1
|
Wang H, Zhao Z, Song M, Zhang W, Liu C, Chen S. Luteolin detoxifies DEHP and prevents liver injury by degrading Uroc1 protein in mice. EMBO Mol Med 2024; 16:2699-2724. [PMID: 39472514 PMCID: PMC11555401 DOI: 10.1038/s44321-024-00160-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/13/2024] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), an environmental pollutant, has been widely detected in both environmental and clinical samples, representing a serious threat to the homeostasis of the endocrine system. The accumulation of DEHP is notably pronounced in the liver and can lead to liver damage. The lack of effective high-throughput screening system retards the discovery of such drugs that can specifically target and eliminate the detrimental impact of DEHP. Here, by developing a Cy5-modified single-strand DNA-aptamer-based approach targeting DEHP, we have identified luteolin as a potential drug, which showcasing robust efficacy in detoxifying the DEHP by facilitating the expulsion of DEHP in both mouse primary hepatocytes and livers. Mechanistically, luteolin enhances the protein degradation of hepatic urocanate hydratase 1 (Uroc1) by targeting its Ala270 and Val272 sites. More importantly, trans-urocanic acid (trans-UCA), as the substrate of Uroc1, possesses properties similar to luteolin by regulating the lysosomal exocytosis through the inhibition of the ERK1/2 signal cascade. In summary, luteolin serves as a potent therapeutic agent in efficiently detoxifying DEHP in the liver by regulating the UCA/Uroc1 axis.
Collapse
Affiliation(s)
- Huiting Wang
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Ziting Zhao
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Mingming Song
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Chang Liu
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, 211198, China.
- Department of Endocrinology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, 211198, China.
| | - Siyu Chen
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
2
|
Huang PC, Lin TY, Wu CC, C Lo YT, Lin WY, Huang HB. Relationship between phthalate exposure and kidney function in Taiwanese adults as determined through covariate-adjusted standardization and cumulative risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117091. [PMID: 39341136 DOI: 10.1016/j.ecoenv.2024.117091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Few studies have investigated the associations between phthalate exposure and kidney function indicators in adults by simultaneously performing covariate-adjusted creatinine standardization, cumulative risk assessment, and mixture analysis. Thus, we applied these methods simultaneously to investigate the aforementioned associations in an adult population. This cross-sectional study analyzed data (N = 839) from a community-based arm of the Taiwan Biobank. The levels of 10 urinary phthalate metabolites were measured and calculated as the sum of the molar concentrations of the dibutyl phthalate metabolite (ΣDBPm) and di(2-ethylhexyl) phthalate (DEHP) metabolite (ΣDEHPm). The hazard index (HI) and daily intake (DI) were estimated by measuring the urinary levels of the phthalate metabolite. Kidney function biomarkers were assessed by measuring the following: blood urea nitrogen (BUN), uric acid, the albumin-to-creatinine ratio (ACR), and the estimated glomerular filtration rate (eGFR). Generalized linear models were implemented to examine the associations between exposure to individual phthalates, HI scores, and kidney function biomarkers. We also employed Bayesian kernel machine regression (BKMR) to analyze the relationships between exposure to various combinations of phthalates and kidney function. ΣDEHPm levels were significantly and positively associated with BUN and ACR levels, and ΣDBPm levels were positively associated with ACR levels. In addition, eGFR was negatively associated with ΣDBPm and ΣDEHPm levels. In the BKMR model, a mixture of 10 phthalate metabolites was significantly associated with BUN, uric acid, ACR, and eGFR results. Higher DIDEHP and higher DIDnBP values were significantly associated with lower eGFRs and higher ACRs, respectively. Higher DIDiBP and DIDEP values were significantly associated with higher uric acid levels. A higher HI was significantly associated with lower eGFRs and higher ACRs. Our results suggest that exposure to environmental phthalates is associated with impaired kidney function in Taiwanese adults.
Collapse
Affiliation(s)
- Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ting-Yi Lin
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Ting C Lo
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Yu Lin
- MRC Biostatistics Unit, East Forvie Building, Forvie Site Robinson Way, Cambridge Biomedical Campus, Cambridge, CB2 0SR, UK
| | - Han-Bin Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
3
|
Zhao Y, Wang Q, Chen W, Li J, Yi J, Song X, Ni Y, Zhu S, Zhang Z, Nie S, Liu L. Associations of ultraprocessed food consumption with mortality among participants with a history of cancer: a prospective cohort analysis. Am J Clin Nutr 2024; 120:471-480. [PMID: 38942116 DOI: 10.1016/j.ajcnut.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Although high ultraprocessed food (UPF) consumption has been linked with increased mortality risk in the general population, whether UPFs harm participants with a history of cancer remains unclear. OBJECTIVES This study aimed to evaluate the association of UPF consumption with mortality among participants with a history of cancer. METHODS Prospective cohort analysis was conducted on 13,640 participants with a history of cancer from the UK Biobank. UPFs were defined by the Nova classification. UPF consumption was calculated as the weight proportion of UPFs in the total food consumption. Cox proportional hazard models were used to assess the association between UPF consumption and mortality among participants with a history of cancer. RESULTS The median UPF consumption was 29.25% (interquartile range [IQR]: 19.46%-40.62%) for males and 25.81% (IQR: 16.61%-36.35%) for females in the total diet among participants with a history of cancer. During a median follow-up of 10.77 years, 1611 deaths were documented. Multivariable-adjusted hazard ratios (95% confidence intervals) among participants in the highest quartile of UPF consumption relative to the lowest were 1.17 (1.02, 1.35) for all-cause mortality and 1.22 (1.03, 1.44) for cancer-related mortality. CONCLUSIONS Higher UPF consumption after the diagnosis among participants with a history of cancer is associated with higher risk of mortality.
Collapse
Affiliation(s)
- Yingying Zhao
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Qian Wang
- Colorectal and Anal Surgery, The Eighth Hospital of Wuhan, Hubei University of Chinese Medicine, Wuhan, Hubei, P.R. China
| | - Weiyi Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jia Li
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jing Yi
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Xuemei Song
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yuxin Ni
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Sijia Zhu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Zhihao Zhang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Shaofa Nie
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Li Liu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China; Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, Hubei, P.R. China; Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, Hubei, P.R. China.
| |
Collapse
|
4
|
Yadav R, Kumar D, Singh J, Jangra A. Environmental toxicants and nephrotoxicity: Implications on mechanisms and therapeutic strategies. Toxicology 2024; 504:153784. [PMID: 38518838 DOI: 10.1016/j.tox.2024.153784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Kidneys are one of the most important organs in the human body. In addition to filtering 200 liters of fluid every 24 hours, the kidney also regulates acid-base balance, maintains electrolyte balance, and removes waste and toxicants from the body. Nephrotoxicity is the term used to describe the deterioration of kidney function caused by the harmful effects of medications and various types of environmental toxicants. Exposure to environmental toxicants is an inevitable side effect in the world's increasing industrialization and even more prevalent in underdeveloped nations. Growing data over the past few years has illuminated the probable connection between environmental toxicants and nephrotoxicity. Phthalates, microplastics, acrylamide and bisphenol A are environmental toxicants of particular concern, which are known to have nephrotoxic effects. Such toxicants may accumulate in the kidneys of humans after being consumed, inhaled, or come into contact with the skin. They can enter cells through endocytosis and accumulate in the cytoplasm. Small-sized nephrotoxicants can cause a variety of ailments including inflammation with increased production of pro-inflammatory cytokines, oxidative stress, mitochondrial dysfunction, autophagy, and apoptosis. This study uncovers the potential for new insights concerning the relationship between various environmental toxicants and kidney health. The objectives of this review is to establish information gaps, assess and identify the toxicity mechanisms of different nephrotoxicants, identify innovative pharmacological therapies that demonstrate promising therapeutic benefits/ relevance, and discuss the predictions for the future based on the analysis of the literature.
Collapse
Affiliation(s)
- Rachna Yadav
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India.
| | - Jiten Singh
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh-123031, Haryana, India.
| |
Collapse
|
5
|
Singh J, Jangra A, Kumar D. Recent advances in toxicological research of di-(2-ethylhexyl)-phthalate: Focus on endoplasmic reticulum stress pathway. CHEMOSPHERE 2024; 356:141922. [PMID: 38593956 DOI: 10.1016/j.chemosphere.2024.141922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/01/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
The plasticizer di-(2-ethylhexyl)-phthalate (DEHP) is the most significant phthalate in production, usage, and environmental occurrence. DEHP is found in products such as personal care products, furniture materials, cosmetics, and medical devices. DEHP is noncovalently bind with plastic therefore, repeated uses lead to leaching out of it. Exposure to DEHP plasticizers leads to toxicity in essential organs of the body through various mechanisms. The main objective of this review article is to focus on the DEHP-induced endoplasmic reticulum (ER) stress pathway implicated in the testis, brain, lungs, kidney, heart, liver, and other organs. Not only ER stress, PPAR-related pathways, oxidative stress and inflammation, Ca2+ homeostasis disturbances in mitochondria are also identified as the relative mechanisms. ER is involved in various critical functions of the cell such as Protein synthesis, protein folding, calcium homeostasis, and lipid peroxidation but, DEHP exposure leads to augmentation of misfolded/unfolded protein. This review complies with various recently reported DEHP-induced toxicity studies and some pharmacological interventions that have been shown to be effective through ER stress pathway. DEHP exposure does assess health risks and vulnerability to populations across the globe. This study offers possible targets and approaches for addressing various DEHP-induced toxicity.
Collapse
Affiliation(s)
- Jiten Singh
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| |
Collapse
|
6
|
Zhu Y, Ma XY, Cui LG, Xu YR, Li CX, Talukder M, Li XN, Li JL. Di (2-ethylhexyl) phthalate induced lipophagy-related renal ferroptosis in quail (Coturnix japonica). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170724. [PMID: 38325449 DOI: 10.1016/j.scitotenv.2024.170724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a synthetic chemical applied as a plasticizer. As an environmental toxicant, DEHP poses a serious health threat. Many studies have revealed that DEHP can cause lead to various degrees of damage to the kidney. However, the evidence of DEHP-induced renal ferroptosis has not been reported. The purpose of this work was to probe the specific role of lipophagy in DEHP-induced renal injury and to investigate the relationship between lipophagy and ferroptosis. Quail were treated with DEHP (250 mg/kg BW/day, 500 mg/kg BW/day and 750 mg/kg BW/day) for 45 days. Microstructural and ultrastructural observations showed that DEHP caused damage to glomerular and tubular cells, and autophagy with multilayer structures were observed, suggesting that DEHP can induce lipophagy. The results indicated that the iron homeostasis was abnormal and the lipid peroxidation was increased. SLC7A11 and SLC3A2 were down-regulated. PTGS2, ACSL4 and LPCAT3 were elevated. In conclusion, DEHP could induce lipid peroxidation, lead to ferroptosis, and damage renal cells. Therefore, the relationship between lipophagy and ferroptosis was elucidated, which provided a new basis for intervention and prevention of DEHP increased diseases.
