1
|
Pejenaute-Ochoa MD, Tomás-Gallardo L, Ibeas JI, Barrales RR. Row1, a member of a new family of conserved fungal proteins involved in infection, is required for appressoria functionality in Ustilago maydis. THE NEW PHYTOLOGIST 2024; 243:1101-1122. [PMID: 38742361 DOI: 10.1111/nph.19798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
The appressorium of phytopathogenic fungi is a specific structure with a crucial role in plant cuticle penetration. Pathogens with melanized appressoria break the cuticle through cell wall melanization and intracellular turgor pressure. However, in fungi with nonmelanized appressorium, the mechanisms governing cuticle penetration are poorly understood. Here we characterize Row1, a previously uncharacterized appressoria-specific protein of Ustilago maydis that localizes to membrane and secretory vesicles. Deletion of row1 decreases appressoria formation and plant penetration, thereby reducing virulence. Specifically, the Δrow1 mutant has a thicker cell wall that is more resistant to glucanase degradation. We also observed that the Δrow1 mutant has secretion defects. We show that Row1 is functionally conserved at least among Ustilaginaceae and belongs to the Row family, which consists of five other proteins that are highly conserved among Basidiomycota fungi and are involved in U. maydis virulence. We observed similarities in localization between Row1 and Row2, which is also involved in cell wall remodelling and secretion, suggesting similar molecular functions for members of this protein family. Our data suggest that Row1 could modify the chitin-glucan matrix of the fungal cell wall and may be involved in unconventional protein secretion, thereby promoting both appressoria maturation and penetration.
Collapse
Affiliation(s)
- María Dolores Pejenaute-Ochoa
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Ctra. Utrera km.1, 41013, Seville, Spain
| | - Laura Tomás-Gallardo
- Proteomics and Biochemistry Platform, Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Ctra. Utrera km. 1, 41013, Seville, Spain
| | - José I Ibeas
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Ctra. Utrera km.1, 41013, Seville, Spain
| | - Ramón R Barrales
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía, Ctra. Utrera km.1, 41013, Seville, Spain
| |
Collapse
|
2
|
John E, Chau MQ, Hoang CV, Chandrasekharan N, Bhaskar C, Ma LS. Fungal Cell Wall-Associated Effectors: Sensing, Integration, Suppression, and Protection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:196-210. [PMID: 37955547 DOI: 10.1094/mpmi-09-23-0142-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The cell wall (CW) of plant-interacting fungi, as the direct interface with host plants, plays a crucial role in fungal development. A number of secreted proteins are directly associated with the fungal CW, either through covalent or non-covalent interactions, and serve a range of important functions. In the context of plant-fungal interactions many are important for fungal development in the host environment and may therefore be considered fungal CW-associated effectors (CWAEs). Key CWAE functions include integrating chemical/physical signals to direct hyphal growth, interfering with plant immunity, and providing protection against plant defenses. In recent years, a diverse range of mechanisms have been reported that underpin their roles, with some CWAEs harboring conserved motifs or functional domains, while others are reported to have novel features. As such, the current understanding regarding fungal CWAEs is systematically presented here from the perspective of their biological functions in plant-fungal interactions. An overview of the fungal CW architecture and the mechanisms by which proteins are secreted, modified, and incorporated into the CW is first presented to provide context for their biological roles. Some CWAE functions are reported across a broad range of pathosystems or symbiotic/mutualistic associations. Prominent are the chitin interacting-effectors that facilitate fungal CW modification, protection, or suppression of host immune responses. However, several alternative functions are now reported and are presented and discussed. CWAEs can play diverse roles, some possibly unique to fungal lineages and others conserved across a broad range of plant-interacting fungi. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Evan John
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Minh-Quang Chau
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Cuong V Hoang
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Spain
| | | | - Chibbhi Bhaskar
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Lay-Sun Ma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
3
|
Silva AC, Oshiquiri LH, de Morais Costa de Jesus LF, Maués DB, Silva RDN. The Cerato-Platanin EPL2 from Trichoderma reesei Is Not Directly Involved in Cellulase Formation but in Cell Wall Remodeling. Microorganisms 2023; 11:1965. [PMID: 37630525 PMCID: PMC10459490 DOI: 10.3390/microorganisms11081965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Trichoderma reesei is a saprophytic fungus that produces large amounts of cellulases and is widely used for biotechnological applications. Cerato-platanins (CPs) are a family of proteins universally distributed among Dikarya fungi and have been implicated in various functions related to fungal physiology and interaction with the environment. In T. reesei, three CPs are encoded in the genome: Trire2_111449, Trire2_123955, and Trire2_82662. However, their function is not fully elucidated. In this study, we deleted the Trire2_123955 gene (named here as epl2) in the wild-type QM6aΔtmus53Δpyr4 (WT) strain and examined the behavior of the Δepl2 strain compared with WT grown for 72 h in 1% cellulose using RNA sequencing. Of the 9143 genes in the T. reesei genome, 760 were differentially expressed, including 260 only in WT, 214 only in Δepl2, and 286 in both. Genes involved in oxidative stress, oxidoreductase activity, antioxidant activity, and transport were upregulated in the Δepl2 mutant. Genes encoding cell wall synthesis were upregulated in the mutant strain during the late growth stage. The Δepl2 mutant accumulated chitin and glucan at higher levels than the parental strain and was more resistant to cell wall stressors. These results suggest a compensatory effect in cell wall remodeling due to the absence of EPL2 in T. reesei. This study is expected to contribute to a better understanding of the role of the EPL2 protein in T. reesei and improve its application in biotechnological fields.
Collapse
Affiliation(s)
| | | | | | | | - Roberto do Nascimento Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (A.C.S.); (L.H.O.); (L.F.d.M.C.d.J.); (D.B.M.)
| |
Collapse
|
4
|
Weiland P, Dempwolff F, Steinchen W, Freibert S, Tian H, Glatter T, Martin R, Thomma BPHJ, Bange G, Altegoer F. Structural and functional analysis of the cerato-platanin-like protein Cpl1 suggests diverging functions in smut fungi. MOLECULAR PLANT PATHOLOGY 2023; 24:768-787. [PMID: 37171083 PMCID: PMC10257043 DOI: 10.1111/mpp.13349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/28/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Plant-pathogenic fungi are causative agents of the majority of plant diseases and can lead to severe crop loss in infected populations. Fungal colonization is achieved by combining different strategies, such as avoiding and counteracting the plant immune system and manipulating the host metabolome. Of major importance are virulence factors secreted by fungi, which fulfil diverse functions to support the infection process. Most of these proteins are highly specialized, with structural and biochemical information often absent. Here, we present the atomic structures of the cerato-platanin-like protein Cpl1 from Ustilago maydis and its homologue Uvi2 from Ustilago hordei. Both proteins adopt a double-Ψβ-barrel architecture reminiscent of cerato-platanin proteins, a class so far not described in smut fungi. Our structure-function analysis shows that Cpl1 binds to soluble chitin fragments via two extended grooves at the dimer interface of the two monomer molecules. This carbohydrate-binding mode has not been observed previously and expands the repertoire of chitin-binding proteins. Cpl1 localizes to the cell wall of U. maydis and might synergize with cell wall-degrading and decorating proteins during maize infection. The architecture of Cpl1 harbouring four surface-exposed loop regions supports the idea that it might play a role in the spatial coordination of these proteins. While deletion of cpl1 has only mild effects on the virulence of U. maydis, a recent study showed that deletion of uvi2 strongly impairs U. hordei virulence. Our structural comparison between Cpl1 and Uvi2 reveals sequence variations in the loop regions that might explain a diverging function.
Collapse
Affiliation(s)
- Paul Weiland
- Center for Synthetic Microbiology (SYNMIKRO), Faculty of ChemistryPhilipps‐University MarburgMarburgGermany
| | - Felix Dempwolff
- Center for Synthetic Microbiology (SYNMIKRO), Faculty of ChemistryPhilipps‐University MarburgMarburgGermany
| | - Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO), Faculty of ChemistryPhilipps‐University MarburgMarburgGermany
| | - Sven‐Andreas Freibert
- Center for Synthetic Microbiology (SYNMIKRO), Institute of CytobiologyPhilipps‐University MarburgMarburgGermany
- Protein Biochemistry and Spectroscopy Core Facility, Institute of CytobiologyPhilipps‐University MarburgMarburgGermany
| | - Hui Tian
- Institute for Plant SciencesUniversity of CologneCologneGermany
| | - Timo Glatter
- Max‐Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Roman Martin
- Faculty of Mathematics and Computer SciencePhilipps‐University MarburgMarburgGermany
| | - Bart P. H. J. Thomma
- Institute for Plant SciencesUniversity of CologneCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Faculty of ChemistryPhilipps‐University MarburgMarburgGermany
- Max‐Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Florian Altegoer
- Center for Synthetic Microbiology (SYNMIKRO), Faculty of ChemistryPhilipps‐University MarburgMarburgGermany
- Max‐Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Institute of MicrobiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| |
Collapse
|
5
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
6
|
de Novais DPS, Batista TM, Costa EA, Pirovani CP. Genomic and Pathogenicity Mechanisms of the Main Theobroma cacao L. Eukaryotic Pathogens: A Systematic Review. Microorganisms 2023; 11:1567. [PMID: 37375069 DOI: 10.3390/microorganisms11061567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
A set of diseases caused by fungi and oomycetes are responsible for large losses in annual world cocoa production. Managing the impact caused by these diseases is very complex because a common solution has yet to be found for different pathogens. In this context, the systematic knowledge of Theobroma cacao L. pathogens' molecular characteristics may help researchers understand the possibilities and limitations of cocoa disease management strategies. This work systematically organized and summarized the main findings of omics studies of T. cacao eukaryotic pathogens, focusing on the plant-pathogen interaction and production dynamics. Using the PRISMA protocol and a semiautomated process, we selected papers from the Scopus and Web of Science databases and collected data from the selected papers. From the initial 3169 studies, 149 were selected. The first author's affiliations were mostly from two countries, Brazil (55%) and the USA (22%). The most frequent genera were Moniliophthora (105 studies), Phytophthora (59 studies) and Ceratocystis (13 studies). The systematic review database includes papers reporting the whole-genome sequence from six cocoa pathogens and evidence of some necrosis-inducing-like proteins, which are common in T. cacao pathogen genomes. This review contributes to the knowledge about T. cacao diseases, providing an integrated discussion of T. cacao pathogens' molecular characteristics, common mechanisms of pathogenicity and how this knowledge is produced worldwide.
