidence suggests that heavy metal exposure alters cytokine levels and is associated with the development of inflammatory responses in children. Pb, As, and Hg exposure was associated with vaccination failure and decreased antibody titers, and increased risk of immune-related diseases in children by altering specific immunoglobulin levels. Cd, Ni and Mn showed activation effects on the immune response to childhood vaccination. Exposure age, sex, nutritional status, and co-exposure may influence the effects of heavy metals on immune function in children.
Collapse
Affiliation(s)
- Keyang Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China
| | - Qianwen Tian
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jintao Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China.
| |
Collapse
|
13
|
Effects of Prenatal Exposure to Arsenic on T Cell Development in Children. CURRENT OPINION IN TOXICOLOGY 2023. [DOI: 10.1016/j.cotox.2023.100389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
14
|
Avolio LN, Smith TJS, Navas‐Acien A, Kruczynski K, Pisanic N, Randad PR, Detrick B, Fry RC, van Geen A, Goessler W, Karron RA, Klein SL, Ogburn EL, Wills‐Karp M, Alland K, Ayesha K, Dyer B, Islam MT, Oguntade HA, Rahman MH, Ali H, Haque R, Shaikh S, Schulze KJ, Muraduzzaman AKM, Alamgir ASM, Flora MS, West KP, Labrique AB, Heaney CD. The Pregnancy, Arsenic, and Immune Response (PAIR) Study in rural northern Bangladesh. Paediatr Perinat Epidemiol 2023; 37:165-178. [PMID: 36756808 PMCID: PMC10096093 DOI: 10.1111/ppe.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 02/10/2023]
Abstract
BACKGROUND Arsenic exposure and micronutrient deficiencies may alter immune reactivity to influenza vaccination in pregnant women, transplacental transfer of maternal antibodies to the foetus, and maternal and infant acute morbidity. OBJECTIVES The Pregnancy, Arsenic, and Immune Response (PAIR) Study was designed to assess whether arsenic exposure and micronutrient deficiencies alter maternal and newborn immunity and acute morbidity following maternal seasonal influenza vaccination during pregnancy. POPULATION The PAIR Study recruited pregnant women across a large rural study area in Gaibandha District, northern Bangladesh, 2018-2019. DESIGN Prospective, longitudinal pregnancy and birth cohort. METHODS We conducted home visits to enrol pregnant women in the late first or early second trimester (11-17 weeks of gestational age). Women received a quadrivalent seasonal inactivated influenza vaccine at enrolment. Follow-up included up to 13 visits between enrolment and 3 months postpartum. Arsenic was measured in drinking water and maternal urine. Micronutrient deficiencies were assessed using plasma biomarkers. Vaccine-specific antibody titres were measured in maternal and infant serum. Weekly telephone surveillance ascertained acute morbidity symptoms in women and infants. PRELIMINARY RESULTS We enrolled 784 pregnant women between October 2018 and March 2019. Of 784 women who enrolled, 736 (93.9%) delivered live births and 551 (70.3%) completed follow-up visits to 3 months postpartum. Arsenic was detected (≥0.02 μg/L) in 99.7% of water specimens collected from participants at enrolment. The medians (interquartile ranges) of water and urinary arsenic at enrolment were 5.1 (0.5, 25.1) μg/L and 33.1 (19.6, 56.5) μg/L, respectively. Water and urinary arsenic were strongly correlated (Spearman's ⍴ = 0.72) among women with water arsenic ≥ median but weakly correlated (⍴ = 0.17) among women with water arsenic < median. CONCLUSIONS The PAIR Study is well positioned to examine the effects of low-moderate arsenic exposure and micronutrient deficiencies on immune outcomes in women and infants. REGISTRATION NCT03930017.
Collapse
Affiliation(s)
- Lindsay N. Avolio
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Tyler J. S. Smith
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Ana Navas‐Acien
- Department of Environmental Health SciencesColumbia University Mailman School of Public HealthNew YorkNew YorkUSA
| | - Kate Kruczynski
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Nora Pisanic
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Pranay R. Randad
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Barbara Detrick
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Rebecca C. Fry
- Department of Environmental Sciences and EngineeringUniversity of North Carolina at Chapel Hill Gillings School of Global Public HealthChapel HillNorth CarolinaUSA
| | | | - Walter Goessler
- Institute of Chemistry – Analytical ChemistryUniversity of GrazGrazAustria
| | - Ruth A. Karron
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Sabra L. Klein
- Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Elizabeth L. Ogburn
- Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Marsha Wills‐Karp
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Kelsey Alland
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Kaniz Ayesha
- JiVitA Maternal and Child Health and Nutrition Research ProjectGaibandhaBangladesh
| | - Brian Dyer
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Md. Tanvir Islam
- JiVitA Maternal and Child Health and Nutrition Research ProjectGaibandhaBangladesh
| | - Habibat A. Oguntade
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Division of Epidemiology and Community HealthUniversity of Minnesota School of Public HealthMinneapolisMinnesotaUSA
| | - Md. Hafizur Rahman
- JiVitA Maternal and Child Health and Nutrition Research ProjectGaibandhaBangladesh
| | - Hasmot Ali
- JiVitA Maternal and Child Health and Nutrition Research ProjectGaibandhaBangladesh
| | - Rezwanul Haque
- JiVitA Maternal and Child Health and Nutrition Research ProjectGaibandhaBangladesh
| | - Saijuddin Shaikh
- JiVitA Maternal and Child Health and Nutrition Research ProjectGaibandhaBangladesh
| | - Kerry J. Schulze
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | | | - A. S. M. Alamgir
- Institute of Epidemiology, Disease Control, and ResearchDhakaBangladesh
| | - Meerjady S. Flora
- Institute of Epidemiology, Disease Control, and ResearchDhakaBangladesh
| | - Keith P. West
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Alain B. Labrique
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Christopher D. Heaney
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | | |
Collapse
|
15
|
Niemann D, Akinjobi Z, Jeon S, Rahman HH. Arsenic exposure and prevalence of human papillomavirus in the US male population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1263-1275. [PMID: 35915301 DOI: 10.1007/s11356-022-22306-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Arsenic is a known carcinogen and is naturally available in earth's crust. Inorganic arsenic is an environmental pollutant with immunosuppressive properties. Human papillomavirus (HPV) is considered one of the most common sexually transmitted diseases in the United States. HPV is linked to several types of cancers in males, including oral, anal, and penile cancer. However, limited information is available on the effect of arsenic on HPV in males. The purpose of this study was to examine the association of urinary arsenic species (speciated and total) and the prevalence of HPV infection in the male population. HPV prevalence in males was analyzed using the 2013-2014 and 2015-2016 National Health and Nutrition Examination Survey (NHANES) dataset. Logistic regression analysis was used to examine associations of seven types of urinary arsenic species (arsenous acid, arsenic acid, arsenobetaine, arsenocholine, dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), total arsenic acid) with HPV risk for male participants aged 18-59 years (N = 1516). Demographic characteristics were included in the logistic regression model for each arsenic variable. All statistical analyses were conducted by using the software R (version 4.2.0). Increasing DMA was positively associated with the prevalence of low-risk HPV (odds ratio (OR): 1.075, 95% confidence interval (CI): 1.025, 1.128) in addition to the sum of total toxic arsenic species (TUA1) including arsenous acid, arsenic acid, DMA, and MMA (OR: 1.068, 95% CI: 1.022, 1.116). High-risk HPV strains were found to be positively associated with arsenic acid (OR: 1.806, 95% CI: 1.134, 2.876) and total arsenic minus the sum of the two organic arsenic species arsenobetaine and arsenocholine (TUA2) at quartile 3 (Q3) level (OR: 1.523, 95% CI: 1.102, 2.103). The logistic regression models also showed that race and marital status were significant factors related to high-risk HPV. Our study reported that DMA and TUA1 are associated with low-risk HPV and arsenic acid is associated with high-risk HPV infections in males. Future research is required to confirm or refute this finding.
Collapse
Affiliation(s)
- Danielle Niemann
- Burrell College of Osteopathic Medicine, 3501 Arrowhead Dr, Las Cruces, NM, 88003, USA
| | - Zainab Akinjobi
- Department of Economics, Applied Statistics & International Business, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Soyoung Jeon
- Department of Economics, Applied Statistics & International Business, New Mexico State University, Las Cruces, NM, 88003, USA
| | | |
Collapse
|
16
|
Amoako-Sakyi D, Obiri-Yeboah D, Ofosu A, Kusi KA, Osei K, Adade R, Aniakwaa-Bonsu E, Quansah R, Arko-Mensah J, Amoah BY, Kwakye-Nuako G, Frimpong EY, Combasseré-Cherif M, Mohammed H, Maiga B, Fobil J, Quakyi I, Gyan BA. Preponderance of vaccine-preventable diseases hotspots in northern Ghana: a spatial and space-time clustering analysis from 2010 to 2014. BMC Public Health 2022; 22:1899. [PMID: 36224589 PMCID: PMC9555261 DOI: 10.1186/s12889-022-14307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vaccine-preventable diseases (VPDs) persist globally with a disproportionately high burden in Low and Middle-Income Countries (LMICs). Although this might be partly due to the failure to sustain vaccination coverage above 90% in some WHO regions, a more nuanced understanding of VPD transmission beyond vaccination coverage may unveil other important factors in VPD transmission and control. This study identified VPDs hotspots and explored their relationships with ecology, urbanicity and land-use variations (Artisanal and Small-scale Gold Mining (ASGM) activities) in Ghana. METHODS District-level disease count data from 2010 to 2014 from the Ghana Health Service (GHS) and population data from the Ghana Population and Housing Census (PHC) were used to determine clustering patterns of six VPDs (Measles, Meningitis, Mumps, Otitis media, Pneumonia and Tetanus). Spatial and space-time cluster analyses were implemented in SaTScan using the discrete Poisson model. P-values were estimated using a combination of sequential Monte Carlo, standard Monte Carlo, and Gumbel approximations. RESULTS The study found a preponderance for VPD hotspots in the northern parts of Ghana and northernmost ecological zones (Sudan Savannah and Guinea Savannah). Incidence of meningitis was higher in the Sudan Savannah ecological zone relative to: Tropical Rain Forest (p = 0.001); Semi Deciduous Forest (p < 0.0001); Transitional Zone (p < 0.0001); Coastal Savannah (p < 0.0001) and Guinea Savannah (p = 0.033). Except for mumps, which recorded a higher incidence in urban districts (p = 0.045), incidence of the other five VPDs did not differ across the urban-rural divide. Whereas spatial analysis suggested that some VPD hotspots (tetanus and otitis media) occur more frequently in mining districts in the southern part of the country, a Mann-Whitney U test revealed a higher incidence of meningitis in non-mining districts (p = 0.019). Pneumonia and meningitis recorded the highest (722.8 per 100,000) and least (0.8 per 100,000) incidence rates respectively during the study period. CONCLUSION This study shows a preponderance of VPD hotspots in the northern parts of Ghana and in semi-arid ecoclimates. The relationship between ASGM activities and VPD transmission in Ghana remains blurred and requires further studies with better spatial resolution to clarify.
