1
|
Nardini A, Cochard H, Mayr S. Talk is cheap: rediscovering sounds made by plants. TRENDS IN PLANT SCIENCE 2024; 29:662-667. [PMID: 38218649 DOI: 10.1016/j.tplants.2023.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 01/15/2024]
Abstract
A recent study and related commentaries have raised new interest in the phenomenon of ultrasonic sound production by plants exposed to stress, especially drought. While recent technological advancements have allowed the demonstration that these sounds can propagate in the air surrounding plants, we remind readers here that research on sound production by plants is more than 100 years old. The mechanisms and patterns of sound emission from plants subjected to different stress factors are also reasonably understood, thanks to the pioneering work of John Milburn and others. By contrast, experimental evidence for a role of these sounds in plant-animal or plant-plant communication remains lacking and, at present, these ideas remain highly speculative.
Collapse
Affiliation(s)
- Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy.
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63000, France
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Dutta S, Bieling TJ, Verbiest GJ. Evaporation induced acoustic emissions in microfluidic vessels. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231029. [PMID: 38094272 PMCID: PMC10716658 DOI: 10.1098/rsos.231029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
Fluid flow processes such as drainage and evaporation in porous media are crucial in geological and biological systems. The motion of the displacement front of a moving fluid through multi-phase interfaces is often associated with abrupt mechanical energy release, detectable as acoustic emissions (AEs). The exact origin of these pulses and their damping mechanisms are still subjects of debate. Here, we study the characteristics of such AEs during evaporation of water from artificial microfluidic vessels, inspired by the physiology of vascular water-transport in plants. From the extracted settling times of the recorded AEs, we identify three pulse types and attribute their origins to bubble formation, snap-off events and rapid pore invasion. We also show that the resonance frequencies between 10 and 70 kHz present in specific pulse types decrease with increasing vessel radius (ranging from 0.25 to 1.0 mm) and length (ranging from 2.5 to 10.0 mm). Our findings provide insight into evaporation-induced AEs from microfluidic systems, and their potential use in non-invasive inspection or vascular health monitoring.
Collapse
Affiliation(s)
- S. Dutta
- Department of Precision and Microsystems Engineering, Faculty of 3ME, TU Delft, Mekelweg 2, Delft 2628CD, The Netherlands
| | - T. J. Bieling
- Department of Precision and Microsystems Engineering, Faculty of 3ME, TU Delft, Mekelweg 2, Delft 2628CD, The Netherlands
| | - G. J. Verbiest
- Department of Precision and Microsystems Engineering, Faculty of 3ME, TU Delft, Mekelweg 2, Delft 2628CD, The Netherlands
| |
Collapse
|
3
|
Dutta S, Chen Z, Kaiser E, Matamoros PM, Steeneken PG, Verbiest GJ. Ultrasound Pulse Emission Spectroscopy Method to Characterize Xylem Conduits in Plant Stems. Research (Wash D C) 2022; 2022:9790438. [PMID: 36204251 PMCID: PMC9513830 DOI: 10.34133/2022/9790438] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
Although it is well known that plants emit acoustic pulses under drought stress, the exact origin of the waveform of these ultrasound pulses has remained elusive. Here, we present evidence for a correlation between the characteristics of the waveform of these pulses and the dimensions of xylem conduits in plants. Using a model that relates the resonant vibrations of a vessel to its dimension and viscoelasticity, we extract the xylem radii from the waveforms of ultrasound pulses and show that these are correlated and in good agreement with optical microscopy. We demonstrate the versatility of the method by applying it to shoots of ten different vascular plant species. In particular, for Hydrangea quercifolia, we further extract vessel element lengths with our model and compare them with scanning electron cryomicroscopy. The ultrasonic, noninvasive characterization of internal conduit dimensions enables a breakthrough in speed and accuracy in plant phenotyping and stress detection.
