1
|
Cao Z, Banniza S. Gene co-expression analysis reveals conserved and distinct gene networks between resistant and susceptible Lens ervoides challenged by hemibiotrophic and necrotrophic pathogens. Sci Rep 2024; 14:24967. [PMID: 39443543 PMCID: PMC11499849 DOI: 10.1038/s41598-024-76316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
As field crops are likely to be challenged by multiple pathogens during their development, the investigation of broad-spectrum resistance in the host is of great interest for crop genetic enhancement. In this study, we attempted to address this question by adopting a weighed gene co-expression approach to study the temporal transcriptome dynamics of resistant and susceptible recombinant inbred lines (RILs) derived from an intraspecific Len ervoides cross during the infection process with either the necrotrophic pathogens Ascochyta lentis or Stemphylium botryosum, or the hemibiotrophic pathogen Colletotrichum lentis. By comparing networks of resistant and susceptible RILs, seven network module pairs were found to possess high correlation coefficients (R > 0.70) and large number of overlapping genes (n > 100). The conserved co-regulation of genes in these network module pairs were involved in plant cell wall synthesis, cell division, cytoskeleton organization, and protein ubiquitin related processes and appeared to be common disease responses against these pathogens. On the other hand, we also identified eight modules with low correlation between resistance and susceptibility networks. Among those, a stronger gene co-expression in R-genes and small RNA processes in the resistant hosts may be enhancing L. ervoides resistance against A. lentis, C. lentis, and S. botryosum, whereas the higher level of synergistic regulation in the synthesis of arginine and glutamine and phospholipid and glycerophospholipids in the susceptible hosts may contribute to increased susceptibility in L. ervoides.
Collapse
Affiliation(s)
- Zhe Cao
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Sabine Banniza
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| |
Collapse
|
2
|
Suraj HM, van Kan JAL. Baking bad: plants in a toasty world with necrotrophs. THE NEW PHYTOLOGIST 2024; 243:2066-2072. [PMID: 39039780 DOI: 10.1111/nph.19980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Rising global temperatures pose a threat to plant immunity, making them more susceptible to diseases. The impact of temperature on plant immunity against biotrophic and hemi-biotrophic pathogens is well documented, while its effect on necrotrophs remains poorly understood. We venture into the uncharted territory of necrotrophic fungal pathogens in the face of rising temperatures. We discuss the role of the plant hormones salicylic acid (SA) and jasmonic acid (JA) in providing resistance to necrotrophs and delve into the temperature sensitivity of the SA pathway. Additionally, we explore the repercussions of increased temperatures on plant susceptibility to necrotrophs. We put forward a research agenda with an experimental framework aimed at providing a comprehensive understanding of how plants and pathogens adapt to increasing temperatures.
