1
|
Yang H, Zhang J, Zhong Y, Wang L. 5-Aminolevulinic acid improves strawberry salt tolerance through a NO-H 2O 2 signaling circuit regulated by FaWRKY70 and FaWRKY40. J Adv Res 2024:S2090-1232(24)00609-X. [PMID: 39743212 DOI: 10.1016/j.jare.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
INTRODUCTION 5-Aminolevulinic acid (ALA) is an essential biosynthetic precursor of tetrapyrrole compounds, naturally occurring in all living organisms. It has also been suggested as a new plant growth regulator. Treatment with ALA promotes strawberry Na+ homeostasis under salt stress. Regulation of this process requires the signaling molecules nitric oxide (NO) and hydrogen peroxide (H2O2), but the specific signaling cascade and transcriptional regulatory mechanism have not previously been characterized. OBJECTIVES Our work focused on the dissection of the NO and H2O2 signaling cascade and transcriptional regulatory mechanism by which FaWRKY70-FaWRKY40 participated in ALA-improved Na+ homeostasis and salt tolerance of strawberry. METHODS It was preliminarily confirmed by transcriptome and RT-qPCR that FaWRKY40 and FaWRKY70 participated in ALA-induced salt tolerance of strawberry. Two WRKY transcription factors overexpressed in woodland strawberry as well as tobacco were used to identify the gene functions in salt tolerance. Yeast one-hybrid (Y1H), β-glucuronidase (GUS), dual luciferase reporter (DLR) and electrophoretic mobility shift assays (EMSA) were used to verify the interaction with the target gene. RESULTS ALA induced NO and H2O2 production, which formed a signaling circuit reciprocally regulated by FaNR1 and FaRbohD expression to coordinate Na+ homeostasis. FaWRKY40 was shown to act as a positive transcription factor in this pathway: FaWRKY40 overexpression improved salt tolerance in woodland strawberry and tobacco, whereas FaWRKY40 RNA interference increased plant salt injury. FaWRKY40 bound to the promoters of FaRbohD, FaNHX1, and FaSOS1 to promote root H2O2 generation and Na+ reallocation. Conversely, FaWRKY70, a negative WRKY transcription factor, was found to increase salt sensitivity by inhibiting expression of FvWRKY40, FvNR1, and FvHKT1. ALA inhibited FaWRKY70 but increased FaWRKY40 expression, coordinating the regulation of NO-H2O2 signaling and Na+ homeostasis when strawberry was stress by salinity. CONCLUSION ALA inhibits NaCl-stimulated FaWRYK70 expression, relieving the transcriptional inhibition of its downstream targets. The NO-H2O2 signaling circuit can then initiate mechanisms such as Na+ exclusion, vacuolar sequestration, and removal of Na+ from the xylem sap, limiting Na+ accumulation in the leaves and promoting Na+ homeostasis and plant salt tolerance.
Collapse
Affiliation(s)
- Hao Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 21095, China.
| | - Jianting Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 21095, China.
| | - Yan Zhong
- College of Horticulture, Nanjing Agricultural University, Nanjing 21095, China.
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 21095, China.
| |
Collapse
|
2
|
Song LY, Xu CQ, Zhang LD, Li J, Jiang LW, Ma DN, Guo ZJ, Wang Q, Wang XX, Zheng HL. Trehalose along with ABA promotes the salt tolerance of Avicennia marina by regulating Na + transport. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2349-2362. [PMID: 38981025 DOI: 10.1111/tpj.16921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Mangroves grow in tropical/subtropical intertidal habitats with extremely high salt tolerance. Trehalose and trehalose-6-phosphate (T6P) have an alleviating function against abiotic stress. However, the roles of trehalose in the salt tolerance of salt-secreting mangrove Avicennia marina is not documented. Here, we found that trehalose was significantly accumulated in A. marina under salt treatment. Furthermore, exogenous trehalose can enhance salt tolerance by promoting the Na+ efflux from leaf salt gland and root to reduce the Na+ content in root and leaf. Subsequently, eighteen trehalose-6-phosphate synthase (AmTPS) and 11 trehalose-6-phosphate phosphatase (AmTPP) genes were identified from A. marina genome. Abscisic acid (ABA) responsive elements were predicted in AmTPS and AmTPP promoters by cis-acting elements analysis. We further identified AmTPS9A, as an important positive regulator, that increased the salt tolerance of AmTPS9A-overexpressing Arabidopsis thaliana by altering the expressions of ion transport genes and mediating Na+ efflux from the roots of transgenic A. thaliana under NaCl treatments. In addition, we also found that ABA could promote the accumulation of trehalose, and the application of exogenous trehalose significantly promoted the biosynthesis of ABA in both roots and leaves of A. marina. Ultimately, we confirmed that AmABF2 directly binds to the AmTPS9A promoter in vitro and in vivo. Taken together, we speculated that there was a positive feedback loop between trehalose and ABA in regulating the salt tolerance of A. marina. These findings provide new understanding to the salt tolerance of A. marina in adapting to high saline environment at trehalose and ABA aspects.
Collapse
Affiliation(s)
- Ling-Yu Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Chao-Qun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Lu-Dan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
- Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030000, People's Republic of China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Li-Wei Jiang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, 450046, People's Republic of China
| | - Dong-Na Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Ze-Jun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Qian Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Xiu-Xiu Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| |
Collapse
|
3
|
El-Shazoly RM, Hamed HMA, El-Sayed MM. Individual or successiveseed priming with nitric oxide and calcium toward enhancing salt tolerance of wheat crop through early ROS detoxification and activation of antioxidant defense. BMC PLANT BIOLOGY 2024; 24:730. [PMID: 39085769 PMCID: PMC11290230 DOI: 10.1186/s12870-024-05390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
Despite the considerable efforts reported so far to enhance seed priming, novel ideas are still needed to be suggested to this sustainable sector of agri-seed industry. This could be the first study addressing the effect of nitric oxide (NO) under open field conditions. The impacts of seed redox-priming using sodium nitroprusside (SNP) and osmo-priming with calcium chloride (CaCl2), both applied individually or successively, were investigated under salinity stress conditions on wheat plants (Triticum aestivum L.). Various parameters, including water relations, growth, yield, photosynthetic pigments, and antioxidant activities (enzymatic and non-enzymatic), were recorded to assess the outcomes of these priming agents on mitigating the negative impacts of salinity stress on wheat plants. Water consumptive use (ETa) and irrigation water applied (IWA) decreased with seeds priming. Successive priming with SNP + CaCl2 induced the greatest values of crop water productivity (CWP), irrigation water productivity (IWP), seed index, grain yield and grain nitrogen content.Under salinity stress, the dry weight of plants was decreased. However, hydro-priming and successive chemical priming agents using combinations of calcium chloride and sodium nitroprusside (CaCl2 + SNP & SNP + CaCl2) preserved growth under salinity stress.Individual priming with sodium nitroprusside (SNP) and calcium chloride (CaCl2) resulted in the lowest recorded content of sodium in the shoot, with a value of 2 ppm. On the other hand, successive priming using CaCl2 + SNP or SNP + CaCl2 induced the contents of potassium in the shoot, with values of 40 ppm and 39 ppm, respectively. Malondialdehyde decreased in shoot significantly withapplicationof priming agents. Successive priming with CaCl2 + SNP induced the highest proline contents in shoot (6 µg/ g FW). The highest value of phenolics and total antioxidants contents in shoot were recorded under successive priming using CaCl2 + SNP and SNP + CaCl2.Priming agents improved the activities of ascorbate peroxidase and catalase enzymes. The successive priming improved water relations (ETa, IWA, CWP and IWP) and wheat growth and productivity under salinity stress more than individual priming treatments.
Collapse
Affiliation(s)
- Rasha M El-Shazoly
- Botany and Microbiology Department Faculty of Sciences, New Valley Univ, Al-Kharja, New Valley, 72511, Egypt.
| | - H M A Hamed
- Soils and Water Science Department, Faculty of Agriculture, Al-Azhar Univ, Assiut, Egypt
| | - Mahmoud M El-Sayed
- Soils and Water Science Department, Faculty of Agriculture, Al-Azhar Univ, Assiut, Egypt
| |
Collapse
|
4
|
Chen S, Geng X, Lou J, Huang D, Mao H, Lin X. Overexpression of a plasmalemma Na +/H + antiporter from the halophyte Nitraria sibirica enhances the salt tolerance of transgenic poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112061. [PMID: 38461863 DOI: 10.1016/j.plantsci.2024.112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
The plasmalemma Na+/H+ antiporter Salt Overly Sensitive 1 (SOS1) is responsible for the efflux of Na+ from the cytoplasm, an important determinant of salt resistance in plants. In this study, an ortholog of SOS1, referred to as NsSOS1, was cloned from Nitraria sibirica, a typical halophyte that grows in deserts and saline-alkaline land, and its expression and function in regulating the salt tolerance of forest trees were evaluated. The expression level of NsSOS1 was higher in leaves than in roots and stems of N. sibirica, and its expression was upregulated under salt stress. Histochemical staining showed that β-glucuronidase (GUS) driven by the NsSOS1 promoter was strongly induced by abiotic stresses and phytohormones including salt, drought, low temperature, gibberellin, and methyl jasmonate, suggesting that NsSOS1 is involved in the regulation of multiple signaling pathways. Transgenic 84 K poplar (Populus alba × P. glandulosa) overexpressing NsSOS1 showed improvements in survival rate, root biomass, plant height, relative water levels, chlorophyll and proline levels, and antioxidant enzyme activities versus non-transgenic poplar (NT) under salt stress. Transgenic poplars accumulated less Na+ and more K+ in roots, stems, and leaves, which had a lower Na+/K+ ratio compared to NT under salt stress. These results indicate that NsSOS1-mediated Na+ efflux confers salt tolerance to transgenic poplars, which show more efficient photosynthesis, better scavenging of reactive oxygen species, and improved osmotic adjustment under salt stress. Transcriptome analysis of transgenic poplars confirmed that NsSOS1 not only mediates Na+ efflux but is also involved in the regulation of multiple metabolic pathways. The results provide insight into the regulatory mechanisms of NsSOS1 and suggest that it could be used to improve the salt tolerance of forest trees.
Collapse
Affiliation(s)
- Shouye Chen
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry Education, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xin Geng
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry Education, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jing Lou
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry Education, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Duoman Huang
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry Education, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Huiping Mao
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry Education, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Xiaofei Lin
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry Education, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
5
|
Zhang Y, Yang H, Liu Y, Hou Q, Jian S, Deng S. Molecular cloning and characterization of a salt overly sensitive3 (SOS3) gene from the halophyte Pongamia. PLANT MOLECULAR BIOLOGY 2024; 114:57. [PMID: 38743266 DOI: 10.1007/s11103-024-01459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
A high concentration of sodium (Na+) is the primary stressor for plants in high salinity environments. The Salt Overly Sensitive (SOS) pathway is one of the best-studied signal transduction pathways, which confers plants the ability to export too much Na+ out of the cells or translocate the cytoplasmic Na+ into the vacuole. In this study, the Salt Overly Sensitive3 (MpSOS3) gene from Pongamia (Millettia pinnata Syn. Pongamia pinnata), a semi-mangrove, was isolated and characterized. The MpSOS3 protein has canonical EF-hand motifs conserved in other calcium-binding proteins and an N-myristoylation signature sequence. The MpSOS3 gene was significantly induced by salt stress, especially in Pongamia roots. Expression of the wild-type MpSOS3 but not the mutated nonmyristoylated MpSOS3-G2A could rescue the salt-hypersensitive phenotype of the Arabidopsis sos3-1 mutant, which suggested the N-myristoylation signature sequence of MpSOS3 was required for MpSOS3 function in plant salt tolerance. Heterologous expression of MpSOS3 in Arabidopsis accumulated less H2O2, superoxide anion radical (O2-), and malondialdehyde (MDA) than wild-type plants, which enhanced the salt tolerance of transgenic Arabidopsis plants. Under salt stress, MpSOS3 transgenic plants accumulated a lower content of Na+ and a higher content of K+ than wild-type plants, which maintained a better K+/Na+ ratio in transgenic plants. Moreover, no development and growth discrepancies were observed in the MpSOS3 heterologous overexpression plants compared to wild-type plants. Our results demonstrated that the MpSOS3 pathway confers a conservative salt-tolerant role and provided a foundation for further study of the SOS pathway in Pongamia.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany and Xiaoliang Research Station for Tropical Coastal Ecosystems, Chinese Academy of Sciences, Guangzhou, 510650, China
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, 341000, China
| | - Heng Yang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany and Xiaoliang Research Station for Tropical Coastal Ecosystems, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujuan Liu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany and Xiaoliang Research Station for Tropical Coastal Ecosystems, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiongzhao Hou
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany and Xiaoliang Research Station for Tropical Coastal Ecosystems, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuguang Jian
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shulin Deng
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany and Xiaoliang Research Station for Tropical Coastal Ecosystems, Chinese Academy of Sciences, Guangzhou, 510650, China.