Collapse
Affiliation(s)
- Diogo Pereira Silva de Novais
- Department of Biological Sciences, Center for Biotechnology and Genetics, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
- Bahia Federal Institute of Education, Science and Technology (IFBA), Porto Seguro 45810-000, BA, Brazil
| | - Thiago Mafra Batista
- Environmental Science Training Center, Federal University of Southern Bahia (UFSB), Porto Seguro 45810-000, BA, Brazil
| | - Eduardo Almeida Costa
- Department of Biological Sciences, Center for Biotechnology and Genetics, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, Center for Biotechnology and Genetics, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| |
Collapse
|
7
|
Liu S, Zhang S, He S, Qiao X, Runa A. Tea plant ( Camellia sinensis) lipid metabolism pathway modulated by tea field microbe ( Colletotrichum camelliae) to promote disease. HORTICULTURE RESEARCH 2023; 10:uhad028. [PMID: 37090093 PMCID: PMC10117433 DOI: 10.1093/hr/uhad028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/13/2023] [Indexed: 05/03/2023]
Abstract
Tea is one of the most popular healthy and non-alcoholic beverages worldwide. Tea anthracnose is a disease in tea mature leaves and ultimately affects yield and quality. Colletotrichum camelliae is a dominant fungal pathogen in the tea field that infects tea plants in China. The pathogenic factors of fungus and the susceptible factors in the tea plant are not known. In this work, we performed molecular and genetic studies to observe a cerato-platanin protein CcCp1 from C. camelliae, which played a key role in fungal pathogenicity. △CcCp1 mutants lost fungal virulence and reduced the ability to produce conidia. Transcriptome and metabolome were then performed and analysed in tea-susceptible and tea-resistant cultivars, Longjing 43 and Zhongcha 108, upon C. camelliae wild-type CCA and △CcCp1 infection, respectively. The differentially expressed genes and the differentially accumulated metabolites in tea plants were clearly overrepresented such as linolenic acid and linoleic acid metabolism, glycerophospholipid metabolism, phenylalanine biosynthesis and metabolism, biosynthesis of flavonoid, flavone and flavonol etc. In particular, the accumulation of jasmonic acid was significantly increased in the susceptible cultivar Longjing 43 upon CCA infection, in the fungal CcCp1 protein dependent manner, suggesting the compound involved in regulating fungal infection. In addition, other metabolites in the glycerophospholipid and phenylalanine pathway were observed in the resistant cultivar Zhongcha 108 upon fungal treatment, suggesting their potential role in defense response. Taken together, this work indicated C. camelliae CcCp1 affected the tea plant lipid metabolism pathway to promote disease while the lost function of CcCp1 mutants altered the fungal virulence and plant response.
Collapse
Affiliation(s)
| | - Shuhan Zhang
- Laboratory of Tea and Medicinal Plant Biology, College of Plant Sciences, Jilin University, Changchun 130062, China
- Laboratory of Molecular Plant Pathology, College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Shengnan He
- Laboratory of Tea and Medicinal Plant Biology, College of Plant Sciences, Jilin University, Changchun 130062, China
- Laboratory of Molecular Plant Pathology, College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Xiaoyan Qiao
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences Tea Research Institute, Guangzhou 510640, China
| | - A Runa
- Laboratory of Tea and Medicinal Plant Biology, College of Plant Sciences, Jilin University, Changchun 130062, China
- Laboratory of Molecular Plant Pathology, College of Plant Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
8
|
State of the Art of the Molecular Biology of the Interaction between Cocoa and Witches’ Broom Disease: A Systematic Review. Int J Mol Sci 2023; 24:ijms24065684. [PMID: 36982760 PMCID: PMC10057015 DOI: 10.3390/ijms24065684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 03/19/2023] Open
Abstract
Significant scientific advances to elucidate the Moniliophthora perniciosa pathosystem have been achieved in recent years, but the molecular biology of this pathogen-host interaction is still a field with many unanswered questions. In order to present insights at the molecular level, we present the first systematic review on the theme. All told, 1118 studies were extracted from public databases. Of these, 109 were eligible for the review, based on the inclusion and exclusion criteria. The results indicated that understanding the transition from the biotrophic-necrotrophic phase of the fungus is crucial for control of the disease. Proteins with strong biotechnological potential or that can be targets for pathosystem intervention were identified, but studies regarding possible applications are still limited. The studies identified revealed important genes in the M. perniciosa-host interaction and efficient molecular markers in the search for genetic variability and sources of resistance, with Theobroma cacao being the most common host. An arsenal of effectors already identified and not explored in the pathosystem were highlighted. This systematic review contributes to the understanding of the pathosystem at the molecular level, offering new insights and proposing different paths for the development of new strategies to control witches’ broom disease.
Collapse
|
9
|
Kotsaridis K, Tsakiri D, Sarris PF. Understanding enemy's weapons to an effective prevention: common virulence effects across microbial phytopathogens kingdoms. Crit Rev Microbiol 2022:1-15. [PMID: 35709325 DOI: 10.1080/1040841x.2022.2083939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plant-pathogens interaction is an ongoing confrontation leading to the emergence of new diseases. The majority of the invading microorganisms inject effector proteins into the host cell, to bypass the sophisticated defense system of the host. However, the effectors could also have other specialized functions, which can disrupt various biological pathways of the host cell. Pathogens can enrich their effectors arsenal to increase infection success or expand their host range. This usually is accomplished by the horizontal gene transfer. Nowadays, the development of specialized software that can predict proteins structure, has changed the experimental designing in effectors' function research. Different effectors of distinct plant pathogens tend to fold alike and have the same function and focussed structural studies on microbial effectors can help to uncover their catalytic/functional activities, while the structural similarity can enable cataloguing the great number of pathogens' effectors. In this review, we collectively present phytopathogens' effectors with known enzymatic functions and proteins structure, originated from all the kingdoms of microbial plant pathogens. Presentation of their common domains and motifs is also included. We believe that the in-depth understanding of the enemy's weapons will help the development of new strategies to prevent newly emerging or re-emerging plant pathogens.
Collapse
Affiliation(s)
| | | | - Panagiotis F Sarris
- Department of Biology, University of Crete, Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece.,Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
10
|
Li J, Shao Y, Yang Y, Xu C, Jing Z, Li H, Xie B, Tao Y. The Chromatin Modifier Protein FfJMHY Plays an Important Role in Regulating the Rate of Mycelial Growth and Stipe Elongation in Flammulina filiformis. J Fungi (Basel) 2022; 8:jof8050477. [PMID: 35628733 PMCID: PMC9147824 DOI: 10.3390/jof8050477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022] Open
Abstract
Stipe elongation is an important process in the development of the fruiting body and is associated with the commodity quality of agaric fungi. In this study, F. filiformis was used as a model agaric fungus to reveal the function of the chromatin modifier gene containing the JmjC domain in stipe elongation. First, we identified a JmjC domain family gene (FfJmhy) with a 3684 bp length open reading frame (ORF) in F. filiformis. FfJmhy was predicted to have a histone H3K9 demethylation function, and was specifically upregulated during stipe rapid elongation. Further investigation revealed that the silencing of FfJmhy inhibited the mycelial growth, while overexpression of this gene had no effect on the mycelial growth. Comparative analysis revealed that the stipe elongation rate in FfJmhy overexpression strains was significantly increased, while it was largely reduced when FfJmhy was silenced. Taken together, these results suggest that FfJmhy positively regulates the mycelial growth and controls the elongation speed and the length of the stipe. Moreover, cell wall-related enzymes genes, including three exo-β-1,3-glucanases, one β-1,6-glucan synthase, four chitinases, and two expansin proteins, were found to be regulated by FfJmhy. Based on the putative functions of FfJmhy, we propose that this gene enhances the transcription of cell wall-related enzymes genes by demethylating histone H3K9 sites to regulate remodeling of the cell wall in rapid stipe elongation. This study provides new insight into the mechanism of rapid stipe elongation, and it is important to regulate the commodity quality of agaric fungi.
Collapse
Affiliation(s)
- Jian Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanping Shao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yayong Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Chang Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhuohan Jing
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China;
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Correspondence: ; Tel.: +86-0591-83789281
| |
Collapse
|
11
|
Rovera C, Luti S, Pazzagli L, Heeley EL, Wan C, Romano D, Farris S. Enzymatic hydrolysis of bacterial cellulose in the presence of a non‐catalytic cerato‐platanin protein. J Appl Polym Sci 2022. [DOI: 10.1002/app.51886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cesare Rovera
- DeFENS, Department of Food, Environmental and Nutritional Sciences University of Milan Milan Italy
| | - Simone Luti
- Department of Biomedical, Experimental and Clinical Sciences University of Florence Florence Italy
| | - Luigia Pazzagli
- Department of Biomedical, Experimental and Clinical Sciences University of Florence Florence Italy
| | - Ellen L. Heeley
- School of Life Health and Chemical Sciences, The Open University, Walton Hall Milton Keynes UK
| | - Chaoying Wan
- International Institute for Nanocomposites Manufacturing (IINM) WMG, University of Warwick Coventry UK
| | - Diego Romano
- DeFENS, Department of Food, Environmental and Nutritional Sciences University of Milan Milan Italy
- INSTM, National Consortium of Materials Science and Technology Local Unit University of Milan Milan Italy
| | - Stefano Farris
- DeFENS, Department of Food, Environmental and Nutritional Sciences University of Milan Milan Italy
- INSTM, National Consortium of Materials Science and Technology Local Unit University of Milan Milan Italy
| |
Collapse
|
12
|
Landeta-Salgado C, Cicatiello P, Stanzione I, Medina D, Berlanga Mora I, Gomez C, Lienqueo ME. The growth of marine fungi on seaweed polysaccharides produces cerato-platanin and hydrophobin self-assembling proteins. Microbiol Res 2021; 251:126835. [PMID: 34399103 DOI: 10.1016/j.micres.2021.126835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 01/15/2023]
Abstract
The marine fungi Paradendryphiela salina and Talaromyces pinophilus degrade and assimilate complex substrates from plants and seaweed. Additionally, these fungi secrete surface-active proteins, identified as cerato-platanins and hydrophobins. These hydrophobic proteins have the ability to self-assemble forming amyloid-like aggregates and play an essential role in the growth and development of the filamentous fungi. It is the first time that one cerato-platanin (CP) is identified and isolated from P. salina (PsCP) and two Class I hydrophobins (HFBs) from T. pinophilus (TpHYD1 and TpHYD2). Furthermore, it is possible to extract cerato-platanins and hydrophobins using marine fungi that can feed on seaweed biomass, and through a submerged liquid fermentation process. The propensity to aggregate of these proteins has been analyzed using different techniques such as Thioflavin T fluorescence assay, Fourier-transform Infrared Spectroscopy, and Atomic Force Microscopy. Here, we show that the formation of aggregates of PsCP and TpHYD, was influenced by the carbon source from seaweed. This study highlighted the potential of these self-assembling proteins generated from a fermentation process with marine fungi and with promising properties such as conformational plasticity with extensive applications in biotechnology, pharmacy, nanotechnology, and biomedicine.