Collapse
Affiliation(s)
- Satadal Dutta
- Department of Precision and Microsystems Engineering, Faculty of 3ME, TU Delft, Mekelweg 2, 2628CD Delft, Netherlands
| | - Zhiyi Chen
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, Netherlands
| | - Priscilla Malcolm Matamoros
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, Netherlands
| | - Peter G. Steeneken
- Department of Precision and Microsystems Engineering, Faculty of 3ME, TU Delft, Mekelweg 2, 2628CD Delft, Netherlands
| | - Gerard J. Verbiest
- Department of Precision and Microsystems Engineering, Faculty of 3ME, TU Delft, Mekelweg 2, 2628CD Delft, Netherlands
| |
Collapse
|
4
|
Lamacque L, Sabin F, Améglio T, Herbette S, Charrier G. Detection of acoustic events in lavender for measuring xylem vulnerability to embolism and cellular damage. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3699-3710. [PMID: 35176148 DOI: 10.1093/jxb/erac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Acoustic emission analysis is promising to investigate the physiological events leading to drought-induced injury and mortality. However, their nature and source are not fully understood, making this technique difficult to use as a direct measure of the loss of xylem hydraulic conductance. Acoustic emissions were recorded during severe dehydration in lavender plants (Lavandula angustifolia) and compared with the dynamics of embolism development and cell damage. The timing and characteristics of acoustic signals from two independent recording systems were compared by principal component analysis (PCA). Changes in water potential, branch diameter, loss of hydraulic conductance, and cellular damage were also measured to quantify drought-induced damages. Two distinct phases of acoustic emissions were observed during dehydration: the first one associated with a rapid loss of diameter and a significant increase in loss of xylem conductance (90%), and the second with slower changes in diameter and a significant increase in cellular damage. Based on PCA, a developed algorithm discriminated hydraulic-related acoustic signals from other sources, proposing a reconstruction of hydraulic vulnerability curves. Cellular damage preceded by hydraulic failure seems to lead to a lack of recovery. The second acoustic phase would allow detection of plant mortality.
Collapse
Affiliation(s)
- Lia Lamacque
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
- Institut Technique Interprofessionnel Plantes à Parfum, Médicinal, Aromatiques et Industrielles, 26740 Montboucher-sur-Jabron, France
- CNRS Aix-Marseille University, France
| | - Florian Sabin
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| | - Thierry Améglio
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| | - Stéphane Herbette
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| | - Guillaume Charrier
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
5
|
Lauriks F, Salomón RL, De Roo L, Goossens W, Leroux O, Steppe K. Limited plasticity of anatomical and hydraulic traits in aspen trees under elevated CO2 and seasonal drought. PLANT PHYSIOLOGY 2022; 188:268-284. [PMID: 34718790 PMCID: PMC8774844 DOI: 10.1093/plphys/kiab497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The timing of abiotic stress elicitors on wood formation largely affects xylem traits that determine xylem efficiency and vulnerability. Nonetheless, seasonal variability of elevated CO2 (eCO2) effects on tree functioning under drought remains largely unknown. To address this knowledge gap, 1-year-old aspen (Populus tremula L.) trees were grown under ambient (±445 ppm) and elevated (±700 ppm) CO2 and exposed to an early (spring/summer 2019) or late (summer/autumn 2018) season drought event. Stomatal conductance and stem shrinkage were monitored in vivo as xylem water potential decreased. Additional trees were harvested for characterization of wood anatomical traits and to determine vulnerability and desorption curves via bench dehydration. The abundance of narrow vessels decreased under eCO2 only during the early season. At this time, xylem vulnerability to embolism formation and hydraulic capacitance during severe drought increased under eCO2. Contrastingly, stomatal closure was delayed during the late season, while hydraulic vulnerability and capacitance remained unaffected under eCO2. Independently of the CO2 treatment, elastic, and inelastic water pools depleted simultaneously after 50% of complete stomatal closure. Our results suggest that the effect of eCO2 on drought physiology and wood traits are small and variable during the growing season and question a sequential capacitive water release from elastic and inelastic pools as drought proceeds.