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
6
|
Wu X, Li J, Song LY, Zeng LL, Guo ZJ, Ma DN, Wei MY, Zhang LD, Wang XX, Zheng HL. NADPH oxidase-dependent H 2O 2 production mediates salicylic acid-induced salt tolerance in mangrove plant Kandelia obovata by regulating Na +/K + and redox homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1119-1135. [PMID: 38308390 DOI: 10.1111/tpj.16660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Salicylic acid (SA) is known to enhance salt tolerance in plants. However, the mechanism of SA-mediated response to high salinity in halophyte remains unclear. Using electrophysiological and molecular biological methods, we investigated the role of SA in response to high salinity in mangrove species, Kandelia obovata, a typical halophyte. Exposure of K. obovata roots to high salinity resulted in a rapid increase in endogenous SA produced by phenylalanine ammonia lyase pathway. The application of exogenous SA improved the salt tolerance of K. obovata, which depended on the NADPH oxidase-mediated H2O2. Exogenous SA and H2O2 increased Na+ efflux and reduced K+ loss by regulating the transcription levels of Na+ and K+ transport-related genes, thus reducing the Na+/K+ ratio in the salt-treated K. obovata roots. In addition, exogenous SA-enhanced antioxidant enzyme activity and its transcripts, and the expressions of four genes related to AsA-GSH cycle as well, then alleviated oxidative damages in the salt-treated K. obovata roots. However, the above effects of SA could be reversed by diphenyleneiodonium chloride (the NADPH oxidase inhibitor) and paclobutrazol (a SA biosynthesis inhibitor). Collectively, our results demonstrated that SA-induced salt tolerance of K. obovata depends on NADPH oxidase-generated H2O2 that affects Na+/K+ and redox homeostasis in response to high salinity.
Collapse
Affiliation(s)
- Xuan Wu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Ling-Yu Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Lin-Lan Zeng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Ze-Jun Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Dong-Na Ma
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Ming-Yue Wei
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| | - Xiu-Xiu Wang
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, P.R. China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, P.R. China
| |
Collapse
|
7
|
Duan Y, Jiang L, Lei T, Ouyang K, Liu C, Zhao Z, Li Y, Yang L, Li J, Yi S, Gao S. Increasing Ca 2+ accumulation in salt glands under salt stress increases stronger selective secretion of Na + in Plumbago auriculata tetraploids. FRONTIERS IN PLANT SCIENCE 2024; 15:1376427. [PMID: 38685960 PMCID: PMC11056565 DOI: 10.3389/fpls.2024.1376427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Under salt stress, recretohalophyte Plumbago auriculata tetraploids enhance salt tolerance by increasing selective secretion of Na+ compared with that in diploids, although the mechanism is unclear. Using non-invasive micro-test technology, the effect of salt gland Ca2+ content on Na+ and K+ secretion were investigated in diploid and tetraploid P. auriculata under salt stress. Salt gland Ca2+ content and secretion rates of Na+ and K+ were higher in tetraploids than in diploids under salt stress. Addition of exogenous Ca2+ increased the Ca2+ content of the salt gland in diploids and is accompanied by an increase in the rate of Na+ and K+ secretion. With addition of a Ca2+ channel inhibitor, diploid salt glands retained large amounts of Ca2+, leading to higher Ca2+ content and Na+ secretion rate than those of tetraploids. Inhibiting H2O2 generation and H+-ATPase activity altered Na+ and K+ secretion rates in diploids and tetraploids under salt stress, indicating involvement in regulating Na+ and K+ secretion. Our results indicate that the increased Na+ secretion rate of salt gland in tetraploids under salt stress was associated with elevated Ca2+ content in salt gland.
Collapse
Affiliation(s)
- Yifan Duan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Liqiong Jiang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Keyu Ouyang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Cailei Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zi’an Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yirui Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lijuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jiani Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Shouli Yi
- College of Fine Art and Calligraphy, Sichuan Normal University, Chengdu, China
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Sharma G, Sharma N, Ohri P. Harmonizing hydrogen sulfide and nitric oxide: A duo defending plants against salinity stress. Nitric Oxide 2024; 144:1-10. [PMID: 38185242 DOI: 10.1016/j.niox.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 01/09/2024]
Abstract
In the face of escalating salinity stress challenges in agricultural systems, this review article delves into the harmonious partnership between hydrogen sulfide (H2S) and nitric oxide (NO) as they collectively act as formidable defenders of plants. Once considered as harmful pollutants, H2S and NO have emerged as pivotal gaseous signal molecules that profoundly influence various facets of plant life. Their roles span from enhancing seed germination to promoting overall growth and development. Moreover, these molecules play a crucial role in bolstering stress tolerance mechanisms and maintaining essential plant homeostasis. This review navigates through the intricate signaling pathways associated with H2S and NO, elucidating their synergistic effects in combating salinity stress. We explore their potential to enhance crop productivity, thereby ensuring food security in saline-affected regions. In an era marked by pressing environmental challenges, the manipulation of H2S and NO presents promising avenues for sustainable agriculture, offering a beacon of hope for the future of global food production.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
9
|
Chi BJ, Guo ZJ, Wei MY, Song SW, Zhong YH, Liu JW, Zhang YC, Li J, Xu CQ, Zhu XY, Zheng HL. Structural, developmental and functional analyses of leaf salt glands of mangrove recretohalophyte Aegiceras corniculatum. TREE PHYSIOLOGY 2024; 44:tpad123. [PMID: 37769324 DOI: 10.1093/treephys/tpad123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/27/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023]
Abstract
Salt secretion is an important strategy used by the mangrove plant Aegiceras corniculatum to adapt to the coastal intertidal environment. However, the structural, developmental and functional analyses on the leaf salt glands, particularly the salt secretion mechanism, are not well documented. In this study, we investigated the structural, developmental and degenerative characteristics and the salt secretion mechanisms of salt glands to further elucidate the mechanisms of salt tolerance of A. corniculatum. The results showed that the salt gland cells have a large number of mitochondria and vesicles, and plenty of plasmodesmata as well, while chloroplasts were found in the collecting cells. The salt glands developed early and began to differentiate at the leaf primordium stage. We observed and defined three stages of salt gland degradation for the first time in A. corniculatum, where the secretory cells gradually twisted and wrinkled inward and collapsed downward as the salt gland degeneration increased and the intensity of salt gland autofluorescence gradually diminished. In addition, we found that the salt secretion rate of the salt glands increased when the treated concentration of NaCl increased, reaching the maximum at 400 mM NaCl. The salt-secreting capacity of the salt glands of the adaxial epidermis is significantly greater than that of the abaxial epidermis. The real-time quantitative PCR results indicate that SAD2, TTG1, GL2 and RBR1 may be involved in regulating the development of the salt glands of A. corniculatum. Moreover, Na+/H+ antiporter, H+-ATPase, K+ channel and Cl- channel may play important roles in the salt secretion of salt glands. In sum mary, this study strengthens the understanding of the structural, developmental and degenerative patterns of salt glands and salt secretion mechanisms in mangrove recretohalophyte A. corniculatum, providing an important reference for further studies at the molecular level.
Collapse
Affiliation(s)
- Bing-Jie Chi
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China
| | - Ze-Jun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, 100 Daxue East Road, Nanning 530004, China
| | - Ming-Yue Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China
- School of Ecology, Resources and Environment, Dezhou University, Dezhou, Shandong 253000, China
| | - Shi-Wei Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China
| | - You-Hui Zhong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China
| | - Jing-Wen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China
| | - Yu-Chen Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China
| | - Chao-Qun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China
| | - Xue-Yi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiangan South Road, Xiangan district, Xiamen, Fujian 361102, P. R. China
| |
Collapse
|
10
|
Dawood MFA, Tahjib-Ul-Arif M, Sohag AAM, Abdel Latef AAH. Role of Acetic Acid and Nitric Oxide against Salinity and Lithium Stress in Canola ( Brassica napus L.). PLANTS (BASEL, SWITZERLAND) 2023; 13:51. [PMID: 38202358 PMCID: PMC10781170 DOI: 10.3390/plants13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
In this study, canola (Brassica napus L.) seedlings were treated with individual and combined salinity and lithium (Li) stress, with and without acetic acid (AA) or nitric acid (NO), to investigate their possible roles against these stresses. Salinity intensified Li-induced damage, and the principal component analysis revealed that this was primarily driven by increased oxidative stress, deregulation of sodium and potassium accumulation, and an imbalance in tissue water content. However, pretreatment with AA and NO prompted growth, re-established sodium and potassium homeostasis, and enhanced the defense system against oxidative and nitrosative damage by triggering the antioxidant capacity. Combined stress negatively impacted phenylalanine ammonia lyase activity, affecting flavonoids, carotenoids, and anthocyanin levels, which were then restored in canola plants primed with AA and NO. Additionally, AA and NO helped to maintain osmotic balance by increasing trehalose and proline levels and upregulating signaling molecules such as hydrogen sulfide, γ-aminobutyric acid, and salicylic acid. Both AA and NO improved Li detoxification by increasing phytochelatins and metallothioneins, and reducing glutathione contents. Comparatively, AA exerted more effective protection against the detrimental effects of combined stress than NO. Our findings offer novel perspectives on the impacts of combining salt and Li stress.
Collapse
Affiliation(s)
- Mona F. A. Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | | |
Collapse
|
11
|
Allagulova CR, Lubyanova AR, Avalbaev AM. Multiple Ways of Nitric Oxide Production in Plants and Its Functional Activity under Abiotic Stress Conditions. Int J Mol Sci 2023; 24:11637. [PMID: 37511393 PMCID: PMC10380521 DOI: 10.3390/ijms241411637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Nitric oxide (NO) is an endogenous signaling molecule that plays an important role in plant ontogenesis and responses to different stresses. The most widespread abiotic stress factors limiting significantly plant growth and crop yield are drought, salinity, hypo-, hyperthermia, and an excess of heavy metal (HM) ions. Data on the accumulation of endogenous NO under stress factors and on the alleviation of their negative effects under exogenous NO treatments indicate the perspectives of its practical application to improve stress resistance and plant productivity. This requires fundamental knowledge of the NO metabolism and the mechanisms of its biological action in plants. NO generation occurs in plants by two main alternative mechanisms: oxidative or reductive, in spontaneous or enzymatic reactions. NO participates in plant development by controlling the processes of seed germination, vegetative growth, morphogenesis, flower transition, fruit ripening, and senescence. Under stressful conditions, NO contributes to antioxidant protection, osmotic adjustment, normalization of water balance, regulation of cellular ion homeostasis, maintenance of photosynthetic reactions, and growth processes of plants. NO can exert regulative action by inducing posttranslational modifications (PTMs) of proteins changing the activity of different enzymes or transcriptional factors, modulating the expression of huge amounts of genes, including those related to stress tolerance. This review summarizes the current data concerning molecular mechanisms of NO production and its activity in plants during regulation of their life cycle and adaptation to drought, salinity, temperature stress, and HM ions.