Collapse
Affiliation(s)
- Catalina Landeta-Salgado
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile; Center for Biotechnology and Bioengineering (CeBiB), Santiago, Beauchef 851, 8370456, Chile
| | - Paola Cicatiello
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, I-80126 Naples, Italy
| | - Ilaria Stanzione
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, I-80126 Naples, Italy
| | - David Medina
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile; Center for Biotechnology and Bioengineering (CeBiB), Santiago, Beauchef 851, 8370456, Chile
| | - Isadora Berlanga Mora
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile
| | - Carlos Gomez
- Chemistry Department, University of Valle-Yumbo, Valle del Cauca, 760501, Colombia
| | - María Elena Lienqueo
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile; Center for Biotechnology and Bioengineering (CeBiB), Santiago, Beauchef 851, 8370456, Chile.
| |
Collapse
|
13
|
Pennacchio A, Pitocchi R, Varese GC, Giardina P, Piscitelli A. Trichoderma harzianum cerato-platanin enhances hydrolysis of lignocellulosic materials. Microb Biotechnol 2021; 14:1699-1706. [PMID: 34107174 PMCID: PMC8313248 DOI: 10.1111/1751-7915.13836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/03/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022] Open
Abstract
Considering its worldwide abundance, cellulose can be a suitable candidate to replace the fossil oil-based materials, even if its potential is still untapped, due to some scientific and technical gaps. This work offers new possibilities demonstrating for the first time the ability of a cerato-platanin, a small fungal protein, to valorize lignocellulosic Agri-food Wastes. Indeed, cerato-platanins can loosen cellulose rendering it more accessible to hydrolytic attack. The cerato-platanin ThCP from a marine strain of Trichoderma harzianum, characterized as an efficient biosurfactant protein, has proven able to efficiently pre-treat apple pomace, obtaining a sugar conversion yield of 65%. Moreover, when used in combination with a laccase enzyme, a notable increase in the sugar conversion yield was measured. Similar results were also obtained when other wastes, coffee silverskin and potato peel, were pre-treated. With respect to the widespread laccase pre-treatments, this new pre-treatment approach minimizes process time, increasing energy efficiency.
Collapse
Affiliation(s)
- Anna Pennacchio
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 4Naples80126Italy
| | - Rossana Pitocchi
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 4Naples80126Italy
| | - Giovanna Cristina Varese
- Department of Life Sciences and Systems BiologyUniversity of Turinviale P.A. Mattioli 25Turin10125Italy
| | - Paola Giardina
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 4Naples80126Italy
| | - Alessandra Piscitelli
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 4Naples80126Italy
| |
Collapse
|
14
|
Liu C, Bi J, Kang L, Zhou J, Liu X, Liu Z, Yuan S. The molecular mechanism of stipe cell wall extension for mushroom stipe elongation growth. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2020.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Abstract
Plant-colonizing fungi secrete a cocktail of effector proteins during colonization. After secretion, some of these effectors are delivered into plant cells to directly dampen the plant immune system or redirect host processes benefitting fungal growth. Other effectors function in the apoplastic space either as released proteins modulating the activity of plant enzymes associated with plant defense or as proteins bound to the fungal cell wall. For such fungal cell wall-bound effectors, we know particularly little about their molecular function. In this review, we describe effectors that are associated with the fungal cell wall and discuss how they contribute to colonization.
Collapse
Affiliation(s)
- Shigeyuki Tanaka
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, Marburg 35043, Germany
| | - Regine Kahmann
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, Marburg 35043, Germany
| |
Collapse
|
16
|
Baroni F, Gallo M, Pazzagli L, Luti S, Baccelli I, Spisni A, Pertinhez TA. A mechanistic model may explain the dissimilar biological efficiency of the fungal elicitors cerato-platanin and cerato-populin. Biochim Biophys Acta Gen Subj 2021; 1865:129843. [PMID: 33444726 DOI: 10.1016/j.bbagen.2021.129843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/17/2020] [Accepted: 01/08/2021] [Indexed: 11/19/2022]
Abstract
Among their various functions, the members of the cerato-platanin family can stimulate plants' defense responses and induce resistance against microbial pathogens. Recent results suggest that conserved loops, also involved in chitin binding, might be a structural motif central for their eliciting activity. Here, we focus on cerato-platanin and its orthologous cerato-populin, searching for a rationale of their diverse efficiency to elicit plants' defense and to interact with oligosaccharides. A 3D model of cerato-populin has been generated by homology modeling using the NMR-derived cerato-platanin structure as template, and it has been validated by fitting with residual dipolar couplings. Loops β1-β2 and β2-β3 have been indicated as important for some CPPs members to express their biological function. When compared to cerato-platanin, in cerato-populin they present two mutations and an insertion that significantly modify their electrostatic surface. NMR relaxation experiments point to a reduced conformational plasticity of cerato-populin loops with respect to the ones of cerato-platanin. The different electrostatic surface of the loops combined with a distinct network of intra-molecular interactions are expected to be factors that, by leading to a diverse spatial organization and dissimilar collective motions, can regulate the eliciting efficacy of the two proteins and their affinity for oligosaccharides.
Collapse
Affiliation(s)
- Fabio Baroni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mariana Gallo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Simone Luti
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino (Florence), Italy
| | - Alberto Spisni
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | | |
Collapse
|
17
|
Narváez-Barragán DA, Tovar-Herrera OE, Segovia L, Serrano M, Martinez-Anaya C. Expansin-related proteins: biology, microbe-plant interactions and associated plant-defense responses. MICROBIOLOGY-SGM 2020; 166:1007-1018. [PMID: 33141007 DOI: 10.1099/mic.0.000984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Expansins, cerato-platanins and swollenins (which we will henceforth refer to as expansin-related proteins) are a group of microbial proteins involved in microbe-plant interactions. Although they share very low sequence similarity, some of their composing domains are near-identical at the structural level. Expansin-related proteins have their target in the plant cell wall, in which they act through a non-enzymatic, but still uncharacterized, mechanism. In most cases, mutagenesis of expansin-related genes affects plant colonization or plant pathogenesis of different bacterial and fungal species, and thus, in many cases they are considered virulence factors. Additionally, plant treatment with expansin-related proteins activate several plant defenses resulting in the priming and protection towards subsequent pathogen encounters. Plant-defence responses induced by these proteins are reminiscent of pattern-triggered immunity or hypersensitive response in some cases. Plant immunity to expansin-related proteins could be caused by the following: (i) protein detection by specific host-cell receptors, (ii) alterations to the cell-wall-barrier properties sensed by the host, (iii) displacement of cell-wall polysaccharides detected by the host. Expansin-related proteins may also target polysaccharides on the wall of the microbes that produced them under certain physiological instances. Here, we review biochemical, evolutionary and biological aspects of these relatively understudied proteins and different immune responses they induce in plant hosts.
Collapse
Affiliation(s)
- Delia A Narváez-Barragán
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| | - Omar E Tovar-Herrera
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, BeerSheva, Israel
| | - Lorenzo Segovia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| | - Claudia Martinez-Anaya
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| |
Collapse
|
18
|
Liu Y, Bastiaan-Net S, Wichers HJ. Current Understanding of the Structure and Function of Fungal Immunomodulatory Proteins. Front Nutr 2020; 7:132. [PMID: 33015115 PMCID: PMC7461872 DOI: 10.3389/fnut.2020.00132] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
Fungal immunomodulatory proteins (FIPs) are a group of proteins found in fungi, which are extensively studied for their immunomodulatory activity. Currently, more than 38 types of FIPs have been described. Based on their conserved structure and protein identity, FIPs can be classified into five subgroups: Fve-type FIPs (Pfam PF09259), Cerato-type FIPs (Pfam PF07249), PCP-like FIPs, TFP-like FIPs, and unclassified FIPs. Among the five subgroups, Fve-type FIPs are the most studied for their hemagglutinating, immunomodulating, and anti-cancer properties. In general, these small proteins consist of 110–125 amino acids, with a molecular weight of ~13 kDa. The other four subgroups are relatively less studied, but also show a noticeable influence on immune cells. In this review, we summarized the protein modifications, 3-dimensional structures and bioactivities of all types of FIPs. Moreover, structure-function relationship of FIPs has been discussed, including relationship between carbohydrate binding module and hemagglutination, correlation of oligomerization and cytokine induction, relevance of glycosylation and lymphocyte activation. This summary and discussion may help gain comprehensive understanding of FIPs' working mechanisms and scope future studies.
Collapse
Affiliation(s)
- Yusi Liu
- Laboratory of Food Enzyme Engineering, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing, China.,Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands.,Laboratory of Food Chemistry, Wageningen University, Wageningen, Netherlands
| | - Shanna Bastiaan-Net
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands
| | - Harry J Wichers
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands.,Laboratory of Food Chemistry, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
19
|
Zhang Z, Li Y, Luo L, Hao J, Li J. Characterization of cmcp Gene as a Pathogenicity Factor of Ceratocystis manginecans. Front Microbiol 2020; 11:1824. [PMID: 32849428 PMCID: PMC7411389 DOI: 10.3389/fmicb.2020.01824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/10/2020] [Indexed: 11/13/2022] Open
Abstract
Ceratocystis manginecans causes mango wilt with significant economic losses. In the infection court, cerato-platanin (CP) family proteins (CPPs) are believed to involve in pathogenesis but has not been determined in C. manginecans. To confirm this function, a CP protein (CmCP) of C. manginecans was characterized in this study. A protoplast of C. manginecans was prepared by treating its mycelia with driselase and lysing enzymes. The cmcp gene was edited using CRISPR/Cas-U6-1 expression vectors in 60% PEG and 50 μg/mL hygromycin B in the medium, resulting in mutants with cmcp deletion (Δcmcp). A complemented mutant (Δcmcp-C) was obtained by transforming cmcp to Δcmcp. Both Δcmcp and Δcmcp-C were characterized by comparing them with a wild-type strain on morphology, mycelial growth, conidial production and pathogenicity. Additionally, cmcp was transformed and expressed in Pichia pastoris, and the derived recombinant protein CmCP caused a severe necrosis on Nicotiana tabacum leaves. CmCP-treated plant leaves showed symptoms of hypersensitive response including electrolyte leakage, reactive oxygen species generation and overexpression of defense-related genes PR-1, PAD3, ERF1, HSR203J, and HIN1. All those results suggested that cmcp gene was required for the growth development of C. manginecans and functioned as a major pathogenicity factor in mango infection.