Collapse
Affiliation(s)
- Fran Lauriks
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - Linus De Roo
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Willem Goossens
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Olivier Leroux
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Degraeve S, De Baerdemaeker NJF, Ameye M, Leroux O, Haesaert GJW, Steppe K. Acoustic Vulnerability, Hydraulic Capacitance, and Xylem Anatomy Determine Drought Response of Small Grain Cereals. FRONTIERS IN PLANT SCIENCE 2021; 12:599824. [PMID: 34113357 PMCID: PMC8186553 DOI: 10.3389/fpls.2021.599824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/12/2021] [Indexed: 06/01/2023]
Abstract
Selection of high-yielding traits in cereal plants led to a continuous increase in productivity. However, less effort was made to select on adaptive traits, favorable in adverse and harsh environments. Under current climate change conditions and the knowledge that cereals are staple foods for people worldwide, it is highly important to shift focus to the selection of traits related to drought tolerance, and to evaluate new tools for efficient selection. Here, we explore the possibility to use vulnerability to drought-induced xylem embolism of wheat cultivars Excalibur and Hartog (Triticum aestivum L.), rye cultivar Duiker Max (Secale cereale L.), and triticale cultivars Dublet and US2014 (x Triticosecale Wittmack) as a proxy for their drought tolerance. Multiple techniques were combined to underpin this hypothesis. During bench-top dehydration experiments, acoustic emissions (AEs) produced by formation of air emboli were detected, and hydraulic capacitances quantified. By only looking at the AE50 values, one would classify wheat cultivar Excalibur as most tolerant and triticale cultivar Dublet as most vulnerable to drought-induced xylem embolism, though Dublet had significantly higher hydraulic capacitances, which are essential in terms of internal water storage to temporarily buffer or delay water shortage. In addition, xylem anatomical traits revealed that both cultivars have a contrasting trade-off between hydraulic safety and efficiency. This paper emphasizes the importance of including a cultivar's hydraulic capacitance when evaluating its drought response and vulnerability to drought-induced xylem embolism, instead of relying on the AE50 as the one parameter.
Collapse
Affiliation(s)
- Szanne Degraeve
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niels J. F. De Baerdemaeker
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Maarten Ameye
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Olivier Leroux
- Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | | | - Kathy Steppe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Bruning MA, Ohl CD, Marin A. Soft cavitation in colloidal droplets. SOFT MATTER 2021; 17:1861-1872. [PMID: 33404039 DOI: 10.1039/d0sm02002h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
When a pure droplet evaporates inside an elastic medium, two instabilities are typically observed. As the droplet shrinks, the elastic medium needs to deform and elastic tension builds up. At a critical strain, accumulated tension at the gel-droplet interface is released by developing creases. The droplet keeps shrinking beyond this point, pulling the elastic network and therefore decreasing the pressure in the liquid phase. This drives the liquid phase into a metastable state, and leads to the second instability: the nucleation of a vapour bubble in the liquid phase by cavitation. These instabilities consistently occur in the described order whenever a pure liquid (water, in this case) is used. The presence of colloidal particles inside droplets is common both in vitro and in natural environments, and they can change such phenomenology significantly by stimulating cavitation events before any creasing instability. In this work, we study the role of colloidal particle size and concentration on the early inception of cavitation in water droplets in an elastic medium. Our results reveal an unexpected dependence with the particle size and with the size distribution of the colloidal particles. Given the simplicity and reliability of the system and preparation, the method described here could be eventually used to measure tensile strengths of particle solutions with accuracy.