Collapse
Affiliation(s)
- Yu Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ling-Ge Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chen-Xi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Chen CY, Lee CC, Hsu HJ, Wu IW, Chen YC, Pan HC, Chen YT, Hsu CK, Sun CY. Long-term impacts of endocrine-disrupting chemicals exposure on kidney function: A community-based cohort study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104379. [PMID: 38307303 DOI: 10.1016/j.etap.2024.104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/25/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
This study explores the extended renal effects of endocrine-disrupting chemicals (EDCs) exposure, a linkage already established with adverse health outcomes, notably chronic kidney disease. To delve deeper, the Chang Gung Community Research Center conducted a longitudinal study with 887 participants. Among them, 120 individuals were scrutinized based on EDC scores, analyzing 17 urinary EDCs and renal function. Findings revealed elevated mono-(2-ethylhexyl) phthalate (MEHP) and bisphenol A levels in higher EDC exposure cases. MEHP notably correlated with increased urinary albumin-to-creatinine ratio (UACR), predicting a > 15% decline in estimated glomerular filtration rate. Higher MEHP levels also hinted at declining renal function. UACR escalation linked significantly with specific EDCs: MEHP, methylparaben, nonylphenol, and 4-tert-octylphenol. This research underscores enduring renal hazards tied to environmental EDC exposure, particularly MEHP, emphasizing the urgent call for robust preventive public health strategies.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China; College of Medicine, Chang Gung University, Taipei, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Chin-Chan Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China; College of Medicine, Chang Gung University, Taipei, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Heng-Jung Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China; College of Medicine, Chang Gung University, Taipei, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - I-Wen Wu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Rd., Zhonghe Dist., New Taipei City 23561, Taiwan, Republic of China; Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei City 110301, Taiwan, Republic of China
| | - Yung-Chang Chen
- College of Medicine, Chang Gung University, Taipei, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China; Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fuxing St., Guishan Dist., Taoyuan City 333423, Taiwan, Republic of China
| | - Heng-Chih Pan
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China; College of Medicine, Chang Gung University, Taipei, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Yih-Ting Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China; College of Medicine, Chang Gung University, Taipei, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China
| | - Cheng-Kai Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China; College of Medicine, Chang Gung University, Taipei, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China; College of Medicine, Chang Gung University, Taipei, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, Republic of China.
| |
Collapse
|
8
|
Zheng Y, Liu C, Chen J, Tang J, Luo J, Zou D, Tang Z, He J, Bai J. Integrated transcriptomic and biochemical characterization of the mechanisms governing stress responses in soil-dwelling invertebrate (Folsomia candida) upon exposure to dibutyl phthalate. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132644. [PMID: 37820532 DOI: 10.1016/j.jhazmat.2023.132644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Dibutyl phthalate (DBP) is one of the most commonly utilized plasticizers and a frequently detected phthalic acid ester (PAE) compound in soil samples. However, the toxicological effects of DBP on soil-dwelling organisms remain poorly understood. This study employed a multi-biomarker approach to investigate the impact of DBP exposure on Folsomia candida's survival, reproduction, enzyme activity levels, and transcriptional profiles. Analyses of antioxidant biomarkers, including catalase (CAT) and glutathione S-transferase (GST), as well as detoxifying enzymes such as acetylcholinesterase (AChE), Cytochrome P450 (CYP450), and lipid peroxidation (LPO), revealed significant increases in CAT activity, GST levels, and CYP450 expression following treatment with various doses of DBP for 2, 4, 7, or 14 days. Additionally, LPO induction was observed along with significant AChE inhibition. In total, 3175 differentially expressed genes (DEGs) were identified following DBP treatment that were enriched in six Gene Ontology (GO) terms and 144 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including 85 upregulated and 59 downregulated primarily associated with lipid metabolism, signal transduction, DNA repair, and cell growth and death. Overall these results provide foundational insights for further research into the molecular mechanisms underlying responses of soil invertebrates to DBP exposure.
Collapse
Affiliation(s)
- Yu Zheng
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China.
| | - Can Liu
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jiayi Chen
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jianquan Tang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jiali Luo
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Di Zou
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Zhen Tang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jiali He
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jing Bai
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China.
| |
Collapse
|
9
|
Shi H, Zhao X, Peng Q, Zhou X, Liu S, Sun C, Cao Q, Zhu S, Sun S. Green Tea Polyphenols Alleviate Kidney Injury Induced by Di(2-Ethylhexyl) Phthalate in Mice. Am J Nephrol 2023; 55:86-105. [PMID: 37734331 DOI: 10.1159/000534106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
INTRODUCTION Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer. Studies have revealed that DEHP exposure can cause kidney damage. Green tea is among the most popular beverages in China. Green tea polyphenols (GTPs) have been proven to have therapeutic effects on organ damage induced by heavy metal exposure. However, few studies have reported on GTP-relieving DEHP-induced kidney damage. METHODS C57BL/6J male mice aged 6-8 weeks were treated with distilled water (control group), 1,500 mg/kg/d DEHP + corn oil (model group), 1,500 mg/kg/d DEHP + corn oil + 70 mg/kg GTP (treatment group), corn oil (oil group), and 70 mg/kg GTP (GTP group) by gavage for 8 weeks, respectively. The renal function of mice and renal tissue histopathology of each group were evaluated. The renal tissues of mice in the model, treatment, and control groups were analyzed using high-throughput sequencing. We calculated the differentially expressed microRNAs (miRNAs) and messenger RNAs (mRNAs) using the limma R package, the CIBERSORT algorithm was used to predict immune infiltration, the starBase database was used to screen the miRNA-mRNA regulatory axis, and immunohistochemical analyses were performed to verify protein expression. RESULTS GTP alleviated the deterioration of renal function, renal inflammation and fibrosis, and mitochondrial and endoplasmic reticulum lesions induced by DEHP in mice. Differential immune infiltrations of plasma, dendritic, T, and B cells were noted between the model and treatment groups. We found that three differentially expressed miRNAs (mmu-miR-383-5p, mmu-miR-152-3p, and mmu-miR-144-3p), three differentially expressed mRNAs (Ddit4, Dusp1, and Snx18), and three differentially expressed proteins (Ddit4, Dusp1, and Snx18) played crucial roles in the miRNA-mRNA-protein regulatory axes when GTPs mitigate DEHP-induced kidney damage in mice. CONCLUSION GTP can alleviate DEHP-induced kidney damage and regulate immune cell infiltration. We screened four important miRNA-mRNA-protein regulatory axes of GTP, mitigating DEHP-induced kidney damage in mice.
Collapse
Affiliation(s)
- Heng Shi
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Gastroenterology, The Central Hospital of Shaoyang, Shaoyang, China
| | - Xinhai Zhao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qin Peng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xianling Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Sisi Liu
- Department of Pathology, The Central Hospital of Shaoyang, Shaoyang, China
| | - Chuanchuan Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiuyu Cao
- Department of Gynecologic, Jiangmen Hospital Affiliated to Jinan University, Jiangmen, China
| | - Shiping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shengyun Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Li SS, Chen JJ, Su MW, Lin CW, Chen CC, Wang YH, Liu CC, Tsai YC, Hsieh TJ, Wu MT, Wu CF. Sex-specific interactive effect of melamine and DEHP on a marker of early kidney damage in Taiwanese adults: A national population-based study from the Taiwan Biobank. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115208. [PMID: 37413945 DOI: 10.1016/j.ecoenv.2023.115208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Taiwan had the high incidence of chronic kidney disease (CKD) worldwide. Our objective was to examine associations between daily exposure of phthalates and melamine, two common nephrotoxins, and kidney damage risk in a well-established nationwide cohort. Study subjects were from Taiwan Biobank (TWB) with existing data of questionnaire and biochemical examinations. Average daily intake (ADI) levels of melamine and seven parental phthalates, including DEHP (di-2-ethylhexylphthalate), DiBP (Dibutyl phthalate), DnBP (Di-n-butyl phthalate), BBzP (Butyl benzyl phthalate), DEP (Diethyl phthalate), and DMP (Dimethyl phthalate) were estimated using a creatinine excretion-based model from urine melamine and 10 phthalate metabolites. Urine microalbumin to creatinine ratio (ACR) was used to represent for the outcome of kidney damage. Two statistical strategies were used: First, a weighted quantile sum (WQS) regression model to select the most important exposure variables of ADI levels of phthalates and melamine associated with ACR; Second, to examine effects of those most important exposure variables on ACR in multivariable linear regression models. In total, 1153 eligible adults were left for analyses. Of them, 591 (51.3%) and 562 (48.7%) were men and women, respectively, with a median age of 49 years old. By WQS, a significant and positive association was found between ADI of melamine and phthalates and ACR (β = 0.14, p = 0.002). ADI levels of melamine had the highest weight (0.57), followed by DEHP (0.13). Next, examining the two most important exposures in association with ACR, we found that the higher the melamine and DEHP intakes, the higher the ACR levels were found. An interaction effect was also found between melamine and DEHP intakes on urine ACR (p = 0.015). This result was more prominent in men (p = 0.008) than in women (p = 0.651). Environmental co-exposure of melamine and DEHP can potentially affect ACR in the community-dwelling Taiwanese adult population.
Collapse
Affiliation(s)
- Sih-Syuan Li
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Jia-Jen Chen
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ming-Wei Su
- Taiwan Biobank, Academia Sinica, Taipei, Taiwan.
| | | | - Chu-Chih Chen
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Taiwan.
| | - Yin-Han Wang
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Taiwan.
| | - Chia-Chu Liu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yi-Chun Tsai
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Tusty-Jiuan Hsieh
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ming-Tsang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chia-Fang Wu
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; International Master Program of Translational Medicine, National United University, Miaoli, Taiwan.
| |
Collapse
|
11
|
Haerinck J, Goossens S, Berx G. The epithelial-mesenchymal plasticity landscape: principles of design and mechanisms of regulation. Nat Rev Genet 2023; 24:590-609. [PMID: 37169858 DOI: 10.1038/s41576-023-00601-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) enables cells to interconvert between several states across the epithelial-mesenchymal landscape, thereby acquiring hybrid epithelial/mesenchymal phenotypic features. This plasticity is crucial for embryonic development and wound healing, but also underlies the acquisition of several malignant traits during cancer progression. Recent research using systems biology and single-cell profiling methods has provided novel insights into the main forces that shape EMP, which include the microenvironment, lineage specification and cell identity, and the genome. Additionally, key roles have emerged for hysteresis (cell memory) and cellular noise, which can drive stochastic transitions between cell states. Here, we review these forces and the distinct but interwoven layers of regulatory control that stabilize EMP states or facilitate epithelial-mesenchymal transitions (EMTs) and discuss the therapeutic potential of manipulating the EMP landscape.