Collapse
Affiliation(s)
- Zhiping Zhang
- College of Plant Protection/Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, China
| | - Yingbin Li
- College of Plant Protection/Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, China
| | - Laixin Luo
- College of Plant Protection/Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, China
| | - Jianjun Hao
- School of Food and Agriculture, The University of Maine, Orono, ME, United States
| | - Jianqiang Li
- College of Plant Protection/Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Li Y, Han Y, Qu M, Chen J, Chen X, Geng X, Wang Z, Chen S. Apoplastic Cell Death-Inducing Proteins of Filamentous Plant Pathogens: Roles in Plant-Pathogen Interactions. Front Genet 2020; 11:661. [PMID: 32676100 PMCID: PMC7333776 DOI: 10.3389/fgene.2020.00661] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/01/2020] [Indexed: 11/13/2022] Open
Abstract
Filamentous pathogens, such as phytopathogenic oomycetes and fungi, secrete a remarkable diversity of apoplastic effector proteins to facilitate infection, many of which are able to induce cell death in plants. Over the past decades, over 177 apoplastic cell death-inducing proteins (CDIPs) have been identified in filamentous oomycetes and fungi. An emerging number of studies have demonstrated the role of many apoplastic CDIPs as essential virulence factors. At the same time, apoplastic CDIPs have been documented to be recognized by plant cells as pathogen-associated molecular patterns (PAMPs). The recent findings of extracellular recognition of apoplastic CDIPs by plant leucine-rich repeat-receptor-like proteins (LRR-RLPs) have greatly advanced our understanding of how plants detect them and mount a defense response. This review summarizes the latest advances in identifying apoplastic CDIPs of plant pathogenic oomycetes and fungi, and our current understanding of the dual roles of apoplastic CDIPs in plant-filamentous pathogen interactions.
Collapse
Affiliation(s)
- Ya Li
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yijuan Han
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Mengyu Qu
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Jia Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaofeng Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zonghua Wang
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songbiao Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
21
|
The Evolutionary and Functional Paradox of Cerato-platanins in Fungi. Appl Environ Microbiol 2020; 86:AEM.00696-20. [PMID: 32332135 DOI: 10.1128/aem.00696-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 01/11/2023] Open
Abstract
Cerato-platanins (CPs) form a family of fungal small secreted cysteine-rich proteins (SSCPs) and are of particular interest not only because of their surface activity but also their abundant secretion by fungi. We performed an evolutionary analysis of 283 CPs from 157 fungal genomes with the focus on the environmental opportunistic plant-beneficial and mycoparasitic fungus Trichoderma Our results revealed a long evolutionary history of CPs in Dikarya fungi that have undergone several events of lateral gene transfer and gene duplication. Three genes were maintained in the core genome of Trichoderma, while some species have up to four CP-encoding genes. All Trichoderma CPs evolve under stabilizing natural selection pressure. The functional genomic analysis of CPs in Trichoderma guizhouense and Trichoderma harzianum revealed that only epl1 is active at all stages of development but that it plays a minor role in interactions with other fungi and bacteria. The deletion of this gene results in increased colonization of tomato roots by Trichoderma spp. Similarly, biochemical tests of EPL1 heterologously produced by Pichia pastoris support the claims described above. Based on the results obtained, we conclude that the function of CPs is probably linked to their surfactant properties and the ability to modify the hyphosphere of submerged mycelia and, thus, facilitate the nutritional versatility of fungi. The effector-like functions do not sufficiently describe the diversity and evolution of these proteins in fungi, as they are also maintained, duplicated, or laterally transferred in the genomes of nonherbivore fungi.IMPORTANCE Cerato-platanins (CPs) are surface-active small proteins abundantly secreted by filamentous fungi. Consequently, immune systems of plants and other organisms recognize CPs and activate defense mechanisms. Some CPs are toxic to plants and act as virulence factors in plant-pathogenic fungi. Our analysis, however, demonstrates that the interactions with plants do not explain the origin and evolution of CPs in the fungal kingdom. We revealed a long evolutionary history of CPs with multiple cases of gene duplication and events of interfungal lateral gene transfers. In the mycoparasitic Trichoderma spp., CPs evolve under stabilizing natural selection and hamper the colonization of roots. We propose that the ability to modify the hydrophobicity of the fungal hyphosphere is a key to unlock the evolutionary and functional paradox of these proteins.
Collapse
|
22
|
Cerato-Platanins from Marine Fungi as Effective Protein Biosurfactants and Bioemulsifiers. Int J Mol Sci 2020; 21:ijms21082913. [PMID: 32326352 PMCID: PMC7215997 DOI: 10.3390/ijms21082913] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
Two fungal strains, Aspergillus terreus MUT 271 and Trichoderma harzianum MUT 290, isolated from a Mediterranean marine site chronically pervaded by oil spills, can use crude oil as sole carbon source. Herein, these strains were investigated as producers of biosurfactants, apt to solubilize organic molecules as a preliminary step to metabolize them. Both fungi secreted low molecular weight proteins identified as cerato-platanins, small, conserved, hydrophobic proteins, included among the fungal surface-active proteins. Both proteins were able to stabilize emulsions, and their capacity was comparable to that of other biosurfactant proteins and to commercially available surfactants. Moreover, the cerato-platanin from T. harzianum was able to lower the surface tension value to a larger extent than the similar protein from A. terreus and other amphiphilic proteins from fungi. Both cerato-platanins were able to make hydrophilic a hydrophobic surface, such as hydrophobins, and to form a stable layer, not removable even after surface washing. To the best of our knowledge, the ability of cerato-platanins to work both as biosurfactant and bioemulsifier is herein demonstrated for the first time.
Collapse
|
23
|
Luti S, Sella L, Quarantin A, Pazzagli L, Baccelli I. Twenty years of research on cerato-platanin family proteins: clues, conclusions, and unsolved issues. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
dos Santos EC, Pirovani CP, Correa SC, Micheli F, Gramacho KP. The pathogen Moniliophthora perniciosa promotes differential proteomic modulation of cacao genotypes with contrasting resistance to witches´ broom disease. BMC PLANT BIOLOGY 2020; 20:1. [PMID: 31898482 PMCID: PMC6941324 DOI: 10.1186/s12870-019-2170-7] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/27/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Witches' broom disease (WBD) of cacao (Theobroma cacao L.), caused by Moniliophthora perniciosa, is the most important limiting factor for the cacao production in Brazil. Hence, the development of cacao genotypes with durable resistance is the key challenge for control the disease. Proteomic methods are often used to study the interactions between hosts and pathogens, therefore helping classical plant breeding projects on the development of resistant genotypes. The present study compared the proteomic alterations between two cacao genotypes standard for WBD resistance and susceptibility, in response to M. perniciosa infection at 72 h and 45 days post-inoculation; respectively the very early stages of the biotrophic and necrotrophic stages of the cacao x M. perniciosa interaction. RESULTS A total of 554 proteins were identified, being 246 in the susceptible Catongo and 308 in the resistant TSH1188 genotypes. The identified proteins were involved mainly in metabolism, energy, defense and oxidative stress. The resistant genotype showed more expressed proteins with more variability associated with stress and defense, while the susceptible genotype exhibited more repressed proteins. Among these proteins, stand out pathogenesis related proteins (PRs), oxidative stress regulation related proteins, and trypsin inhibitors. Interaction networks were predicted, and a complex protein-protein interaction was observed. Some proteins showed a high number of interactions, suggesting that those proteins may function as cross-talkers between these biological functions. CONCLUSIONS We present the first study reporting the proteomic alterations of resistant and susceptible genotypes in the T. cacao x M. perniciosa pathosystem. The important altered proteins identified in the present study are related to key biologic functions in resistance, such as oxidative stress, especially in the resistant genotype TSH1188, that showed a strong mechanism of detoxification. Also, the positive regulation of defense and stress proteins were more evident in this genotype. Proteins with significant roles against fungal plant pathogens, such as chitinases, trypsin inhibitors and PR 5 were also identified, and they may be good resistance markers. Finally, important biological functions, such as stress and defense, photosynthesis, oxidative stress and carbohydrate metabolism were differentially impacted with M. perniciosa infection in each genotype.
Collapse
Affiliation(s)
- Everton Cruz dos Santos
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
- Stem Cell Laboratory, Bone Marrow Transplantation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, RJ Brazil
| | - Carlos Priminho Pirovani
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
| | - Stephany Cristiane Correa
- Stem Cell Laboratory, Bone Marrow Transplantation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, RJ Brazil
| | - Fabienne Micheli
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
- CIRAD, UMR AGAP, F-34398, Montpellier, France
| | - Karina Peres Gramacho
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
- Molecular Plant Pathology Laboratory, Cocoa Research Center (CEPEC), CEPLAC, Km 22 Rod. Ilhéus-Itabuna, Ilhéus, Bahia 45600-970 Brazil
| |
Collapse
|
25
|
Pandaranayaka EP, Frenkel O, Elad Y, Prusky D, Harel A. Network analysis exposes core functions in major lifestyles of fungal and oomycete plant pathogens. BMC Genomics 2019; 20:1020. [PMID: 31878885 PMCID: PMC6933724 DOI: 10.1186/s12864-019-6409-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Background Genomic studies demonstrate that components of virulence mechanisms in filamentous eukaryotic pathogens (FEPs, fungi and oomycetes) of plants are often highly conserved, or found in gene families that include secreted hydrolytic enzymes (e.g., cellulases and proteases) and secondary metabolites (e.g., toxins), central to the pathogenicity process. However, very few large-scale genomic comparisons have utilized complete proteomes from dozens of FEPs to reveal lifestyle-associated virulence mechanisms. Providing a powerful means for exploration, and the discovery of trends in large-scale datasets, network analysis has been used to identify core functions of the primordial cyanobacteria, and ancient evolutionary signatures in oxidoreductases. Results We used a sequence-similarity network to study components of virulence mechanisms of major pathogenic lifestyles (necrotroph (ic), N; biotroph (ic), B; hemibiotroph (ic), H) in complete pan-proteomes of 65 FEPs and 17 saprobes. Our comparative analysis highlights approximately 190 core functions found in 70% of the genomes of these pathogenic lifestyles. Core functions were found mainly in: transport (in H, N, B cores); carbohydrate metabolism, secondary metabolite synthesis, and protease (H and N cores); nucleic acid metabolism and signal transduction (B core); and amino acid metabolism (H core). Taken together, the necrotrophic core contains functions such as cell wall-associated degrading enzymes, toxin metabolism, and transport, which are likely to support their lifestyle of killing prior to feeding. The biotrophic stealth growth on living tissues is potentially controlled by a core of regulatory functions, such as: small G-protein family of GTPases, RNA modification, and cryptochrome-based light sensing. Regulatory mechanisms found in the hemibiotrophic core contain light- and CO2-sensing functions that could mediate important roles of this group, such as transition between lifestyles. Conclusions The selected set of enriched core functions identified in our work can facilitate future studies aimed at controlling FEPs. One interesting example would be to facilitate the identification of the pathogenic potential of samples analyzed by metagenomics. Finally, our analysis offers potential evolutionary scenarios, suggesting that an early-branching saprobe (identified in previous studies) has probably evolved a necrotrophic lifestyle as illustrated by the highest number of shared gene families between saprobes and necrotrophs.