Collapse
Affiliation(s)
- Myrthe A Bruning
- Physics of Fluids Group, Faculty of Science and Technology, Mesa+ Institute, University of Twente, 7500 AE Enschede, The Netherlands.
| | - Claus-Dieter Ohl
- Soft Matter & Cavitation Lab, Otto-von-Guericke University, Magdeburg, Germany
| | - Alvaro Marin
- Physics of Fluids Group, Faculty of Science and Technology, Mesa+ Institute, University of Twente, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
8
|
De Roo L, Salomón RL, Oleksyn J, Steppe K. Woody tissue photosynthesis delays drought stress in Populus tremula trees and maintains starch reserves in branch xylem tissues. THE NEW PHYTOLOGIST 2020; 228:70-81. [PMID: 32416019 DOI: 10.1111/nph.16662] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Photosynthesis in woody tissues (Pwt ) is less sensitive to water shortage than in leaves, hence, Pwt might be a crucial carbon source to alleviate drought stress. To evaluate the impact of Pwt on tree drought tolerance, woody tissues of 4-m-tall drought-stressed Populus tremula trees were subjected to a light-exclusion treatment across the entire plant to inhibit Pwt . Xylem water potential (Ψxylem ), sap flow ( FH2O ), leaf net photosynthesis (Pn,l ), stem diameter variations (ΔD), in vivo acoustic emissions in stems (AEs) and nonstructural carbohydrate concentrations ([NSC]) were monitored to comprehensively assess water and carbon relations at whole-tree level. Under well-watered conditions, Pwt kept Ψxylem at a higher level, lowered FH2O and had no effect on [NSC]. Under drought, Ψxylem , FH2O and Pn,l in light-excluded trees rapidly decreased in concert with reductions in branch xylem starch concentration. Moreover, sub-daily patterns of ΔD, FH2O and AEs were strongly related, suggesting that in vivo AEs may inform not only about embolism events, but also about capacitive release and replenishment of stem water pools. Results highlight the importance of Pwt in maintaining xylem hydraulic integrity under drought conditions and in sustaining NSC pools to potentially limit increases in xylem tension.
Collapse
Affiliation(s)
- Linus De Roo
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Jacek Oleksyn
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, PL-62-035, Kórnik, Poland
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| |
Collapse
|
9
|
Zheng Y, Pierce A, Wagner WL, Scheller HV, Mohnen D, Tsuda A, Ackermann M, Mentzer SJ. Analysis of pectin biopolymer phase states using acoustic emissions. Carbohydr Polym 2020; 227:115282. [PMID: 31590860 PMCID: PMC6936603 DOI: 10.1016/j.carbpol.2019.115282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/10/2019] [Accepted: 08/31/2019] [Indexed: 11/28/2022]
Abstract
Acoustic emissions are stress or elastic waves produced by a material under external load. Since acoustic emissions are generated from within and transmitted through the substance, the acoustic signature provides insights into the physical and mechanical properties of the material. In this report, we used a constant velocity probe with force and acoustic emission monitoring to investigate the properties of glass phase and gel phase pectin films. In the gel phase films, a constant velocity uniaxial load produced periodic premonitory acoustic emissions with coincident force variations (saw-tooth pattern). SEM images of the gel phase microarchitecture indicated the presence of slip planes. In contrast, the glass phase films demonstrated early acoustic emissions, but effectively no force or acoustic evidence of periodic or premonitory emissions. Microstructural imaging of the glass phase films indicated the presence of early microcracks as well as dense polymerization of the pectin (without evidence of slip planes). We conclude that the water content in the pectin films contributes to not only the physical properties of the films, but also the stick-slip motion observed with constant uniaxial load. Further, acoustic emissions provide a sensitive and practical measure of this mechanical behavior.