Collapse
Affiliation(s)
- Daniel Amoako-Sakyi
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Dorcas Obiri-Yeboah
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Anthony Ofosu
- Centre for Health Information Management, Ghana Health Services, Accra, Ghana
| | - Kwadwo Asamoah Kusi
- Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kingsley Osei
- Department of Geography and Regional Planning, Faculty of Social Sciences, College of Humanities in Legal Studies, University of Cape Coast, Cape Coast, Ghana
| | - Richard Adade
- Centre for Coastal Managenment, University of Cape Coast., Cape Coast, Ghana
| | - Ebenezer Aniakwaa-Bonsu
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Reginald Quansah
- Department of Biological, Environmental and Occupational Health, School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health, School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Brodrick Yeboah Amoah
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Godwin Kwakye-Nuako
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast., Cape Coast, Ghana
| | - Eric Yaw Frimpong
- Office of Population Health and Evaluation, New York State Office of Mental Health, Albany, NY, USA
| | - Mariama Combasseré-Cherif
- Unité de Formation et de Recherche en Sciences et Techniques, Université Nazi, Bobo- Dioulasso, Burkina Faso, Burkina Faso
| | - Hidaya Mohammed
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Boubacar Maiga
- University of Sciences, Techniques and Technology of Bamako (USTT-B), Bamako, Mali
| | - Julius Fobil
- Department of Biological, Environmental and Occupational Health, School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Isabella Quakyi
- Department of Biological, Environmental and Occupational Health, School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Ben A Gyan
- Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
17
|
Giles BH, Mann KK. Arsenic as an immunotoxicant. Toxicol Appl Pharmacol 2022; 454:116248. [PMID: 36122737 DOI: 10.1016/j.taap.2022.116248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022]
Abstract
Arsenic is world-wide contaminant to which millions of people are exposed. The health consequences of arsenic exposure are varied, including cancer, cardiometabolic disease, and respiratory disorders. Arsenic is also toxic to the immune system, which may link many of the pathologies associated with arsenic exposure. The immune system can be classified into two interconnected arms: the innate and the adaptive immune responses. Herein, we discuss the effects of arsenic on key cell types within each of these arms, highlighting both in vitro and in vivo responses. These cells include macrophages, neutrophils, dendritic cells, and both B and T lymphocytes. Furthermore, we will explore data from human populations where altered immune status is implicated in disease and identify several data gaps where research is needed to complete our understanding of the immunotoxic effects of arsenic.
Collapse
Affiliation(s)
- Braeden H Giles
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Koren K Mann
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
18
|
Cheong A, Nagel ZD. Human Variation in DNA Repair, Immune Function, and Cancer Risk. Front Immunol 2022; 13:899574. [PMID: 35935942 PMCID: PMC9354717 DOI: 10.3389/fimmu.2022.899574] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
DNA damage constantly threatens genome integrity, and DNA repair deficiency is associated with increased cancer risk. An intuitive and widely accepted explanation for this relationship is that unrepaired DNA damage leads to carcinogenesis due to the accumulation of mutations in somatic cells. But DNA repair also plays key roles in the function of immune cells, and immunodeficiency is an important risk factor for many cancers. Thus, it is possible that emerging links between inter-individual variation in DNA repair capacity and cancer risk are driven, at least in part, by variation in immune function, but this idea is underexplored. In this review we present an overview of the current understanding of the links between cancer risk and both inter-individual variation in DNA repair capacity and inter-individual variation in immune function. We discuss factors that play a role in both types of variability, including age, lifestyle, and environmental exposures. In conclusion, we propose a research paradigm that incorporates functional studies of both genome integrity and the immune system to predict cancer risk and lay the groundwork for personalized prevention.
Collapse
|
19
|
Sandhi A, Yu C, Rahman MM, Amin MN. Arsenic in the water and agricultural crop production system: Bangladesh perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51354-51366. [PMID: 35618999 PMCID: PMC9288370 DOI: 10.1007/s11356-022-20880-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/12/2022] [Indexed: 04/12/2023]
Abstract
The presence of high levels of carcinogenic metalloid arsenic (As) in the groundwater system of Bangladesh has been considered as one of the major environmental disasters in this region. Many parts of Bangladesh have extensively reported the presence of high levels of arsenic in the groundwater due to both geological and anthropogenic activities. In this paper, we reviewed the available literature and scientific information regarding arsenic pollution in Bangladesh, including arsenic chemistry and occurrences. Along with using As-rich groundwater as a drinking-water source, the agricultural activities and especially irrigation have greatly depended on the groundwater resources in this region due to high water demands for ensuring food security. A number of investigations in Bangladesh have shown that high arsenic content in both soil and groundwater may result in high levels of arsenic accumulation in different plants, including cereals and vegetables. This review provides information regarding arsenic accumulation in major rice varieties, soil-groundwater-rice arsenic interaction, and past arsenic policies and plans, as well as previously implemented arsenic mitigation options for both drinking and irrigation water systems in Bangladesh. In conclusion, this review highlights the importance and necessity for more in-depth studies as well as more effective arsenic mitigation action plans to reduce arsenic incorporation in the food chain of Bangladesh.
Collapse
Affiliation(s)
- Arifin Sandhi
- Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, 391 82, Kalmar, Sweden.
| | - Changxun Yu
- Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Md Marufur Rahman
- Bangladesh Institute of Research and Training On Applied Nutrition, Rangpur Regional Station, Pirgonj-5470, Rangpur, Bangladesh
| | - Md Nurul Amin
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- Breeder Seed Production Centre, Bangladesh Agricultural Research Institute, Debiganj, Panchagarh-5020, Bangladesh
| |
Collapse
|
20
|
Li D, Ma H, Shu Q, Wang T, Li L, Huang P, Lou K, Xu H. Arsenite inhibits M2a polarization of macrophages through downregulation of peroxisome proliferator-activated receptor gamma. Toxicol Appl Pharmacol 2022; 450:116142. [PMID: 35777529 DOI: 10.1016/j.taap.2022.116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
Arsenite (As+3) is a group one human carcinogen, which has been associated with many diseases. Previous studies indicated that As+3 could inhibit wound healing and repair. M2a cells are known as tissue remodeling macrophages, which play an important role in wound repair process. Peroxisome proliferator-activated receptor gamma (PPAR-γ), a key regulator of lipid and glucose metabolism, was found to mediate the IL-4-dependent M2a polarization of macrophages. In the present study, As+3 induced dose-dependent inhibition of M2a polarization starting from 0.1 μM in THP-1-derived macrophages stimulated with 20 ng/mL IL-4. Increased lipid accumulation and decreased PPAR-γ expression were also observed in As+3-treated M2a macrophages. Rosiglitazone (RSG), a potent PPAR-γ agonist, alleviated the suppressions of PPAR-γ and M2a polarization induced by 2 μM As+3. Collectively, these results not only demonstrated that As+3 was able to inhibit polarization of M2a cells through PPAR-γ suppression, but also indicated that PPAR-γ could be utilized as a target for the prevention and treatment of As+3-induced immunotoxicity.
Collapse
Affiliation(s)
- Dan Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huijuan Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Shu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Tingqian Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Linyi Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyan Lou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Huan Xu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
21
|
Use of Generalized Weighted Quantile Sum Regressions of Tumor Necrosis Factor Alpha and Kidney Function to Explore Joint Effects of Multiple Metals in Blood. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127399. [PMID: 35742647 PMCID: PMC9223707 DOI: 10.3390/ijerph19127399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023]
Abstract
Exposure to heavy metals could lead to adverse health effects by oxidative reactions or inflammation. Some essential elements are known as reactors of anti-inflammatory enzymes or coenzymes. The relationship between tumor necrosis factor alpha (TNF-α) and heavy metal exposures was reported. However, the interaction between toxic metals and essential elements in the inflammatory response remains unclear. This study aimed to explore the association between arsenic (As), cadmium (Cd), lead (Pb), cobalt (Co), copper (Cu), selenium (Se), and zinc (Zn) in blood and TNF-α as well as kidney function. We enrolled 421 workers and measured the levels of these seven metals/metalloids and TNF-α in blood; kidney function was calculated by CKD-EPI equation. We applied weighted quantile sum (WQS) regression and group WQS regression to assess the effects of metal/metalloid mixtures to TNF-α and kidney function. We also approached the relationship between metals/metalloids and TNF-α by generalized additive models (GAM). The relationship of the exposure−response curve between Pb level and TNF-α in serum was found significantly non-linear after adjusting covariates (p < 0.001). Within the multiple-metal model, Pb, As, and Zn were associated with increased TNF-α levels with effects dedicated to the mixture of 50%, 31%, and 15%, respectively. Grouped WQS revealed that the essential metal group showed a significantly negative association with TNF-α and kidney function. The toxic metal group found significantly positive associations with TNF-α, serum creatinine, and WBC but not for eGFR. These results suggested Pb, As, Zn, Se, and mixtures may act on TNF-α even through interactive mechanisms. Our findings offer insights into what primary components of metal mixtures affect inflammation and kidney function during co-exposure to metals; however, the mechanisms still need further research.