Collapse
Affiliation(s)
- Eswari Pj Pandaranayaka
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Dov Prusky
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Arye Harel
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel.
| |
Collapse
|
26
|
Marelli JP, Guest DI, Bailey BA, Evans HC, Brown JK, Junaid M, Barreto RW, Lisboa DO, Puig AS. Chocolate Under Threat from Old and New Cacao Diseases. PHYTOPATHOLOGY 2019; 109:1331-1343. [PMID: 31115251 DOI: 10.1094/phyto-12-18-0477-rvw] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Theobroma cacao, the source of chocolate, is affected by destructive diseases wherever it is grown. Some diseases are endemic; however, as cacao was disseminated from the Amazon rain forest to new cultivation sites it encountered new pathogens. Two well-established diseases cause the greatest losses: black pod rot, caused by several species of Phytophthora, and witches' broom of cacao, caused by Moniliophthora perniciosa. Phytophthora megakarya causes the severest damage in the main cacao producing countries in West Africa, while P. palmivora causes significant losses globally. M. perniciosa is related to a sister basidiomycete species, M. roreri which causes frosty pod rot. These Moniliophthora species only occur in South and Central America, where they have significantly limited production since the beginnings of cacao cultivation. The basidiomycete Ceratobasidium theobromae causing vascular-streak dieback occurs only in South-East Asia and remains poorly understood. Cacao swollen shoot disease caused by Cacao swollen shoot virus is rapidly spreading in West Africa. This review presents contemporary research on the biology, taxonomy and genomics of what are often new-encounter pathogens, as well as the management of the diseases they cause.
Collapse
Affiliation(s)
| | - David I Guest
- 2Sydney Institute of Agriculture, School of Life and Environmental Sciences, the University of Sydney, NSW 2006, Australia
| | - Bryan A Bailey
- 3USDA-ARS/Sustainable Perennial Crops Lab, Beltsville, MD 20705, U.S.A
| | | | - Judith K Brown
- 5School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, U.S.A
| | - Muhammad Junaid
- 2Sydney Institute of Agriculture, School of Life and Environmental Sciences, the University of Sydney, NSW 2006, Australia
- 8Cocoa Research Group/Faculty of Agriculture, Hasanuddin University, 90245 Makassar, Indonesia
| | | | | | - Alina S Puig
- 7USDA-ARS/Subtropical Horticultural Research Station, Miami, FL 33131, U.S.A
| |
Collapse
|
27
|
Quarantin A, Castiglioni C, Schäfer W, Favaron F, Sella L. The Fusarium graminearum cerato-platanins loosen cellulose substrates enhancing fungal cellulase activity as expansin-like proteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:229-238. [PMID: 30913532 DOI: 10.1016/j.plaphy.2019.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/27/2019] [Accepted: 03/14/2019] [Indexed: 05/01/2023]
Abstract
Cerato-platanin proteins (CPPs) are small non-catalytic, cysteine-rich hydrophobic proteins produced by filamentous fungi. The genome of Fusarium graminearum, the causal agent of Fusarium head blight disease of wheat and other cereal grains, contains two genes putatively encoding for CPPs. To better characterize their features, the two FgCPPs were heterologously expressed in Pichia pastoris. The recombinant FgCPPs reduced the viscosity of a cellulose soluble derivate (carboxymethyl cellulose, CMC). The same effect was not observed on other polysaccharide substrates such as chitin, 1,3-β-glucan, xylan and pectin. Indeed, differently from other fungal CPPs and similarly to expansins, FgCPPs are trapped by cellulose and not by chitin, thus suggesting that these proteins interact with cellulose. A double knock-out mutant deleted of both FgCPPs encoding genes produces much more cellulase activity than the corresponding wild type strain when grown on CMC, likely compensating the absence of FgCPPs. This result prompted us to investigate a possible synergistic effect of these proteins with fungal cellulases. The incubation of FgCPPs in the presence of a fungal cellulase (EC 3.2.1.4) determines an increased enzymatic activity on CMC, filter paper and wheat cell walls. The observation that FgCPPs act with a non-hydrolytic mechanism indicates that these proteins favor fungal cellulase activity in an expansin-like manner. Though the disruption of the FgCPP genes had no demonstrable impact on fungal virulence, our experimental data suggest their probable involvement in virulence, thus we refer to them as accessory virulence genes. Our results suggest also that the FgCPPs could be exploited for future biotechnological application in second-generation biofuels production on lignocellulosic biomasses rich in cellulose. Finally, we demonstrate that FgCPPs act as elicitors of defense responses on Arabidopsis leaves, increasing resistance to Botrytis cinerea infections.
Collapse
Affiliation(s)
- Alessandra Quarantin
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Carla Castiglioni
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Wilhelm Schäfer
- Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, University of Hamburg, Hamburg, Germany
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Luca Sella
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy.
| |
Collapse
|
28
|
Bailey BA, Evans HC, Phillips‐Mora W, Ali SS, Meinhardt LW. Moniliophthora roreri, causal agent of cacao frosty pod rot. MOLECULAR PLANT PATHOLOGY 2018; 19:1580-1594. [PMID: 29194910 PMCID: PMC6638017 DOI: 10.1111/mpp.12648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Taxonomy: Moniliophthora roreri (Cif.) H.C. Evans et al. ; Phylum Basidiomycota; Class Agaricomycetes; Order Agaricales; Family Marasmiaceae; Genus Moniliophthora. Biology: Moniliophthora roreri attacks Theobroma and Herrania species causing frosty pod rot. Theobroma cacao (cacao) is the host of major economic concern. Moniliophthora roreri is a hemibiotroph with a long biotrophic phase (45-90 days). Spore masses, of apparent asexual origin, are produced on the pod surface after initiation of the necrotrophic phase. Spores are spread by wind, rain and human activity. Symptoms of the biotrophic phase can include necrotic flecks and, in some cases, pod malformation, but pods otherwise remain asymptomatic. Relationship to Moniliophthora perniciosa: Moniliophthora roreri and Moniliophthora perniciosa, causal agent of witches' broom disease of cacao, are closely related. Their genomes are similar, including many of the genes they carry which are considered to be important in the disease process. Moniliophthora perniciosa, also a hemibiotroph, has a typical basidiomycete lifestyle and morphology, forming clamp connections and producing mushrooms. Basidiospores infect meristematic tissues including flower cushions, stem tips and pods. Moniliophthora roreri does not form clamp connections or mushrooms and infects pods only. Both pathogens are limited to the Western Hemisphere and are a threat to cacao production around the world. Agronomic importance: Disease losses caused by frosty pod rot can reach 90% and result in field abandonment. Moniliophthora roreri remains in the invasive phase in the Western Hemisphere, not having reached Brazil, some islands within the Caribbean and a few specific regions within otherwise invaded countries. DISEASE MANAGEMENT The disease can be managed by a combination of cultural (for example, maintenance of tree height and removal of infected pods) and chemical methods. These methods benefit from regional application, but can be cost prohibitive. Breeding for disease resistance offers the greatest potential for frosty pod rot management and new tolerant materials are becoming available.
Collapse
Affiliation(s)
- Bryan A. Bailey
- Sustainable Perennial Crops Laboratory, United States Department of AgricultureAgricultural Research ServiceBeltsvilleMD 20705USA
| | | | - Wilbert Phillips‐Mora
- Tropical Agricultural Research and Higher Education Center (CATIE)Turrialba 7170Costa Rica
| | - Shahin S. Ali
- Sustainable Perennial Crops Laboratory, United States Department of AgricultureAgricultural Research ServiceBeltsvilleMD 20705USA
| | - Lyndel W. Meinhardt
- Sustainable Perennial Crops Laboratory, United States Department of AgricultureAgricultural Research ServiceBeltsvilleMD 20705USA
| |
Collapse
|
29
|
Mesarich CH, Ӧkmen B, Rovenich H, Griffiths SA, Wang C, Karimi Jashni M, Mihajlovski A, Collemare J, Hunziker L, Deng CH, van der Burgt A, Beenen HG, Templeton MD, Bradshaw RE, de Wit PJGM. Specific Hypersensitive Response-Associated Recognition of New Apoplastic Effectors from Cladosporium fulvum in Wild Tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:145-162. [PMID: 29144204 DOI: 10.1094/mpmi-05-17-0114-fi] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Tomato leaf mold disease is caused by the biotrophic fungus Cladosporium fulvum. During infection, C. fulvum produces extracellular small secreted protein (SSP) effectors that function to promote colonization of the leaf apoplast. Resistance to the disease is governed by Cf immune receptor genes that encode receptor-like proteins (RLPs). These RLPs recognize specific SSP effectors to initiate a hypersensitive response (HR) that renders the pathogen avirulent. C. fulvum strains capable of overcoming one or more of all cloned Cf genes have now emerged. To combat these strains, new Cf genes are required. An effectoromics approach was employed to identify wild tomato accessions carrying new Cf genes. Proteomics and transcriptome sequencing were first used to identify 70 apoplastic in planta-induced C. fulvum SSPs. Based on sequence homology, 61 of these SSPs were novel or lacked known functional domains. Seven, however, had predicted structural homology to antimicrobial proteins, suggesting a possible role in mediating antagonistic microbe-microbe interactions in planta. Wild tomato accessions were then screened for HR-associated recognition of 41 SSPs, using the Potato virus X-based transient expression system. Nine SSPs were recognized by one or more accessions, suggesting that these plants carry new Cf genes available for incorporation into cultivated tomato.
Collapse
Affiliation(s)
- Carl H Mesarich
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 2 Laboratory of Molecular Plant Pathology, Institute of Agriculture & Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- 3 Bio-Protection Research Centre, New Zealand
| | - Bilal Ӧkmen
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hanna Rovenich
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Scott A Griffiths
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Changchun Wang
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 4 College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
| | - Mansoor Karimi Jashni
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 5 Department of Plant Pathology, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization, P.O. Box 19395‒1454, Tehran, Iran
| | - Aleksandar Mihajlovski
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jérôme Collemare
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Lukas Hunziker
- 3 Bio-Protection Research Centre, New Zealand
- 6 Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Cecilia H Deng
- 7 Breeding & Genomics/Bioprotection Portfolio, the New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand; and
| | - Ate van der Burgt
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Henriek G Beenen
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Matthew D Templeton
- 3 Bio-Protection Research Centre, New Zealand
- 7 Breeding & Genomics/Bioprotection Portfolio, the New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand; and
| | - Rosie E Bradshaw
- 3 Bio-Protection Research Centre, New Zealand
- 6 Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Pierre J G M de Wit
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 8 Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
30
|
Yang G, Tang L, Gong Y, Xie J, Fu Y, Jiang D, Li G, Collinge DB, Chen W, Cheng J. A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum. THE NEW PHYTOLOGIST 2018; 217:739-755. [PMID: 29076546 DOI: 10.1111/nph.14842] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/05/2017] [Indexed: 05/20/2023]
Abstract
Cerato-platanin proteins (CPs), which are secreted by filamentous fungi, are phytotoxic to host plants, but their functions have not been well defined to date. Here we characterized a CP (SsCP1) from the necrotrophic phytopathogen Sclerotinia sclerotiorum. Sscp1 transcripts accumulated during plant infection, and deletion of Sscp1 significantly reduced virulence. SsCP1 could induce significant cell death when expressed in Nicotiana benthamiana. Using yeast two-hybrid, GST pull-down, co-immunoprecipitation and bimolecular florescence complementation, we found that SsCP1 interacts with PR1 in the apoplast to facilitate infection by S. sclerotiorum. Overexpressing PR1 enhanced resistance to the wild-type strain, but not to the Sscp1 knockout strain of S. sclerotiorum. Sscp1-expressing transgenic plants showed increased concentrations of salicylic acid (SA) and higher levels of resistance to several plant pathogens (namely Botrytis cinerea, Alternaria brassicicola and Golovinomyces orontii). Our results suggest that SsCP1 is important for virulence of S. sclerotiorum and that it can be recognized by plants to trigger plant defense responses. Our results also suggest that the SA signaling pathway is involved in CP-mediated plant defense .