Collapse
Affiliation(s)
- Yifan Zheng
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Aidan Pierce
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Willi L Wagner
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Diagnostic and Interventional Radiology, Translational Lung Research Center, Univeristy of Heidelberg, Heidelberg, Germany
| | - Henrik V Scheller
- Joint BioEnergy Institute, Emeryville CA and the Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA, United States
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
10
|
De Baerdemaeker NJF, Arachchige KNR, Zinkernagel J, Van den Bulcke J, Van Acker J, Schenk HJ, Steppe K. The stability enigma of hydraulic vulnerability curves: addressing the link between hydraulic conductivity and drought-induced embolism. TREE PHYSIOLOGY 2019; 39:1646-1664. [PMID: 31274162 DOI: 10.1093/treephys/tpz078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/29/2019] [Accepted: 06/13/2019] [Indexed: 05/29/2023]
Abstract
Maintaining xylem water transport under drought is vital for plants, but xylem failure does occur when drought-induced embolisms form and progressively spread through the xylem. The hydraulic method is widely considered the gold standard to quantify drought-induced xylem embolism. The method determines hydraulic conductivity (Kh) in cut branch samples, dehydrated to specific drought levels, by pushing water through them. The technique is widely considered for its reliable Kh measurements, but there is some uncertainty in the literature over how to define stable Kh and how that relates to the degree of xylem embolism formation. Therefore, the most common setup for this method was extended to measure four parameters: (i) inlet Kh, (ii) outlet Kh, (iii) radial flow from xylem to surrounding living tissue and (iv) the pressure difference across the sample. From a strictly theoretical viewpoint, hydraulic steady state, where inflow equals outflow and radial flow is zero, will result in stable Kh. Application of the setup to Malus domestica Borkh. branches showed that achieving hydraulic steady state takes considerable time (up to 300 min) and that time to reach steady state increased with declining xylem water potentials. During each experimental run, Kh and xylem water potentials dynamically increased, which was supported by X-ray computed microtomography visualizations of embolism refilling under both high- (8 kPa) and low-pressure (2 kPa) heads. Supplying pressurized water can hence cause artificial refilling of vessels, which makes it difficult to achieve a truly stable Kh in partially embolized xylem.
Collapse
Affiliation(s)
- Niels J F De Baerdemaeker
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | | | - Jana Zinkernagel
- Department of Vegetable Crops, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Jan Van den Bulcke
- UGCT-Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Joris Van Acker
- UGCT-Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - H Jochen Schenk
- Plants and H2O Laboratory, Department of Biological Science, California State University Fullerton, PO Box 6850, Fullerton, CA 92834-6850, USA
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
11
|
De Baerdemaeker NJF, Stock M, Van den Bulcke J, De Baets B, Van Hoorebeke L, Steppe K. X-ray microtomography and linear discriminant analysis enable detection of embolism-related acoustic emissions. PLANT METHODS 2019; 15:153. [PMID: 31889977 PMCID: PMC6916244 DOI: 10.1186/s13007-019-0543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/05/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Acoustic emission (AE) sensing is in use since the late 1960s in drought-induced embolism research as a non-invasive and continuous method. It is very well suited to assess a plant's vulnerability to dehydration. Over the last couple of years, AE sensing has further improved due to progress in AE sensors, data acquisition methods and analysis systems. Despite these recent advances, it is still challenging to detect drought-induced embolism events in the AE sources registered by the sensors during dehydration, which sometimes questions the quantitative potential of AE sensing. RESULTS In quest of a method to separate embolism-related AE signals from other dehydration-related signals, a 2-year-old potted Fraxinus excelsior L. tree was subjected to a drought experiment. Embolism formation was acoustically measured with two broadband point-contact AE sensors while simultaneously being visualized by X-ray computed microtomography (µCT). A machine learning method was used to link visually detected embolism formation by µCT with corresponding AE signals. Specifically, applying linear discriminant analysis (LDA) on the six AE waveform parameters amplitude, counts, duration, signal strength, absolute energy and partial power in the range 100-200 kHz resulted in an embolism-related acoustic vulnerability curve (VCAE-E) better resembling the standard µCT VC (VCCT), both in time and in absolute number of embolized vessels. Interestingly, the unfiltered acoustic vulnerability curve (VCAE) also closely resembled VCCT, indicating that VCs constructed from all registered AE signals did not compromise the quantitative interpretation of the species' vulnerability to drought-induced embolism formation. CONCLUSION Although machine learning could detect similar numbers of embolism-related AE as µCT, there still is insufficient model-based evidence to conclusively attribute these signals to embolism events. Future research should therefore focus on similar experiments with more in-depth analysis of acoustic waveforms, as well as explore the possibility of Fast Fourier transformation (FFT) to remove non-embolism-related AE signals.