Collapse
Affiliation(s)
- Chulpan R Allagulova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Alsu R Lubyanova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Azamat M Avalbaev
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia
| |
Collapse
|
12
|
Guo Z, Wei MY, Zhong YH, Wu X, Chi BJ, Li J, Li H, Zhang LD, Wang XX, Zhu XY, Zheng HL. Leaf sodium homeostasis controlled by salt gland is associated with salt tolerance in mangrove plant Avicennia marina. TREE PHYSIOLOGY 2023; 43:817-831. [PMID: 36611000 DOI: 10.1093/treephys/tpad002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/01/2023] [Indexed: 05/13/2023]
Abstract
Avicennia marina, a mangrove plant growing in coastal wetland habitats, is frequently affected by tidal salinity. To understand its salinity tolerance, the seedlings of A. marina were treated with 0, 200, 400 and 600 mM NaCl. We found the whole-plant dry weight and photosynthetic parameters increased at 200 mM NaCl but decreased over 400 mM NaCl. The maximum quantum yield of primary photochemistry (Fv/Fm) significantly decreased at 600 mM NaCl. Transmission electron microscopy observations showed high salinity caused the reduction in starch grain size, swelling of the thylakoids and separation of the granal stacks, and even destruction of the envelope. In addition, the dense protoplasm and abundant mitochondria in the secretory and stalk cells, and abundant plasmodesmata between salt gland cells were observed in the salt glands of the adaxial epidermis. At all salinities, Na+ content was higher in leaves than in stems and roots; however, Na+ content increased in the roots while it remained at a constant level in the leaves over 400 mM NaCl treatment, due to salt secretion from the salt glands. As a result, salt crystals on the leaf adaxial surface increased with salinity. On the other hand, salt treatment increased Na+ and K+ efflux and decreased H+ efflux from the salt glands by the non-invasive micro-test technology, although Na+ efflux reached the maximum at 400 mM NaCl. Further real-time quantitative PCR analysis indicated that the expression of Na+/H+ antiporter (SOS1 and NHX1), H+-ATPase (AHA1 and VHA-c1) and K+ channel (AKT1, HAK5 and GORK) were up-regulated, and only the only Na+ inward transporter (HKT1) was down-regulated in the salt glands enriched adaxial epidermis of the leaves under 400 mM NaCl treatment. In conclusion, salinity below 200 mM NaCl was beneficial to the growth of A. marina, and below 400 mM, the salt glands could excrete Na+ effectively, thus improving its salt tolerance.
Collapse
Affiliation(s)
- Zejun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| | - Ming-Yue Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
- School of Ecology, Resources and Environment, Dezhou University, 566 university Road West, Decheng District, Dezhou, Shandong 253000, China
| | - You-Hui Zhong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| | - Xuan Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| | - Bing-Jie Chi
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| | - Huan Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| | - Lu-Dan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| | - Xiu-Xiu Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| | - Xue-Yi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, South Xiangan Road, Xiangan District, Xiamen, Fujian 361102, China
| |
Collapse
|
13
|
Li H, Lv CT, Li YT, Gao GY, Meng YF, You YL, Tian Q, Liang KQ, Chen Y, Chen H, Xia C, Rui XY, Zheng HL, Wei MY. RNA-sequencing transcriptome analysis of Avicennia marina (Forsk.) Vierh. leaf epidermis defines tissue-specific transcriptional response to salinity treatment. Sci Rep 2023; 13:7614. [PMID: 37165000 PMCID: PMC10172313 DOI: 10.1038/s41598-023-34095-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Avicennia marina (Forsk.) Vierh. is a typical mangrove plant. Its epidermis contains salt glands, which can secrete excess salts onto the leaf surfaces, improving the salt tolerance of the plants. However, knowledge on the epidermis-specific transcriptional responses of A. marina to salinity treatment is lacking. Thus, physiological and transcriptomic techniques were applied to unravel the salt tolerance mechanism of A. marina. Our results showed that 400 mM NaCl significantly reduced the plant height, leaf area, leaf biomass and photosynthesis of A. marina. In addition, 1565 differentially expressed genes were identified, of which 634 and 931 were up- and down-regulated. Based on Kyoto Encyclopedia of Genes and Genomes metabolic pathway enrichment analysis, we demonstrated that decreased gene expression, especially that of OEE1, PQL2, FDX3, ATPC, GAPDH, PRK, FBP and RPE, could explain the inhibited photosynthesis caused by salt treatment. Furthermore, the ability of A. marina to cope with 400 mM NaCl treatment was dependent on appropriate hormone signalling and potential sulfur-containing metabolites, such as hydrogen sulfide and cysteine biosynthesis. Overall, the present study provides a theoretical basis for the adaption of A. marina to saline habitats and a reference for studying the salt tolerance mechanism of other mangrove plants.
Collapse
Affiliation(s)
- Huan Li
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Chao-Tian Lv
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Yun-Tao Li
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Guo-Yv Gao
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Ya-Fei Meng
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Yv-Le You
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Qi Tian
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Kun-Qi Liang
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Yu Chen
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Hao Chen
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Chao Xia
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Xiang-Yun Rui
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China.
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| | - Ming-Yue Wei
- School of Ecology, Resources and Environment, Dezhou University, DeZhou, Shandong, 253000, People's Republic of China.
| |
Collapse
|
14
|
Duan Y, Lei T, Li W, Jiang M, Zhao Z, Yu X, Li Y, Yang L, Li J, Gao S. Enhanced Na + and Cl - sequestration and secretion selectivity contribute to high salt tolerance in the tetraploid recretohalophyte Plumbago auriculata Lam. PLANTA 2023; 257:52. [PMID: 36757459 DOI: 10.1007/s00425-023-04082-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Enhanced secretion of Na+ and Cl- in leaf glands and leaf vacuolar sequestration of Na+ or root retention of Cl-, combined with K+ retention, contribute to the improved salt tolerance of tetraploid recretohalophyte P. auriculata. Salt stress is one of the major abiotic factors threatening plant growth and development, and polyploids generally exhibit higher salt stress resistance than diploids. In recretohalophytes, which secrete ions from the salt gland in leaf epidermal cells, the effects of polyploidization on ion homeostasis and secretion remain unknown. In this study, we compared the morphology, physiology, and ion homeostasis regulation of diploid and autotetraploid accessions of the recretohalophyte Plumbago auriculata Lam. after treatment with 300 mM NaCl for 0, 2, 4, 6, and 8 days. The results showed that salt stress altered the morphology, photosynthetic efficiency, and chloroplast structure of diploid P. auriculata to a greater extent than those of its tetraploid counterpart. Moreover, the contents of organic osmoregulatory substances (proline and soluble sugars) were significantly higher in the tetraploid than in the diploid, while those of H2O2 and malondialdehyde (MDA) were significantly lower. Analysis of ion homeostasis revealed that the tetraploid cytotype accumulated more Na+ in stems and leaves and more Cl- in roots but less K+ loss in roots compared with diploid P. auriculata. Additionally, the rate of Na+ and Cl- secretion from the leaf surface was higher, while that of K+, Mg2+, and Ca2+ secretion was lower in tetraploid plants. X-ray microanalysis of mesophyll cells revealed that Na+ mainly accumulated in different cellular compartments in the tetraploid (vacuole) and diploid (cytoplasm) plants. Our results suggest that polyploid recretohalophytes require the ability to sequester Na+ and Cl-(via accumulation in leaf cell vacuoles or unloading by roots) and selectively secrete these ions (through salt glands) together with the ability to prevent K+ loss (by roots). This mechanism required to maintain K+/Na+ homeostasis in polyploid recretohalophytes under high salinity provides new insights in the improved maintenance of ion homeostasis in polyploids under salt stress.
Collapse
Affiliation(s)
- Yifan Duan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenji Li
- Chongqing Industry Polytechnic College, Chongqing, 401120, China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zi'an Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yirui Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiani Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
15
|
Kumar D, Ohri P. Say "NO" to plant stresses: Unravelling the role of nitric oxide under abiotic and biotic stress. Nitric Oxide 2023; 130:36-57. [PMID: 36460229 DOI: 10.1016/j.niox.2022.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Nitric oxide (NO) is a diatomic gaseous molecule, which plays different roles in different strata of organisms. Discovered as a neurotransmitter in animals, NO has now gained a significant place in plant signaling cascade. NO regulates plant growth and several developmental processes including germination, root formation, stomatal movement, maturation and defense in plants. Due to its gaseous state, it is unchallenging for NO to reach different parts of cell and counterpoise antioxidant pool. Various abiotic and biotic stresses act on plants and affect their growth and development. NO plays a pivotal role in alleviating toxic effects caused by various stressors by modulating oxidative stress, antioxidant defense mechanism, metal transport and ion homeostasis. It also modulates the activity of some transcriptional factors during stress conditions in plants. Besides its role during stress conditions, interaction of NO with other signaling molecules such as other gasotransmitters (hydrogen sulfide), phytohormones (abscisic acid, salicylic acid, jasmonic acid, gibberellin, ethylene, brassinosteroids, cytokinins and auxin), ions, polyamines, etc. has been demonstrated. These interactions play vital role in alleviating plant stress by modulating defense mechanisms in plants. Taking all these aspects into consideration, the current review focuses on the role of NO and its interaction with other signaling molecules in regulating plant growth and development, particularly under stressed conditions.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
16
|
Wei MY, Li H, Zhang LD, Guo ZJ, Liu JY, Ding QS, Zhong YH, Li J, Ma DN, Zheng HL. Exogenous hydrogen sulfide mediates Na+ and K+ fluxes of salt gland in salt-secreting mangrove plant Avicennia marina. TREE PHYSIOLOGY 2022; 42:1812-1826. [PMID: 35412618 DOI: 10.1093/treephys/tpac042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/03/2022] [Indexed: 05/26/2023]
Abstract
Hydrogen sulfide (H2S), is a crucial biological player in plants. Here, we primarily explored the interaction between sodium hydrosulfide (NaHS, a H2S donor) and the fluxes of Na+ and K+ from the salt glands of mangrove species Avicennia marina (Forsk.) Vierh. with non-invasive micro-test technology (NMT) and quantitative real-time PCR (qRT-PCR) approaches under salinity treatments. The results showed that under 400-mM NaCl treatment, the addition of 200-μM NaHS markedly increased the quantity of salt crystals in the adaxial epidermis of A. marina leaves, accompanied by an increase in the K+/Na+ ratio. Meanwhile, the endogenous content of H2S was dramatically elevated in this process. The NMT result revealed that the Na+ efflux was increased from salt glands, whereas K+ efflux was decreased with NaHS application. On the contrary, the effects of NaHS were reversed by H2S scavenger hypotaurine (HT), and DL-propargylglycine (PAG), an inhibitor of cystathionine-γ-lyase (CES, a H2S synthase). Moreover, enzymic assay revealed that NaHS increased the activities of plasma membrane and tonoplast H+-ATPase. qRT-PCR analysis revealed that NaHS significantly increased the genes transcript levels of tonoplast Na+/H+ antiporter (NHX1), plasma membrane Na+/H+ antiporter (SOS1), plasma membrane H+-ATPase (AHA1) and tonoplast H+-ATPase subunit c (VHA-c1), while suppressed above-mentioned gene expressions by the application of HT and PAG. Overall, H2S promotes Na+ secretion from the salt glands of A. marina by up-regulating the plasma membrane and tonoplast Na+/H+ antiporter and H+-ATPase.