Collapse
|
22
|
Kim S, White SM, Radke EG, Dean JL. Harmonization of transcriptomic and methylomic analysis in environmental epidemiology studies for potential application in chemical risk assessment. ENVIRONMENT INTERNATIONAL 2022; 164:107278. [PMID: 35537365 DOI: 10.1016/j.envint.2022.107278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Recent efforts have posited the utility of transcriptomic-based approaches to understand chemical-related perturbations in the context of human health risk assessment. Epigenetic modification (e.g., DNA methylation) can influence gene expression changes and is known to occur as a molecular response to some chemical exposures. Characterization of these methylation events is critical to understand the molecular consequences of chemical exposures. In this context, a novel workflow was developed to interrogate publicly available epidemiological transcriptomic and methylomic data to identify relevant pathway level changes in response to chemical exposure, using inorganic arsenic as a case study. Gene Set Enrichment Analysis (GSEA) was used to identify causal methylation events that result in concomitant downstream transcriptional deregulation. This analysis demonstrated an unequal distribution of differentially methylated regions across the human genome. After mapping these events to known genes, significant enrichment of a subset of these pathways suggested that arsenic-mediated methylation may be both specific and non-specific. Parallel GSEA performed on matched transcriptomic samples determined that a substantially reduced subset of these pathways are enriched and that not all chemically-induced methylation results in a downstream alteration in gene expression. The resulting pathways were found to be representative of well-established molecular events known to occur in response to arsenic exposure. The harmonization of enriched transcriptional patterns with those identified from the methylomic platform promoted the characterization of plausibly causal molecular signaling events. The workflow described here enables significant gene and methylation-specific pathways to be identified from whole blood samples of individuals exposed to environmentally relevant chemical levels. As future efforts solidify specific causal relationships between these molecular events and relevant apical endpoints, this novel workflow could aid risk assessments by identifying molecular targets serving as biomarkers of hazard, informing mechanistic understanding, and characterizing dose ranges that promote relevant molecular/epigenetic signaling events occuring in response to chemical exposures.
Collapse
Affiliation(s)
- Stephanie Kim
- Superfund and Emergency Management Division, Region 2, U.S. Environmental Protection Agency, NY, USA.
| | - Shana M White
- Chemical and Pollutant Assessment Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, USA.
| | - Elizabeth G Radke
- Chemical and Pollutant Assessment Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, D.C., USA.
| | - Jeffry L Dean
- Chemical and Pollutant Assessment Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, USA.
| |
Collapse
|
23
|
Parvez F, Lauer FT, Factor-Litvak P, Islam T, Eunus M, Horayara MA, Rahman M, Sarwar G, Ahsan H, Graziano JH, Burchiel SW. Exposure to arsenic and level of Vitamin D influence the number of Th17 cells and production of IL-17A in human peripheral blood mononuclear cells in adults. PLoS One 2022; 17:e0266168. [PMID: 35404942 PMCID: PMC9000092 DOI: 10.1371/journal.pone.0266168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
There is limited evidence on the effects of environmental exposure to arsenic (As) on the immune system in adults. In a population-based study, we have found that urinary As (UAs), and its metabolites [inorganic As (InAs), monomethylated arsenicals (MMA+3/+5), and dimethylated arsenicals (DMA+3/+5)] modulate or influence the number of T-helper 17 (Th17) cells and IL-17A cytokine production. In non-smoking women, we observed that UAs and DMA+3/+5 were associated with changes in Th17 cell numbers in a nonlinear fashion. In smoking males, we found that UAs was associated with a significant decrease of Th17 cell numbers. Similar association was observed among non-smoking males. Likewise, UAs, DMA+3/+5 and MMA+3/+5 were associated with diminished production of IL-17A among non-smoking males. When stratified by Vitamin D levels defined as sufficient (≥20 ng/ml) and insufficient (<20 ng/ml), we found a substancial decrease in Th17 cell numbers among those with insufficient levels. Individuals with sufficient VitD levels demonstrated significant inhibition of IL-17A production in non-smoking males. Collectively, we find that exposure to As via drinking water is associated with alterations in Th17 numbers and IL-17A production, and that these associations may be modified by Vitamin D status. Our findings have significance for health outcomes associated with As exposure.
Collapse
Affiliation(s)
- Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
- * E-mail:
| | - Fredine T. Lauer
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, United States of America
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Tariqul Islam
- University of Chicago and Columbia University Field Research Office, Dhaka, Bangladesh
| | - Mahbubul Eunus
- University of Chicago and Columbia University Field Research Office, Dhaka, Bangladesh
| | - M. Abu Horayara
- University of Chicago and Columbia University Field Research Office, Dhaka, Bangladesh
| | - Mizanour Rahman
- University of Chicago and Columbia University Field Research Office, Dhaka, Bangladesh
| | - Golam Sarwar
- University of Chicago and Columbia University Field Research Office, Dhaka, Bangladesh
| | - Habibul Ahsan
- Department of Health Studies, University of Chicago, Chicago, Illinois, United States of America
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Scott W. Burchiel
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, United States of America
| |
Collapse
|
24
|
McCall JL, Varney ME, Rice E, Dziadowicz SA, Hall C, Blethen KE, Hu G, Barnett JB, Martinez I. Prenatal Cadmium Exposure Alters Proliferation in Mouse CD4 + T Cells via LncRNA Snhg7. Front Immunol 2022; 12:720635. [PMID: 35087510 PMCID: PMC8786704 DOI: 10.3389/fimmu.2021.720635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Prenatal cadmium (Cd) exposure leads to immunotoxic phenotypes in the offspring affecting coding and non-coding genes. Recent studies have shown that long non-coding RNAs (lncRNAs) are integral to T cell regulation. Here, we investigated the role of long non-coding RNA small nucleolar RNA host gene 7 (lncSnhg7) in T cell proliferation. Methods RNA sequencing was used to analyze the expression of lncRNAs in splenic CD4+ T cells with and without CD3/CD28 stimulation. Next, T cells isolated from offspring exposed to control or Cd water throughout mating and gestation were analyzed with and without stimulation with anti-CD3/CD28 beads. Quantitative qPCR and western blotting were used to detect RNA and protein levels of specific genes. Overexpression of a miR-34a mimic was achieved using nucleofection. Apoptosis was measured using flow cytometry and luminescence assays. Flow cytometry was also used to measure T cell proliferation in culture. Finally, lncSnhg7 was knocked down in splenic CD4+ T cells with lentivirus to assess its effect on proliferation. Results We identified 23 lncRNAs that were differentially expressed in stimulated versus unstimulated T cells, including lncSnhg7. LncSnhg7 and a downstream protein, GALNT7, are upregulated in T cells from offspring exposed to Cd during gestation. Overexpression of miR-34a, a regulator of lncSnhg7 and GALNT7, suppresses GALNT7 protein levels in primary T cells, but not in a mouse T lymphocyte cell line. The T cells isolated from Cd-exposed offspring exhibit increased proliferation after activation in vitro, but Treg suppression and CD4+ T cell apoptosis are not affected by prenatal Cd exposure. Knockdown on lncSnhg7 inhibits proliferation of CD4+ T cells. Conclusion Prenatal Cd exposure alters the expression of lncRNAs during T cell activation. The induction of lncSnhg7 is enhanced in splenic T cells from Cd offspring resulting in the upregulation of GALNT7 protein and increased proliferation following activation. miR-34a overexpression decreased GALNT7 expression and knockdown of lncSnhg7 inhibited proliferation suggesting that the lncSnhg7/miR-34a/GALNT7 is an important pathway in primary CD4+ T cells. These data highlight the need to understand the consequences of environmental exposures on lncRNA functions in non-cancerous cells as well as the effects in utero.
Collapse
Affiliation(s)
- Jamie L. McCall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Melinda E. Varney
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Emily Rice
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Sebastian A. Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Casey Hall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Kathryn E. Blethen
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
- Bioinformatics Core, West Virginia University, Morgantown, WV, United States
| | - John B. Barnett
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Ivan Martinez
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
25
|
Malin Igra A, Warnqvist A, Rahman SM, Ekström EC, Rahman A, Vahter M, Kippler M. Environmental metal exposure and growth to 10 years of age in a longitudinal mother-child cohort in rural Bangladesh. ENVIRONMENT INTERNATIONAL 2021; 156:106738. [PMID: 34246127 DOI: 10.1016/j.envint.2021.106738] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Early-life exposure to arsenic (As), cadmium (Cd), and lead (Pb) has been linked to smaller birth and early childhood anthropometry, but little is known beyond the first years in life. OBJECTIVES To evaluate the impact of gestational and childhood exposures to As, Cd, and Pb on growth up to 10 years of age. METHODS We studied 1530 mother-child dyads from a nested sub-cohort of the MINIMat trial in rural Matlab, Bangladesh. Metal concentrations in maternal erythrocytes during pregnancy and in children's urine at 10y were measured by inductively coupled plasma mass spectroscopy. Child height and weight were measured at 19 occasions from birth until 10y and converted to height-for-age Z-scores (HAZ) and weight-for-age Z-scores (WAZ). Associations between log2-transformed metal concentrations and growth parameters were assessed with multivariable-adjusted regression models. RESULTS Children's concurrent urinary Cd (median 0.24 µg/L), reflecting long-term exposure, was inversely associated with WAZ (B: -0.072; 95% confidence interval (CI): -0.12, -0.020; p = 0.007), and possibly HAZ (B: -0.046; 95% CI: -0.096, 0.0014; p = 0.057), at 10y. The association with WAZ was stronger in boys than in girls. Maternal erythrocyte Cd (median 0.90 µg/kg) during pregnancy was inversely associated with WAZ during childhood only in boys (B: -0.071, 95% CI: -0.14, -0.0047, p = 0.036). Concurrent urinary Pb (median 1.6 µg/L) was inversely associated with WAZ (B: -0.084; 95% CI: -0.16, -0.0085; p = 0.029) and HAZ (B: -0.087; 95% CI: -0.15, -0.021; p = 0.010) in boys, but not in girls. Neither gestational nor childhood As exposure (median maternal erythrocyte As 4.3 µg/kg and children's urinary As 57 µg/L) was associated with growth up to 10y. CONCLUSIONS While all effect estimates were small, environmental exposure to Cd and Pb is common and impaired growth is of public health concern, especially for children already at risk of reduced growth due to malnutrition. Gender differences in susceptibility need further investigation.