Collapse
Affiliation(s)
- H M Suraj
- Laboratory of Phytopathology, Wageningen University and Research, 6708PB, Wageningen, the Netherlands
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University and Research, 6708PB, Wageningen, the Netherlands
| |
Collapse
|
3
|
Li S, Zhao Y, Wu P, Grierson D, Gao L. Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1831-1863. [PMID: 39016673 DOI: 10.1111/jipb.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (Solanum lycopersicum). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yu Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Donald Grierson
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Lei Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
4
|
Haghpanah M, Jelodar NB, Zarrini HN, Pakdin-Parizi A, Dehestani A. New insights into azelaic acid-induced resistance against Alternaria Solani in tomato plants. BMC PLANT BIOLOGY 2024; 24:687. [PMID: 39026164 PMCID: PMC11264620 DOI: 10.1186/s12870-024-05397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND The effect of azelaic acid (Aza) on the response of tomato plants to Alternaria solani was investigated in this study. After being treated with Aza, tomato plants were infected with A. solani, and their antioxidant, biochemical, and molecular responses were analyzed. RESULTS The results demonstrated that H2O2 and MDA accumulation increased in control plants after pathogen infection. Aza-treated plants exhibited a remarkable rise in peroxidase (POD) and catalase (CAT) activities during the initial stages of A. solani infection. Gene expression analysis revealed that both Aza treatment and pathogen infection altered the expression patterns of the SlNPR1, SlERF2, SlPR1, and SlPDF1.2 genes. The expression of SlPDF1.2, a marker gene for the jasmonic acid/ethylene (JA/ET) signaling pathway, showed a remarkable increase of 4.2-fold upon pathogen infection. In contrast, for the SlNPR1, a key gene in salicylic acid (SA) pathway, this increased expression was recorded with a delay at 96 hpi. Also, the phytohormone analysis showed significantly increased SA accumulation in plant tissues with disease development. It was also revealed that tissue accumulation of JA in Aza-treated plants was increased following pathogen infection, while it was not increased in plants without pathogen inoculation. CONCLUSION The results suggest that the resistance induced by Aza is mainly a result of modulations in both SA and JA pathways following complex antioxidant and molecular defense responses in tomato plants during A. solani infection. These findings provide novel information regarding inducing mechanisms of azelaic acid which would add to the current body of knowledge of SAR induction in plants as result of Aza application.
Collapse
Affiliation(s)
- Mostafa Haghpanah
- Kohgiluyeh and Boyerahmad Agricultural and Natural Resources Research and Education Center, Dryland Agricultural Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Gachsaran, Iran
- Department of Plant Breeding and Biotechnology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
- Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Nadali Babaeian Jelodar
- Department of Plant Breeding and Biotechnology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Hamid Najafi Zarrini
- Department of Plant Breeding and Biotechnology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Ali Pakdin-Parizi
- Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Ali Dehestani
- Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| |
Collapse
|
5
|
Khojasteh M, Darzi Ramandi H, Taghavi SM, Taheri A, Rahmanzadeh A, Chen G, Foolad MR, Osdaghi E. Unraveling the genetic basis of quantitative resistance to diseases in tomato: a meta-QTL analysis and mining of transcript profiles. PLANT CELL REPORTS 2024; 43:184. [PMID: 38951262 DOI: 10.1007/s00299-024-03268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
KEY MESSAGE Whole-genome QTL mining and meta-analysis in tomato for resistance to bacterial and fungal diseases identified 73 meta-QTL regions with significantly refined/reduced confidence intervals. Tomato production is affected by a range of biotic stressors, causing yield losses and quality reductions. While sources of genetic resistance to many tomato diseases have been identified and characterized, stability of the resistance genes or quantitative trait loci (QTLs) across the resources has not been determined. Here, we examined 491 QTLs previously reported for resistance to tomato diseases in 40 independent studies and 54 unique mapping populations. We identified 29 meta-QTLs (MQTLs) for resistance to bacterial pathogens and 44 MQTLs for resistance to fungal pathogens, and were able to reduce the average confidence interval (CI) of the QTLs by 4.1-fold and 6.7-fold, respectively, compared to the average CI of the original QTLs. The corresponding physical length of the CIs of MQTLs ranged from 56 kb to 6.37 Mb, with a median of 921 kb, of which 27% had a CI lower than 500 kb and 53% had a CI lower than 1 Mb. Comparison of defense responses between tomato and Arabidopsis highlighted 73 orthologous genes in the MQTL regions, which were putatively determined to be involved in defense against bacterial and fungal diseases. Intriguingly, multiple genes were identified in some MQTL regions that are implicated in plant defense responses, including PR-P2, NDR1, PDF1.2, Pip1, SNI1, PTI5, NSL1, DND1, CAD1, SlACO, DAD1, SlPAL, Ph-3, EDS5/SID1, CHI-B/PR-3, Ph-5, ETR1, WRKY29, and WRKY25. Further, we identified a number of candidate resistance genes in the MQTL regions that can be useful for both marker/gene-assisted breeding as well as cloning and genetic transformation.