Collapse
Affiliation(s)
- Ming-Yue Wei
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Huan Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
- College of Food and Bio-engineering, Bengbu University, Caoshan Road, Bengbu, Anhui 233030, P.R. China
| | - Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Ze-Jun Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Ji-Yun Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Qian-Su Ding
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - You-Hui Zhong
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Dong-Na Ma
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
17
|
The Role of Nitric Oxide in Plant Responses to Salt Stress. Int J Mol Sci 2022; 23:ijms23116167. [PMID: 35682856 PMCID: PMC9181674 DOI: 10.3390/ijms23116167] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
The gas nitric oxide (NO) plays an important role in several biological processes in plants, including growth, development, and biotic/abiotic stress responses. Salinity has received increasing attention from scientists as an abiotic stressor that can seriously harm plant growth and crop yields. Under saline conditions, plants produce NO, which can alleviate salt-induced damage. Here, we summarize NO synthesis during salt stress and describe how NO is involved in alleviating salt stress effects through different strategies, including interactions with various other signaling molecules and plant hormones. Finally, future directions for research on the role of NO in plant salt tolerance are discussed. This summary will serve as a reference for researchers studying NO in plants.
Collapse
|
18
|
Nizam A, Meera SP, Kumar A. Genetic and molecular mechanisms underlying mangrove adaptations to intertidal environments. iScience 2022; 25:103547. [PMID: 34988398 PMCID: PMC8693430 DOI: 10.1016/j.isci.2021.103547] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mangroves are halophytic plants belonging to diverse angiosperm families that are adapted to highly stressful intertidal zones between land and sea. They are special, unique, and one of the most productive ecosystems that play enormous ecological roles and provide a large number of benefits to the coastal communities. To thrive under highly stressful conditions, mangroves have innovated several key morphological, anatomical, and physio-biochemical adaptations. The evolution of the unique adaptive modifications might have resulted from a host of genetic and molecular changes and to date we know little about the nature of these genetic and molecular changes. Although slow, new information has accumulated over the last few decades on the genetic and molecular regulation of the mangrove adaptations, a comprehensive review on it is not yet available. This review provides up-to-date consolidated information on the genetic, epigenetic, and molecular regulation of mangrove adaptive traits.
Collapse
Affiliation(s)
- Ashifa Nizam
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Suraj Prasannakumari Meera
- Department of Biotechnology and Microbiology, Dr. Janaki Ammal Campus, Kannur University, Palayad, Kerala 670661, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| |
Collapse
|
19
|
Lana LG, de Araújo LM, Silva TF, Modolo LV. Interplay between gasotransmitters and potassium is a K +ey factor during plant response to abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:322-332. [PMID: 34837865 DOI: 10.1016/j.plaphy.2021.11.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/15/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Carbon monoxide (CO), nitric oxide (NO) and hydrogen sulfide (H2S) are gasotransmitters known for their roles in plant response to (a)biotic stresses. The crosstalk between these gasotransmitters and potassium ions (K+) has received considerable attention in recent years, particularly due to the dual role of K+ as an essential mineral nutrient and a promoter of plant tolerance to abiotic stress. This review brings together what it is known about the interplay among NO, CO, H2S and K+ in plants with focus on the response to high salinity. Some findings obtained for plants under water deficit and metal stress are also presented and discussed since both abiotic stresses share similarities with salt stress. The molecular targets of the gasotransmitters NO, CO and H2S in root and guard cells that drive plant tolerance to salt stress are highlighted as well.
Collapse
Affiliation(s)
- Luísa Gouveia Lana
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Lara Matos de Araújo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Thamara Ferreira Silva
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luzia Valentina Modolo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
20
|
Feng X, Li G, Xu S, Wu W, Chen Q, Shao S, Liu M, Wang N, Zhong C, He Z, Shi S. Genomic insights into molecular adaptation to intertidal environments in the mangrove Aegiceras corniculatum. THE NEW PHYTOLOGIST 2021; 231:2346-2358. [PMID: 34115401 DOI: 10.1111/nph.17551] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Mangroves have colonised extreme intertidal environments characterised by high salinity, hypoxia and other abiotic stresses. Aegiceras corniculatum, a pioneer mangrove species that has evolved two specialised adaptive traits (salt secretion and crypto-vivipary) is an attractive ecological model to investigate molecular mechanisms underlying adaptation to intertidal environments. We assembled de novo a high-quality reference genome of A. corniculatum and performed comparative genomic and transcriptomic analyses to investigate molecular mechanisms underlying adaptation to intertidal environments. We provide evidence that A. corniculatum experienced a whole-genome duplication (WGD) event c. 35 Ma. We infer that maintenance of cellular environmental homeostasis is an important adaptive process in A. corniculatum. The 14-3-3 and H+ -ATPase protein-coding genes, essential for the salt homeostasis, were preferentially retained after the recent WGD event. Using comparative transcriptomics, we show that genes upregulated under high-salt conditions are involved in salt transport and ROS scavenging. We also found that all homologues of DELAY OF GERMINATION1 (DOG1) had lost their heme-binding ability in A. corniculatum, and that this may contribute to crypto-vivipary. Our study provides insight into the genomic correlates of phenotypic adaptation to intertidal environments. This could contribute not only within the genomics community, but also to the field of plant evolution.
Collapse
Affiliation(s)
- Xiao Feng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guohong Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weihong Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qipian Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shao Shao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Min Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Nan Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
21
|
Coopman RE, Nguyen HT, Mencuccini M, Oliveira RS, Sack L, Lovelock CE, Ball MC. Harvesting water from unsaturated atmospheres: deliquescence of salt secreted onto leaf surfaces drives reverse sap flow in a dominant arid climate mangrove, Avicennia marina. THE NEW PHYTOLOGIST 2021; 231:1401-1414. [PMID: 33983649 DOI: 10.1111/nph.17461] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The mangrove Avicennia marina adjusts internal salt concentrations by foliar salt secretion. Deliquescence of accumulated salt causes leaf wetting that may provide a water source for salt-secreting plants in arid coastal wetlands where high nocturnal humidity can usually support deliquescence whereas rainfall events are rare. We tested the hypotheses that salt deliquescence on leaf surfaces can drive top-down rehydration, and that such absorption of moisture from unsaturated atmospheres makes a functional contribution to dry season shoot water balances. Sap flow and water relations were monitored to assess the uptake of atmospheric water by branches during shoot wetting events under natural and manipulated microclimatic conditions. Reverse sap flow rates increased with increasing relative humidity from 70% to 89%, consistent with function of salt deliquescence in harvesting moisture from unsaturated atmospheres. Top-down rehydration elevated branch water potentials above those possible from root water uptake, subsidising transpiration rates and reducing branch vulnerability to hydraulic failure in the subsequent photoperiod. Absorption of atmospheric moisture harvested through deliquescence of salt on leaf surfaces enhances water balances of Avicennia marina growing in hypersaline wetlands under arid climatic conditions. Top-down rehydration from these frequent, low intensity wetting events contributes to prevention of carbon starvation and hydraulic failure during drought.
Collapse
Affiliation(s)
- Rafael E Coopman
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
- Ecophysiology Laboratory for Forest Conservation, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Campus Isla Teja, Casilla 567, Valdivia, Chile
| | - Hoa T Nguyen
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
- Department of Botany, Faculty of Agronomy, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, 131000, Vietnam
| | - Maurizio Mencuccini
- CREAF, Universidad Autonoma de Barcelona, Cerdanyola del Valles 08193, Barcelona, Spain
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, CP6109, Brazil
| | - Lawren Sack
- Department of Ecology and Evolution, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Catherine E Lovelock
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
22
|
Tang X, Zhang H, Shabala S, Li H, Yang X, Zhang H. Tissue tolerance mechanisms conferring salinity tolerance in a halophytic perennial species Nitraria sibirica Pall. TREE PHYSIOLOGY 2021; 41:1264-1277. [PMID: 33367891 DOI: 10.1093/treephys/tpaa174] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Plant salt tolerance relies on a coordinated functioning of different tissues and organs. Salinity tissue tolerance is one of the key traits that confer plant adaptation to saline environment. This trait implies maintenance low cytosolic Na+/K+ ratio in metabolically active cellular compartments. In this study, we used Nitraria sibirica Pall., a perennial woody halophyte species, to understand the mechanistic basis of its salinity tissue tolerance. The results showed that the growth of seedlings was stimulated by 100-200 mM NaCl treatment. The ions distribution analysis showed that the leaves act as an Na+ sink, while the plant roots possess superior K+ retention. The excessive Na+ absorbed from the soil was mainly transported to the shoot and was eventuallysequestrated into mesophyll vacuoles in the leaves. As a result, N. sibirica could keep the optimal balance of K+/Na+ at a tissue- and cell-specific level under saline condition. To enable this, N. sibirica increased both vacuolar H+-ATPase and H+-PPase enzymes activities and up-regulated the expressions of NsVHA, NsVP1 and NsNHX1 genes. Vacuolar Na+ sequestration in the leaf mesophyll, mediated by NsVHA, NsVP1 and NsNHX1, reduced the Na+ concentration in cytosol and inhibited further K+ loss. Meanwhile, N. sibirica enhanced the Two Pore K+ expression at the transcriptional level to promote K+ efflux from vacuole into cytoplasm, assisting in maintaining cytosolic K+ homeostasis. It is concluded that the tissue tolerance traits such as vacuolar Na+ sequestration and intracellular K+ homeostasis are critical to confer adaptation of N. sibirica to soil salinity.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Research Center of Saline and Alkali Land of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 10091, China
| | - Huilong Zhang
- Research Center of Saline and Alkali Land of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 10091, China
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan Guangdong 528000, China
| | - Huanyong Li
- Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Xiuyan Yang
- Research Center of Saline and Alkali Land of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 10091, China
| | - Huaxin Zhang
- Research Center of Saline and Alkali Land of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 10091, China
| |
Collapse
|
23
|
Huang D, Huo J, Liao W. Hydrogen sulfide: Roles in plant abiotic stress response and crosstalk with other signals. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110733. [PMID: 33288031 DOI: 10.1016/j.plantsci.2020.110733] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 05/27/2023]
Abstract
Hydrogen sulfide (H2S) has been recently recognized as an endogenous gas transmitter alongside nitric oxide and carbon monoxide. Exposure of plants to H2S, for example through applicating H2S donors, reveals that H2S play important roles in plant response to abiotic stresses such as heavy metals, salinity, drought and extreme temperatures. Sodium hydrosulfide is the most widely used donor in plants due to its direct and instantaneous release of H2S, followed by GYY4137. H2S can enhance plant tolerance to salt and heavy metal stresses through regulating Na+/K+ homeostasis and the uptake and transport of metal ions. H2S also promotes the H2S-Cys cycle balance under abiotic stress and enhances its roles in regulation of the antioxidant system, alternative respiratory pathway, and heavy metal chelators synthesis. H2S coordinates with gaseous signal molecules, reactive oxygen species and nitric oxide to respond to stress directly through influencing their generation or competing for the regulation of the downstream signaling. Moreover, H2S interacts with phytohormones including abscisic acid, ethylene, salicylic acid and melatonin as well as polyamines to regulate plant response to abiotic stresses. In this review, the application of H2S donors and their functional mechanism are summarized. We propose promising new research directions, which can lead to new insights on the role of this gastrasmitter during plant growth and development.