Collapse
Affiliation(s)
- Guogen Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Liguang Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yingdi Gong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - David B Collinge
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA, 99164, USA
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| |
Collapse
|
31
|
Darwiche R, El Atab O, Baroni RM, Teixeira PJPL, Mondego JMC, Pereira GAG, Schneiter R. Plant pathogenesis-related proteins of the cacao fungal pathogen Moniliophthora perniciosa differ in their lipid-binding specificities. J Biol Chem 2017; 292:20558-20569. [PMID: 29042440 DOI: 10.1074/jbc.m117.811398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
Moniliophthora perniciosa is the causative agent of witches' broom disease, which devastates cacao cultures in South America. This pathogenic fungus infects meristematic tissues and derives nutrients from the plant apoplast during an unusually long-lasting biotrophic stage. To survive, the fungus produces proteins to suppress the plant immune response. Proteins of the PR-1 (pathogenesis-related 1)/CAP superfamily have been implicated in fungal virulence and immune suppression. The genome of M. perniciosa encodes 11 homologues of plant PR-1 proteins, designated MpPR-1 proteins, but their precise mode of action is poorly understood. In this study, we expressed MpPR-1 proteins in a yeast model lacking endogenous CAP proteins. We show that some members of the MpPR-1 family bind and promote secretion of sterols, whereas others bind and promote secretion of fatty acids. Lipid binding by purified MpPR-1 occurs with micromolar affinity and is saturable in vitro Sterol binding by MpPR-1 requires the presence of a flexible loop region containing aromatic amino acids, the caveolin-binding motif. Remarkably, MpPR-1 family members that do not bind sterols can be converted to sterol binders by a single point mutation in the caveolin-binding motif. We discuss the possible implications of the lipid-binding activity of MpPR-1 family members with regard to the mode of action of these proteins during M. perniciosa infections.
Collapse
Affiliation(s)
- Rabih Darwiche
- From the Division of Biochemistry, Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Ola El Atab
- From the Division of Biochemistry, Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Renata M Baroni
- the Instituto Agronômico de Campinas, Campinas, SP 13083-970, Brazil, and.,the Laboratório de Genética e Expressão, UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Paulo J P L Teixeira
- the Laboratório de Genética e Expressão, UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Jorge M C Mondego
- the Instituto Agronômico de Campinas, Campinas, SP 13083-970, Brazil, and
| | - Gonçalo A G Pereira
- the Laboratório de Genética e Expressão, UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Roger Schneiter
- From the Division of Biochemistry, Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland,
| |
Collapse
|
32
|
A single amino acid mutation affects elicitor and expansins-like activities of cerato-platanin, a non-catalytic fungal protein. PLoS One 2017; 12:e0178337. [PMID: 28542638 PMCID: PMC5444802 DOI: 10.1371/journal.pone.0178337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/11/2017] [Indexed: 11/19/2022] Open
Abstract
Cerato-platanin (CP) is a non-catalytic, cysteine-rich protein, the first member of the cerato-platanin family. It is a single-domain protein with a double Ψ/β barrel domain resembling the D1 domain of plant and bacterial expansins. Similarly to expansins, CP shows a cell wall-loosening activity on cellulose and can be defined as an expanisin-like protein, in spite of the missing D2 domain, normally present in plant expansins. The weakening activity shown on cellulose may facilitate the CP-host interaction, corroborating the role of CP in eliciting plant defence response. Indeed, CP is an elicitor of primary defences acting as a Pathogen-Associated Molecular Patterns (PAMP). So far, structure-function relationship study has been mainly performed on the bacterial BsEXLX1 expansin, probably due to difficulties in expressing plant expansins in heterologous systems. Here, we report a subcloning and purification method of CP in the engineered E. coli SHuffle cells, which proved to be suitable to obtain the properly folded and biologically active protein. The method also enabled the production of the mutant D77A, rationally designed to be inactive. The wild-type and the mutated CP were characterized for cellulose weakening activity and for PAMP activity (i.e. induction of Reactive Oxygen Species synthesis and phytoalexins production). Our analysis reveals that the carboxyl group of D77 is crucial for expansin-like and PAMP activities, thus permitting to establish a correlation between the ability to weaken cellulose and the capacity to induce defence responses in plants. Our results enable the structural and functional characterization of a mono-domain eukaryotic expansin and identify the essential role of a specific aspartic residue in cellulose weakening.
Collapse
|
33
|
Sunde M, Pham CLL, Kwan AH. Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins. Annu Rev Biochem 2017; 86:585-608. [PMID: 28125290 DOI: 10.1146/annurev-biochem-061516-044847] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid-associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.
Collapse
Affiliation(s)
- Margaret Sunde
- Discipline of Pharmacology, School of Medical Sciences and Australian Institute for Nanoscale Science and Technology, University of Sydney, NSW 2006, Australia; ,
| | - Chi L L Pham
- Discipline of Pharmacology, School of Medical Sciences and Australian Institute for Nanoscale Science and Technology, University of Sydney, NSW 2006, Australia; ,
| | - Ann H Kwan
- School of Life and Environmental Sciences and Australian Institute for Nanoscale Science and Technology, University of Sydney, NSW 2006, Australia;
| |
Collapse
|
34
|
Zhang Y, Gao Y, Liang Y, Dong Y, Yang X, Yuan J, Qiu D. The Verticillium dahliae SnodProt1-Like Protein VdCP1 Contributes to Virulence and Triggers the Plant Immune System. FRONTIERS IN PLANT SCIENCE 2017; 8:1880. [PMID: 29163605 PMCID: PMC5671667 DOI: 10.3389/fpls.2017.01880] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/16/2017] [Indexed: 05/05/2023]
Abstract
During pathogenic infection, hundreds of proteins that play vital roles in the Verticillium dahliae-host interaction are secreted. In this study, an integrated proteomic analysis of secreted V. dahliae proteins was performed, and a conserved secretory protein, designated VdCP1, was identified as a member of the SnodProt1 phytotoxin family. An expression analysis of the vdcp1 gene revealed that the transcript is present in every condition studied and displays elevated expression throughout the infection process. To investigate the natural role of VdCP1 in V. dahliae, two vdcp1 knockout mutants and their complementation strains were generated. Bioassays of these mutants revealed no obvious phenotypic differences from the wild-type (WT) in terms of mycelial growth, conidial production or mycelial/spore morphology. However, compared with the WT, the vdcp1 knockout mutants displayed attenuated pathogenicity in cotton plants. Furthermore, treating plants with purified recombinant VdCP1 protein expressed in Pichia pastoris induced the accumulation of reactive oxygen species (ROS), expression of several defense-related genes, leakage of ion electrolytes, enhancement of defense-related enzyme activity and production of salicylic acid. Moreover, VdCP1 conferred resistance to Botrytis cinerea and Pseudomonas syringae pv. tabaci in tobacco and to V. dahliae in cotton. Further research revealed that VdCP1 possesses chitin-binding properties and that the growth of vdcp1 knockout mutants was more affected by treatments with chitinase, indicating that VdCP1 could protect V. dahliae cell wall from enzymatic degradation, which suggests an effector role of VdCP1 in infecting hosts.
Collapse
|
35
|
Quarantin A, Glasenapp A, Schäfer W, Favaron F, Sella L. Involvement of the Fusarium graminearum cerato-platanin proteins in fungal growth and plant infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:220-229. [PMID: 27744264 DOI: 10.1016/j.plaphy.2016.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/16/2016] [Accepted: 10/03/2016] [Indexed: 05/01/2023]
Abstract
The genome of Fusarium graminearum, a necrotrophic fungal pathogen causing Fusarium head blight (FHB) disease of wheat, barley and other cereal grains, contains five genes putatively encoding for proteins with a cerato-platanin domain. Cerato-platanins are small secreted cysteine-rich proteins possibly localized in the fungal cell walls and also contributing to the virulence. Two of these F. graminearum proteins (FgCPP1 and FgCPP2) belong to the class of SnodProt proteins which exhibit phytotoxic activity in the fungal pathogens Botrytis cinerea and Magnaporthe grisea. In order to verify their contribution during plant infection and fungal growth, single and double gene knock-out mutants were produced and no reduction in symptoms severity was observed compared to the wild type strain on both soybean and wheat spikes. Histological analysis performed by fluorescence microscopy on wheat spikelets infected with mutants constitutively expressing the dsRed confirmed that FgCPPs do not contribute to fungal virulence. In particular, the formation of compound appressoria on wheat paleas was unchanged. Looking for other functions of these proteins, the double mutant was characterized by in vitro experiments. The mutant was inhibited by salt and H2O2 stress similarly to wild type. Though no growth difference was observed on glucose, the mutant grew better than wild type on carboxymethyl cellulose. Additionally, the mutant's mycelium was more affected by treatments with chitinase and β-1,3-glucanase, thus indicating that FgCPPs could protect fungal cell wall polysaccharides from enzymatic degradation.