Collapse
Affiliation(s)
- Niels J. F. De Baerdemaeker
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Michiel Stock
- KERMIT, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Jan Van den Bulcke
- UGent-Woodlab-Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- Ghent University Centre for X-Ray Tomography (UGCT), Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Bernard De Baets
- KERMIT, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Luc Van Hoorebeke
- Ghent University Centre for X-Ray Tomography (UGCT), Proeftuinstraat 86, 9000 Ghent, Belgium
- Radiation Physics Group, Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
12
|
De Baerdemaeker NJF, Hias N, Van den Bulcke J, Keulemans W, Steppe K. The effect of polyploidization on tree hydraulic functioning. AMERICAN JOURNAL OF BOTANY 2018; 105:161-171. [PMID: 29570227 DOI: 10.1002/ajb2.1032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/11/2017] [Indexed: 05/14/2023]
Abstract
PREMISE OF THE STUDY Recent research has highlighted the importance of living tissue in wood. Polyploidization can impact amounts and arrangements of living cells in wood, potentially leading to increased drought tolerance. Tetraploid variants were created from the apple cultivar Malus ×domestica 'Gala' (Gala-4x), and their vulnerability to drought-induced cavitation and their hydraulic capacitance were compared to those of their diploid predecessors (Gala-2x). Assuming a positive correlation between polyploidy and drought tolerance, we hypothesized lower vulnerability and higher capacitance for the tetraploid. METHODS Vulnerability to drought-induced cavitation and the hydraulic capacitance were quantified through acoustic emission and continuous weighing of shoots during a bench-top dehydration experiment. To underpin the hydraulic trait results, anatomical variables such as vessel area, conduit diameter, cell wall reinforcement, and ray and vessel-associated parenchyma were measured. KEY RESULTS Vulnerability to drought-induced cavitation was intrinsically equal for both ploidy variants, but Gala-4x proved to be more vulnerable than Gala-2x during the early phase of desiccation as was indicated by its significantly lower air entry value. Higher change in water content of the leafy shoot, higher amount of parenchyma, and larger vessel area and size resulted in a significantly higher hydraulic capacitance and efficiency for Gala-4x compared to Gala-2x. CONCLUSIONS Both ploidy variants were typified as highly sensitive to drought-induced cavitation, with no significant difference in their overall drought vulnerability. But, when water deficit is short and moderate, Gala-4x may delay a drought-induced decrease in performance by trading hydraulic safety for increased release of capacitively stored water from living tissue.
Collapse
Affiliation(s)
- Niels J F De Baerdemaeker
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Niek Hias
- Laboratory for Fruit Breeding and Biotechnology, Division of Crop Biotechnics, Katholieke Universiteit (KU) Leuven, Willem de Croylaan 42, B-3001, Heverlee, Belgium
| | - Jan Van den Bulcke
- Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Wannes Keulemans
- Laboratory for Fruit Breeding and Biotechnology, Division of Crop Biotechnics, Katholieke Universiteit (KU) Leuven, Willem de Croylaan 42, B-3001, Heverlee, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| |
Collapse
|
13
|
De Baerdemaeker NJF, Salomón RL, De Roo L, Steppe K. Sugars from woody tissue photosynthesis reduce xylem vulnerability to cavitation. THE NEW PHYTOLOGIST 2017; 216:720-727. [PMID: 28921550 DOI: 10.1111/nph.14787] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/13/2017] [Indexed: 05/23/2023]
Abstract
Reassimilation of internal CO2 via woody tissue photosynthesis has a substantial effect on tree carbon income and wood production. However, little is known about its role in xylem vulnerability to cavitation and its implications in drought-driven tree mortality. Young trees of Populus nigra were subjected to light exclusion at the branch and stem levels. After 40 d, measurements of xylem water potential, diameter variation and acoustic emission (AE) were performed in detached branches to obtain acoustic vulnerability curves to cavitation following bench-top dehydration. Acoustic vulnerability curves and derived AE50 values (i.e. water potential at which 50% of cavitation-related acoustic emissions occur) differed significantly between light-excluded and control branches (AE50,light-excluded = -1.00 ± 0.13 MPa; AE50,control = -1.45 ± 0.09 MPa; P = 0.007) denoting higher vulnerability to cavitation in light-excluded trees. Woody tissue photosynthesis represents an alternative and immediate source of nonstructural carbohydrates (NSC) that confers lower xylem vulnerability to cavitation via sugar-mediated mechanisms. Embolism repair and xylem structural changes could not explain this observation as the amount of cumulative AE and basic wood density did not differ between treatments. We suggest that woody tissue assimilates might play a role in the synthesis of xylem surfactants for nanobubble stabilization under tension.