Collapse
Affiliation(s)
- Annachiara Malin Igra
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Warnqvist
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Syed Moshfiqur Rahman
- International Maternal and Child Health, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Eva-Charlotte Ekström
- International Maternal and Child Health, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Anisur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Marie Vahter
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kippler
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
26
|
O'Connor TG, Ciesla AA. Maternal Immune Activation Hypotheses for Human Neurodevelopment: Some Outstanding Questions. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:471-479. [PMID: 34688920 PMCID: PMC9021321 DOI: 10.1016/j.bpsc.2021.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022]
Abstract
The Maternal Immune Activation (MIA) hypothesis is a leading model for understanding prenatal influences on individual differences in, and clinical syndromes of, neurodevelopment. Experimental animal and human research has proliferated in recent years, and there is now a sizable research base. Several meta-analyses demonstrate general support for an association between prenatal immune activation and neurodevelopment in human research. However, questions remain about the nature of the immune activation, the network of underlying mechanisms involved, and the breadth of impact across behavioral phenotypes. Complementing recent reviews of results, the current review places particular emphasis on how advances in understanding mechanisms may be improved with greater attention to addressing the methodological variation and limitations of existing studies, and identifies areas for further clinical research.
Collapse
Affiliation(s)
- Thomas G O'Connor
- Department of Psychiatry, University of Rochester; Department of Psycholog, University of Rochestery; Department of Neuroscience, University of Rochester; Department of Obstetrics and Gynecology, University of Rochester; Wynne Center for Family Research, University of Rochester.
| | | |
Collapse
|
27
|
Martínez-Castillo M, García-Montalvo EA, Arellano-Mendoza MG, Sánchez-Peña LDC, Soria Jasso LE, Izquierdo-Vega JA, Valenzuela OL, Hernández-Zavala A. Arsenic exposure and non-carcinogenic health effects. Hum Exp Toxicol 2021; 40:S826-S850. [PMID: 34610256 DOI: 10.1177/09603271211045955] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inorganic arsenic (iAs) exposure is a serious health problem that affects more than 140 million individuals worldwide, mainly, through contaminated drinking water. Acute iAs poisoning produces several symptoms such as nausea, vomiting, abdominal pain, and severe diarrhea, whereas prolonged iAs exposure increased the risk of several malignant disorders such as lung, urinary tract, and skin tumors. Another sensitive endpoint less described of chronic iAs exposure are the non-malignant health effects in hepatic, endocrine, renal, neurological, hematological, immune, and cardiovascular systems. The present review outlines epidemiology evidence and possible molecular mechanisms associated with iAs-toxicity in several non-carcinogenic disorders.
Collapse
Affiliation(s)
- Macario Martínez-Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Mónica G Arellano-Mendoza
- Laboratorio de Investigación en Enfermedades Crónico-Degenerativas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | - Luz Del C Sánchez-Peña
- Departamento de Toxicología, 540716Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Luis E Soria Jasso
- Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina del Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Jeannett A Izquierdo-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Olga L Valenzuela
- Facultad de Ciencias Químicas, 428055Universidad Veracruzana, Orizaba, México
| | - Araceli Hernández-Zavala
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
28
|
Zhang W, Chen H, Zeng Q, Xu S, Xia W, Li Y. Prenatal and postnatal exposure to vanadium and the immune function of children. J Trace Elem Med Biol 2021; 67:126787. [PMID: 34034030 DOI: 10.1016/j.jtemb.2021.126787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/06/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The immunotoxicity induced by vanadium exposure have been reported in some toxicology researches. However, evidence from population-based epidemiological studies was lacking. METHODS This study was conducted to assess the associations between prenatal and postnatal exposure to vanadium and immune function of children. A total of 407 pre-school aged children were followed, whose peripheral blood was collected for T lymphocyte subsets and inflammatory cytokines analysis, as well as vanadium concentration measurement. Maternal urine samples were also collected to measure vanadium concentration. We used generalized linear models to evaluate the associations of maternal and children vanadium concentration with children's immune function. Stratification analysis was further conducted to explore the potential gender-specific effects. RESULTS The geometric means of vanadium concentration in maternal urine and children plasma were 0.85 and 1.12 μg/L, respectively. Maternal urinary vanadium was inversely associated with the percentage of CD3+CD4+ cells [-5.53 % (-10.38 %, -0.41 %)] and absolute counts of CD3+ cells [-2.43 % (-5.05 %, 0.25 %)], and we only observed significant negative associations in males when stratifying by fetal gender. Children plasma vanadium was also associated with reduced absolute counts of CD3+ cells [-5.25 % (-9.57 %, -0.73 %)], but gender-specific effects were not observed. No significant associations of vanadium exposure with cytokines were found. CONCLUSIONS Prenatal and postnatal exposure to vanadium had suppressive impacts on childhood cellular immune. Further studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Wenxin Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Huan Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Qiang Zeng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
29
|
Liu KL, Tsai TL, Tsai WC, Tsai SF, Lee CH, Wang SL. Prenatal heavy metal exposure, total immunoglobulin E, trajectory, and atopic diseases: A 15-year follow-up study of a Taiwanese birth cohort. J Dermatol 2021; 48:1542-1549. [PMID: 34265871 DOI: 10.1111/1346-8138.16058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/18/2021] [Indexed: 01/05/2023]
Abstract
Prenatal exposure to heavy metals may cause atopic diseases. Little association between cord blood total immunoglobulin E (CB-tIgE) levels and the occurrence of atopic diseases has been found. This study investigated the atopic status and tIgE trajectory trend in a Taiwanese birth cohort over 15 years. We also assessed the effect of maternal heavy metal exposure on maternal serum cytokine and CB-tIgE levels. We recruited 430 pregnant women during their third trimester in 2000-2001. Maternal urinary heavy metal concentrations and serum cytokine levels were measured. The CB-tIgE and serum tIgE levels of the women's children when they were aged 5, 8, 11, and 14 years were measured. The upper quartile of the maternal urinary arsenic concentration was associated with an increased risk of a CB-tIgE level higher than 1 IU/mL (odds ratio, 1.845; 95% confidence interval, 1.003-3.395). Serum tIgE trajectory levels were the highest in children with asthma, followed by those with atopic dermatitis and allergic rhinitis at the age of 5-14 years. Serum tIgE levels tended to peak at the age of 11 years in the atopic children but were stable from the age of 8 years in the non-atopic children. We first demonstrated that serum tIgE levels reached a trajectory peak in the atopic children aged 11 years. Prenatal exposure to arsenic may increase the risk of elevated CB-tIgE levels. Further investigation is warranted to elucidate the mechanism through which maternal serum cytokines affect the occurrence of atopic diseases in children.
Collapse
Affiliation(s)
- Kwei-Lan Liu
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsung-Lin Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan.,Department of Public Health, China Medical University, Taichung, Taiwan
| | | | - Shih-Fen Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan.,Department of Public Health, China Medical University, Taichung, Taiwan.,Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan.,Department of Public Health, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
30
|
Chakraborty M, Bhaumik M. Prenatal arsenic exposure interferes in postnatal immunocompetence despite an absence of ongoing arsenic exposure. J Immunotoxicol 2021; 17:135-143. [PMID: 32538211 DOI: 10.1080/1547691x.2020.1767238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Arsenic (As) readily crosses the placenta and exposure of the fetus may cause adverse consequences later in life, including immunomodulation. In the current study, the question was asked how the immune repertoire might respond in postnatal life when there is no further As exposure. Here, pregnant mice (Balb/c [H-2d]) were exposed to arsenic trioxide (As2O3) through their drinking water from time of conception until parturition. Their offspring, 4-week-old mice who had not been exposed again to As, were used for functional analyses of innate, humoral and cellular immunity. Compared to cells from non-As-exposed dam offspring, isolated peritoneal macro-phages (Mϕ) displayed no differences in T-cell stimulating ability. Levels of circulating IgG2a but not IgG1 were decreased in As-exposed dam offspring as compared to control offspring counterparts. Mixed-leukocyte reactions (MLR) indicated that CD4+ T-cells from the prenatal As-exposed mice were significantly less responsive to allogenic stimulation as evidenced by decreases in interferon (IFN)-γ and IL-2 production and in expression of CD44 and CD69 (but not CD25) activation markers. Interestingly, the Mϕ from the prenatal As-exposed mice were capable of stimulating normal allogenic T-cells, indicating that T-cells from these mice were refractory to allogenic signals. There was also a significant decrease in absolute numbers of splenic CD4+ and CD8+ T-cells due to prenatal As exposure (as compared to control). Lastly, the impaired immune function of the prenatal As-exposed mice was correlated with a very strong susceptibility to Escherichia coli infection. Taken together, the data from this study clearly show that in utero As exposure may continue to perpetuate a dampening effect on the immune repertoire of offspring, even into the early stages of postnatal life.
Collapse
Affiliation(s)
- Mainak Chakraborty
- Division of Immunology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Moumita Bhaumik
- Division of Immunology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
31
|
T helper 2-driven immune dysfunction in chronic arsenic-exposed individuals and its link to the features of allergic asthma. Toxicol Appl Pharmacol 2021; 420:115532. [PMID: 33845054 DOI: 10.1016/j.taap.2021.115532] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022]
Abstract
Limited information is available regarding the effects of arsenic exposure on immune function. We have recently reported that chronic exposure to As was associated asthma, as determined by spirometry and respiratory symptoms. Because T helper 2 (Th2)-driven immune responses are implicated in the pathogenesis of allergic diseases, including asthma, we studied the associations of serum Th1 and Th2 mediators with the As exposure markers and the features of asthma among individuals exposed to As. A total of 553 blood samples were selected from the same study subjects recruited in our previous asthma study. Serum levels of Th1 and Th2 cytokines were analyzed by immunoassay. Subjects' arsenic exposure levels (drinking water, hair and nail arsenic concentrations) were determined by inductively coupled plasma mass spectroscopy. Arsenic exposure levels of the subjects showed significant positive associations with serum Th2-mediators- interleukin (IL)-4, IL-5, IL-13, and eotaxin without any significant changes in Th1 mediators- interferon-γ and tumor necrosis factor-α. The ratios of Th2 to Th1 mediators were significantly increased with increasing exposure to As. Notably, most of the Th2 mediators were positively associated with serum levels of total immunoglobulin E and eotaxin. The serum levels of Th2 mediators were significantly higher in the subjects with asthma than those without asthma. The results of our study suggest that the exacerbated Th2-driven immune responses are involved in the increased susceptibility to allergic asthma among individuals chronically exposed to As.