Collapse
Affiliation(s)
- Dengjing Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianqiang Huo
- Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
24
|
Cheng H, Inyang A, Li CD, Fei J, Zhou YW, Wang YS. Salt tolerance and exclusion in the mangrove plant Avicennia marina in relation to root apoplastic barriers. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:676-683. [PMID: 32291617 DOI: 10.1007/s10646-020-02203-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Salt tolerance and the possible functions of suberization on salt exclusion and secretion were examined in a dominant mangrove plant, Avicennia marina. The results showed that low salinities (10‰ and 20‰) almost has no negative effect on A. marina, however significant growth inhibitions were observed in the seedlings grown in higher salinities (30‰ and 40‰). With the increases of salinity, increased tissue Na+ content and enhanced salt secretion by glands were observed. Obvious suberization thickening were detected both in the exodermis and endodermis of the roots after salt pretreatment when compared to the roots without salt treatment. More importantly, the present data further confirmed that these root apoplastic barriers would directly decrease Na+ loading into xylem. Higher salt tolerance was observed in the seedlings pre-cultivated by salty tide when compared to fresh water cultivated A. marina. In summary, this study suggests a barrier property of suberization in dealing with salt exclusion in mangroves, a moderate salt pre-treatment may benefit plant withstanding high salinity.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China
| | - Anifiok Inyang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Chang-Da Li
- Marine and fisheries Development Research Center, Dongtou District, Wenzhou, 325009, China
| | - Jiao Fei
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China
| | - Yan-Wu Zhou
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
25
|
Guo J, Dong X, Li Y, Wang B. NaCl treatment markedly enhanced pollen viability and pollen preservation time of euhalophyte Suaeda salsa via up regulation of pollen development-related genes. JOURNAL OF PLANT RESEARCH 2020; 133:57-71. [PMID: 31654246 DOI: 10.1007/s10265-019-01148-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 10/02/2019] [Indexed: 05/27/2023]
Abstract
Vegetable growth of halophytes has significantly increased through moderate salinity. However, little is known about the reproductive traits of euhalophytes. Male reproduction is pivotal for fertilization and seed production and sensitive to abiotic stressors. The pollen viability and pollen longevity of Suaeda salsa treated with 0 and 200 mM of NaCl were evaluated. It was revealed that the pollen size of S. salsa treated with NaCl was significantly bigger than that in controls. Furthermore, the pollen viability of S. salsa plants treated with NaCl was also significantly higher than that of control after 8 h of the pollens were collected (from 10 to 27 h). The pollen viability of NaCl-treated plants in the field could be maintained for 8 h (from 07:00 to 15:00) in sunny days, which was 1 h longer than that of control plants (from 07:00 to 14:00). Meanwhile, the pollen preservation time of NaCl-treated plants was 16 h at room temperature, which was 8 h longer than that of control plants. Genes related to pollen development, such as SsPRK3, SsPRK4, and SsLRX, exhibited high expression in the flowers of NaCl-treated plants. This indicated that NaCl markedly improved the pollen viability and preservation time via the increased expression of pollen development-related genes, and this benefits the population establishment of halophytes such as S. salsa in saline regions.
Collapse
Affiliation(s)
- Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Xinxiu Dong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Ying Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China.
| |
Collapse
|
26
|
Effects of Salt on Root Aeration, Nitrification, and Nitrogen Uptake in Mangroves. FORESTS 2019. [DOI: 10.3390/f10121131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The potential effects of salt on the growth, root anatomy, radial oxygen loss (ROL), and nitrogen (N) dynamics in mangroves were investigated using the seedlings of Avicennia marina (Forsk.) Vierh. The results showed that a moderate salinity (200 mM NaCl) appeared to have little negative effect on the growth of A. marina. However, higher salt stresses (400 and 600 mM NaCl) significantly inhibited the biomass yield. Concentrations of N in the roots and leaves decreased sharply with increasing salinity. Nevertheless, the presence of salt directly altered root anatomy (e.g., reduced root porosity and promoted suberization within the exodermis and endodermis), leading to a significant reduction in ROL. The results further showed that reduced ROL induced by salt could restrain soil nitrification, resulting in less ammonia-oxidizing archaea and bacteria (AOA and AOB) gene copies and lower concentrations of NO3− in the soils. While increased root suberization induced by salt inhibited NH4+ and NO3− uptake and influx into the roots. In summary, this study indicated that inhibited root aeration may be a defense response to salt, however these root symptoms were not advantageous for rhizosphere nitrification and N uptake by A. marina.
Collapse
|
27
|
Campos FV, Oliveira JA, Pereira MG, Farnese FS. Nitric oxide and phytohormone interactions in the response of Lactuca sativa to salinity stress. PLANTA 2019; 250:1475-1489. [PMID: 31327043 DOI: 10.1007/s00425-019-03236-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/06/2019] [Indexed: 05/26/2023]
Abstract
MAIN CONCLUSION Nitric oxide increased lettuce's tolerance to salinity by restoring its hormonal balance, consequently reducing Na + accumulation and activating defense mechanisms that allowed the attenuation of ionic, oxidative, and osmotic stresses. Agricultural crops are continually threatened by soil salinity. The plant's ability to tolerate soil salinity can be increased by treatment with the signaling molecule nitric oxide (NO). Involvement of NO in plant metabolism and its interactions with phytohormones have not been fully described, so knowledge about the role of this radical in signaling pathways remains fragmented. In this work, Lactuca sativa (lettuce) plants were subjected to four treatments: (1) control (nutrient solution); (2) SNP [nutrient solution containing 70 μM sodium nitroprusside (SNP), an NO donor]; (3) NaCl (nutrient solution containing 80 mM NaCl); or (4) SNP + NaCl (nutrient solution containing SNP and NaCl). The plants were exposed to these conditions for 24 h, and then, the roots and leaves were collected and used to evaluate biochemical parameters (reactive oxygen species (ROS) production, cell membrane damage, cell death, antioxidant enzymes activities, and proline concentration), physiological parameters (pigments' concentration and gas-exchange measurements), and phytohormone content. To evaluate growth, tolerance index, and nutrient concentration, the plants were exposed to the treatments for 3 days. L sativa exposure to NaCl triggered ionic, osmotic, and oxidative stress, which resulted in hormone imbalance, cell death, and decreased growth. These deleterious changes were correlated with Na+ content in the vegetative tissues. Adding NO decreased Na+ accumulation and stabilized the mineral nutrient concentration, which maintained the photosynthetic rate and re-established growth. NO-signaling action also re-established the phytohormones balance and resulted in antioxidant system activation and osmotic regulation, with consequent increase in plants tolerance to the salt.
Collapse
Affiliation(s)
- Fernanda V Campos
- Instituto Federal Fluminense/Campus Avançado São João da Barra, São João da Barra, RJ, 28200-00, Brazil
| | - Juraci A Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil.
| | - Mayara G Pereira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Fernanda S Farnese
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, 75.901-970, Brazil
| |
Collapse
|
28
|
Sánchez-Vicente I, Fernández-Espinosa MG, Lorenzo O. Nitric oxide molecular targets: reprogramming plant development upon stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4441-4460. [PMID: 31327004 PMCID: PMC6736187 DOI: 10.1093/jxb/erz339] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/18/2019] [Indexed: 05/09/2023]
Abstract
Plants are sessile organisms that need to complete their life cycle by the integration of different abiotic and biotic environmental signals, tailoring developmental cues and defense concomitantly. Commonly, stress responses are detrimental to plant growth and, despite the fact that intensive efforts have been made to understand both plant development and defense separately, most of the molecular basis of this trade-off remains elusive. To cope with such a diverse range of processes, plants have developed several strategies including the precise balance of key plant growth and stress regulators [i.e. phytohormones, reactive nitrogen species (RNS), and reactive oxygen species (ROS)]. Among RNS, nitric oxide (NO) is a ubiquitous gasotransmitter involved in redox homeostasis that regulates specific checkpoints to control the switch between development and stress, mainly by post-translational protein modifications comprising S-nitrosation of cysteine residues and metals, and nitration of tyrosine residues. In this review, we have sought to compile those known NO molecular targets able to balance the crossroads between plant development and stress, with special emphasis on the metabolism, perception, and signaling of the phytohormones abscisic acid and salicylic acid during abiotic and biotic stress responses.
Collapse
Affiliation(s)
- Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - María Guadalupe Fernández-Espinosa
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
- Correspondence:
| |
Collapse
|
29
|
Yuan F, Xu Y, Leng B, Wang B. Beneficial Effects of Salt on Halophyte Growth: Morphology, Cells, and Genes. Open Life Sci 2019; 14:191-200. [PMID: 33817151 PMCID: PMC7874760 DOI: 10.1515/biol-2019-0021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/26/2018] [Indexed: 11/17/2022] Open
Abstract
Halophytes can survive and complete their life cycle in the presence of ≥200 mM NaCl. These remarkable plants have developed various strategies to tolerate salinity and thrive in high-salt environments. At the appropriate levels, salt has a beneficial effect on the vegetative growth of halophytes but inhibits the growth of non-halophytes. In recent years, many studies have focused on elucidating the salt-tolerance mechanisms of halophytes at the molecular, physiological, and individual level. In this review, we focus on the mechanisms, from the macroscopic to the molecular, underlying the successful growth of halophytes in saline environments to explain why salt has beneficial effects on halophytes but harmful effects on non-halophytes. These mechanisms include the specialized organs of halophytes (for example, ion compartmentalization in succulent leaves), their unique structures (salt glands and hydrophobic barriers in roots), and their salt-tolerance genes. We hope to shed light on the use of halophytes for engineering salt-tolerant crops, soil conservation, and the protection of freshwater resources in the near future.
Collapse
Affiliation(s)
- Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, 250014, P.R. China
| | - Yanyu Xu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, 250014, P.R. China
| | - Bingying Leng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, 250014, P.R. China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, 250014, P.R. China
| |
Collapse
|
30
|
Shen ZJ, Chen J, Ghoto K, Hu WJ, Gao GF, Luo MR, Li Z, Simon M, Zhu XY, Zheng HL. Proteomic analysis on mangrove plant Avicennia marina leaves reveals nitric oxide enhances the salt tolerance by up-regulating photosynthetic and energy metabolic protein expression. TREE PHYSIOLOGY 2018; 38:1605-1622. [PMID: 29917117 DOI: 10.1093/treephys/tpy058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/01/2018] [Indexed: 05/25/2023]
Affiliation(s)
- Zhi-jun Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Juan Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, PR China
| | - Kabir Ghoto
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Wen-jun Hu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| | - Gui-feng Gao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Mei-rong Luo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Zan Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Martin Simon
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Xue-yi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| | - Hai-lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, PR China
| |
Collapse
|
31
|
Yuan F, Liang X, Li Y, Yin S, Wang B. Methyl jasmonate improves tolerance to high salt stress in the recretohalophyte Limonium bicolor. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 46:82-92. [PMID: 30939260 DOI: 10.1071/fp18120] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 08/29/2018] [Indexed: 05/20/2023]
Abstract
Limonium bicolor is a typical recretohalophyte with salt glands in the epidermis, which shows maximal growth at moderate salt concentrations (100mM NaCl) but reduced growth in the presence of excess salt (more than 200mM). Jasmonic acid (JA) alleviates the reduced growth of L. bicolor under salt stress; however, the underlying mechanism is unknown. In this study we investigated the effects of exogenous methyl jasmonate (MeJA) application on L. bicolor growth at high NaCl concentrations. We found that treatment with 300mM NaCl led to dramatic inhibition of seedling growth that was significantly alleviated by the application of 0.03mM MeJA, resulting in a biomass close to that of plants not subjected to salt stress. To determine the parameters that correlate with MeJA-induced salt tolerance (assessed as the biomass production in saline and control conditions), we measured 14 physiological parameters relating to ion contents, plasma membrane permeability, photosynthetic parameters, salt gland density, and salt secretion. We identified a correlation between individual indicators and salt tolerance: the most positively correlated indicator was net photosynthetic rate, and the most negatively correlated one was relative electrical conductivity. These findings provide insights into a possible mechanism underlying MeJA-mediated salt stress alleviation.