Collapse
Affiliation(s)
- Moein Khojasteh
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Plant Protection, University of Tehran, Karaj, 31587-77871, Iran
| | - Hadi Darzi Ramandi
- Department of Plant Production and Genetics, Faculty of Agriculture, Bu-Ali Sina University, P.O. Box 657833131, Hamedan, Iran
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran.
| | - Ayat Taheri
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Asma Rahmanzadeh
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
- Department of Plant Protection, University of Tehran, Karaj, 31587-77871, Iran
| | - Gongyou Chen
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Majid R Foolad
- Department of Plant Science and the Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Ebrahim Osdaghi
- Department of Plant Protection, University of Tehran, Karaj, 31587-77871, Iran.
| |
Collapse
|
6
|
Kumari N, Kaur S, Sharma V. Dissecting the role of salicylic acid in mediating stress response in mungbean cultivars concurrently exposed to Macrophomina phaseolina infection and drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108660. [PMID: 38678945 DOI: 10.1016/j.plaphy.2024.108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The combined stress studies provide fundamental knowledge that could assist in producing multiple stress resilient crops. The fungal phytopathogen, Macrophomina phaseolina is a major limiting factor in the productivity of the crop, Vigna radiata (mungbean). This fungal species tends to flourish under hot and dry conditions. Therefore, in this study the salicylic acid (SA) mediated stress responses in contrasting mungbean cultivars (Shikha and RMG-975) exposed to combined M. phaseolina infection (F) and drought stress (D) have been elucidated. The combined stress was applied to ten days seedlings in three orders i.e. drought followed by fungal infection (DF), drought followed by fungal infection with extended water deficit (DFD) and fungal infection followed by drought stress (FD). The severity of infection was analyzed using ImageJ analysis. Besides, the concentration of SA has been correlated with the phenylpropanoid pathway products, expression of pathogenesis-related proteins (β-1,3-glucanase and chitinase) and the specific activity of certain related enzymes (phenylalanine ammonia lyase, lipoxygenase and glutathione-S-transferase). The data revealed that the cultivar RMG-975 was relatively more tolerant than Shikha under individual stresses. However, the former became more susceptible to the infection under DFD treatment while the latter showed tolerance. Otherwise, the crown rot severity was reduced in both the cultivars under other combined treatments. The stress response analysis suggested that enhanced chitinase expression is vital for tolerance against both, the pathogen and drought stress. Also, it was noted that plants treat each stress combination differently and the role of SA was more prominently visible under individual stress conditions.
Collapse
Affiliation(s)
- Nilima Kumari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India.
| | - Sahib Kaur
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| |
Collapse
|
7
|
Roychowdhury R, Mishra S, Anand G, Dalal D, Gupta R, Kumar A, Gupta R. Decoding the molecular mechanism underlying salicylic acid (SA)-mediated plant immunity: an integrated overview from its biosynthesis to the mode of action. PHYSIOLOGIA PLANTARUM 2024; 176:e14399. [PMID: 38894599 DOI: 10.1111/ppl.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
Salicylic acid (SA) is an important phytohormone, well-known for its regulatory role in shaping plant immune responses. In recent years, significant progress has been made in unravelling the molecular mechanisms underlying SA biosynthesis, perception, and downstream signalling cascades. Through the concerted efforts employing genetic, biochemical, and omics approaches, our understanding of SA-mediated defence responses has undergone remarkable expansion. In general, following SA biosynthesis through Avr effectors of the pathogens, newly synthesized SA undergoes various biochemical changes to achieve its active/inactive forms (e.g. methyl salicylate). The activated SA subsequently triggers signalling pathways associated with the perception of pathogen-derived signals, expression of defence genes, and induction of systemic acquired resistance (SAR) to tailor the intricate regulatory networks that coordinate plant immune responses. Nonetheless, the mechanistic understanding of SA-mediated plant immune regulation is currently limited because of its crosstalk with other signalling networks, which makes understanding this hormone signalling more challenging. This comprehensive review aims to provide an integrated overview of SA-mediated plant immunity, deriving current knowledge from diverse research outcomes. Through the integration of case studies, experimental evidence, and emerging trends, this review offers insights into the regulatory mechanisms governing SA-mediated immunity and signalling. Additionally, this review discusses the potential applications of SA-mediated defence strategies in crop improvement, disease management, and sustainable agricultural practices.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Sapna Mishra