Collapse
|
32
|
Herrera AS, Beeraka NM, Sinelnikov MY, Nikolenko VN, Giller DB, Solis LFT, Mikhaleva LM, Somasundaram SG, Kirkland CE, Aliev G. The Beneficial Effects of QIAPI 1® against Pentavalent Arsenic-Induced Lung Toxicity a Hypothetical Model for SARS CoV2-Induced Lung Toxicity. Curr Pharm Biotechnol 2021; 23:307-315. [PMID: 33845734 DOI: 10.2174/1389201022666210412142230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/12/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022]
Abstract
Exposure to environmental toxicants such as Arsenic (As) can result in As-induced alterations in immune regulators. Consequently, people who are more prone to viral infections like influenza A or B, H1N1, SARS CoV (Severe Acute Respiratory Syndrome Coronavirus), and SARS CoV2 may develop susceptibility to immune responses in their lungs because our previous reports delineated the ability of QIAPI 1®, a melanin precursor, to dissociate water molecules with simultaneous therapeutic efficacy against central nervous system (CNS) diseases, retinopathy, and As-induced renal toxicity. Given the commonalities of lung pathology of SARS CoV and As-induced toxicity, the aim of this study is to decipher the efficacy of QIAPI 1® against pentavalent As-induced lung toxicity by examining the pulmonary pathology. Hematoxylin & Eosin (H&E) staining was used for ascertaining the lung pathology in Wistar rat models. Animals were divided into 3 groups: control group, group treated with pentavalent As, and a group treated with pentavalent As and QIAPI 1®. There were no significant changes in lung histopathology in the control group as indicated by intact morphology. As-treated group revealed damage to the histoarchitecture with pulmonary edema, interstitial fibrosis, diffuse alveolar damage, Bronchiolitis obliterans organizing pneumonia (BOOP)-lesions, formation of hyaline membrane, multinucleated giant pneumocytes, atypical pneumocytes, inflammatory cell infiltration, and interstitial edema. The group treated with As and QIAPI 1® significantly associated with mitigated histological signs of lung inflammation induced by Arsenic. Therefore, QIAPI 1® can be recommended as antagonistic to As-induced lung toxicity. In conclusion, this model could be preferred as a hypothetical model to examine the efficacy of QIAPI 1® in SARS CoV2-induced pulmonary damage. Future studies are warranted to delineate the efficacy of QIAPI 1® against SARS CoV and SARS CoV2 lung pathology.
Collapse
Affiliation(s)
| | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysore - 570 015, Karnataka. India
| | - Mikhail Y Sinelnikov
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991. Russian Federation
| | - Vladimir N Nikolenko
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991. Russian Federation
| | - Dimitry B Giller
- Department of Phthisiopulmonology, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991. Russian Federation
| | | | - Liudmila M Mikhaleva
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418. Russian Federation
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV. United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV. United States
| | - Gjumrakch Aliev
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418. Russian Federation
| |
Collapse
|
33
|
Ma H, Song X, Huang P, Zhang W, Ling X, Yang X, Wu W, Xu H, Wang W. Myricetin protects natural killer cells from arsenite induced DNA damage by attenuating oxidative stress and retaining poly(ADP-Ribose) polymerase 1 activity. Mutat Res 2021; 865:503337. [PMID: 33865543 DOI: 10.1016/j.mrgentox.2021.503337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/30/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022]
Abstract
Environmental exposure to arsenite (As+3) is known to induce immunotoxicity. Natural killer (NK) cells are innate lymphoid cells act as professional killers of tumor cells. Our previous report indicated that 500 ppb As+3 drinking water exposure induced significant DNA damage in the NK cells of C57BL/6 mice. Myricetin is a plant-derived flavonoid known as a strong antioxidant. In this study, daily administration of myricetin at 20 mg/kg was found to alleviate the cell population decrease and DNA damage in the NK cells of BALB/c mice exposed to 500 and 1000 ppb As+3 via drinking water. Oxidative stress and poly(ADP-ribose) polymerase 1 (PARP-1) inhibition were induced by As+3 at 1 and 2 μM in isolated mouse NK cells in vitro, which were attenuated by 20 μM myricetin. The mitigatory effect of myricetin on the PARP-1 inhibition in NK cells treated with As+3 was also found to be the result of its prevention of the zinc loss induced by As+3 on PARP-1. Collectively, these results demonstrated, for the first time, that myricetin could protect NK cells from As+3 induced DNA through attenuating oxidative stress and retaining PARP-1 activity, indicating that myricetin may be utilized for the prevention of the immunotoxicity induced by As+3 in NK cells.
Collapse
Affiliation(s)
- Huijuan Ma
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Xiaodong Song
- Medical Laboratory Department, Hua Shan Hospital North, Fudan University, Shanghai, 201907, China
| | - Ping Huang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Weiwei Zhang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Xinyue Ling
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Xiaoning Yang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Wenwei Wu
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Huan Xu
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China.
| | - Wei Wang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China; Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ, 85721-0207, USA.
| |
Collapse
|
34
|
Akhtar E, Roy AK, Haq MA, von Ehrenstein OS, Ahmed S, Vahter M, Ekstrom EC, Kippler M, Wagatsuma Y, Raqib R. A longitudinal study of rural Bangladeshi children with long-term arsenic and cadmium exposures and biomarkers of cardiometabolic diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116333. [PMID: 33535364 DOI: 10.1016/j.envpol.2020.116333] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
There is growing interest in understanding the contribution of environmental toxicant exposure in early life to development of cardiometabolic diseases (CMD) in adulthood. We aimed to assess associations of early life exposure to arsenic and cadmium with biomarkers of CMD in children in rural Bangladesh. From a longitudinal mother-child cohort in Matlab, Bangladesh, we followed up 540 pairs. Exposure to arsenic (U-As) and cadmium (U-Cd) was assessed by concentrations in urine from mothers at gestational week 8 (GW8) and children at ages 4.5 and 9 years. Blood pressure and anthropometric indices were measured at 4.5 and 9 years. Metabolic markers (lipids, glucose, hemoglobin A1c, adipokines, estimated glomerular filtration rate (eGFR) were determined in plasma/blood of 9 years old children. In linear regression models, adjusted for child sex, age, height-for-age z score (HAZ), BMI-for-age z score (BAZ), socioeconomic status (SES) and maternal education, each doubling of maternal and early childhood U-Cd was associated with 0.73 and 0.82 mmHg increase in systolic blood pressure (SBP) respectively. Both early and concurrent childhood U-Cd was associated with diastolic (D)BP (β = 0.80 at 4.5 years; β = 0.75 at 9 years). Each doubling of U-Cd at 9 years was associated with decrements of 4.98 mg/dL of total cholesterol (TC), 1.75 mg/dL high-density lipoprotein (HDL), 3.85 mg/dL low-density lipoprotein (LDL), 0.43 mg/dL glucose and 4.29 units eGFR. Each doubling of maternal U-Cd was associated with a decrement of 1.23 mg/dL HDL. Both maternal and childhood U-As were associated with decrement in TC and HDL. Multiple comparisons were checked with family-wise error rate Bonferroni-type-approach. The negative associations of arsenic and cadmium with biomarkers of CMD in preadolescent children indicated influence of both metal(loid)s on fat and carbohydrate metabolism, while cadmium additionally influenced kidney function and BP. Thus, fewer outcomes were associated with U-As compared to U-Cd at preadolescence.
Collapse
Affiliation(s)
- Evana Akhtar
- Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Anjan Kumar Roy
- Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Md Ahsanul Haq
- Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Ondine S von Ehrenstein
- Department of Community Health Sciences and Epidemiology, Fielding School of Public Health, University of California Los Angeles, USA
| | - Sultan Ahmed
- Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, SE- 171 77, Stockholm, Sweden
| | - Eva-Charlotte Ekstrom
- Department of Women's and Children's Health, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, SE- 171 77, Stockholm, Sweden
| | - Yukiko Wagatsuma
- Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Rubhana Raqib
- Infectious Diseases Division, icddr,b, Dhaka, 1212, Bangladesh.
| |
Collapse
|
35
|
Medina S, Zhou X, Lauer FT, Zhang H, Liu KJ, Lewis J, Burchiel SW. Modulation of PARP activity by Monomethylarsonous (MMA +3) acid and uranium in mouse thymus. Toxicol Appl Pharmacol 2021; 411:115362. [PMID: 33279514 PMCID: PMC7855914 DOI: 10.1016/j.taap.2020.115362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/02/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023]
Abstract
Arsenic exposure is well established to impair the function of zinc finger proteins, including PARP-1. Previous studies from our lab show that early developing T cells in the thymus are very sensitive to arsenite (As+3)-induced genotoxicity mediated through PARP-1 inhibition. Additionally, it has been shown that uranium (in the form of uranyl acetate, UA) also suppresses PARP-1 activity in HEK cells. However, very little is known about whether the As+3 metabolite, monomethylarsonous acid (MMA+3), also inhibits PARP-1 activity and if this is modified by combined exposures with other metals, such as uranium. In the present study, we found that MMA+3 significantly suppressed PARP-1 function, whereas UA at high concentrations significantly increased PARP-1 activity. To evaluate whether the effects on PARP-1 activity were mediated through oxidative stress, we measured the induction of hemoxygenase-1 (Hmox-1) expression by qPCR. MMA+3, but not UA, significantly induced oxidative stress; however, the inhibition of PARP-1 produced by MMA+3 was not reversed by the addition of the antioxidant, Tempol. Further evaluation revealed minimal interactive effects of MMA+3 and UA on PARP-1 function. Collectively, our results show that contrary to As+3, the suppressive effects of MMA+3 on PARP-1 were not substantially driven by oxidative stress. in mouse thymus cells. Results for this study provide important insights into the effects of MMA+3 and uranium exposures on PARP-1 function, which is essential for future studies focused on understanding the effects of complex environmentally relevant metal mixtures.