Collapse
Affiliation(s)
- Jef Haerinck
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
12
|
Gad El-Karim DRS, Lebda MA, Alotaibi BS, El-kott AF, Ghamry HI, Shukry M. Lutein Modulates Oxidative Stress, Inflammatory and Apoptotic Biomarkers Related to Di-(2-Ethylhexyl) Phthalate (DEHP) Hepato-Nephrotoxicity in Male Rats: Role of Nuclear Factor Kappa B. TOXICS 2023; 11:742. [PMID: 37755751 PMCID: PMC10535989 DOI: 10.3390/toxics11090742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/28/2023]
Abstract
Phthalates are widely distributed in our environment due to their usage in many industries, especially in plastic production, which has become an essential part of daily life. This investigation aimed to assess the potential remedial influence of lutein, a naturally occurring carotenoid, on phthalate-triggered damage to the liver and kidneys. When di-(2-ethylhexyl) phthalate (DEHP) was administered to male albino rats over sixty straight days at a dosage of 200 mg/kg body weight, it resulted in a significant increase in the serum activity of liver enzymes (AST, ALT, and GGT), alpha-fetoprotein, creatinine, and cystatin-C, as well as disruptions in the serum protein profile. In addition, intoxication with DEHP affected hepato-renal tissues' redox balance. It increased the content of some proinflammatory cytokines, nuclear factor kappa B (Nf-κB), and apoptotic marker (caspase-3); likewise, DEHP-induced toxicity and decreased the level of anti-apoptotic protein (Bcl-2) in these tissues. Lutein administration at a dose level of 40 mg/kg b.w efficiently facilitated the changes in serum biochemical constituents, hepato-renal oxidative disturbance, and inflammatory, apoptotic, and histopathological alterations induced by DEHP intoxication. In conclusion, it can be presumed that lutein is protective as a natural carotenoid against DEHP toxicity.
Collapse
Affiliation(s)
- Dina R. S. Gad El-Karim
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Mohamed A. Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Attalla F. El-kott
- Department of Biology, College of Science, King Khalid University, Abha 61421, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Heba I. Ghamry
- Nutrition and Food Sciences, Department of Home Economics, Faculty of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
13
|
Lee G, Kim S, Lee I, Kang H, Lee JP, Lee J, Choi YW, Park J, Choi G, Choi K. Association between environmental chemical exposure and albumin-to-creatinine ratio is modified by hypertension status in women of reproductive age. ENVIRONMENTAL RESEARCH 2023; 231:116234. [PMID: 37236389 DOI: 10.1016/j.envres.2023.116234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Chemicals have been identified as a potential risk factor of renal dysfunction. However, studies that consider both multiple chemicals and non-chemical risk factors, such as hypertension, are rare. In this study, we assessed the associations between exposure to several chemicals, including major metals, phthalates, and phenolic compounds, and the albumin-to-creatinine ratio (ACR). A group of Korean adult women in reproductive age (n = 438, aged between 20 and 49 years), who had previously been studied for association of several organic chemicals, was chosen for this purpose. We constructed multivariable linear regression models for individual chemicals and weighted-quantile sum (WQS) mixtures, by hypertension status. Among the study population, approximately 8.5% of the participants exhibited micro/macro-albuminuria (ACR ≥30 mg/g), and 18.5% and 3.9% exhibited prehypertension and hypertension, respectively. Blood cadmium and lead levels showed a stronger association with ACR only among women with prehypertension or hypertension. Among organic chemicals, depending on the statistial model, benzophenone-1 (BP-1) and mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) showed a significant association regardless of hypertension status, but most associations disappeared in the (pre)hypertensive group. These findings clearly indicate that hypertension status can modify and may potentiate the association of environmental chemicals with ACR. Our observations suggest that low-level environmental pollutant exposure may have potential adverse effects on kidney function among general adult women. Considering the prevalence of prehypertension in the general population, efforts to reduce exposure to cadmium and lead are necessary among adult women to minimize the risk of adverse kidney function.
Collapse
Affiliation(s)
- Gowoon Lee
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Sunmi Kim
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea; Chemical Analysis Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Inae Lee
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Habyeong Kang
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; College of Health Science, Korea University, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Young Wook Choi
- Department of Internal Medicine, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Jeongim Park
- Department of Natural Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Gyuyeon Choi
- Department of Obstetrics and Gynecology, Soonchunhyang University Hospital, Seoul, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Hua S, Shi F, Xie Z, Wu L, Dai M, Zhang Y, Xu X, Zhu Y, Jiang J. Di-n-butyl phthalate induces oversecretion of vascular endothelium-derived NAP-2 and promotes epithelial-mesenchymal transition of urothelial cells in newborn hypospadias rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114892. [PMID: 37059017 DOI: 10.1016/j.ecoenv.2023.114892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/19/2023] [Accepted: 04/08/2023] [Indexed: 06/19/2023]
Abstract
Di-n-butyl phthalate (DBP) is a plasticizer commonly used in industrial production and is present in our daily life. It has been confirmed that DBP causes genitourinary malformations, especially hypospadias. However, the research of hypospadias mainly focusses on the genital tubercle in previous studies. In this study, we found DBP could affect the exocrine function of the vascular endothelium which disturb the development of genital nodules and induced hypospadias. We used cytokine array to find that vascular endothelium-derived NAP-2 may be a major abnormal secreted cytokine with biological functions. The transcriptomic sequencing analysis showed that abnormal activation of the RhoA/ROCK signaling pathway was the main reason for increased NAP-2 secretion. The expression levels of epithelial-mesenchymal transition (EMT) biomarkers and NAP-2 in hypospadias animal models were detected with Immunohistochemistry, Western blot, Immunofluorescence, and ELISA methods. The expression levels of NAP-2, RhoA/ROCK signaling pathway related proteins, reactive oxygen species (ROS) levels in HUVEC cells, EMT biomarkers and migration capacity of urothelial cells cocultured with HUVEC were measured with ELISA, flow cytometry, Western blot or Transwell assay for further cell experiments. The results showed that DBP leaded to NAP-2 oversecretion from vascular endothelium mainly rely on the activation of RhoA/ROCK signaling pathway and ROS accumulation. The RhoA/ROCK inhibitor fasudil could partially decrease ROS production, and both fasudil and N-acetyl-L-cysteine (NAC) could decrease NAP-2 secretion. Meanwhile, the oversecretion of NAP-2 from HUVEC in coculture system promoted EMT and migration capacity of urothelial cells, and TGF-β inhibitor LY219761 could block the aberrant activation of EMT process. Therefore, it could be concluded that DBP increase NAP-2 secretion from vascular endothelium by RhoA/ROCK/ROS pathway, and further promote EMT in urothelial cells through TGF-β pathway. This study provided a novel direction for studying the occurrence of hypospadias and may provide a hypospadias predictive marker in the future.
Collapse
Affiliation(s)
- Shan Hua
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Fei Shi
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhiwen Xie
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lei Wu
- Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
| | - Mengqiao Dai
- Shanghai University of Traditional Chinese Medicine, School of Nursing, Shanghai 201203, China
| | - Yongqing Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xinyu Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yiping Zhu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Juntao Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
15
|
Lee JY, Han HJ, Ko SM, Jeong DS, Kang J, Lee DH, Cha HJ, Son WC. Evaluation of the 52-week chronic toxicity of a novel phthalate-free plasticizer, Eco-DEHCH (bis(2-ethylhexyl) cyclohexane-1,4-dicarboxylate), in Han Wistar rats. Food Chem Toxicol 2023; 176:113809. [PMID: 37137465 DOI: 10.1016/j.fct.2023.113809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/05/2023]
Abstract
Phthalate esters (PEs) are the most widely used class of plasticizers. Several PEs, however, were found to have adverse effects on the health of animals. A new phthalate-free plasticizer, Eco-DEHCH (bis(2-ethylhexyl) cyclohexane-1,4-dicarboxylate), was recently developed as an ecofriendly replacement for phthalate plasticizers and to be less harmful to organisms. The present study evaluated the long-term toxicity of Eco-DEHCH in Wistar Han rats to explore adverse effects and predict hazardous potential to humans. Forty male and forty female Wistar Han rats were exposed to Eco-DEHCH in dietary feed for 52 weeks, and their hematologic, coagulation, and serum biochemical parameters were monitored. The rats were subjected to close clinical, ophthalmic, and histopathologic examinations and urinalysis throughout the consumption of Eco-DEHCH. The effects of this plasticizer on food consumption and organ weight were also determined. Chronic exposure to Eco-DEHCH was generally safe, although it also resulted in α2u-globulin accumulation, a parameter with no human relevance. In conclusion, Eco-DEHCH can serve as a safe and promising alternative plasticizer.
Collapse
Affiliation(s)
- Ji-Young Lee
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyo-Jeong Han
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soo Min Ko
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Da Som Jeong
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiyeon Kang
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong Hyun Lee
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hwa Jun Cha
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Woo-Chan Son
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Flori E, Mosca S, Cardinali G, Briganti S, Ottaviani M, Kovacs D, Manni I, Truglio M, Mastrofrancesco A, Zaccarini M, Cota C, Piaggio G, Picardo M. The Activation of PPARγ by (2Z,4E,6E)-2-methoxyocta-2,4,6-trienoic Acid Counteracts the Epithelial–Mesenchymal Transition Process in Skin Carcinogenesis. Cells 2023; 12:cells12071007. [PMID: 37048080 PMCID: PMC10093137 DOI: 10.3390/cells12071007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common UV-induced keratinocyte-derived cancer, and its progression is characterized by the epithelial–mesenchymal transition (EMT) process. We previously demonstrated that PPARγ activation by 2,4,6-octatrienoic acid (Octa) prevents cutaneous UV damage. We investigated the possible role of the PPARγ activators Octa and the new compound (2Z,4E,6E)-2-methoxyocta-2,4,6-trienoic acid (A02) in targeting keratinocyte-derived skin cancer. Like Octa, A02 exerted a protective effect against UVB-induced oxidative stress and DNA damage in NHKs. In the squamous cell carcinoma A431 cells, A02 inhibited cell proliferation and increased differentiation markers’ expression. Moreover, Octa and even more A02 counteracted the TGF-β1-dependent increase in mesenchymal markers, intracellular ROS, the activation of EMT-related signal transduction pathways, and cells’ migratory capacity. Both compounds, especially A02, counterbalanced the TGF-β1-induced cell membrane lipid remodeling and the release of bioactive lipids involved in EMT. In vivo experiments on a murine model useful to study cell proliferation in adult animals showed the reduction of areas characterized by active cell proliferation in response to A02 topical treatment. In conclusion, targeting PPARγ may be useful for the prevention and treatment of keratinocyte-derived skin cancer.