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Gautam Anand
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Debalika Dalal
- Department of Botany, Visva-Bharati Central University, Santiniketan, West Bengal, India
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, South Korea
| |
Collapse
|
8
|
Ianiri G, Barone G, Palmieri D, Quiquero M, Gaeta I, De Curtis F, Castoria R. Transcriptomic investigation of the interaction between a biocontrol yeast, Papiliotrema terrestris strain PT22AV, and the postharvest fungal pathogen Penicillium expansum on apple. Commun Biol 2024; 7:359. [PMID: 38519651 PMCID: PMC10960036 DOI: 10.1038/s42003-024-06031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Biocontrol strategies offer a promising alternative to control plant pathogens achieving food safety and security. In this study we apply a RNAseq analysis during interaction between the biocontrol agent (BCA) Papiliotrema terrestris, the pathogen Penicillium expansum, and the host Malus domestica. Analysis of the BCA finds overall 802 upregulated DEGs (differentially expressed genes) when grown in apple tissue, with the majority being involved in nutrients uptake and oxidative stress response. This suggests that these processes are crucial for the BCA to colonize the fruit wounds and outcompete the pathogen. As to P. expansum analysis, 1017 DEGs are upregulated when grown in apple tissue, with the most represented GO categories being transcription, oxidation reduction process, and transmembrane transport. Analysis of the host M. domestica finds a higher number of DEGs in response to the pathogen compared to the BCA, with overexpression of genes involved in host defense signaling pathways in the presence of both of them, and a prevalence of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) only during interaction with P. expansum. This analysis contributes to advance the knowledge on the molecular mechanisms that underlie biocontrol activity and the tritrophic interaction of the BCA with the pathogen and the host.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy.
| | - Giuseppe Barone
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Davide Palmieri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Michela Quiquero
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Ilenia Gaeta
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Filippo De Curtis
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Raffaello Castoria
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy.
| |
Collapse
|
9
|
Kiani Dehkian Z, Taheri H, Pakdaman Sardrood B, Farkhari M. Controlling Tomato Fusarium Wilt Disease through Bacillus thuringiensis-Mediated Defense Primining. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3690. [PMID: 38827338 PMCID: PMC11139446 DOI: 10.30498/ijb.2024.394291.3690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/23/2023] [Indexed: 06/04/2024]
Abstract
Background Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. lycopersici (Fol) (Sacc.) W.C. Snyder and H.N. Hans is one of the most prevalent and devastating diseases of tomato plants (Solanum lycoprsicum L.) that leads to a severe reduction in crop yield almost worldwide. Objective Evaluation of biocontrol potential of Bacillus thuringiensis (Bt) isolate IBRC-M11096, against Fol in tomato through primin. Materials and Methods qRT-PCR technique was applied to analyze the effect of the strain on the hormonal defensive pathways; transcriptional responses of jasmonic acid (COI1, Pin2) and salicylic acid (NRP1 and PR1) pathway genes in Bt-treated plants following inoculation of Fol as compared to the plants only challenged with Fol. Also, the potential of the bacterial strain as a biocontrol agent was studied by evaluating growth indices and area under disease progress curve (AUDPC). Results The transcription of both defensive hormonal pathway genes (COI1, Pin2, NPR1, PR1) increased due to bacterial priming. The bacterial priming reduced the AUDPC compared to the inoculation with only Fol. The strain reduced the disease symptoms, and compared to the plants only challenged with the fungus, the bacterial strain significantly raised shoot dry and fresh weights and root dry weight. Conclusion Priming with the Bt strain led to improved shoot and root growth indices, reduced AUDPC, and fortified responses of both JA and SA hormonal pathways. However, further full-span studies are required to judge the efficacy of the bacterial strain in the biological control of tomato fusarium wilt under field conditions.