Collapse
Affiliation(s)
- Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, PR China
| | - Xue Liang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, PR China
| | - Ying Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, PR China
| | - Shanshan Yin
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, PR China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, PR China
| |
Collapse
|
32
|
Measuring Spatial and Temporal Oxygen Flux Near Plant Tissues Using a Self-Referencing Optrode. Methods Mol Biol 2017. [PMID: 28871551 DOI: 10.1007/978-1-4939-7292-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Self-referencing optrodic microsensing is a noninvasive method for measuring oxygen transport into/from tissues. The sensing mechanism is based on fluorescence quenching by molecular oxygen at the tip of a fiber-optic probe, and facilitates microscale spatial mapping and continuous monitoring at 100-350 mHz sampling frequency. Over the last decade, this technique has been applied for plant tissues, including roots, seeds, leaves, and flowers in both liquid and air. Here, we describe the operating principle of self-referencing optrodic microsensing for the study of plant tissues with a specific focus on juvenile roots.
Collapse
|
33
|
Lang T, Deng S, Zhao N, Deng C, Zhang Y, Zhang Y, Zhang H, Sa G, Yao J, Wu C, Wu Y, Deng Q, Lin S, Xia J, Chen S. Salt-Sensitive Signaling Networks in the Mediation of K +/Na + Homeostasis Gene Expression in Glycyrrhiza uralensis Roots. FRONTIERS IN PLANT SCIENCE 2017; 8:1403. [PMID: 28855912 PMCID: PMC5558103 DOI: 10.3389/fpls.2017.01403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/27/2017] [Indexed: 05/20/2023]
Abstract
We investigated the effects of salt-sensitive signaling molecules on ionic fluxes and gene expression related to K+/Na+ homeostasis in a perennial herb, Glycyrrhiza uralensis, during short-term NaCl stress (100 mM, 24 h). Salt treatment caused more pronounced Na+ accumulation in root cells than in leaf cells. Na+ ions were mostly compartmentalized in vacuoles. Roots exposed to NaCl showed increased levels of extracellular ATP (eATP), cytosolic Ca2+, H2O2, and NO. Steady-state flux recordings revealed that these salt-sensitive signaling molecules enhanced NaCl-responsive Na+ efflux, due to the activated Na+/H+ antiport system in the plasma membrane (PM). Moreover, salt-elicited K+ efflux, which was mediated by depolarization-activated cation channels, was reduced with the addition of Ca2+, H2O2, NO, and eATP. The salt-adaptive effects of these molecules (Na+ extrusion and K+ maintenance) were reduced by pharmacological agents, including LaCl3 (a PM Ca2+ channel inhibitor), DMTU (a reactive oxygen species scavenger), cPTIO (an NO scavenger), or PPADS (an antagonist of animal PM purine P2 receptors). RT-qPCR data showed that the activation of the PM Na+/H+ antiport system in salinized roots most likely resulted from the upregulation of two genes, GuSOS1 and GuAHA, which encoded the PM Na+/H+ antiporter, salt overly sensitive 1 (SOS1), and H+-ATPase, respectively. Clear interactions occurred between these salt-sensitive agonists to accelerate transcription of salt-responsive signaling pathway genes in G. uralensis roots. For example, Ca2+, H2O2, NO, and eATP promoted transcription of GuSOS3 (salt overly sensitive 3) and/or GuCIPK (CBL-interacting protein kinase) to activate the predominant Ca2+-SOS signaling pathway in salinized liquorice roots. eATP, a novel player in the salt response of G. uralensis, increased the transcription of GuSOS3, GuCIPK, GuRbohD (respiratory burst oxidase homolog protein D), GuNIR (nitrate reductase), GuMAPK3, and GuMAPK6 (the mitogen-activated protein kinases 3 and 6). Moreover, GuMAPK3 and GuMAPK6 expression levels were enhanced by H2O2 in NaCl-stressed G. uralensis roots. Our results indicated that eATP triggered downstream components and interacted with Ca2+, H2O2, and NO signaling to maintain K+/Na+ homeostasis. We propose that a multiple signaling network regulated K+/Na+ homeostasis in NaCl-stressed G. uralensis roots.
Collapse
Affiliation(s)
- Tao Lang
- College of Life and Environmental Sciences, Minzu University of ChinaBeijing, China
| | - Shurong Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- State Key Laboratory of Tree Genetics and Breeding, The Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Nan Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Chen Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Yinan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Yanli Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Huilong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Gang Sa
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Jun Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Caiwu Wu
- College of Resource and Environmental Sciences, Hebei Normal University for NationalitiesChengde, China
| | - Yanhong Wu
- College of Life and Environmental Sciences, Minzu University of ChinaBeijing, China
| | - Qun Deng
- College of Life and Environmental Sciences, Minzu University of ChinaBeijing, China
| | - Shanzhi Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Jianxin Xia
- College of Life and Environmental Sciences, Minzu University of ChinaBeijing, China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| |
Collapse
|
34
|
Marriboina S, Sengupta D, Kumar S, Reddy AR. Physiological and molecular insights into the high salinity tolerance of Pongamia pinnata (L.) pierre, a potential biofuel tree species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:102-111. [PMID: 28330553 DOI: 10.1016/j.plantsci.2017.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 05/23/2023]
Abstract
Soil salinity is gradually becoming a threat to the global economy by affecting agricultural productivity worldwide. Here, we analyze the salinity tolerance of Pongamia pinnata with an insight into the underlying physiological and molecular responses. Despite a reduction in net photosynthetic rate, P. pinnata efficiently maintained its leaf water potentials even at 500mM NaCl for 15days and displayed no visible stress symptoms. Na+ localization analysis using CoroNa-Green AM revealed effective Na+ sequestration in the roots when compared to leaves. Elemental analysis demonstrated that roots accumulated more of Na+ while K+ content was higher in leaves. At the molecular level, salt stress significantly induced the expression levels of salt overly sensitive1 (SOS1), SOS2, SOS3, high affinity K+ transporter (HKT1), ABA biosynthetic and receptor genes (NCED and PYL4), guaiacol peroxidase (POD) exclusively in roots while tonoplast localized Na+/H+ exchanger (NHX1) was significantly enhanced in leaves. Our results clearly demonstrate that leaves and roots of Pongamia exhibit differential responses under salt stress although roots are more efficient in sequestering the Na+ ions. The present study provides crucial inputs for understanding salt tolerance in a tree species which can be further utilized for developing salt tolerance in higher plants.
Collapse
Affiliation(s)
- Sureshbabu Marriboina
- Photosynthesis and Stress Biology Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Debashree Sengupta
- Photosynthesis and Stress Biology Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Sumit Kumar
- Photosynthesis and Stress Biology Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Attipalli R Reddy
- Photosynthesis and Stress Biology Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
35
|
Peng Z, He S, Sun J, Pan Z, Gong W, Lu Y, Du X. Na + compartmentalization related to salinity stress tolerance in upland cotton (Gossypium hirsutum) seedlings. Sci Rep 2016; 6:34548. [PMID: 27698468 PMCID: PMC5048304 DOI: 10.1038/srep34548] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/15/2016] [Indexed: 11/15/2022] Open
Abstract
The capacity for ion compartmentalization among different tissues and cells is the key mechanism regulating salt tolerance in plants. In this study, we investigated the ion compartmentalization capacity of two upland cotton genotypes with different salt tolerances under salt shock at the tissue, cell and molecular levels. We found that the leaf glandular trichome could secrete more salt ions in the salt-tolerant genotype than in the sensitive genotype, demonstrating the excretion of ions from tissue may be a new mechanism to respond to short-term salt shock. Furthermore, an investigation of the ion distribution demonstrated that the ion content was significantly lower in critical tissues and cells of the salt-tolerant genotype, indicating the salt-tolerant genotype had a greater capacity for ion compartmentalization in the shoot. By comparing the membrane H+-ATPase activity and the expression of ion transportation-related genes, we found that the H+-ATPase activity and Na+/H+ antiporter are the key factors determining the capacity for ion compartmentalization in leaves, which might further determine the salt tolerance of cotton. The novel function of the glandular trichome and the comparison of Na+ compartmentalization between two cotton genotypes with contrasting salt tolerances provide a new understanding of the salt tolerance mechanism in cotton.
Collapse
Affiliation(s)
- Zhen Peng
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000 China.,Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in the Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan 611130 China
| | - Shoupu He
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000 China
| | - Junling Sun
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000 China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000 China
| | - Wenfang Gong
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000 China
| | - Yanli Lu
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in the Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan 611130 China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000 China
| |
Collapse
|
36
|
Pandolfi C, Azzarello E, Mancuso S, Shabala S. Acclimation improves salt stress tolerance in Zea mays plants. JOURNAL OF PLANT PHYSIOLOGY 2016; 201:1-8. [PMID: 27372277 DOI: 10.1016/j.jplph.2016.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 06/06/2023]
Abstract
Plants exposure to low level salinity activates an array of processes leading to an improvement of plant stress tolerance. Although the beneficial effect of acclimation was demonstrated in many herbaceous species, underlying mechanisms behind this phenomenon remain poorly understood. In the present study we have addressed this issue by investigating ionic mechanisms underlying the process of plant acclimation to salinity stress in Zea mays. Effect of acclimation were examined in two parallel sets of experiments: a growth experiment for agronomic assessments, sap analysis, stomatal conductance, chlorophyll content, and confocal laser scanning imaging; and a lab experiment for in vivo ion flux measurements from root tissues. Being exposed to salinity, acclimated plants (1) retain more K(+) but accumulate less Na(+) in roots; (2) have better vacuolar Na(+) sequestration ability in leaves and thus are capable of accumulating larger amounts of Na(+) in the shoot without having any detrimental effect on leaf photochemistry; and (3) rely more on Na(+) for osmotic adjustment in the shoot. At the same time, acclimation affect was not related in increased root Na(+) exclusion ability. It appears that even in a such salt-sensitive species as maize, Na(+) exclusion from uptake is of a much less importance compared with the efficient vacuolar Na(+) sequestration in the shoot.
Collapse
Affiliation(s)
- Camilla Pandolfi
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia; Department of Agrifood and Environmental Science, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, FI, Italy.
| | - Elisa Azzarello
- Department of Agrifood and Environmental Science, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, FI, Italy
| | - Stefano Mancuso
- Department of Agrifood and Environmental Science, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, FI, Italy
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| |
Collapse
|
37
|
Yuan F, Leng B, Wang B. Progress in Studying Salt Secretion from the Salt Glands in Recretohalophytes: How Do Plants Secrete Salt? FRONTIERS IN PLANT SCIENCE 2016; 7:977. [PMID: 27446195 PMCID: PMC4927796 DOI: 10.3389/fpls.2016.00977] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 06/20/2016] [Indexed: 05/18/2023]
Abstract
To survive in a saline environment, halophytes have evolved many strategies to resist salt stress. The salt glands of recretohalophytes are exceptional features for directly secreting salt out of a plant. Knowledge of the pathway(s) of salt secretion in relation to the function of salt glands may help us to change the salt-tolerance of crops and to cultivate the extensive saline lands that are available. Recently, ultrastructural studies of salt glands and the mechanism of salt secretion, particularly the candidate genes involved in salt secretion, have been illustrated in detail. In this review, we summarize current researches on salt gland structure, salt secretion mechanism and candidate genes involved, and provide an overview of the salt secretion pathway and the asymmetric ion transport of the salt gland. A new model recretohalophyte is also proposed.