Collapse
Affiliation(s)
- Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
- Correspondence: (E.F.); (M.P.)
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Isabella Manni
- SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Roma, Italy
| | - Mauro Truglio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Arianna Mastrofrancesco
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Carlo Cota
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Giulia Piaggio
- SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Roma, Italy
| | - Mauro Picardo
- Faculty of Medicine, Unicamillus International Medical University, 00131 Rome, Italy
- Correspondence: (E.F.); (M.P.)
| |
Collapse
|
17
|
Li MZ, Zhao Y, Dai XY, Talukder M, Li JL. Lycopene ameliorates DEHP exposure-induced renal pyroptosis through the Nrf2/Keap-1/NLRP3/Caspase-1 axis. J Nutr Biochem 2023; 113:109266. [PMID: 36610486 DOI: 10.1016/j.jnutbio.2022.109266] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is commonly used as a plasticizer in plastic products, and due to its unique chemical composition, it frequently dissolves and enters the environment. Lycopene as a natural carotenoid has been shown to have powerful antioxidant capacity and strong kidney protection. This study aimed to investigate the role of the interplay between oxidative stress and the classical pyroptosis pathway in LYC alleviating DEHP-induced renal injury. ICR mice were given DEHP (500 mg/kg/d or 1000 mg/kg/d) and/or LYC (5 mg/kg/d) for 28 days to explore the underlying mechanisms of this hypothesis. Our results indicated that DEHP caused the shedding of renal tubular epithelial cells, increased the content of kidney injury molecule-1 (Kim-1) and neutrophil gelatinase-associated lipocalin (NGAL) in the tissue, the decrease of antioxidant activity markers and the increase of oxidative stress indexes. It is gratifying that LYC alleviates DEHP-induced renal injury. The expression of nuclear factor erythrocyte 2-related factor 2 (Nrf2) and its downstream target genes is improved in DEHP induced renal injury through LYC mediated protection. Meanwhile, LYC supplementation can inhibit DEHP-induced Caspase-1/NLRP3-dependent pyroptosis and inflammatory responses. Taken together, DEHP administration resulted in nephrotoxicity, but these changes ameliorated by LYC may through crosstalk between the Nrf2/Keap-1/NLRP3/Caspase-1 pathway. Our study provides new evidence that LYC protects against kidney injury caused by DEHP.
Collapse
Affiliation(s)
- Mu-Zi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilong Jiang, China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilong Jiang, China
| | - Xue-Yan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilong Jiang, China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilong Jiang, China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barisha, Bangladesh
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilong Jiang, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, Heilong Jiang, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, Heilong Jiang, China.
| |
Collapse
|
18
|
Dimethyl Fumarate Attenuates Di-(2-Ethylhexyl) Phthalate-Induced Nephrotoxicity Through the Nrf2/HO-1 and NF-κB Signaling Pathways. Inflammation 2023; 46:453-467. [PMID: 36195817 DOI: 10.1007/s10753-022-01746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
This study aimed to clarify the nephroprotective effect of dimethyl fumarate (DMF) against Di (2-ethylhexyl) phthalate (DEHP)-induced nephrotoxicity in both in vitro and in vivo models. The HEK-293 cells were exposed to different concentrations of DMF plus IC50 concentration of monoethylhexyl phthalate (MEHP) (the main metabolite of DEHP). Then, some of the oxidative stress parameters including ROS, MDA, and GSH, and cytotoxicity (MTT assay) were determined in treated cells. For in vivo evaluation, rats were divided into 7 groups (n = 6 per group). Corn oil group (gavage), DEHP group (200 mg/kg dissolved in corn oil, gavage), DMF (15, 30, and 60 mg/kg, gavage) plus DEHP (200 mg/kg) groups, DMF (60 mg/kg, gavage) alone, and vitamin E (20 mg/kg, intraperitoneal (IP)) plus DEHP (200 mg/kg) group. This treatment continued for 45 days. Then, BUN and creatinine were evaluated by a commercial kit based on the urease enzymatic method and the Jaffe method, respectively. Mitochondrial oxidative stress and mitochondrial dysfunction parameters were evaluated using appropriate reagents, and gene expression of the p65 nuclear factor kappa B (NF-κB), tumor necrosis factor alpha (TNFα), nuclear factor E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were evaluated by real-time PCR method. High concentrations of DMF significantly increased cell viability, and GSH content and significantly decreased ROS and MDA levels compared with the MEHP group in HEK-293 cells. DMF (60 mg/kg) significantly decreased BUN and creatinine levels compared with the DEHP group. Mitochondrial function and mitochondrial swelling were significantly improved in DMF group (60 mg/kg) compared with the DEHP group. DMF (30 and 60 mg/kg) significantly improved MMP collapse compared with the DEHP group. DMF (30 and 60 mg/kg) significantly decreased ROS levels compared with the DEHP group in isolated kidney mitochondria. DMF (60 mg/kg) significantly decreased MDA levels and significantly increased GSH content compared with DEHP group in isolated kidney mitochondria. The mRNA expression levels of Nrf2 and HO-1 were significantly reduced in the DEHP group compared to the control group and were significantly increased in the DMF group compared to the DEHP group. p65NF-κB and TNFα mRNA expression levels were significantly increased in the DEHP group compared to the control group. However, DMF significantly decreased p65NF-κB and TNFα mRNA expression compared to the DEHP group. DMF can act as a nephroprotective agent against DEHP partly through modulation of oxidative stress, mitochondrial function, and inflammation.
Collapse
|
19
|
Zhang X, Flaws JA, Spinella MJ, Irudayaraj J. The Relationship between Typical Environmental Endocrine Disruptors and Kidney Disease. TOXICS 2022; 11:32. [PMID: 36668758 PMCID: PMC9863798 DOI: 10.3390/toxics11010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 05/12/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that alter the endocrine function of an organism, to result in adverse effects on growth and development, metabolism, and reproductive function. The kidney is one of the most important organs in the urinary system and an accumulation point. Studies have shown that EDCs can cause proteinuria, affect glomeruli and renal tubules, and even lead to diabetes and renal fibrosis in animal and human studies. In this review, we discuss renal accumulation of select EDCs such as dioxins, per- and polyfluoroalkyl substances (PFAS), bisphenol A (BPA), and phthalates, and delineate how exposures to such EDCs cause renal lesions and diseases, including cancer. The regulation of typical EDCs with specific target genes and the activation of related pathways are summarized.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jodi A. Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Wang R, Zhao J, Jin J, Tian Y, Lan L, Wang X, Zhu L, Wang J. WY-14643 attenuates lipid deposition via activation of the PPARα/CPT1A axis by targeting Gly335 to inhibit cell proliferation and migration in ccRCC. Lipids Health Dis 2022; 21:121. [DOI: 10.1186/s12944-022-01726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract
Background
Histologically, cytoplasmic deposits of lipids and glycogen are common in clear cell renal cell carcinoma (ccRCC). Owing to the significance of lipid deposition in ccRCC, numerous trials targeting lipid metabolism have shown certain therapeutic potential. The agonism of peroxisome proliferator-activated receptor-α (PPARα) via ligands, including WY-14,643, has been considered a promising intervention for cancers.
Methods
First, the effects of WY-14,643 on malignant behaviors were investigated in ccRCC in vitro. After RNA sequencing, the changes in lipid metabolism, especially neutral lipids and glycerol, were further evaluated. Finally, the underlying mechanisms were revealed.
Results
Phenotypically, the proliferation and migration of ccRCC cells treated with WY-14,643 were significantly inhibited in vitro. A theoretical functional mechanism was proposed in ccRCC: WY-14,643 mediates lipid consumption by recognizing carnitine palmitoyltransferase 1 A (CPT1A). Activation of PPARα using WY-14,643 reduces lipid deposition by increasing the CPT1A level, which also suppresses the NF-κB signaling pathway. Spatially, WY-14,643 binds and activates PPARα by targeting Gly335.
Conclusion
Overall, WY-14,643 suppresses the biological behaviors of ccRCC in terms of cell proliferation, migration, and cell cycle arrest. Furthermore, its anticancer properties are mediated by the inhibition of lipid accumulation, at least in part, through the PPARα/CPT1A axis by targeting Gly335, as part of the process, NF-κB signaling is also suppressed. Pharmacological activation of PPARα might offer a new treatment option for ccRCC.
Collapse
|
21
|
Medical devices as a source of phthalate exposure: a review of current knowledge and alternative solutions. Arh Hig Rada Toksikol 2022; 73:179-190. [PMID: 36226817 PMCID: PMC9837533 DOI: 10.2478/aiht-2022-73-3639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/01/2022] [Indexed: 11/07/2022] Open
Abstract
Phthalates are a group of phthalic acid esters used as plasticisers in a large number of products to improve their flexibility, softness, and extensibility. Their wide use in medical devices, however, raises a lot of concern, as they can enter the organism and have toxic effects on human liver, thyroid, kidneys, lungs, reproductive, endocrine, nervous, and respiratory system and are associated with asthma, obesity, autism, and diabetes. The aim of this review is to summarise current knowledge about phthalate migration from medical devices during different medical procedures and possible impact on patient health. It also looks at alternative plasticisers with supposedly lower migration rates and safer profile. Not enough is known about which and how many phthalates make part of medical devices or about the health impacts of alternative plasticisers or their migration rates.
Collapse
|
22
|
Wang Z, Sun Y, Gu L, Zhang T, Liu S, Wang S, Wang Z. Association of urinary phthalate metabolites with renal function among 9989 US adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113930. [PMID: 35914397 DOI: 10.1016/j.ecoenv.2022.113930] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE This study aimed to investigate the relationship between phthalate metabolites and renal function. METHODS We analyzed data from 9989 participants who took part in the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2018. Renal function was reflected by estimated glomerular filtration rate (eGFR), urinary albumin-to-creatinine ratio (UACR), and hypertension. We used generalized linear regression to estimate the correlation between covariate-adjusted creatinine-normalized phthalate metabolites and renal function. In addition, subgroup analysis was used to further compare the effect differences between various populations. RESULTS In the adjusted model, we found differential associations between phthalates and plasticizers metabolites and renal function. We found that Mono-benzyl phthalate, Mono-(3-carboxypropyl) phthalate, and Mono-(2-ethyl-5-oxohexyl) phthalate were positively associated with lower eGFR with odds ratios (95% confidence intervals) of 1.38 (1.14, 1.67), 1.30 (1.09, 1.57), and 1.27 (1.04, 1.53). While Mono-ethyl phthalate, Mono-(2-ethyl)-hexyl phthalate, Mono-isononyl phthalate and Mono-isobutyl phthalate were negatively associated with lower eGFR with OR values of 0.79 (0.69, 0.90), 0.64 (0.52, 0.78), 0.65 (0.51, 0.82) and 0.80 (0.63, 1.00), respectively. In addition, we found that Mono(carboxyoctyl) phthalate and Mono-isobutyl phthalate were negatively associated with hypertension with ORs of 0.86 (0.78, 0.96) and 0.84 (0.72, 0.98). But phthalates and plasticizers metabolites were not associated with UACR. CONCLUSION This study found differences in the effects of phthalates and plasticizers metabolites on kidney function, which may raise concerns about possible changes in kidney function resulting from exposure to current levels of plasticizers.