Collapse
Affiliation(s)
- Alessandra Quarantin
- Dipartimento del Territorio e Sistemi Agro-Forestali (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Anika Glasenapp
- Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, University of Hamburg, Hamburg, Germany
| | - Wilhelm Schäfer
- Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, University of Hamburg, Hamburg, Germany
| | - Francesco Favaron
- Dipartimento del Territorio e Sistemi Agro-Forestali (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Luca Sella
- Dipartimento del Territorio e Sistemi Agro-Forestali (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Italy.
| |
Collapse
|
36
|
Protein profile and protein interaction network of Moniliophthora perniciosa basidiospores. BMC Microbiol 2016; 16:120. [PMID: 27342316 PMCID: PMC4919874 DOI: 10.1186/s12866-016-0753-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/15/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Witches' broom, a disease caused by the basidiomycete Moniliophthora perniciosa, is considered to be the most important disease of the cocoa crop in Bahia, an area in the Brazilian Amazon, and also in the other countries where it is found. M. perniciosa germ tubes may penetrate into the host through intact or natural openings in the cuticle surface, in epidermis cell junctions, at the base of trichomes, or through the stomata. Despite its relevance to the fungal life cycle, basidiospore biology has not been extensively investigated. In this study, our goal was to optimize techniques for producing basidiospores for protein extraction, and to produce the first proteomics analysis map of ungerminated basidiospores. We then presented a protein interaction network by using Ustilago maydis as a model. RESULTS The average pileus area ranged from 17.35 to 211.24 mm(2). The minimum and maximum productivity were 23,200 and 6,666,667 basidiospores per basidiome, respectively. The protein yield in micrograms per million basidiospores were approximately 0.161; 2.307, and 3.582 for germination times of 0, 2, and 4 h after germination, respectively. A total of 178 proteins were identified through mass spectrometry. These proteins were classified according to their molecular function and their involvement in biological processes such as cellular energy production, oxidative metabolism, stress, protein synthesis, and protein folding. Furthermore, to better understand the expression pattern, signaling, and interaction events of spore proteins, we presented an interaction network using orthologous proteins from Ustilago maydis as a model. Most of the orthologous proteins that were identified in this study were not clustered in the network, but several of them play a very important role in hypha development and branching. CONCLUSIONS The quantities of basidiospores 7 × 10(9); 5.2 × 10(8), and 6.7 × 10(8) were sufficient to obtain enough protein mass for the three 2D-PAGE replicates, for the 0, 2, and 4 h-treatments, respectively. The protein extraction method that is based on sedimentation, followed by sonication with SDS-dense buffer, and phenolic extraction, which was utilized in this study, was effective, presenting a satisfactory resolution and reproducibility for M. perniciosa basidiospores. This report constitutes the first comprehensive study of protein expression during the ungerminated stage of the M. perniciosa basidiospore. Identification of the spots observed in the reference gel enabled us to know the main molecular interactions involved in the initial metabolic processes of fungal development.
Collapse
|
37
|
Gene Expression Systems in Industrial Ascomycetes: Advancements and Applications. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Pu Z, Ino Y, Kimura Y, Tago A, Shimizu M, Natsume S, Sano Y, Fujimoto R, Kaneko K, Shea DJ, Fukai E, Fuji SI, Hirano H, Okazaki K. Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:31. [PMID: 26870056 PMCID: PMC4734173 DOI: 10.3389/fpls.2016.00031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/10/2016] [Indexed: 05/06/2023]
Abstract
Fusarium oxysporum f.sp. conlutinans (Foc) is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change > = 2-fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and 10 of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.
Collapse
Affiliation(s)
- Zijing Pu
- Graduate School of Science and Technology, Niigata UniversityNiigata, Japan
| | - Yoko Ino
- Advanced Medical Research Center, Yokohama City UniversityKanazawa, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City UniversityKanazawa, Japan
| | - Asumi Tago
- Graduate School of Science and Technology, Niigata UniversityNiigata, Japan
| | - Motoki Shimizu
- Graduate School of Science and Technology, Niigata UniversityNiigata, Japan
- Iwate Biotechnology Research CenterKitakami, Japan
| | | | - Yoshitaka Sano
- Graduate School of Science and Technology, Niigata UniversityNiigata, Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe UniversityKobe, Japan
| | - Kentaro Kaneko
- Graduate School of Science and Technology, Niigata UniversityNiigata, Japan
| | - Daniel J. Shea
- Graduate School of Science and Technology, Niigata UniversityNiigata, Japan
| | - Eigo Fukai
- Graduate School of Science and Technology, Niigata UniversityNiigata, Japan
| | - Shin-Ichi Fuji
- Faculty of Bioresource Sciences, Akita Prefectural UniversityAkita, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City UniversityKanazawa, Japan
| | - Keiichi Okazaki
- Graduate School of Science and Technology, Niigata UniversityNiigata, Japan
- *Correspondence: Keiichi Okazaki
| |
Collapse
|
39
|
Yap HYY, Chooi YH, Fung SY, Ng ST, Tan CS, Tan NH. Transcriptome Analysis Revealed Highly Expressed Genes Encoding Secondary Metabolite Pathways and Small Cysteine-Rich Proteins in the Sclerotium of Lignosus rhinocerotis. PLoS One 2015; 10:e0143549. [PMID: 26606395 PMCID: PMC4659598 DOI: 10.1371/journal.pone.0143549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/05/2015] [Indexed: 12/05/2022] Open
Abstract
Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications.
Collapse
Affiliation(s)
- Hui-Yeng Y. Yap
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| | - Yit-Heng Chooi
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, Australia
| | - Shin-Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Szu-Ting Ng
- Ligno Biotech Sdn. Bhd., Balakong Jaya, Selangor, Malaysia
| | - Chon-Seng Tan
- Malaysian Agricultural Research and Development Institute (MARDI), Serdang, Selangor, Malaysia
| | - Nget-Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Chen H, Quintana J, Kovalchuk A, Ubhayasekera W, Asiegbu FO. A cerato-platanin-like protein HaCPL2 from Heterobasidion annosum sensu stricto induces cell death in Nicotiana tabacum and Pinus sylvestris. Fungal Genet Biol 2015; 84:41-51. [PMID: 26385823 DOI: 10.1016/j.fgb.2015.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022]
Abstract
The cerato-platanin family is a group of small secreted cysteine-rich proteins exclusive for filamentous fungi. They have been shown to be involved in the interactions between fungi and plants. Functional characterization of members from this family has been performed mainly in Ascomycota, except Moniliophthora perniciosa. Our previous phylogenetic analysis revealed that recent gene duplication of cerato-platanins has occurred in Basidiomycota but not in Ascomycota, suggesting higher functional diversification of this protein family in Basidiomycota than in Ascomycota. In this study, we identified three cerato-platanin homologues from the basidiomycete conifer pathogen Heterobasidion annosum sensu stricto. Expression of the homologues under various conditions as well as their roles in the H. annosum s.s.-Pinus sylvestris (Scots pine) pathosystem was investigated. Results showed that HaCPL2 (cerato-platanin-like protein 2) had the highest sequence similarity to cerato-platanin from Ceratocystis platani and hacpl2 was significantly induced during nutrient starvation and necrotrophic growth. The treatment with recombinant HaCPL2 induced cell death, phytoalexin production and defense gene expression in Nicotiana tabacum. Eliciting and cell death-inducing ability accompanied by retardation of apical root growth was also demonstrated in Scots pine seedlings. Our results suggest that HaCPL2 might contribute to the virulence of H. annosum s.s. by promoting plant cell death.
Collapse
Affiliation(s)
- Hongxin Chen
- Department of Forest Sciences, P.O. Box 27, Latokartanonkaari 7, 00014, University of Helsinki, Helsinki, Finland.
| | - Julia Quintana
- Department of Forest Sciences, P.O. Box 27, Latokartanonkaari 7, 00014, University of Helsinki, Helsinki, Finland
| | - Andriy Kovalchuk
- Department of Forest Sciences, P.O. Box 27, Latokartanonkaari 7, 00014, University of Helsinki, Helsinki, Finland
| | - Wimal Ubhayasekera
- Department of Cell and Molecular Biology, Uppsala University, Box 596, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Fred O Asiegbu
- Department of Forest Sciences, P.O. Box 27, Latokartanonkaari 7, 00014, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Teixeira PJPL, Thomazella DPDT, Pereira GAG. Time for Chocolate: Current Understanding and New Perspectives on Cacao Witches' Broom Disease Research. PLoS Pathog 2015; 11:e1005130. [PMID: 26492417 PMCID: PMC4619654 DOI: 10.1371/journal.ppat.1005130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
| | | | - Gonçalo Amarante Guimarães Pereira
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
42
|
Baccelli I, Gonthier P, Bernardi R. Gene expression analyses reveal a relationship between conidiation and cerato-platanin in homokaryotic and heterokaryotic strains of the fungal plant pathogen Heterobasidion irregulare. Mycol Prog 2015. [DOI: 10.1007/s11557-015-1063-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Bonazza K, Gaderer R, Neudl S, Przylucka A, Allmaier G, Druzhinina IS, Grothe H, Friedbacher G, Seidl-Seiboth V. The fungal cerato-platanin protein EPL1 forms highly ordered layers at hydrophobic/hydrophilic interfaces. SOFT MATTER 2015; 11:1723-32. [PMID: 25599344 DOI: 10.1039/c4sm02389g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Cerato-platanin proteins (CPPs) and hydrophobins are two classes of small, secreted proteins that are exclusively found in fungi. CPPs are known as chitin-binding proteins, and were recently also shown to form protein layers at air/water interfaces, but the features of these layers were not investigated on the molecular level yet. In this study, by means of atomic force microscopy (AFM), EPL1, a member of the CPP family was shown to form highly ordered monolayers at a hydrophobic surface/liquid-interface. Furthermore, two new hydrophobins were analysed, and the influence of EPL1 on hydrophobin layers was studied in situ. Hydrophobins are amphiphilic proteins that are able to self-assemble at hydrophobic/hydrophilic interfaces, thereby inverting the polarity of the surface. This renders fungal growth structures such as spores water repellent. The combination of AFM data and wettability experiments led to the conclusion that in presence of both, hydrophobins and EPL1, a previously unknown hybrid layer is formed. This mixed protein layer is on one hand not inverting but enhancing the hydrophobicity of HOPG (highly oriented pyrolytic graphite), typical for EPL1, and on the other hand, it is stable and water insoluble, which is reminiscent of hydrophobin layers.
Collapse
Affiliation(s)
- K Bonazza
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-IAC, 1060 Wien, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gaderer R, Lamdan NL, Frischmann A, Sulyok M, Krska R, Horwitz BA, Seidl-Seiboth V. Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize. BMC Microbiol 2015; 15:2. [PMID: 25591782 PMCID: PMC4320488 DOI: 10.1186/s12866-014-0333-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/18/2014] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The proteins Sm1 and Sm2 from the biocontrol fungus Trichoderma virens belong to the cerato-platanin protein family. Members of this family are small, secreted proteins that are abundantly produced by filamentous fungi with all types of life-styles. Some species of the fungal genus Trichoderma are considered as biocontrol fungi because they are mycoparasites and are also able to directly interact with plants, thereby stimulating plant defense responses. It was previously shown that the cerato-platanin protein Sm1 from T. virens - and to a lesser extent its homologue Epl1 from Trichoderma atroviride - induce plant defense responses. The plant protection potential of other members of the cerato-platanin protein family in Trichoderma, however, has not yet been investigated. RESULTS In order to analyze the function of the cerato-platanin protein Sm2, sm1 and sm2 knockout strains were generated and characterized. The effect of the lack of Sm1 and Sm2 in T. virens on inducing systemic resistance in maize seedlings, challenged with the plant pathogen Cochliobolus heterostrophus, was tested. These plant experiments were also performed with T. atroviride epl1 and epl2 knockout strains. In our plant-pathogen system T. virens was a more effective plant protectant than T. atroviride and the results with both Trichoderma species showed concordantly that the level of plant protection was more strongly reduced in plants treated with the sm2/epl2 knockout strains than with sm1/epl1 knockout strains. CONCLUSIONS Although the cerato-platanin genes sm1/epl1 are more abundantly expressed than sm2/epl2 during fungal growth, Sm2/Epl2 are, interestingly, more important than Sm1/Epl1 for the promotion of plant protection conferred by Trichoderma in the maize-C. heterostrophus pathosystem.