Collapse
Affiliation(s)
| | | | - Baoshan Wang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal UniversityJi’nan, China
| |
Collapse
|
38
|
Simontacchi M, Galatro A, Ramos-Artuso F, Santa-María GE. Plant Survival in a Changing Environment: The Role of Nitric Oxide in Plant Responses to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:977. [PMID: 26617619 PMCID: PMC4637419 DOI: 10.3389/fpls.2015.00977] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/26/2015] [Indexed: 05/20/2023]
Abstract
Nitric oxide in plants may originate endogenously or come from surrounding atmosphere and soil. Interestingly, this gaseous free radical is far from having a constant level and varies greatly among tissues depending on a given plant's ontogeny and environmental fluctuations. Proper plant growth, vegetative development, and reproduction require the integration of plant hormonal activity with the antioxidant network, as well as the maintenance of concentration of reactive oxygen and nitrogen species within a narrow range. Plants are frequently faced with abiotic stress conditions such as low nutrient availability, salinity, drought, high ultraviolet (UV) radiation and extreme temperatures, which can influence developmental processes and lead to growth restriction making adaptive responses the plant's priority. The ability of plants to respond and survive under environmental-stress conditions involves sensing and signaling events where nitric oxide becomes a critical component mediating hormonal actions, interacting with reactive oxygen species, and modulating gene expression and protein activity. This review focuses on the current knowledge of the role of nitric oxide in adaptive plant responses to some specific abiotic stress conditions, particularly low mineral nutrient supply, drought, salinity and high UV-B radiation.
Collapse
Affiliation(s)
- Marcela Simontacchi
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata–Consejo Nacional de Investigaciones Científicas y TécnicasLa Plata, Argentina
| | - Andrea Galatro
- Physical Chemistry – Institute for Biochemistry and Molecular Medicine, Faculty of Pharmacy and Biochemistry, University of Buenos Aires–Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Facundo Ramos-Artuso
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata–Consejo Nacional de Investigaciones Científicas y TécnicasLa Plata, Argentina
| | - Guillermo E. Santa-María
- Instituto Tecnológico Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de San MartínChascomús, Argentina
| |
Collapse
|
39
|
Chen J, Liu X, Wang C, Yin SS, Li XL, Hu WJ, Simon M, Shen ZJ, Xiao Q, Chu CC, Peng XX, Zheng HL. Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. JOURNAL OF HAZARDOUS MATERIALS 2015; 297:173-82. [PMID: 25958266 DOI: 10.1016/j.jhazmat.2015.04.077] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 05/07/2023]
Abstract
Nitric oxide (NO) has been found to function in enhancing plant tolerance to various environmental stresses. However, role of NO in relieving zinc oxide nanoparticles (ZnO NPs)-induced phytotoxicity remains unknown. Here, sodium nitroprusside (SNP, a NO donor) was used to investigate the possible roles and the regulatory mechanisms of NO in counteracting ZnO NPs toxicity in rice seedlings. Our results showed that 10 μM SNP significantly inhibited the appearance of ZnO NP toxicity symptoms. SNP addition significantly reduced Zn accumulation, reactive oxygen species production and lipid peroxidation caused by ZnO NPs. The protective role of SNP in reducing ZnO NPs-induced oxidative damage is closely related to NO-mediated antioxidant system. A decrease in superoxide dismutase activity, as well as an increase in reduced glutathione content and peroxidase, catalase and ascorbate peroxidase activity was observed under SNP and ZnO NPs combined treatments, compared to ZnO NPs treatment alone. The relative transcript abundance of corresponding antioxidant genes exhibited a similar change. The role of NO in enhancing ZnO NPs tolerance was further confirmed by genetic analysis using a NO excess mutant (noe1) and an OsNOA1-silenced plant (noa1) of rice. Together, this study provides the first evidence indicating that NO functions in ameliorating ZnO NPs-induced phytotoxicity.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiang Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Chao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shan-Shan Yin
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiu-Ling Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Wen-Jun Hu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China; Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, China
| | - Martin Simon
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhi-Jun Shen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Qiang Xiao
- Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei Institutes for Nationalities, Enshi, Hubei 445000, China
| | - Cheng-Cai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin-Xiang Peng
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
40
|
Krishnamurthy P, Tan XF, Lim TK, Lim TM, Kumar PP, Loh CS, Lin Q. Proteomic analysis of plasma membrane and tonoplast from the leaves of mangrove plant Avicennia officinalis. Proteomics 2015; 14:2545-57. [PMID: 25236605 DOI: 10.1002/pmic.201300527] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 07/15/2014] [Accepted: 09/15/2014] [Indexed: 12/29/2022]
Abstract
In order to understand the salt tolerance and secretion in mangrove plant species, gel electrophoresis coupled with LC-MS-based proteomics was used to identify key transport proteins in the plasma membrane (PM) and tonoplast fractions of Avicennia officinalis leaves. PM and tonoplast proteins were purified using two-aqueous-phase partitioning and density gradient centrifugation, respectively. Forty of the 254 PM proteins and 31 of the 165 tonoplast proteins identified were predicted to have transmembrane domains. About 95% of the identified proteins could be classified based on their functions. The major classes of proteins were predicted to be involved in transport, metabolic processes, defense/stress response, and signal transduction, while a few of the proteins were predicted to be involved in other functions such as membrane trafficking. The main classes of transporter proteins identified included H(+) -ATPases, ATP-binding cassette transporters, and aquaporins, all of which could play a role in salt secretion. These data will serve as the baseline membrane proteomic dataset for Avicennia species. Further, this information can contribute to future studies on understanding the mechanism of salt tolerance in halophytes in addition to salt secretion in mangroves. All MS data have been deposited in the ProteomeXchange with identifier PXD000837 (http://proteomecentral.proteomexchange.org/dataset/PXD000837).
Collapse
Affiliation(s)
- Pannaga Krishnamurthy
- Department of Biological Sciences, National University of Singapore, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
41
|
Polle A, Chen S. On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats. PLANT, CELL & ENVIRONMENT 2015; 38:1794-816. [PMID: 25159181 DOI: 10.1111/pce.12440] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 08/11/2014] [Accepted: 08/17/2014] [Indexed: 05/04/2023]
Abstract
Saline and sodic soils that cannot be used for agriculture occur worldwide. Cultivating stress-tolerant trees to obtain biomass from salinized areas has been suggested. Various tree species of economic importance for fruit, fibre and timber production exhibit high salinity tolerance. Little is known about the mechanisms enabling tree crops to cope with high salinity for extended periods. Here, the molecular, physiological and anatomical adjustments underlying salt tolerance in glycophytic and halophytic model tree species, such as Populus euphratica in terrestrial habitats, and mangrove species along coastlines are reviewed. Key mechanisms that have been identified as mediating salt tolerance are discussed at scales from the genetic to the morphological level, including leaf succulence and structural adjustments of wood anatomy. The genetic and transcriptomic bases for physiological salt acclimation are salt sensing and signalling networks that activate target genes; the target genes keep reactive oxygen species under control, maintain the ion balance and restore water status. Evolutionary adaptation includes gene duplication in these pathways. Strategies for and limitations to tree improvement, particularly transgenic approaches for increasing salt tolerance by transforming trees with single and multiple candidate genes, are discussed.
Collapse
Affiliation(s)
- Andrea Polle
- Forstbotanik und Baumphysiologie, Büsgen-Institut, Georg-August Universität Göttingen, Göttingen, 37077, Germany
| | - Shaoliang Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
42
|
Tan WK, Ang Y, Lim TK, Lim TM, Kumar P, Loh CS, Lin Q. Proteome profile of salt gland-rich epidermis extracted from a salt-tolerant tree species. Electrophoresis 2015; 36:2473-81. [PMID: 26105009 DOI: 10.1002/elps.201500023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 04/16/2015] [Accepted: 05/29/2015] [Indexed: 11/06/2022]
Abstract
Preparation of proteins from salt-gland-rich tissues of mangrove plant is necessary for a systematic study of proteins involved in the plant's unique desalination mechanism. Extraction of high-quality proteins from the leaves of mangrove tree species, however, is difficult due to the presence of high levels of endogenous phenolic compounds. In our study, preparation of proteins from only a part of the leaf tissues (i.e. salt gland-rich epidermal layers) was required, rendering extraction even more challenging. By comparing several extraction methods, we developed a reliable procedure for obtaining proteins from salt gland-rich tissues of the mangrove species Avicennia officinalis. Protein extraction was markedly improved using a phenol-based extraction method. Greater resolution 1D protein gel profiles could be obtained. More promising proteome profiles could be obtained through 1D-LC-MS/MS. The number of proteins detected was twice as much as compared to TUTS extraction method. Focusing on proteins that were solely present in each extraction method, phenol-based extracts contained nearly ten times more proteins than those in the extracts without using phenol. The approach could thus be applied for downstream high-throughput proteomic analyses involving LC-MS/MS or equivalent. The proteomics data presented herein are available via ProteomeXchange with identifier PXD001691.
Collapse
Affiliation(s)
- Wee-Kee Tan
- Department of Biological Sciences, National University of Singapore, Singapore.,NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Yiqian Ang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Teck-Kwang Lim
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Tit-Meng Lim
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Prakash Kumar
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Chiang-Shiong Loh
- Department of Biological Sciences, National University of Singapore, Singapore.,NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore.,NUS Environmental Research Institute, National University of Singapore, Singapore
| |
Collapse
|
43
|
Chen J, Wang WH, Wu FH, He EM, Liu X, Shangguan ZP, Zheng HL. Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots. Sci Rep 2015; 5:12516. [PMID: 26213372 PMCID: PMC4515593 DOI: 10.1038/srep12516] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/29/2015] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) are emerging as messenger molecules involved in the modulation of plant physiological processes. Here, we investigated a signalling network involving H2S and NO in salt tolerance pathway of barley. NaHS, a donor of H2S, at a low concentration of either 50 or 100 μM, had significant rescue effects on the 150 mM NaCl-induced inhibition of plant growth and modulated the K(+)/Na(+) balance by decreasing the net K(+) efflux and increasing the gene expression of an inward-rectifying potassium channel (HvAKT1) and a high-affinity K(+) uptake system (HvHAK4). H2S and NO maintained the lower Na(+) content in the cytoplast by increasing the amount of PM H(+)-ATPase, the transcriptional levels of PM H(+)-ATPase (HvHA1) and Na(+)/H(+) antiporter (HvSOS1). H2S and NO modulated Na(+) compartmentation into the vacuoles with up-regulation of the transcriptional levels of vacuolar Na(+)/H(+) antiporter (HvVNHX2) and H(+)-ATPase subunit β (HvVHA-β) and increased in the protein expression of vacuolar Na(+)/H(+) antiporter (NHE1). H2S mimicked the effect of sodium nitroprusside (SNP) by increasing NO production, whereas the function was quenched with the addition of NO scavenger. These results indicated that H2S increased salt tolerance by maintaining ion homeostasis, which were mediated by the NO signal.