Collapse
Affiliation(s)
- Zhongyuan Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Yuhan Sun
- The First Clinical School of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Lanxin Gu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tongtong Zhang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Shouyong Liu
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Shangqian Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China.
| | - Zengjun Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China.
| |
Collapse
|
23
|
Cui JG, Zhao Y, Zhang H, Li XN, Li JL. Lycopene regulates the mitochondrial unfolded protein response to prevent DEHP-induced cardiac mitochondrial damage in mice. Food Funct 2022; 13:4527-4536. [PMID: 35348563 DOI: 10.1039/d1fo03054j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lycopene (LYC), as a kind of carotene, has antioxidant effects. Di(2-ethylhexyl) phthalate (DEHP) was used to improve the flexibility of plastics. However, the potential role of LYC in DEHP induced cardiac injury in mice remains unclear. Therefore, the aim of this study was to investigate the role and mechanism of LYC in DEHP induced cardiac injury. Male ICR mice were treated with DEHP (500 or 1000 mg per kg BW per day) and/or LYC (5 mg per kg BW per day) for 28 days. The results of histopathology and ultrastructure showed that LYC relieved the decrease of mitochondrial volume density and myocardial fibre disorder induced by DEHP. Subsequently, LYC attenuated DEHP-induced mitochondrial damage, mitochondrial unfolded protein response (UPRmt) activation, nuclear factor erythroid 2-related factor 2 (Nrf2) mediated oxidative stress and heat shock response (HSR) activation induced by DEHP. LYC regulates UPRmt to prevent DEHP-induced cardiac mitochondrial damage. Thus, this study provided new evidence of UPRmt as a target for LYC treatment preventing DEHP-induced cardiac disease.
Collapse
Affiliation(s)
- Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China. .,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
24
|
Tsai HJ, Wu CF, Hsiung CA, Lee CH, Wang SL, Chen ML, Chen CC, Huang PC, Wang YH, Chen YA, Chen BH, Chuang YS, Hsieh HM, Wu MT. Longitudinal changes in oxidative stress and early renal injury in children exposed to DEHP and melamine in the 2011 Taiwan food scandal. ENVIRONMENT INTERNATIONAL 2022; 158:107018. [PMID: 34991270 DOI: 10.1016/j.envint.2021.107018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
In 2011, phthalates, mainly di-(2-ethylhexyl) phthalate (DEHP), were found to have been added to a variety of foods in Taiwan, increasing the risk of microalbuminuria in children. Exposure to melamine perhaps modifies that risk. This prospective cohort study investigates whether renal injury resulting from exposure to DEHP-tainted foods from the 2011 Taiwan Food Scandal is reversed over time. The temporal and interactive effects of past daily DEHP intake, current daily DEHP intake, and urinary melamine levels on oxidative stress and renal injury were also examined. Two hundred possibly DEHP-affected children (aged < 18 years) were enrolled in the first survey wave (August 2012-January 2013), with 170 and 159 children in the second (July 2014-February 2015) and third waves (May 2016-October 2016), respectively. The first wave comprised questionnaires that were used to collect information about possible past daily DEHP intake from DEHP-tainted foods. One-spot first morning urine samples were collected to measure melamine levels, phthalate metabolites, and markers indicating oxidative stress (malondialdehyde and 8-oxo-2'-deoxyguanosine), and renal injury (albumin/creatinine ratio (ACR) and N-acetyl-beta-D-glucosaminidase) in all three waves. Generalized estimating equation (GEE) modeling revealed that both past daily DEHP intake and time might affect urinary ACR. However, most interactions were negative and significant correlation was observed only during the second wave (P for interaction = 0.014) in the group with the highest past daily DEHP intake (>50 μg/kg/day). Urinary melamine levels were found to correlate significantly with both urinary ACR and oxidative stress markers. The highest impact associated with exposure to DEHP-tainted foods in increasing urinary ACR of children was observed during the first wave, and the effect may partially diminish over time. These results suggest that continuous monitoring of renal health and other long-term health consequences is required in individuals who were affected by the scandal in 2011.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Fang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; International Master Program of Translational Medicine, National United University, Miaoli, Taiwan
| | - Chao A Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Chieng-Hung Lee
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Li Wang
- Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chu-Chih Chen
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Po-Chin Huang
- Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Yin-Han Wang
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Yuh-An Chen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Bai-Hsiun Chen
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Laboratory Medicine and Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yun-Shiuan Chuang
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Min Hsieh
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; PhD Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
25
|
Bonaccio M, Costanzo S, Di Castelnuovo A, Persichillo M, Magnacca S, De Curtis A, Cerletti C, Donati MB, de Gaetano G, Iacoviello L. Ultra-processed food intake and all-cause and cause-specific mortality in individuals with cardiovascular disease: the Moli-sani Study. Eur Heart J 2021; 43:213-224. [PMID: 34849691 DOI: 10.1093/eurheartj/ehab783] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/05/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
AIMS To evaluate the association of ultra-processed food (UPF) intake and mortality among individuals with history of cardiovascular disease (CVD) and analyse some biological pathways possibly relating UPF intake to death. METHODS AND RESULTS Longitudinal analysis on 1171 men and women (mean age: 67 ± 10 years) with history of CVD, recruited in the Moli-sani Study (2005-10, Italy) and followed for 10.6 years (median). Food intake was assessed using a food frequency questionnaire. UPF was defined using the NOVA classification according to degree of processing and categorized as quartiles of the ratio (%) between UPF (g/day) and total food consumed (g/day). The mediating effects of 18 inflammatory, metabolic, cardiovascular, and renal biomarkers were evaluated using a logistic regression model within a counterfactual framework. In multivariable-adjusted Cox analyses, higher intake of UPF (Q4, ≥11.3% of total food), as opposed to the lowest (Q1, UPF <4.7%), was associated with higher hazards of all-cause (hazard ratio [HR]: 1.38; 95% confidence interval (CI): 1.00-1.91) and CVD mortality (HR: 1.65; 95% CI: 1.07-2.55). A linear dose-response relationship of 1% increment in UPF intake with all-cause and CVD mortality was also observed. Altered levels of cystatin C explained 18.3% and 16.6% of the relation between UPF (1% increment in the diet) with all-cause and CVD mortality, respectively. CONCLUSION A diet rich in UPF is associated with increased hazards of all-cause and CVD mortality among individuals with prior cardiovascular events, possibly through an altered renal function. Elevated UPF intake represents a major public health concern in secondary CVD prevention.
Collapse
Affiliation(s)
- Marialaura Bonaccio
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077 Pozzilli, IS, Italy
| | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077 Pozzilli, IS, Italy
| | | | - Mariarosaria Persichillo
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077 Pozzilli, IS, Italy
| | - Sara Magnacca
- Mediterranea Cardiocentro, Via Orazio, Napoli 80122, Italy
| | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077 Pozzilli, IS, Italy
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077 Pozzilli, IS, Italy
| | - Maria Benedetta Donati
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077 Pozzilli, IS, Italy
| | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077 Pozzilli, IS, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077 Pozzilli, IS, Italy.,Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, Varese, Italy
| |
Collapse
|
26
|
Li MZ, Zhao Y, Wang HR, Talukder M, Li JL. Lycopene Preventing DEHP-Induced Renal Cell Damage Is Targeted by Aryl Hydrocarbon Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12853-12861. [PMID: 34670089 DOI: 10.1021/acs.jafc.1c05250] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is an environmentally persistent and bioaccumulative plasticizer. Accumulation of DEHP in the body can eventually cause kidney damage. As a type of natural carotenoid, lycopene (LYC) has a potential protective effect on renal cells, but the protective mechanism has not yet been elucidated. The major goal of this study was to see how effective LYC was at treating DEHP-induced nephrotoxicity in mice. ICR mice were treated with DEHP (500 mg/kg BW/day or 1000 mg/kg BW/day) or LYC (5 mg/kg BW/day) for 28 days. Through histopathology and ultrastructure, we found that LYC attenuated DEHP-induced renal tubular cell and glomerular damage. LYC relieved DEHP-induced kidney injury evidenced by lower levels of blood urea nitrogen (Bun), creatinine (Cre), and uric acid (Uric). Meanwhile, the reduced expression of kidney injury molecule-1 (Kim-1) also supported it. Notably, LYC can alleviate the activity or content of cytochrome P450 system (CYP450s) interfered with by DEHP. In addition, LYC treatment reduced nuclear accumulation of DEHP-induced aromatic hydrocarbon receptor (AhR) and AhR nuclear transporter (Arnt), and its downstream target genes such as cytochrome P450-dependent monooxygenase (CYP) 1A1, 1A2, and 1B1 expression significantly decreased to normal in the LYC treatment group. In summary, LYC can mediate the AhR/Arnt signaling system to prevent kidney toxicity in mice caused by DEHP exposure.
Collapse
Affiliation(s)
| | | | | | - Milton Talukder
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | | |
Collapse
|
27
|
Jones BA, Wang XX, Myakala K, Levi M. Nuclear Receptors and Transcription Factors in Obesity-Related Kidney Disease. Semin Nephrol 2021; 41:318-330. [PMID: 34715962 PMCID: PMC10187996 DOI: 10.1016/j.semnephrol.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Both obesity and chronic kidney disease are increasingly common causes of morbidity and mortality worldwide. Although obesity often co-exists with diabetes and hypertension, it has become clear over the past several decades that obesity is an independent cause of chronic kidney disease, termed obesity-related glomerulopathy. This review defines the attributes of obesity-related glomerulopathy and describes potential pharmacologic interventions. Interventions discussed include peroxisome proliferator-activated receptors, the farnesoid X receptor, the Takeda G-protein-coupled receptor 5, and the vitamin D receptor.