Collapse
Affiliation(s)
- Niels J F De Baerdemaeker
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Linus De Roo
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| |
Collapse
|
14
|
Epila J, De Baerdemaeker NJF, Vergeynst LL, Maes WH, Beeckman H, Steppe K. Capacitive water release and internal leaf water relocation delay drought-induced cavitation in African Maesopsis eminii. TREE PHYSIOLOGY 2017; 37:481-490. [PMID: 28062725 DOI: 10.1093/treephys/tpw128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/04/2016] [Indexed: 06/06/2023]
Abstract
The impact of drought on the hydraulic functioning of important African tree species, like Maesopsis eminii Engl., is poorly understood. To map the hydraulic response to drought-induced cavitation, sole reliance on the water potential at which 50% loss of xylem hydraulic conductivity (ψ50) occurs might be limiting and at times misleading as the value alone does not give a comprehensive overview of strategies evoked by M. eminii to cope with drought. This article therefore uses a methodological framework to study the different aspects of drought-induced cavitation and water relations in M. eminii. Hydraulic functioning of whole-branch segments was investigated during bench-top dehydration. Cumulative acoustic emissions and continuous weight measurements were used to quantify M. eminii's vulnerability to drought-induced cavitation and hydraulic capacitance. Wood structural traits, including wood density, vessel area, diameter and wall thickness, vessel grouping index, solitary vessel index and vessel wall reinforcement, were used to underpin observed physiological responses. On average, M. eminii's ψ50 (±SE) was -1.9 ± 0.1 MPa, portraying its xylem as drought vulnerable, just as one would expect for a common tropical pioneer. However, M. eminii additionally employed an interesting desiccation delay strategy, fuelled by internal relocation of leaf water, hydraulic capacitance and the presence of parenchyma around the xylem vessels. Our findings suggest that exclusive dependence on ψ50 would have misdirected our assessments of M. eminii's drought stress vulnerability. Hydraulic capacitance linked to anatomy and leaf-water relocation behaviour was equally important to better understand M. eminii's drought survival strategies. Because our study was conducted on branches of 3-year-old greenhouse-grown M. eminii seedlings, the findings cannot be simply extrapolated to adult M. eminii trees or their mature wood, because structural and physiological plant properties change with age. The techniques and methodological framework used in this study are, however, transferable to other species regardless of age.
Collapse
Affiliation(s)
- Jackie Epila
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
- CAVElab Computational & Applied Vegetation Ecology, Department of Applied Ecology and Environmental Biology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Niels J F De Baerdemaeker
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000Ghent, Belgium
| | - Lidewei L Vergeynst
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000Ghent, Belgium
| | - Wouter H Maes
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
- Remote Sensing, University of Technology Sydney (UTS), 745 Harris Str., Broadway 2007, NSW, Australia
| | - Hans Beeckman
- Laboratory for Wood Biology and Xylarium (Royal Museum for Central Africa), Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000Ghent, Belgium
| |
Collapse
|
15
|
Acoustic Emissions to Measure Drought-Induced Cavitation in Plants. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6030071] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|