Collapse
Affiliation(s)
- Sebastian Medina
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, USA; Department of Biology, New Mexico Highlands University, Las Vegas, NM, USA
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Fredine T Lauer
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Haikun Zhang
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Johnnye Lewis
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Scott W Burchiel
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, USA.
| |
Collapse
|
36
|
Nigra AE, Navas-Acien A. Arsenic in US correctional facility drinking water, 2006-2011. ENVIRONMENTAL RESEARCH 2020; 188:109768. [PMID: 32585331 PMCID: PMC7483613 DOI: 10.1016/j.envres.2020.109768] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Little is known about the quality of drinking water in US correctional facilities (e.g. detention centers, prisons, jails, etc.). Our objective was to determine if incarcerated persons are at risk for chronic, elevated arsenic exposure relative to the non-incarcerated US population, particularly in the Southwestern US where public water and groundwater arsenic concentrations are high compared to the rest of the US. METHODS We analyzed 230,158 arsenic monitoring records from 37,086 community water systems (CWSs) from the Environmental Protection Agency's (EPA) Third Six Year Review of Contaminant Occurrence dataset (covering 2006-2011). We compared six-year average arsenic concentrations and the odds of exceeding the EPA's 10 μg/L maximum contaminant level (MCL) for CWSs exclusively serving correctional facilities versus all other CWSs in the Southwestern US, where groundwater arsenic concentrations are high. RESULTS Average six-year water arsenic concentrations were higher for Southwestern correctional facility CWSs (6.41 μg/L, 95% CI 3.48, 9.34) compared to all other Southwestern CWSs (3.11 μg/L, 95% CI 2.97, 3.24) and to other CWSs across the rest of the US (1.39 μg/L, 95% CI 1.35, 1.42). In the Southwest, 26.1% (N = 6) of correctional facility CWSs versus 5.8% (509) of other CWSs reported six-year arsenic averages exceeding 10 μg/L, corresponding to an odds ratio of 5.70 (95% confidence interval 2.24, 14.52). Correctional facility CWSs in the Southwest were also more likely to report six-year averages exceeding 5 μg/L (the MCL for New Jersey and New Hampshire, N = 8, odds ratio 2.77, 95% CI 1.17, 6.54). DISCUSSION Persons incarcerated in the Southwestern US were at disproportionate risk of elevated drinking water arsenic exposure and related disease from 2006 to 2011. Strict enforcement of EPA regulations and additional technical and financial support for CWSs serving correctional facilities in the Southwest is necessary to protect the health and human rights of incarcerated persons.
Collapse
Affiliation(s)
- Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
37
|
Vahter M, Skröder H, Rahman SM, Levi M, Derakhshani Hamadani J, Kippler M. Prenatal and childhood arsenic exposure through drinking water and food and cognitive abilities at 10 years of age: A prospective cohort study. ENVIRONMENT INTERNATIONAL 2020; 139:105723. [PMID: 32298878 DOI: 10.1016/j.envint.2020.105723] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Our studies of children in a rural Bangladeshi area, with varying concentrations of arsenic in well-water, indicated modest impact on child verbal cognitive function at 5 years of age. OBJECTIVES Follow-up of arsenic exposure and children's cognitive abilities at school-age. METHODS In a nested sub-cohort of the MINIMat supplementation trial, we assessed cognitive abilities at 10 years of age (n = 1523), using Wechsler Intelligence Scale for Children (WISC-IV). Arsenic in maternal urine and erythrocytes in early pregnancy, in child urine at 5 and 10 years, and in hair at 10 years, was measured using Inductively Coupled Plasma Mass Spectrometry. RESULTS Median urinary arsenic at 10 years was 58 µg/L (range 7.3-940 µg/L). Multivariable-adjusted regression analysis showed that, compared to the first urinary arsenic quintile at 10 years (<30 µg/L), the third and fourth quintiles (30-45 and 46-73 µg/L, respectively) had 6-7 points lower Full developmental raw scores (B: -7.23, 95% CI -11.3; -3.18, and B: -6.37, 95% CI -10.5; -2.22, respectively), corresponding to ~0.2 SD. Verbal comprehension and Perceptual reasoning seemed to be affected. Models with children's hair arsenic concentrations showed similar results. Maternal urinary arsenic in early pregnancy, but not late pregnancy, showed inverse associations with Full developmental scores (quintiles 2-4: B: -4.52, 95% CI -8.61; -0.43, B: -5.91, 95% CI -10.0; -1.77, and B: -5.98, 95%CI -10.2; -1.77, respectively, compared to first quintile), as well as with Verbal comprehension, Perceptual reasoning, and Processing speed, especially in girls (p < 0.05 for interaction of sex with Full developmental scores and Perceptual reasoning). In models with all exposure time points included, both concurrent exposure at 10 years and early prenatal exposure remained associated with cognitive abilities. CONCLUSIONS Both early prenatal and childhood arsenic exposure, even at low levels (about 50 µg/L in urine), was inversely associated with cognitive abilities at school-age, although the estimates were modest.
Collapse
Affiliation(s)
- Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helena Skröder
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Syed Moshfiqur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh; International Maternal and Child Health, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Michael Levi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jena Derakhshani Hamadani
- International Maternal and Child Health, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
38
|
Welch BM, Branscum A, Geldhof GJ, Ahmed SM, Hystad P, Smit E, Afroz S, Megowan M, Golam M, Sharif O, Rahman M, Quamruzzaman Q, Christiani DC, Kile ML. Evaluating the effects between metal mixtures and serum vaccine antibody concentrations in children: a prospective birth cohort study. Environ Health 2020; 19:41. [PMID: 32276596 PMCID: PMC7146972 DOI: 10.1186/s12940-020-00592-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/27/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Many populations are exposed to arsenic, lead, and manganese. These metals influence immune function. We evaluated the association between exposure to single and multiple metals, including arsenic, lead, and manganese, to humoral immunity as measured by antibody concentrations to diphtheria and tetanus toxoid among vaccinated Bangladeshi children. Additionally, we examined if this association was potentially mediated by nutritional status. METHODS Antibody concentrations to diphtheria and tetanus were measured in children's serum at age 5 (n = 502). Household drinking water was sampled to quantify arsenic (W-As) and manganese (W-Mn), whereas lead was measured in blood (B-Pb). Exposure samples were taken during pregnancy, toddlerhood, and early childhood. Multiple linear regression models (MLRs) with single or combined metal predictors were used to determine the association with antibody outcomes. MLR results were transformed to units of percent change in outcome per doubling of exposure to improve interpretability. Structural equation models (SEMs) were used to further assess exposure to metal mixtures. SEMs regressed a latent exposure variable (Metals), informed by all measured metal variables (W-As, W-Mn, and B-Pb), on a latent outcome variable (Antibody), informed by measured antibody variables (diphtheria and tetanus). Weight-for-age z-score (WFA) at age 5 was evaluated as a mediator. RESULTS Diphtheria antibody was negatively associated with W-As during pregnancy in MLR, but associations were attenuated after adjusting for W-Mn and B-Pb (- 2.9% change in diphtheria antibody per doubling in W-As, 95% confidence interval [CI]: - 7%, 1.5%). Conversely, pregnancy levels of B-Pb were positively associated with tetanus antibody, even after adjusting for W-As and W-Mn (13.3%, 95% CI: 1.7%, 26.3%). Overall, null associations were observed between W-Mn and antibody outcomes. Analysis by SEMs showed that the latent Metals mixture was significantly associated with the latent Antibody outcome (β = - 0.16, 95% CI: - 0.26, - 0.05), but the Metals variable was characterized by positive and negative loadings of W-As and B-Pb, respectively. Sex-stratified MLR and SEM analyses showed W-As and B-Pb associations were exclusive to females. Mediation by WFA was null, indicating Metals only had direct effects on Antibody. CONCLUSIONS We observed significant modulation of vaccine antibody concentrations among children with pregnancy and early life exposures to drinking water arsenic and blood lead. We found distinct differences by child sex, as only females were susceptible to metal-related modulations in antibody levels. Weight-for-age, a nutritional status proxy, did not mediate the association between the metal mixture and vaccine antibody.
Collapse
Affiliation(s)
- Barrett M. Welch
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
- Oregon Health and Sciences University, Portland, OR USA
| | - Adam Branscum
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - G. John Geldhof
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Sharia M. Ahmed
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Ellen Smit
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Sakila Afroz
- Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | - Meghan Megowan
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | | | - Omar Sharif
- Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | | | | | | | - Molly L. Kile
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| |
Collapse
|
39
|
A prospective cohort study of in utero and early childhood arsenic exposure and infectious disease in 4- to 5-year-old Bangladeshi children. Environ Epidemiol 2020; 4:e086. [PMID: 32656486 PMCID: PMC7319226 DOI: 10.1097/ee9.0000000000000086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/19/2020] [Indexed: 12/16/2022] Open
Abstract
Previous research found that infants who were exposed to high levels of arsenic in utero had an increased risk of infectious disease in the first year of life. This prospective study examined the association between arsenic exposures during gestation, and respiratory, diarrheal, and febrile morbidity in children 4–5 years of age.
Collapse
|
40
|
Belitskiy GA, Kirsanov KI, Lesovaya EA, Yakubovskaya MG. Drug-Related Carcinogenesis: Risk Factors and Approaches for Its Prevention. BIOCHEMISTRY (MOSCOW) 2020; 85:S79-S107. [PMID: 32087055 DOI: 10.1134/s0006297920140059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The review summarizes the data on the role of metabolic and repair systems in the mechanisms of therapy-related carcinogenesis and the effect of their polymorphism on the cancer development risk. The carcinogenic activity of different types of drugs, from the anticancer agents to analgesics, antipyretics, immunomodulators, hormones, natural remedies, and non-cancer drugs, is described. Possible approaches for the prevention of drug-related cancer induction at the initiation and promotion stages are discussed.
Collapse
Affiliation(s)
- G A Belitskiy
- Blokhin Russian Cancer Research Center, Ministry of Health of Russian Federation, Moscow, 115478, Russia
| | - K I Kirsanov
- Blokhin Russian Cancer Research Center, Ministry of Health of Russian Federation, Moscow, 115478, Russia. .,Peoples' Friendship University of Russia, Moscow, 117198, Russia
| | - E A Lesovaya
- Blokhin Russian Cancer Research Center, Ministry of Health of Russian Federation, Moscow, 115478, Russia.,Pavlov Ryazan State Medical University, Ryazan, 390026, Russia
| | - M G Yakubovskaya
- Blokhin Russian Cancer Research Center, Ministry of Health of Russian Federation, Moscow, 115478, Russia
| |
Collapse
|
41
|
Zeng Q, Zhang WX, Zheng TZ, Zhou B, Li JX, Zhang B, Xia W, Li YY, Xu SQ. Prenatal and postnatal cadmium exposure and cellular immune responses among pre-school children. ENVIRONMENT INTERNATIONAL 2020; 134:105282. [PMID: 31711017 DOI: 10.1016/j.envint.2019.105282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/06/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Experimental studies have demonstrated that cadmium exposure induces alterations on immune function, but epidemiological evidence is lacking. OBJECTIVE To examine the associations between prenatal and postnatal cadmium exposure and cellular immune responses among pre-school children. METHODS Pre-school aged children (n = 407) were followed from a prospective birth cohort study in Wuhan, China. Maternal urinary and children's plasma cadmium concentrations were measured as biomarkers of prenatal and postnatal cadmium exposure, respectively. Children's cellular immune responses were assessed by peripheral blood T lymphocyte subsets and plasma cytokines. Multivariable adjusted models were applied to estimate the associations of prenatal and postnatal cadmium exposure with T lymphocyte subsets and cytokines, and the effect modification by child gender were also examined. RESULTS Maternal urinary cadmium was associated with reduced absolute counts of CD3+CD4+ cells (-12.45%; 95% CI: -23.74%, 0.40% for the highest vs. lowest quartile; p for trend = 0.045). Inverse associations of maternal urinary cadmium with %CD3+CD4+ cells and CD4+/CD8+ ratio were only observed among females (both p-interaction < 0.050); whereas an inverse association with absolute counts of CD3+CD8+ cells was only observed among males (p-interaction = 0.057). Positive associations of maternal urinary cadmium with %CD3+CD4+ cells, interleukin-4 (IL-4), and IL-6 were only observed among females, although there were no significant interactions. We observed no clear associations of children's plasma cadmium with T lymphocyte subsets and cytokines. CONCLUSION Prenatal but not postnatal cadmium exposure was associated with sex-specific alterations on children's cellular immune responses.