Collapse
Affiliation(s)
- Bryce A Jones
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC.
| |
Collapse
|
28
|
Kang H, Lee JP, Choi K. Exposure to phthalates and environmental phenols in association with chronic kidney disease (CKD) among the general US population participating in multi-cycle NHANES (2005-2016). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148343. [PMID: 34126474 DOI: 10.1016/j.scitotenv.2021.148343] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Exposure to consumer chemicals has been associated with chronic kidney disease (CKD) among humans, but their associations with estimated glomerular filtration rate (eGFR) are inconsistent. Such observations may be due to potential bias caused by the method of urine dilution adjustment and lack of consideration for multiple chemical exposure in the association models. This study aimed to identify major urinary chemicals associated with CKD by applying an alternative adjustment method of urine dilution ('novel' covariate-adjusted creatinine adjustment vs 'traditional' creatinine adjustment) and with a mixture exposure concept in the association model. For this purpose, the adult participants of US National Health and Nutrition Examination Survey (NHANES) 2005-2016 (n = 9008) were used, and the associations of urinary exposure biomarkers of major consumer chemicals, e.g., phthalates, bisphenol A, benzophenone-3, and parabens, with CKD related parameters of eGFR and albumin-to-creatinine ratio (ACR), were assessed. The use of the novel covariate-adjusted creatinine standardization resulted in significant inverse associations with eGFR for most measured chemicals, unlike the results with the use of the conventional creatinine adjustment. Phthalate metabolites, such as monobutyl phthalate (MBP) and mono-benzyl phthalate (MBzP), were positively associated with ACR. Even in mixture exposure models using weighted quantile sum (WQS) regression, MBzP, metabolites of di-(2-ethylhexyl) phthalate (DEHP), and bisphenol A (BPA) were revealed as major drivers of the association with eGFR or ACR. Results of sensitivity analyses with the subpopulation with normal eGFR range (n = 7041) were generally similar. Our observation suggests that exposure to benzyl butyl phthalate (BBP), DEHP, and BPA may be responsible for declined eGFR and increased ACR even at the exposure levels occurring among general adults.
Collapse
Affiliation(s)
- Habyeong Kang
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environmental, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Chen CY, Sun CY, Hsu HJ, Wu IW, Chen YC, Lee CC. Xenoestrogen exposure and kidney function in the general population: Results of a community-based study by laboratory tests and questionnaire-based interviewing. ENVIRONMENT INTERNATIONAL 2021; 155:106585. [PMID: 33910077 DOI: 10.1016/j.envint.2021.106585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a growing concern worldwide. Exposure to xenoestrogens (XEs), such as phthalates, parabens, and phenols, lead to CKD. However, kidney function and its complex relationship with XEs, lifestyle, and dietary habits are not well understood. METHODS In the present cross-sectional community-based cohort study, we enrolled 887 subjects for a questionnaire-based interview and laboratory tests. XE exposure concerning lifestyle/dietary habits were evaluated using questionnaires. Urinary levels of 17XE metabolites were measured in 60 subjects with high exposure risk scores and 60 subjects with low exposure risk scores. RESULTS Univariate and multivariate linear regression showed that a high exposure score (β ± SE: 4.226 ± 1.830, P = 0.021) was independently negatively associated with eGFR in 887 subjects. Univariate and multivariate linear regression to urinary XEs and urine albumin creatinine excretion ratio (UACR) in 120 subjects indicated that ethylparaben (EP) (β: 1.934, 95% CI: 0.135-3.733, P = 0.035) was significantly associated with increased UACR. Multivariate regression analyses of the CKD subgroup (n = 38), after adjusting for age, showed that higher levels of mono-(2-ethylhexyl) phthalate (MEHP), EP, nonylphenol (NP), and benzophenone-3 (BP-3) were significantly associated with lower estimated glomerular filtration rate (eGFR). Higher urinary levels of MEHP (OR: 3.037, 95% CI: 1.274-7.241) were more likely associated with high exposure scores (>5 points), after adjusting for diabetes, gender, eGFR, age, Na, Ca, albumin, vitamin D, systolic blood pressure (SBP), white blood cell count, total bilirubin, aspartate transaminase, and heart rate. MEHP (β ± SE: 0.033 ± 0.009, P < 0.001) was also significantly positively associated with total exposure scores after applying multivariate linear regression analyses. CONCLUSION XE exposure scores obtained from the questionnaires were negatively associated with kidney function. Urinary metabolites of XEs, including EP, NP, BP-3, and MEHP, are potential risk factors for microalbuminuria and decline in kidney function. MEHP seemed to have the strongest correlation with high exposure scores and decline in kidney function.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, ROC; College of Medicine, Chang Gung University, Taipei, Taiwan, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, ROC; College of Medicine, Chang Gung University, Taipei, Taiwan, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Heng-Jung Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, ROC; College of Medicine, Chang Gung University, Taipei, Taiwan, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - I-Wen Wu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, ROC; College of Medicine, Chang Gung University, Taipei, Taiwan, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Yung-Chang Chen
- College of Medicine, Chang Gung University, Taipei, Taiwan, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC; Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fuxing St., Guishan Dist., Taoyuan City 333423, Taiwan, ROC
| | - Chin-Chan Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, ROC; College of Medicine, Chang Gung University, Taipei, Taiwan, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC.
| |
Collapse
|
30
|
Li J, Qu M, Wang M, Yue Y, Chen Z, Liu R, Bu Y, Li Y. Reproductive toxicity and underlying mechanisms of di(2-ethylhexyl) phthalate in nematode Caenorhabditis elegans. J Environ Sci (China) 2021; 105:1-10. [PMID: 34130826 DOI: 10.1016/j.jes.2020.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
DEHP (di(2-ethylhexyl) phthalate) is an endocrine disruptor commonly found in plastic products that has been associated with reproduction alterations, but the effect of DEHP on toxicity is still widely unknown. Using DEHP concentrations of 10, 1, and 0.1 mg/L, we showed that DEHP reduced the reproductive capacity of Caenorhabditis elegans after 72 hr. of exposure. DEHP exposure reduced the reproductive capacity in terms of decreased brood sizes, egg hatchability (0.1, 1 and 10 mg/L), and egg-laying rate (1 and 10 mg/L), and increased numbers of fertilized eggs in the uterus (1 and 10 mg/L). DEHP also caused damage to gonad development. DEHP decreased the total number of germline cells, and decreased the relative area of the gonad arm of all exposure groups, with worms in the 1 mg/L DEHP exposure group having the minimum gonad arm area. Additionally, DEHP caused a significant concentration-dependent increase in the expression of unc-86. Autophagy and ROS contributed to the enhancement of DEHP toxicity in reducing reproductive capacity, and glutathione peroxidase and superoxide dismutase were activated as the antioxidant defense in this study. Hence, we found that DEHP has a dual effect on nematodes. Higher concentration (10 mg/L) DEHP can inhibit the expression of autophagy genes (atg-18, atg-7, bec-1, lgg-1 and unc-51), and lower concentrations (0.1 and 1 mg/L) can promote the expression of autophagy genes. Our data highlight the potential environmental risk of DEHP in inducing reproductive toxicity toward the gonad development and reproductive capacity of environmental organisms.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Man Qu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Mei Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Yue
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Zhaofang Chen
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yunhui Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
31
|
Mohammadi H, Ashari S. Mechanistic insight into toxicity of phthalates, the involved receptors, and the role of Nrf2, NF-κB, and PI3K/AKT signaling pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35488-35527. [PMID: 34024001 DOI: 10.1007/s11356-021-14466-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The wide use of phthalates, as phthalates are used in the manufacturing of not only plastics but also many others goods, has become a main concern in the current century because of their potency to induce deleterious effects on organism health. The toxic effects of phthalates such as reproductive toxicity, cardiotoxicity, hepatotoxicity, nephrotoxicity, teratogenicity, and tumor development have been widely indicated by previous experimental studies. Some of the important mechanisms of toxicity by phthalates are the induction and promotion of inflammation, oxidative stress, and apoptosis. Awareness of the involved molecular pathways of these mechanisms will permit the detection of exact molecular targets of phthalates to protect or treat their toxicity. Up to now, various transcription factors and signaling pathways have been associated with phthalate-induced toxicity which by influencing on nuclear surface and the expression of different genes can alter cell hemostasis. In different studies, the role of nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor-κB (NF-κB), and phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathways in processes of oxidative stress, inflammation, apoptosis, and cancer has been shown following exposure to phthalates. In the present review, we aim to survey experimental studies (in vitro and in vivo) in order to show firstly the most involved receptors and also the importance and the role of the mentioned signaling pathways in phthalate-induced toxicity, and with considering this point, the future studies can focus on these molecular targets as a strategic method to reduce environmental chemicals-induced toxicity especially phthalates toxic effects.
Collapse
Affiliation(s)
- Hamidreza Mohammadi
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology/Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sorour Ashari
- Department of Toxicology/Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
32
|
Tsai HJ, Kuo FC, Wu CF, Sun CW, Hsieh CJ, Wang SL, Chen ML, Hsieh HM, Chuang YS, Wu MT. Association between two common environmental toxicants (phthalates and melamine) and urinary markers of renal injury in the third trimester of pregnant women: The Taiwan Maternal and Infant Cohort Study (TMICS). CHEMOSPHERE 2021; 272:129925. [PMID: 35534976 DOI: 10.1016/j.chemosphere.2021.129925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/17/2021] [Accepted: 02/06/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Exposure to either melamine or phthalate, two common toxicants, during pregnancy may cause adverse health effects, including kidney damage. OBJECTIVES We investigated the independent and interactive effect of exposure to melamine and phthalates, particularly di-(2-ethylhexyl) phthalate (DEHP), on markers of early renal injury in women their third trimester of pregnancy in one nationwide birth cohort, the Taiwan Maternal and Infant Cohort Study (TMICS). METHODS Between October, 2012 and May, 2015, participants were administered questionnaires, physical examinations, and blood and urine tests during their third trimester. One-spot overnight urine specimens were used to simultaneously measure melamine, 11 phthalate metabolites, and two markers of renal injury, microalbumin and N-acetyl-beta-D-glucosaminidas (NAG). Estimated daily DEHP intake was calculated based on measurement of three urinary DEHP metabolites. Microalbuminuria was defined as having a urinary albumin/creatinine ratio (ACR) higher than 3.5 mg/mmol. RESULTS Total 1433 pregnant women were analyzed. The median value for urinary melamine was 0.63 μg/mmol Cr and estimated DEHP intake was 1.84 μg/kg/day. We found subjects in the highest quartile of estimated DEHP intake to have significantly higher urinary ACR (β = 0.095, p = 0.043) and the prevalence of microalbuminuria (adjusted OR = 1.752, 95% confidence interval = 1.118-2.746), compared to those in the lowest quartile. In addition, there was a significant interactive effect between urinary melamine and estimated DEHP intake on urinary ACR and NAG. CONCLUSION Our results suggest these two ubiquitous chemicals together may be associated with markers of early kidney injury in pregnant women.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fu-Chen Kuo
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan; Department of Obstetrics & Gynecology, E-Da Hospital, Kaohsiung, Taiwan
| | - Chia-Fang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Wen Sun
- National Environmental Health Research Center, National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Jung Hsieh
- Department of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Shu-Li Wang
- National Environmental Health Research Center, National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, College of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Hui-Min Hsieh
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Shiuan Chuang
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Tsang Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; PhD Program of Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
33
|
Yi H, Huang C, Shi Y, Cao Q, Chen J, Chen XM, Pollock CA. Metformin Attenuates Renal Fibrosis in a Mouse Model of Adenine-Induced Renal Injury Through Inhibiting TGF-β1 Signaling Pathways. Front Cell Dev Biol 2021; 9:603802. [PMID: 33614642 PMCID: PMC7889967 DOI: 10.3389/fcell.2021.603802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
It is well-known that all progressive chronic kidney disease (CKD) is pathologically characterized by tubulointerstitial fibrosis process. Multiple studies have shown the critical role of inflammation and fibrosis in the development of CKD. Hence strategies that target inflammatory and fibrotic signaling pathways may provide promising opportunities to protect against renal fibrosis. Metformin has been used as the first-line glucose-lowering agent to treat patients with type 2 diabetes mellitus (T2DM) for over 50 years. Accumulating evidence suggests the potential for additional therapeutic applications of metformin, including mitigation of renal fibrosis. In this study, the anti-fibrotic effects of metformin independent of its glucose-lowering mechanism were examined in an adenine -induced mouse model of CKD. Expressions of inflammatory markers MCP-1, F4/80 and ICAM, fibrotic markers type IV collagen and fibronectin, and the cytokine TGF-β1 were increased in adenine-induced CKD when compared to control groups and significantly attenuated by metformin treatment. Moreover, treatment with metformin inhibited the phosphorylation of Smad3, ERK1/2, and P38 and was associated with activation of the AMP-activated protein kinase (AMPK) in the kidneys of adenine-treated mice. These results indicate that metformin attenuates adenine-induced renal fibrosis through inhibition of TGF-β1 signaling pathways and activation of AMPK, independent of its glucose-lowering action.