Collapse
Affiliation(s)
- Romana Gaderer
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| | - Netta L Lamdan
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| | - Michael Sulyok
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| | - Rudolf Krska
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| | - Benjamin A Horwitz
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| |
Collapse
|
45
|
Baccelli I. Cerato-platanin family proteins: one function for multiple biological roles? FRONTIERS IN PLANT SCIENCE 2015; 5:769. [PMID: 25610450 PMCID: PMC4284994 DOI: 10.3389/fpls.2014.00769] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/12/2014] [Indexed: 05/24/2023]
|
46
|
Pazzagli L, Seidl-Seiboth V, Barsottini M, Vargas WA, Scala A, Mukherjee PK. Cerato-platanins: elicitors and effectors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:79-87. [PMID: 25438788 DOI: 10.1016/j.plantsci.2014.02.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/20/2014] [Accepted: 02/22/2014] [Indexed: 06/04/2023]
Abstract
Cerato-platanins are an interesting group of small, secreted, cysteine-rich proteins that have been implicated in virulence of certain plant pathogenic fungi. The relatively recent discovery of these proteins in plant beneficial fungi like Trichoderma spp., and their positive role in induction of defense in plants against invading pathogens has raised the question as to whether these proteins are effectors or elicitor molecules. Here we present a comprehensive review on the occurrence of these conserved proteins across the fungal kingdom, their structure-function relationships, and their physiological roles in plant pathogenic and symbiotic fungi. We also discuss the usefulness of these proteins in evolving strategies for crop protection through a transgenic approach or direct application as elicitors.
Collapse
Affiliation(s)
- Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, Morgagni Street, 50134 Florence, Italy
| | - Verena Seidl-Seiboth
- Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Mario Barsottini
- Department of Genetics, Evolution and Bioagents/IB, State University of Campinas, Cidade Universitária Zeferino Vaz, 13083-970, Campinas, Brazil
| | - Walter A Vargas
- Centro de EstudiosFotosintéticos y Bioquímicos (CEFOBI)-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Aniello Scala
- Department of Production Sciences Agri-Food and the Environment (DISPAA), University of Florence, Sesto Fiorentino, 50019 Florence, Italy
| | - Prasun K Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| |
Collapse
|
47
|
Teixeira PJPL, Thomazella DPDT, Reis O, do Prado PFV, do Rio MCS, Fiorin GL, José J, Costa GGL, Negri VA, Mondego JMC, Mieczkowski P, Pereira GAG. High-resolution transcript profiling of the atypical biotrophic interaction between Theobroma cacao and the fungal pathogen Moniliophthora perniciosa. THE PLANT CELL 2014; 26:4245-69. [PMID: 25371547 PMCID: PMC4277218 DOI: 10.1105/tpc.114.130807] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/01/2014] [Accepted: 10/15/2014] [Indexed: 05/18/2023]
Abstract
Witches' broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen's transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly, M. perniciosa biotrophic mycelia develop as long-term parasites that orchestrate changes in plant metabolism to increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions.
Collapse
Affiliation(s)
- Paulo José Pereira Lima Teixeira
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas SP 13083-970, Brazil
| | - Daniela Paula de Toledo Thomazella
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas SP 13083-970, Brazil
| | - Osvaldo Reis
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas SP 13083-970, Brazil
| | - Paula Favoretti Vital do Prado
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas SP 13083-970, Brazil
| | - Maria Carolina Scatolin do Rio
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas SP 13083-970, Brazil
| | - Gabriel Lorencini Fiorin
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas SP 13083-970, Brazil
| | - Juliana José
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas SP 13083-970, Brazil
| | - Gustavo Gilson Lacerda Costa
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas SP 13083-970, Brazil
| | - Victor Augusti Negri
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas SP 13083-970, Brazil
| | - Jorge Maurício Costa Mondego
- Centro de Pesquisa e Desenvolvimento em Recursos Genéticos Vegetais, Instituto Agronômico, Campinas SP 13001-970, Brazil
| | - Piotr Mieczkowski
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Gonçalo Amarante Guimarães Pereira
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas SP 13083-970, Brazil
| |
Collapse
|
48
|
Bailey BA, Melnick RL, Strem MD, Crozier J, Shao J, Sicher R, Phillips-Mora W, Ali SS, Zhang D, Meinhardt L. Differential gene expression by Moniliophthora roreri while overcoming cacao tolerance in the field. MOLECULAR PLANT PATHOLOGY 2014; 15:711-29. [PMID: 24612180 PMCID: PMC6638715 DOI: 10.1111/mpp.12134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Frosty pod rot (FPR) of Theobroma cacao (cacao) is caused by the hemibiotrophic fungus Moniliophthora roreri. Cacao clones tolerant to FPR are being planted throughout Central America. To determine whether M. roreri shows a differential molecular response during successful infections of tolerant clones, we collected field-infected pods at all stages of symptomatology for two highly susceptible clones (Pound-7 and CATIE-1000) and three tolerant clones (UF-273, CATIE-R7 and CATIE-R4). Metabolite analysis was carried out on clones Pound-7, CATIE-1000, CATIE-R7 and CATIE-R4. As FPR progressed, the concentrations of sugars in pods dropped, whereas the levels of trehalose and mannitol increased. Associations between symptoms and fungal loads and some organic and amino acid concentrations varied depending on the clone. RNA-Seq analysis identified 873 M. roreri genes that were differentially expressed between clones, with the primary difference being whether the clone was susceptible or tolerant. Genes encoding transcription factors, heat shock proteins, transporters, enzymes modifying membranes or cell walls and metabolic enzymes, such as malate synthase and alternative oxidase, were differentially expressed. The differential expression between clones of 43 M. roreri genes was validated by real-time quantitative reverse transcription polymerase chain reaction. The expression profiles of some genes were similar in susceptible and tolerant clones (other than CATIE-R4) and varied with the biotrophic/necrotropic shift. Moniliophthora roreri genes associated with stress metabolism and responses to heat shock and anoxia were induced early in tolerant clones, their expression profiles resembling that of the necrotrophic phase. Moniliophthora roreri stress response genes, induced during the infection of tolerant clones, may benefit the fungus in overcoming cacao defense mechanisms.
Collapse
Affiliation(s)
- Bryan A Bailey
- Sustainable Perennial Crops Laboratory, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, MD, 20705, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Baccelli I, Lombardi L, Luti S, Bernardi R, Picciarelli P, Scala A, Pazzagli L. Cerato-platanin induces resistance in Arabidopsis leaves through stomatal perception, overexpression of salicylic acid- and ethylene-signalling genes and camalexin biosynthesis. PLoS One 2014; 9:e100959. [PMID: 24968226 PMCID: PMC4072723 DOI: 10.1371/journal.pone.0100959] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/30/2014] [Indexed: 12/31/2022] Open
Abstract
Microbe-associated molecular patterns (MAMPs) lead to the activation of the first line of plant defence. Few fungal molecules are universally qualified as MAMPs, and proteins belonging to the cerato-platanin protein (CPP) family seem to possess these features. Cerato-platanin (CP) is the name-giving protein of the CPP family and is produced by Ceratocystis platani, the causal agent of the canker stain disease of plane trees (Platanus spp.). On plane tree leaves, the biological activity of CP has been widely studied. Once applied on the leaf surface, CP acts as an elicitor of defence responses. The molecular mechanism by which CP elicits leaves is still unknown, and the protective effect of CP against virulent pathogens has not been clearly demonstrated. In the present study, we tried to address these questions in the model plant Arabidopsis thaliana. Our results suggest that stomata rapidly sense CP since they responded to the treatment with ROS signalling and stomatal closure, and that CP triggers salicylic acid (SA)- and ethylene (ET)-signalling pathways, but not the jasmonic acid (JA)-signalling pathway, as revealed by the expression pattern of 20 marker genes. Among these, EDS1, PAD4, NPR1, GRX480, WRKY70, ACS6, ERF1a/b, COI1, MYC2, PDF1.2a and the pathogenesis-related (PR) genes 1–5. CP rapidly induced MAPK phosphorylation and induced the biosynthesis of camalexin within 12 hours following treatment. The induction of localised resistance was shown by a reduced susceptibility of the leaves to the infection with Botrytis cinerea and Pseudomonas syringae pv. tomato. These results contribute to elucidate the key steps of the signalling process underlying the resistance induction in plants by CP and point out the central role played by the stomata in this process.
Collapse
Affiliation(s)
- Ivan Baccelli
- Department of Agri-food Production and Environmental Sciences, University of Florence, Florence, Italy
- * E-mail:
| | - Lara Lombardi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Simone Luti
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Rodolfo Bernardi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Piero Picciarelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Aniello Scala
- Department of Agri-food Production and Environmental Sciences, University of Florence, Florence, Italy
| | - Luigia Pazzagli
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
50
|
Gaderer R, Bonazza K, Seidl-Seiboth V. Cerato-platanins: a fungal protein family with intriguing properties and application potential. Appl Microbiol Biotechnol 2014; 98:4795-803. [PMID: 24687753 PMCID: PMC4024134 DOI: 10.1007/s00253-014-5690-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 11/02/2022]
Abstract
Cerato-platanin proteins are small, secreted proteins with four conserved cysteines that are abundantly produced by filamentous fungi with all types of lifestyles. These proteins appear to be readily recognized by other organisms and are therefore important factors in interactions of fungi with other organisms, e.g. by stimulating the induction of defence responses in plants. However, it is not known yet whether the main function of cerato-platanin proteins is associated with these fungal interactions or rather a role in fungal growth and development. Cerato-platanin proteins seem to unify several biochemical properties that are not found in this combination in other proteins. On one hand, cerato-platanins are carbohydrate-binding proteins and are able to bind to chitin and N-acetylglucosamine oligosaccharides; on the other hand, they are able to self-assemble at hydrophobic/hydrophilic interfaces and form protein layers, e.g. on the surface of aqueous solutions, thereby altering the polarity of solutions and surfaces. The latter property is reminiscent of hydrophobins, which are also small, secreted fungal proteins, but interestingly, the surface-activity-altering properties of cerato-platanins are the opposite of what can be observed for hydrophobins. The so far known biochemical properties of cerato-platanin proteins are summarized in this review, and potential biotechnological applications as well as implications of these properties for the biological functions of cerato-platanin proteins are discussed.
Collapse
Affiliation(s)
- Romana Gaderer
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Klaus Bonazza
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Verena Seidl-Seiboth
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| |
Collapse
|