Collapse
Affiliation(s)
- Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Wen-Xin Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tong-Zhang Zheng
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Bin Zhou
- Wuhan Medical and Health Center for Women and Children, Wuhan, Hubei, China
| | - Ju-Xiao Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Bin Zhang
- Wuhan Medical and Health Center for Women and Children, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yuan-Yuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shun-Qing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
42
|
Parvez F, Akhtar E, Khan L, Haq MA, Islam T, Ahmed D, Eunus HEMM, Hasan AKMR, Ahsan H, Graziano JH, Raqib R. Exposure to low-dose arsenic in early life alters innate immune function in children. J Immunotoxicol 2019; 16:201-209. [PMID: 31703545 PMCID: PMC7041495 DOI: 10.1080/1547691x.2019.1657993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 01/06/2023] Open
Abstract
Early-life exposure to arsenic (As) increases risks of respiratory diseases/infections in children. However, data on the ability of the innate immune system to combat bacterial infections in the respiratory tracts of As-exposed children are scarce. To evaluate whether persistent low-dose As exposure alters innate immune function among children younger than 5 years-of-age, mothers and participating children (N = 51) that were members of the Health Effects of Arsenic Longitudinal Study (HEALS) cohort in rural Bangladesh were recruited. Household water As, past and concurrent maternal urinary As (U-As) as well as child U-As were all measured at enrollment. In addition, U-As metabolites were evaluated. Innate immune function was examined via measures of cathelicidin LL-37 in plasma, ex vivo monocyte-derived-macrophage (MDM)-mediated killing of Streptococcus pneumoniae (Spn), and serum bactericidal antibody (SBA) responses against Haemophilus influenzae type b (Hib). Cyto-/chemokines produced by isolated peripheral blood mononuclear cells (PBMC) were assayed using a Multiplex system. Multivariable linear regression analyses revealed that maternal (p < 0.01) and child (p = 0.02) U-As were positively associated with plasma LL-37 levels. Decreased MDM-mediated Spn killing (p = 0.05) and SBA responses (p = 0.02) were seen to be each associated with fractions of mono-methylarsonic acid (MMA; a U-As metabolite) in the children. In addition, U-As levels were seen to be negatively associated with PBMC formation of fractalkine and IL-7, and positively associated with that for IL-13, IL-17 and MIP-1α. These findings suggested that early-life As exposure may disrupt the innate host defense pathway in these children. It is possible that such disruptions may have health consequences later in life.
Collapse
Affiliation(s)
- Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Evana Akhtar
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| | - Lamia Khan
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| | - Md. Ahsanul Haq
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| | - Tariqul Islam
- Columbia University and University of Chicago Research office in Bangladesh, Dhaka-1212, Bangladesh
| | - Dilruba Ahmed
- Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
| | - HEM Mahbubul Eunus
- Columbia University and University of Chicago Research office in Bangladesh, Dhaka-1212, Bangladesh
| | - AKM Rabiul Hasan
- Columbia University and University of Chicago Research office in Bangladesh, Dhaka-1212, Bangladesh
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, 5841 South Maryland Avenue, Chicago, IL
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Rubhana Raqib
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| |
Collapse
|
43
|
Lou K, Huang P, Ma H, Wang X, Xu H, Wang W. Orlistat increases arsenite tolerance in THP-1 derived macrophages through the up-regulation of ABCA1. Drug Chem Toxicol 2019; 45:274-282. [PMID: 31665930 DOI: 10.1080/01480545.2019.1683571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Orlistat is an FDA-approved over-the-counter drug to treat obesity through the inhibition of lipase activity. Macrophages, which express high levels of lipoprotein lipase (LPL), are important phagocytes in the innate immune system. Our previous studies indicated that environmentally relevant concentrations of arsenite (As+3) could inhibit the major immune functions of macrophages. As the down-regulation of LPL is known to increase the expression of ABCA1, the cholesterol exporter demonstrated to be related to the resistance of arsenic toxicity. We examined if orlistat could reverse the inhibitive effects of As+3 on macrophage functions. The results showed that 50 μM orlistat reversed As+3-induced suppressions on phagocytosis, NO production and cytokine secretion in THP-1 derived macrophages. The expression of ABCA1 was significantly increased by orlistat in As+3 co-treated macrophages, which was associated with decreased intracellular As+3 levels. Collectively, these results indicated that orlistat could reverse the suppressive effects induced by As+3 in macrophages through the increased expression of ABCA1, which has the potential to be developed as a therapeutic agent for arsenic-induced immunosuppression.
Collapse
Affiliation(s)
- Kaiyan Lou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ping Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Huijuan Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaolei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Huan Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
44
|
Lauer FT, Parvez F, Factor-Litvak P, Liu X, Santella RM, Islam T, Eunus M, Alam N, Hasan AKMR, Rahman M, Ahsan H, Graziano J, Burchiel SW. Changes in human peripheral blood mononuclear cell (HPBMC) populations and T-cell subsets associated with arsenic and polycyclic aromatic hydrocarbon exposures in a Bangladesh cohort. PLoS One 2019; 14:e0220451. [PMID: 31365547 PMCID: PMC6668812 DOI: 10.1371/journal.pone.0220451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
Exposures to environmental arsenic (As) and polycyclic aromatic hydrocarbons (PAH) have been shown to independently cause dysregulation of immune function. Little data exists on the associations between combined exposures to As and PAH with immunotoxicity in humans. In this work we examined associations between As and PAH exposures with lymphoid cell populations in human peripheral blood mononuclear cells (PBMC), as well as alterations in differentiation and activation of B and T cells. Two hundred men, participating in the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh, were selected for the present study based on their exposure to As from drinking water and their cigarette smoking status. Blood and urine samples were collected from study participants. We utilized multiparameter flow cytometry in PBMC to identify immune cells (B, T, monocytes, NK) as well as the T-helper (Th) cell subsets (Th1, Th2, Th17, and Tregs) following ex vivo activation. We did not find evidence of interactions between As and PAH exposures. However, individual exposures (As or PAH) were associated with changes to immune cell populations, including Th cell subsets. Arsenic exposure was associated with an increase in the percentage of Th cells, and dose dependent changes in monocytes, NKT cells and a monocyte subset. Within the Th cell subset we found that Arsenic exposure was also associated with a significant increase in the percentage of circulating proinflammatory Th17 cells. PAH exposure was associated with changes in T cells, monocytes and T memory (Tmem) cells and with changes in Th, Th1, Th2 and Th17 subsets all of which were non-monotonic (dose dependent). Alterations of immune cell populations caused by environmental exposures to As and PAH may result in adverse health outcomes, such as changes in systemic inflammation, immune suppression, or autoimmunity.
Collapse
Affiliation(s)
- Fredine T. Lauer
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, United States of America
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Regina M. Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Tariqul Islam
- University of Chicago Field Research Office, Dhaka, Bangladesh
| | - Mahbubul Eunus
- University of Chicago Field Research Office, Dhaka, Bangladesh
| | - Nur Alam
- University of Chicago Field Research Office, Dhaka, Bangladesh
| | | | - Mizanour Rahman
- University of Chicago Field Research Office, Dhaka, Bangladesh
| | - Habibul Ahsan
- Department of Health Studies, University of Chicago, Chicago, IL, United States of America
| | - Joseph Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Scott W. Burchiel
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, United States of America
- * E-mail:
| |
Collapse
|
45
|
Welch BM, Branscum A, Ahmed SM, Hystad P, Smit E, Afroz S, Megowan M, Golam M, Ibne Hasan MOS, Rahman ML, Quamruzzaman Q, Christiani DC, Kile ML. Arsenic exposure and serum antibody concentrations to diphtheria and tetanus toxoid in children at age 5: A prospective birth cohort in Bangladesh. ENVIRONMENT INTERNATIONAL 2019; 127:810-818. [PMID: 31051324 PMCID: PMC6513691 DOI: 10.1016/j.envint.2019.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/07/2019] [Accepted: 04/05/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Arsenic can impair immune function. Timing of exposure can influence potential immunotoxicity of arsenic exposure. We examined the association between drinking water arsenic concentrations (W-As) measured repeatedly during different exposure windows in early life and serum concentrations of IgG antibodies against diphtheria and tetanus toxoids (diphtheria and tetanus antibody). METHODS A prospective cohort of pregnant women was recruited in Bangladesh (2008-2011). Averaged W-As levels were calculated for: pregnancy (W-Aspregnancy): ≤16 weeks gestation and <1 month; toddlerhood (W-Astoddlerhood): 12 and 20-40 months; and early childhood (W-Aschildhood): 4-5 years. Serum was collected from 502 vaccinated children at age 5 and concentrations of diphtheria and tetanus toxoid IgG (i.e. antibody) were quantified. Antibody concentrations >0.1 IU/mL were considered clinically sufficient for protection. Associations were estimated using linear and logistic regression models. RESULTS Inverse associations were observed between W-Aspregnancy and serum diphtheria antibody levels, while null associations were observed between W-As and tetanus antibody. Children within the highest versus lowest tertile of W-Aspregnancy had 91% greater odds of having clinically insufficient concentrations of diphtheria antibody (Odds ratio:1.91, 95% confidence interval (CI): 1.03, 3.56). Among females, a doubling in W-Aspregnancy was associated with 12.3% (95%CI: -20.1%, -4.5%) lower median concentrations of diphtheria antibody. Tetanus antibody was only associated with W-Aspregnancy among females (percent change in median: -9.5%, 95%CI: -17.6%, -1.3%). Among children who were stunted or underweight, a doubling in W-Aspregnancy was associated with decreased diphtheria antibody of 19.8% (95%CI: -32%, -7.5%) and 14.3% (95%CI: -26.7%, -2%), respectively. CONCLUSIONS Among vaccinated children, W-As measured during pregnancy was associated with decreased diphtheria antibody levels, but not tetanus antibody. However, W-As measured during toddlerhood and early childhood were not associated with either antibody outcome. Children's sex and malnutrition status were important effect modifiers of W-As for both diphtheria and tetanus antibody levels, highlighting the importance of these factors and the timing of the exposure when evaluating the effect of arsenic on humoral immunity.