Collapse
Affiliation(s)
- Hao Yi
- Kolling Institute, Sydney Medical School-Northern University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Chunling Huang
- Kolling Institute, Sydney Medical School-Northern University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Ying Shi
- Kolling Institute, Sydney Medical School-Northern University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Qinghua Cao
- Kolling Institute, Sydney Medical School-Northern University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Jason Chen
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Xin-Ming Chen
- Kolling Institute, Sydney Medical School-Northern University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Carol A Pollock
- Kolling Institute, Sydney Medical School-Northern University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
34
|
Lee I, Park JY, Kim S, An JN, Lee J, Park H, Jung SK, Kim SY, Lee JP, Choi K. Association of exposure to phthalates and environmental phenolics with markers of kidney function: Korean National Environmental Health Survey (KoNEHS) 2015-2017. ENVIRONMENT INTERNATIONAL 2020; 143:105877. [PMID: 32645486 DOI: 10.1016/j.envint.2020.105877] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/20/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Increasing number of consumer chemicals have been associated with chronic kidney disease (CKD) in human populations. However, many studies that investigated estimated glomerular filtration rate (eGRF) as an outcome reported inconsistent associations. In the present study, we employed a subset (n = 1292) of a nationally representative adult population participating in Korean National Environmental Health Survey (KoNEHS) 2015-2017, and assessed associations of major phthalates, bisphenol A (BPA), and parabens with both eGRF and albuminuria. In order to address a potential collider issue, a covariate-adjusted standardization method was applied, in addition to the conventional creatinine-correction, for adjusting urine dilution. Regardless of adjustment method, urinary DEHP metabolites showed significant positive associations with albumin to creatinine ratio (ACR). In addition, urinary metabolites of other heavy molecular weight phthalates such as MCOP and MCNP showed significant positive associations with ACR in the female population, but only following the covariate-adjusted standardization. For eGFR, conventional creatinine-correction resulted in positive associations with most of measured phthalate metabolites. However, with the covariate-adjusted standardization, most of positive associations with eGFR disappeared, and instead, significant negative associations were observed for MnBP, BPA, and EtP. Secondary analysis following stratification by CKD status, as well as principal component analysis (PCA), generally supported the observed associations. The present observations highlight the importance of urine dilution adjustment method for association studies on eGFR, and suggest potential effects of several consumer chemicals on adverse kidney function among humans.
Collapse
Affiliation(s)
- Inae Lee
- School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jae Yoon Park
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea; Department of Internal Medicine, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - Sunmi Kim
- School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jung Nam An
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Gyeonggi-do, Republic of Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Hyunwoong Park
- Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Sun Kyoung Jung
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
| | - Sung Yeon Kim
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Camacho L, Latendresse JR, Muskhelishvili L, Law CD, Delclos KB. Effects of intravenous and oral di(2-ethylhexyl) phthalate (DEHP) and 20% Intralipid vehicle on neonatal rat testis, lung, liver, and kidney. Food Chem Toxicol 2020; 144:111497. [PMID: 32540476 DOI: 10.1016/j.fct.2020.111497] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 01/09/2023]
Abstract
The highest human exposures to the plasticizer di(2-ethylhexyl) phthalate (DEHP) occur through intravenous (iv) exposure from medical procedures. Rodent toxicity studies, mainly using oral exposures, have identified male reproductive toxicity after developmental exposure to DEHP as the primary concern. Other organs are also affected by DEHP and route may influence the degree of target organ involvement. Cammack et al. (2003) reported a critical study focused on testicular toxicity using oral and iv exposures of neonatal Sprague-Dawley rats to 60, 300, or 600 mg/kg body weight/day DEHP in Intralipid vehicle. The present study followed the same dosing paradigm and included assessment of additional organs to evaluate the potential utility of this design for DEHP alternatives. Reduction of testis weight was observed in all DEHP treatment groups and germ cell and Sertoli cell toxicity was observed at the two highest doses with both routes. Lung granulomas occurred in all iv DEHP groups, possibly related to increased fat particle size in DEHP lipid emulsions. Lung alveolar development was inhibited after both oral and iv high dose DEHP. Toxicity of oral Intralipid vehicle was observed in germ and Sertoli cells. The lack of such effects after iv vehicle exposure suggested that this may be a gut-mediated effect.
Collapse
Affiliation(s)
- Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | | | | | - Charles D Law
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - K Barry Delclos
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA.
| |
Collapse
|
36
|
Chen J, Shi X, Zhou X, Dong R, Yuan Y, Wu M, Chen W, Liu X, Jia F, Li S, Yang Q, Chen B. Renal function and the exposure to melamine and phthalates in Shanghai adults. CHEMOSPHERE 2020; 246:125820. [PMID: 31918111 DOI: 10.1016/j.chemosphere.2020.125820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 05/26/2023]
Abstract
[Background] Melamine and phthalates have been reported to damage renal function in children. This association is scarce in general adults. [Method] A cross-sectional subsample population of 611 adults participating in the 2012 Shanghai Food Consumption Survey (SHFCS) was analyzed for urinary biomarkers of melamine, metabolites of phthalates, and renal function parameters. The correlations between renal function parameters and chemical exposure (either independently or interactively) were explored by linear regression models. To simplify the analysis, phthalate metabolites were dimensionally reduced using principal component analysis (PCA) method. [Result] Urinary melamine was positively associated with renal function parameters of both albumin-to-creatinine ratio (ACR) and β2-microglobulin (B2M) in multivariate linear regression models (P < 0.05). A PCA pattern characterized by high-molecular-weight phthalates (HMWP) was positively associated with all three parameters of renal function (ACR, B2M, and N-acetyl-β-d-glucosaminidase (NAG)). The co-exposure to melamine and HMWP presented an additive effect on increasing these parameters (ACR, B2M, and NAG). [Conclusion] Impaired renal function in Shanghai adults was associated with exposure to both melamine and HMWP.
Collapse
Affiliation(s)
- JingSi Chen
- Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - XinLi Shi
- Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - XiaoFeng Zhou
- Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - RuiHua Dong
- Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - YaQun Yuan
- Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Min Wu
- Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - WeiHua Chen
- Community Health Service Center of Nanjing (E) Road, Shanghai, 200003, China
| | - XiaoHong Liu
- Community Health Service Center of Nanjing (E) Road, Shanghai, 200003, China
| | - FuHuai Jia
- Ningbo Yu Fang Tang Biological Science and Technology Co., Ltd., Ningbo, 315012, China
| | - ShuGuang Li
- Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - QiFan Yang
- Shanghai Jingan District Center for Disease Control and Prevention, Shanghai, 200072, China.
| | - Bo Chen
- Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
37
|
Ashari S, Karami M, Shokrzadeh M, Ghandadi M, Ghassemi-Barghi N, Dashti A, Ranaee M, Mohammadi H. The implication of mitochondrial dysfunction and mitochondrial oxidative damage in di (2-ethylhexyl) phthalate induced nephrotoxicity in both in vivo and in vitro models. Toxicol Mech Methods 2020; 30:427-437. [PMID: 32312132 DOI: 10.1080/15376516.2020.1758980] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) and its main metabolite, monoethylhexyl phthalic acid (MEHP), are a serious threat to human and animals' health in the current century. However, their exact mechanism to induce nephrotoxicity is not clear. In the current study, we addressed toxic effects of MEHP and DEHP on embryonic human kidney cells (HEK-293 cell line) and kidney tissue of rats, respectively. In the HEK-293, MTT assay and oxidative stress parameters were measured after treatment with different concentrations of MEHP. For in vivo study, rats were treated with different doses of DEHP (50, 100, 200, 400 mg/kg) via gavage administration for 45 days. The renal function biomarkers (BUN and creatinine) were determined in serum of rats. Mitochondrial toxic parameters including MTT, mitochondrial membrane potential (MMP), mitochondrial swelling, and also oxidative stress parameters were measured in isolated kidney mitochondria. Histopathological effects of DEHP were also evaluated in rats' kidneys. We demonstrated that MEHP induced oxidative stress and cytotoxicity in HEK-293 cells in a concentration dependent manner. The administration of DEHP led to histopathological changes in kidney tissue, which concurred with BUN and creatinine alternations in serum of rats. The results of present study showed a significant mitochondrial dysfunction and oxidative stress confirmed by enhancement of mitochondrial swelling, mitochondrial reactive oxygen species (ROS) and malondialdehyde (MDA), and reduction of MMP and mitochondrial glutathione (GSH). Taken together, this study showed that DEHP/MEHP resulted in mitochondrial dysfunction and oxidative damage, which suggest a vital role of mitochondria in DEHP/MEHP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Sorour Ashari
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Karami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmacutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmacutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Morteza Ghandadi
- Pharmacutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasrin Ghassemi-Barghi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ayat Dashti
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ranaee
- Clinical Research Development Center, Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran.,Department of Pathology, Rouhani hospital, Babol University of Medical Sciences, Babol, Iran
| | - Hamidreza Mohammadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmacutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
38
|
Żwierełło W, Maruszewska A, Skórka-Majewicz M, Goschorska M, Baranowska-Bosiacka I, Dec K, Styburski D, Nowakowska A, Gutowska I. The influence of polyphenols on metabolic disorders caused by compounds released from plastics - Review. CHEMOSPHERE 2020; 240:124901. [PMID: 31563713 DOI: 10.1016/j.chemosphere.2019.124901] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Persistent organic pollutants (POPs) released from plastics into water, soil and air are significant environmental and health problem. Continuous exposure of humans to these substances results not only from the slow biodegradation of plastics but also from their ubiquitous use as industrial materials and everyday products. Exposure to POPs may lead to neurodegenerative disorders, induce inflammation, hepatotoxicity, nephrotoxicity, insulin resistance, allergies, metabolic diseases, and carcinogenesis. This has spurred an increasing intense search for natural compounds with protective effects against the harmful components of plastics. In this paper, we discuss the current state of knowledge concerning the protective functions of polyphenols against the toxic effects of POPs: acrylonitrile, polychlorinated biphenyls, dioxins, phthalates and bisphenol A. We review in detail papers from the last two decades, analyzing POPs in terms of their sources of exposure and demonstrate how polyphenols may be used to counteract the harmful environmental effects of POPs. The protective effect of polyphenols results from their impact on the level and activity of the components of the antioxidant system, enzymes involved in the elimination of xenobiotics, and as a consequence - on the level of reactive oxygen species (ROS). Polyphenols present in daily diet may play a protective role against the harmful effects of POPs derived from plastics, and this interaction is related, among others, to the antioxidant properties of these compounds. To our knowledge, this is the first extensive review of in vitro and in vivo studies concerning the molecular mechanisms of interactions between selected environmental toxins and polyphenols.