Collapse
Affiliation(s)
- Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Wen-Hua Wang
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany; Xiamen, Fujian 361006, P.R. China
| | - Fei-Hua Wu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, P.R. China
| | - En-Ming He
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany; Xiamen, Fujian 361006, P.R. China
| | - Xiang Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Zhou-Ping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
44
|
Tan WK, Lim TK, Loh CS, Kumar P, Lin Q. Proteomic Characterisation of the Salt Gland-Enriched Tissues of the Mangrove Tree Species Avicennia officinalis. PLoS One 2015; 10:e0133386. [PMID: 26193361 PMCID: PMC4508094 DOI: 10.1371/journal.pone.0133386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/26/2015] [Indexed: 11/26/2022] Open
Abstract
Plant salt glands are nature’s desalination devices that harbour potentially useful information pertaining to salt and water transport during secretion. As part of the program toward deciphering secretion mechanisms in salt glands, we used shotgun proteomics to compare the protein profiles of salt gland-enriched (isolated epidermal peels) and salt gland-deprived (mesophyll) tissues of the mangrove species Avicennia officinalis. The purpose of the work is to identify proteins that are present in the salt gland-enriched tissues. An average of 2189 and 977 proteins were identified from the epidermal peel and mesophyll tissues, respectively. Among these, 2188 proteins were identified in salt gland-enriched tissues and a total of 1032 selected proteins were categorized by Gene Ontology (GO) analysis. This paper reports for the first time the proteomic analysis of salt gland-enriched tissues of a mangrove tree species. Candidate proteins that may play a role in the desalination process of the mangrove salt glands and their potential localization were identified. Information obtained from this study paves the way for future proteomic research aiming at elucidating the molecular mechanism underlying secretion in plant salt glands. The data have been deposited to the ProteomeXchange with identifier PXD000771.
Collapse
Affiliation(s)
- Wee-Kee Tan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Singapore, 117543
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, T-Lab, #02–01, Singapore, Singapore, 117411
| | - Teck-Kwang Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Singapore, 117543
| | - Chiang-Shiong Loh
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Singapore, 117543
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, T-Lab, #02–01, Singapore, Singapore, 117411
| | - Prakash Kumar
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Singapore, 117543
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Singapore, 117543
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, T-Lab, #02–01, Singapore, Singapore, 117411
- * E-mail:
| |
Collapse
|
45
|
Nitric oxide in marine photosynthetic organisms. Nitric Oxide 2015; 47:34-9. [PMID: 25795592 DOI: 10.1016/j.niox.2015.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 12/22/2022]
Abstract
Nitric oxide is a versatile and powerful signaling molecule in plants. However, most of our understanding stems from studies on terrestrial plants and very little is known about marine autotrophs. This review summarizes current knowledge about the source of nitric oxide synthesis in marine photosynthetic organisms and its role in various physiological processes under normal and stress conditions. The interactions of nitric oxide with other stress signals and cross talk among secondary messengers are also highlighted.
Collapse
|
46
|
Jyothi-Prakash PA, Mohanty B, Wijaya E, Lim TM, Lin Q, Loh CS, Kumar PP. Identification of salt gland-associated genes and characterization of a dehydrin from the salt secretor mangrove Avicennia officinalis. BMC PLANT BIOLOGY 2014; 14:291. [PMID: 25404140 PMCID: PMC4247641 DOI: 10.1186/s12870-014-0291-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/15/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND Salt stress is a major challenge for growth and development of plants. The mangrove tree Avicennia officinalis has evolved salt tolerance mechanisms such as salt secretion through specialized glands on its leaves. Although a number of structural studies on salt glands have been done, the molecular mechanism of salt secretion is not clearly understood. Also, studies to identify salt gland-specific genes in mangroves have been scarce. RESULTS By subtractive hybridization (SH) of cDNA from salt gland-rich cell layers (tester) with mesophyll tissues as the driver, several Expressed Sequence Tags (ESTs) were identified. The major classes of ESTs identified include those known to be involved in regulating metabolic processes (37%), stress response (17%), transcription (17%), signal transduction (17%) and transport functions (12%). A visual interactive map generated based on predicted functional gene interactions of the identified ESTs suggested altered activities of hydrolase, transmembrane transport and kinases. Quantitative Real-Time PCR (qRT-PCR) was carried out to validate the expression specificity of the ESTs identified by SH. A Dehydrin gene was chosen for further experimental analysis, because it is significantly highly expressed in salt gland cells, and dehydrins are known to be involved in stress remediation in other plants. Full-length Avicennia officinalis Dehydrin1 (AoDHN1) cDNA was obtained by Rapid Amplification of cDNA Ends. Phylogenetic analysis and further characterization of this gene suggested that AoDHN1 belongs to group II Late Embryogenesis Abundant proteins. qRT-PCR analysis of Avicennia showed up-regulation of AoDHN1 in response to salt and drought treatments. Furthermore, some functional insights were obtained by growing E. coli cells expressing AoDHN1. Growth of E. coli cells expressing AoDHN1 was significantly higher than that of the control cells without AoDHN1 under salinity and drought stresses, suggesting that the mangrove dehydrin protein helps to mitigate the abiotic stresses. CONCLUSIONS Thirty-four ESTs were identified to be enriched in salt gland-rich tissues of A. officinalis leaves. qRT-PCR analysis showed that 10 of these were specifically enriched in the salt gland-rich tissues. Our data suggest that one of the selected genes, namely, AoDHN1 plays an important role to mitigate salt and drought stress responses.
Collapse
Affiliation(s)
- Pavithra A Jyothi-Prakash
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
- />NUS Environmental Research Institute (NERI), National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore, Republic of Singapore
| | - Bijayalaxmi Mohanty
- />Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Edward Wijaya
- />IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871 Japan
| | - Tit-Meng Lim
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
| | - Qingsong Lin
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
| | - Chiang-Shiong Loh
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
- />NUS Environmental Research Institute (NERI), National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore, Republic of Singapore
| | - Prakash P Kumar
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
- />Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, Republic of Singapore
| |
Collapse
|
47
|
Nitric oxide negatively regulates AKT1-mediated potassium uptake through modulating vitamin B6 homeostasis in Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:16196-201. [PMID: 25355908 DOI: 10.1073/pnas.1417473111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO), an active signaling molecule in plants, is involved in numerous physiological processes and adaptive responses to environmental stresses. Under high-salt conditions, plants accumulate NO quickly, and reorganize Na(+) and K(+) contents. However, the molecular connection between NO and ion homeostasis is largely unknown. Here, we report that NO lowers K(+) channel AKT1-mediated plant K(+) uptake by modulating vitamin B6 biosynthesis. In a screen for Arabidopsis NO-hypersensitive mutants, we isolated sno1 (sensitive to nitric oxide 1), which is allelic to the previously noted mutant sos4 (salt overly sensitive 4) that has impaired Na(+) and K(+) contents and overproduces pyridoxal 5'-phosphate (PLP), an active form of vitamin B6. We showed that NO increased PLP and decreased K(+) levels in plant. NO induced SNO1 gene expression and enzyme activity, indicating that NO-triggered PLP accumulation mainly occurs through SNO1-mediated vitamin B6 salvage biosynthetic pathway. Furthermore, we demonstrated that PLP significantly repressed the activity of K(+) channel AKT1 in the Xenopus oocyte system and Arabidopsis root protoplasts. Together, our results suggest that NO decreases K(+) absorption by promoting the synthesis of vitamin B6 PLP, which further represses the activity of K(+) channel AKT1 in Arabidopsis. These findings reveal a previously unidentified pivotal role of NO in modulating the homeostasis of vitamin B6 and potassium nutrition in plants, and shed light on the mechanism of NO in plant acclimation to environmental changes.
Collapse
|
48
|
Kim DY, Hong MJ, Seo YW. Role of wheat trHb in nitric oxide scavenging. Mol Biol Rep 2014; 41:5931-41. [DOI: 10.1007/s11033-014-3468-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 06/14/2014] [Indexed: 12/21/2022]
|
49
|
Xu J, Tian X, Egrinya Eneji A, Li Z. Functional characterization of GhAKT1, a novel Shaker-like K⁺ channel gene involved in K⁺ uptake from cotton (Gossypium hirsutum). Gene 2014; 545:61-71. [PMID: 24802116 DOI: 10.1016/j.gene.2014.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/16/2014] [Accepted: 05/02/2014] [Indexed: 10/25/2022]
Abstract
Shaker-like potassium (K(+)) channels in plants play an important role in K(+) absorption and transport. In this study, we characterized a Shaker-like K(+) channel gene GhAKT1 from the roots of Gossypium hirsutum cv. Liaomian17. Phylogenetic analysis showed that the GhAKT1 belongs to the AKT1-subfamily in the Shaker-like K(+) channel family. Confocal imaging of a GhAKT1-green fluorescent fusion protein (GFP) in transgenic Arabidopsis plants indicated that GhAKT1 is localized in the plasma membrane. Transcript analysis located GhAKT1 predominantly in cotton leaves with low abundance in roots, stem and shoot apex. Similarly, β-glucuronidase (GUS) activity was detected in both leaves and roots of PGhAKT1::GUS transgenic Arabidopsis plants. In roots, the GUS signals appeared in the epidermis, cortex and endodermis and root hairs, suggesting the contribution of GhAKT1 to K(+) uptake. In leaves, GhAKT1 was expressed in differentiated leaf primordial as well as mesophyll cells and veins of expanded leaves, pointing to its involvement in cell elongation and K(+) transport and distribution in leaves. Severe K(+) deficiency did not affect the expression of GhAKT1 gene. GhAKT1-overexpression in either the Arabidopsis wild-type or akt1 mutant enhanced the growth of transgenic seedlings under low K(+) deficiency and raised the net K(+) influx in roots at 100μM external K(+) concentration, within the range of operation of the high-affinity K(+) uptake system. The application of 2mM BaCl2 resulted in net K(+) efflux in roots, and eliminated the differences between GhAKT1-overexpression lines and their acceptors indicating that the K(+) uptake mediated by GhAKT1 is also as Ba(2+)-sensitive as AtAKT1.
Collapse
Affiliation(s)
- Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Agronomy, China Agricultural University, Beijing 100193, China
| | - Xiaoli Tian
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Agronomy, China Agricultural University, Beijing 100193, China.
| | - A Egrinya Eneji
- Department of Soil Science, Faculty of Agriculture, Forestry and Wildlife Resources Management, University of Calabar, Nigeria
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Agronomy, China Agricultural University, Beijing 100193, China
| |
Collapse
|
50
|
Monreal JA, Arias-Baldrich C, Tossi V, Feria AB, Rubio-Casal A, García-Mata C, Lamattina L, García-Mauriño S. Nitric oxide regulation of leaf phosphoenolpyruvate carboxylase-kinase activity: implication in sorghum responses to salinity. PLANTA 2013; 238:859-69. [PMID: 23913013 DOI: 10.1007/s00425-013-1933-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/17/2013] [Indexed: 05/05/2023]
Abstract
Nitric oxide (NO) is a signaling molecule that mediates many plant responses to biotic and abiotic stresses, including salt stress. Interestingly, salinity increases NO production selectively in mesophyll cells of sorghum leaves, where photosynthetic C₄ phosphoenolpyruvate carboxylase (C₄ PEPCase) is located. PEPCase is regulated by a phosphoenolpyruvate carboxylase-kinase (PEPCase-k), which levels are greatly enhanced by salinity in sorghum. This work investigated whether NO is involved in this effect. NO donors (SNP, SNAP), the inhibitor of NO synthesis NNA, and the NO scavenger cPTIO were used for long- and short-term treatments. Long-term treatments had multifaceted consequences on both PPCK gene expression and PEPCase-k activity, and they also decreased photosynthetic gas-exchange parameters and plant growth. Nonetheless, it could be observed that SNP increased PEPCase-k activity, resembling salinity effect. Short-term treatments with NO donors, which did not change photosynthetic gas-exchange parameters and PPCK gene expression, increased PEPCase-k activity both in illuminated leaves and in leaves kept at dark. At least in part, these effects were independent on protein synthesis. PEPCase-k activity was not decreased by short-term treatment with cycloheximide in NaCl-treated plants; on the contrary, it was decreased by cPTIO. In summary, NO donors mimicked salt effect on PEPCase-k activity, and scavenging of NO abolished it. Collectively, these results indicate that NO is involved in the complex control of PEPCase-k activity, and it may mediate some of the plant responses to salinity.
Collapse
Affiliation(s)
- José A Monreal
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | | | | | | | | | | | | | | |
Collapse
|