Collapse
Affiliation(s)
- Barrett M Welch
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA; Oregon Clinical and Translational Research Institute, Oregon Health and Sciences University, USA.
| | - Adam Branscum
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA
| | - Sharia M Ahmed
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA
| | - Ellen Smit
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA
| | - Sakila Afroz
- Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | - Meghan Megowan
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA
| | | | | | | | | | - David C Christiani
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Harvard University, USA
| | - Molly L Kile
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA
| |
Collapse
|
46
|
Parvez F, Lauer FT, Factor-Litvak P, Liu X, Santella RM, Islam T, Eunus M, Alam N, Sarwar G, Rahman M, Ahsan H, Graziano J, Burchiel SW. Assessment of arsenic and polycyclic aromatic hydrocarbon (PAH) exposures on immune function among males in Bangladesh. PLoS One 2019; 14:e0216662. [PMID: 31095595 PMCID: PMC6522035 DOI: 10.1371/journal.pone.0216662] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/25/2019] [Indexed: 01/01/2023] Open
Abstract
Arsenic and polycyclic aromatic hydrocarbons (PAH) are environmental pollutants to which people around the world are exposed through water, food and air. In mouse and in vitro studies of human cells, both of these chemicals have been shown to modulate the immune system. In some experimental studies, a synergistic disruption of immune function was observed by a combined exposure to arsenic and PAH. However, a joint effect of arsenic and PAH on immune function has not been studied in humans. We have conducted an epidemiological investigation to examine effects of chronic arsenic and PAH exposures on immune function. We assessed T-cell proliferation (TCP) and cytokine production of anti-CD3/anti-CD28 stimulated lymphocytes in human peripheral blood mononuclear cells (HPBMC) among 197 healthy men enrolled to the Health Effects of Arsenic Longitudinal (HEALS) cohort in Bangladesh. By design, approximately half were active smokers and the rest were never smokers. Our analyses demonstrated that IL-1b, IL-2, IL-4 and IL-6 were significantly stimulated as a function of urinary arsenic levels in models adjusted for age, body mass index (BMI), smoking status and PAH-DNA adducts. After correcting for false detection rate (FDR), only IL-1b remained statistically significant. We found a U-shaped dose response relationship between urinary arsenic and IL-1b. On the other hand, PAH-DNA adducts were associated with an inhibition of TCP and appeared as an inverted U-shape curve. Dose response curves were non-monotonic for PAH-DNA adduct exposures and suggested that cytokine secretion of IFNg, IL-1b, IL-2, IL-10 and IL17A followed a complex pattern. In the majority of donors, there was a trend towards a decrease in cytokine associated with PAH-DNA adducts. We did not observe any interaction between urinary arsenic and PAH-DNA adducts on immune parameters. Our results indicate that long-term exposures to arsenic and PAH have independent, non-monotonic associations with TCP and cytokine production.
Collapse
Affiliation(s)
- Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Fredine T. Lauer
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, United States of America
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Regina M. Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Tariqul Islam
- University of Chicago Field Research Office, Bangladesh
| | | | - Nur Alam
- University of Chicago Field Research Office, Bangladesh
| | - Golam Sarwar
- University of Chicago Field Research Office, Bangladesh
| | | | - Habibul Ahsan
- Department of Health Studies, University of Chicago, Chicago, IL, United States of America
| | - Joseph Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Scott W. Burchiel
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, United States of America
- * E-mail:
| |
Collapse
|
47
|
Long-Term Health Effects and Underlying Biological Mechanisms of Developmental Exposure to Arsenic. Curr Environ Health Rep 2019; 5:134-144. [PMID: 29411302 DOI: 10.1007/s40572-018-0184-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Exposure to inorganic arsenic (iAs) via drinking water represents a significant global public health threat with chronic exposure associated with cancer, skin lesions, neurological impairment, and cardiovascular diseases. Particularly susceptible populations include the developing fetus and young children. This review summarizes some of the critical studies of the long-term health effects and underlying biological mechanisms related to developmental exposure to arsenic. It also highlights the complex factors, such as the sex of the exposed individual, that contribute to susceptibility to the later life health effects of iAs. RECENT FINDINGS Studies in animal models, as well as human population-based studies, have established that prenatal and early life iAs exposures are associated with long-term effects, and many of these effects display sexually dimorphic responses. As an underlying molecular basis, recent epidemiologic and toxicologic studies have demonstrated that changes to the epigenome may play a key mechanistic role underlying many of the iAs-associated health outcomes. Developmental exposure to iAs results in early and later life health effects. Mechanisms underlying these outcomes are likely complex, and include disrupted key biological pathways with ties to the epigenome. This highlights the importance of continued research, particularly in animal models, to elucidate the important underpinnings (e.g., timing of exposure, metabolism, dose) of these complex health outcomes and to identify the biological mechanisms underlying sexual dimorphism in iAs-associated diseases. Future research should investigate preventative strategies for the protection from the detrimental health endpoints associated with early life exposure to iAs. Such strategies could include potential interventions focused on dietary supplementation for example the adoption of a folate-rich diet.
Collapse
|
48
|
Erdei E, Shuey C, Pacheco B, Cajero M, Lewis J, Rubin RL. Elevated autoimmunity in residents living near abandoned uranium mine sites on the Navajo Nation. J Autoimmun 2019; 99:15-23. [PMID: 30878168 DOI: 10.1016/j.jaut.2019.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
Specific autoantibodies were assessed among residents of the Navajo Nation in New Mexico chronically exposed to metal mixtures from uranium mine wastes and in drinking water supplies. Age and the extent of exposure to legacy waste from 100 abandoned uranium mine and mill sites were associated with antibodies to denatured DNA, previously known to be an early indicator of medication-induced autoimmunity. Surprisingly, autoantibodies to native DNA and/or chromatin were also linked to environmental exposure, specifically uranium consumption through drinking water for both men and women, while urinary arsenic was negatively associated with these autoantibodies in women. These findings suggest that contaminants derived from uranium mine waste enhanced development of autoantibodies in some individuals, while arsenic may be globally immunosuppressive with gender-specific effects. Specific autoantibodies may be a sensitive indicator of immune perturbation by environmental toxicants, an adverse effect not considered in current drinking water standards or regulatory risk assessment evaluations.
Collapse
Affiliation(s)
- Esther Erdei
- Community Environmental Health Program, Dept. of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, College of Pharmacy, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Chris Shuey
- Southwest Research and Information Center, 105 Stanford Drive, SE, Albuquerque, NM 87106, USA
| | - Bernadette Pacheco
- Community Environmental Health Program, Dept. of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, College of Pharmacy, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Miranda Cajero
- Community Environmental Health Program, Dept. of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, College of Pharmacy, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Johnnye Lewis
- Community Environmental Health Program, Dept. of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, College of Pharmacy, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Robert L Rubin
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center School of Medicine, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
49
|
Malin Igra A, Vahter M, Raqib R, Kippler M. Early-Life Cadmium Exposure and Bone-Related Biomarkers: A Longitudinal Study in Children. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:37003. [PMID: 30848671 PMCID: PMC6768315 DOI: 10.1289/ehp3655] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Chronic cadmium exposure has been associated with osteotoxicity in adults, but little is known concerning its effects on early growth, which has been shown to be impaired by cadmium. OBJECTIVES Our objective was to assess the impact of early-life cadmium exposure on bone-related biomarkers and anthropometry at 9 y of age. METHODS For 504 children in a mother-child cohort in Bangladesh, cadmium exposure was assessed by concentrations in urine (U-Cd, long-term exposure) and erythrocytes (Ery-Cd, ongoing exposure) at 9 and 4.5 y of age, and in their mothers during pregnancy. Biomarkers of bone remodeling [urinary deoxypyridinoline (DPD), urinary calcium, plasma parathyroid hormone, osteocalcin, vitamin D3, insulin-like growth factor (IGF) 1, IGF binding protein 3, thyroid stimulating hormone] were measured at 9 y of age. RESULTS In multivariable-adjusted linear models, a doubling of concurrent U-Cd was associated with a mean increase in osteocalcin of [Formula: see text] (95% CI: 0.042, 5.9) and in urinary DPD of [Formula: see text] (95% CI: 12, 32). In a combined exposure model, a doubling of maternal Ery-Cd was associated with a mean increase in urinary DPD of [Formula: see text] (95% CI: [Formula: see text], 30). Stratifying the osteocalcin model by gender ([Formula: see text] 0.001), a doubling of concurrent U-Cd was associated with a mean decrease in osteocalcin of [Formula: see text] (95% CI: [Formula: see text], [Formula: see text]) in boys and a mean increase of [Formula: see text] (95% CI: 5.4, 13) in girls. The same pattern was seen with U-Cd at 4.5 y of age ([Formula: see text] 0.016). Children's U-Cd and Ery-Cd, concurrent and at 4.5 y of age, were inversely associated with vitamin D3. CONCLUSIONS Childhood cadmium exposure was associated with several bone-related biomarkers and some of the associations differed by gender. https://doi.org/10.1289/EHP3655.
Collapse
Affiliation(s)
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rubhana Raqib
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladeshs
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
Tutkun L, Gunduzoz M, Turksoy VA, Deniz S, Oztan O, Cetintepe SP, Iritas SB, Yilmaz FM. Arsenic-induced inflammation in workers. Mol Biol Rep 2019; 46:2371-2378. [DOI: 10.1007/s11033-019-04694-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/09/2019] [Indexed: 12/14/2022]
|