Collapse
Affiliation(s)
- Wojciech Żwierełło
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460, Szczecin, Poland
| | - Agnieszka Maruszewska
- Department of Biochemistry, Faculty of Biology, University of Szczecin, 3c Felczaka St., 71-412, Szczecin, Poland
| | - Marta Skórka-Majewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460, Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 72 Powst. Wlkp. St., 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 72 Powst. Wlkp. St., 70-111, Szczecin, Poland
| | - Karolina Dec
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460, Szczecin, Poland
| | - Daniel Styburski
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460, Szczecin, Poland
| | - Anna Nowakowska
- Centre for Human Structural and Functional Research, Faculty of Physical Education and Health Promotion, University of Szczecin, 17C Narutowicza St., 70-240, Szczecin, Poland
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 72 Powst. Wlkp. St., 70-111, Szczecin, Poland.
| |
Collapse
|
39
|
Molecular targets of fenofibrate in the cardiovascular-renal axis: A unifying perspective of its pleiotropic benefits. Pharmacol Res 2019; 144:132-141. [DOI: 10.1016/j.phrs.2019.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022]
|
40
|
Zhao ZB, Ji K, Shen XY, Zhang WW, Wang R, Xu WP, Wei W. Di(2-ethylhexyl) phthalate promotes hepatic fibrosis by regulation of oxidative stress and inflammation responses in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 68:109-119. [PMID: 30884453 DOI: 10.1016/j.etap.2019.03.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/01/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is an environmental pollutant that is widely used in medical and consumer products. An epidemiological study has suggested that a large daily intake of DEHP from phthalate-contaminated food may be a risk factor for liver dysfunction. Long-term exposure to DEHP is associated with liver disease and exacerbates the progression of chronic liver injury. However, the effect of DEHP on hepatic fibrosis is rarely studied. In the present study, we sought to determine the effect of DEHP on carbon tetrachloride (CCl4)-induced liver fibrosis, and to further examine the molecular mechanisms. We found that DEHP exposure remarkably promoted liver inflammation, necrosis and fibrosis, and increased expression of the protein associated with liver inflammation and fibrogenesis, including α-SMA, COL-Ⅰ, COL-Ⅲ, TGF-β1, P-Smad2, P-Smad3, P-p38 and P-p65. The similar trend was observed in the LX-2 cells. Furthermore, DEHP exposure induced oxidative stress and inflammatory cytokine production. Taken together, DEHP might play a fibrotic role in hepatic fibrosis rats and TGF-β1-stimulated LX-2 cells in vitro which was related to TGF-β1/Smad and p38MAPK/NF-κB signal pathway.
Collapse
Affiliation(s)
- Zong-Biao Zhao
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Ke Ji
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Xin-Yue Shen
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Wen-Wen Zhang
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Rui Wang
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Wei-Ping Xu
- Anhui Provincial Hospital, Hefei 230001, Anhui, China.
| | - Wei Wei
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China.
| |
Collapse
|
41
|
Kang H, Kim H, Lee S, Youn H, Youn B. Role of Metabolic Reprogramming in Epithelial⁻Mesenchymal Transition (EMT). Int J Mol Sci 2019; 20:ijms20082042. [PMID: 31027222 PMCID: PMC6514888 DOI: 10.3390/ijms20082042] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Activation of epithelial–mesenchymal transition (EMT) is thought to be an essential step for cancer metastasis. Tumor cells undergo EMT in response to a diverse range of extra- and intracellular stimulants. Recently, it was reported that metabolic shifts control EMT progression and induce tumor aggressiveness. In this review, we summarize the involvement of altered glucose, lipid, and amino acid metabolic enzyme expression and the underlying molecular mechanisms in EMT induction in tumor cells. Moreover, we propose that metabolic regulation through gene-specific or pharmacological inhibition may suppress EMT and this treatment strategy may be applied to prevent tumor progression and improve anti-tumor therapeutic efficacy. This review presents evidence for the importance of metabolic changes in tumor progression and emphasizes the need for further studies to better understand tumor metabolism.
Collapse
Affiliation(s)
- Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea.
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
42
|
Kang H, Kim S, Lee G, Lee I, Lee JP, Lee J, Park H, Moon HB, Park J, Kim S, Choi G, Choi K. Urinary metabolites of dibutyl phthalate and benzophenone-3 are potential chemical risk factors of chronic kidney function markers among healthy women. ENVIRONMENT INTERNATIONAL 2019; 124:354-360. [PMID: 30660848 DOI: 10.1016/j.envint.2019.01.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 05/26/2023]
Abstract
Chronic kidney disease (CKD) is a global health threat of growing concern. Recently, exposure to endocrine disrupting compounds (EDCs) such as phthalates and bisphenol A has been suggested as a risk factor for CKD. However, most epidemiological studies have focused on a limited number of urinary chemicals. This study aimed to identify chemical determinants of the urinary albumin-to-creatinine ratio (ACR), which is a kidney function marker, among multiple major EDCs including phthalate metabolites, bisphenols, and benzophenones in a Korean female population (20-45 years old, n = 441). First, the creatinine-adjusted urinary concentration of each urinary chemical was associated with ACR in a linear regression model (single-pollutant model). Then, compounds with a significant association with ACR in the single-pollutant model were added in a multi-pollutant model and evaluated for their association with ACR. Moreover, to prevent potential reverse causality due to impaired kidney function, quartile analyses were performed for the subjects with healthy renal function (ACR < 9.71 mg/g). In addition to creatinine adjustment, the statistical analysis was also conducted with specific gravity-adjusted concentrations of urinary chemicals, and the results were compared. Several compounds measured in the urine showed a significant association with ACR in the single-pollutant model. In the multi-pollutant model, however, only monobutyl phthalate and benzophenone-1, which are metabolites of dibutyl phthalate and benzophenone-3, respectively, showed significant positive associations. The association of these chemicals remained significant in a couple of the sensitivity analyses with a different adjustment of urine dilution and in a subpopulation with normal ACR. In conclusion, among dozens of urinary chemicals, monobutyl phthalate and benzophenone-1 consistently showed a strong association with urinary ACR. Confirmation of our observation in other human populations and experimental studies is warranted.
Collapse
Affiliation(s)
- Habyeong Kang
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Sunmi Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Gowoon Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Inae Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Hyunwoong Park
- Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, Republic of Korea
| | - Jeongim Park
- Department of Natural Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Sungkyoon Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Gyuyeon Choi
- Department of Obstetrics and Gynecology, College of Medicine, Soonchunhyang University, Seoul, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Chen J, Zhou X, Zhang H, Liu Y, Cao C, Dong R, Yuan Y, Wang M, Lu Y, Wu M, Li S, Chen B. Association between urinary concentration of phthalate metabolites and impaired renal function in Shanghai adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:149-162. [PMID: 30415034 DOI: 10.1016/j.envpol.2018.10.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/16/2018] [Accepted: 10/08/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Exposure to phthalates is reported to be associated with increased incidence of microalbuminuria and low-grade albuminuria in children and adolescents. However, this phenomenon of phthalate-related nephrotoxicity is unknown in adults. METHODS Urine samples of 1663 adults from the 2012 Shanghai Food Consumption Survey (SHFCS) were measured for 10 metabolites of 6 phthalates and for renal function parameters. Their associations were explored by linear and logistic regression models. RESULTS Multivariate linear regression analysis showed that all three renal function parameters (albumin-to-creatinine ratio (ACR), β2-microglobulin (B2M), and N-acetyl-β-d-glucosaminidase (NAG)) are positively associated with six metabolites, including mono-benzylphthalate (MBzP), mono-2-ethylhexylphthalate (MEHP), mono-2-ethyl-5-oxohexyphthalate (MEOHP), mono-2-ethyl-5-hydroxyhexylphthalate (MEHHP), mono-2-ethyl-5-carboxypentylphthalate (MECPP), and mono-2-carboxymethyl-hexyl phthalate (MCMHP) (P < 0.05). Logistic analysis showed that the prevalence of hyperALBuria, hyperB2Muria, hyperNAGuria, or potentially impaired renal function (PIRF) were positively associated with urinary levels of MBzP, MEOHP, and MECPP, respectively (P < 0.05). Co-exposure to identified risk metabolites monoethylphthalate (MEP), MBzP, MEHP, MEOHP, MECPP, MEHHP, and MCMHP increased the risk of having impaired renal function. CONCLUSION Certain metabolites of phthalates, including bis (2-ethylhexyl) phthalate (DEHP) and benzyle butyl phthalate (BBzP), were associated with impaired renal function in Shanghai adults.
Collapse
Affiliation(s)
- Jingsi Chen
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai, China.
| | - Xiaofeng Zhou
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai, China.
| | - Han Zhang
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai, China.
| | - Yueming Liu
- Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai, China.
| | - Chen Cao
- Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai, China.
| | - Ruihua Dong
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai, China.
| | - Yaqun Yuan
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai, China.
| | - Min Wang
- Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai, China.
| | - Yuanan Lu
- Environmental Health Laboratory, Department of Public Health, University of Hawaii at Manoa, Honolulu, USA.
| | - Min Wu
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai, China.
| | - Shuguang Li
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai, China.
| | - Bo Chen
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|