Collapse
Affiliation(s)
- Zahra Kiani Dehkian
- Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Hengameh Taheri
- Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Babak Pakdaman Sardrood
- Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Mohammad Farkhari
- Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| |
Collapse
|
10
|
Zrenner R, Genzel F, Baldermann S, Guerra T, Grosch R. Does Constitutive Expression of Defense-Related Genes and Salicylic Acid Concentrations Correlate with Field Resistance of Potato to Black Scurf Disease? Bioengineering (Basel) 2023; 10:1244. [PMID: 38002368 PMCID: PMC10669363 DOI: 10.3390/bioengineering10111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Black scurf disease on potato caused by Rhizoctonia solani AG3 occurs worldwide and is difficult to control. The use of potato cultivars resistant to black scurf disease could be part of an integrated control strategy. Currently, the degree of resistance is based on symptom assessment in the field, but molecular measures could provide a more efficient screening method. We hypothesized that the degree of field resistance to black scurf disease in potato cultivars is associated with defense-related gene expression levels and salicylic acid (SA) concentration. Cultivars with a moderate and severe appearance of disease symptoms on tubers were selected and cultivated in the same field. In addition, experiments were conducted under controlled conditions in an axenic in vitro culture and in a sand culture to analyze the constitutive expression of defense-related genes and SA concentration. The more resistant cultivars did not show significantly higher constitutive expression levels of defense-related genes. Moreover, the level of free SA was increased in the more resistant cultivars only in the roots of the plantlets grown in the sand culture. These results indicate that neither expression levels of defense-related genes nor the amount of SA in potato plants can be used as reliable predictors of the field resistance of potato genotypes to black scurf disease.
Collapse
Affiliation(s)
- Rita Zrenner
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany; (F.G.); (T.G.); (R.G.)
| | - Franziska Genzel
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany; (F.G.); (T.G.); (R.G.)
- Bioinformatics, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Susanne Baldermann
- Faculty of Life Sciences: Food, Nutrition & Health, University Bayreuth, Fritz-Hornschuch-Straße 13, 95326 Kulmbach, Germany;
| | - Tiziana Guerra
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany; (F.G.); (T.G.); (R.G.)
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany; (F.G.); (T.G.); (R.G.)
| |
Collapse
|
11
|
Tsers I, Parfirova O, Moruzhenkova V, Petrova O, Gogoleva N, Vorob’ev V, Gogolev Y, Gorshkov V. A Switch from Latent to Typical Infection during Pectobacterium atrosepticum-Tobacco Interactions: Predicted and True Molecular Players. Int J Mol Sci 2023; 24:13283. [PMID: 37686094 PMCID: PMC10487725 DOI: 10.3390/ijms241713283] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Phytopathogenic microorganisms, being able to cause plant diseases, usually interact with hosts asymptomatically, resulting in the development of latent infections. Knowledge of the mechanisms that trigger a switch from latent to typical, symptomatic infection is of great importance from the perspectives of both fundamental science and disease management. No studies to date have compared, at the systemic molecular level, the physiological portraits of plants when different infection types (typical and latent) are developed. The only phytopathogenic bacterium for which latent infections were not only widely described but also at least fluently characterized at the molecular level is Pectobacterium atrosepticum (Pba). The present study aimed at the comparison of plant transcriptome responses during typical and latent infections caused by Pba in order to identify and then experimentally verify the key molecular players that act as switchers, turning peaceful plant-Pba coexistence into a typical infection. Based on RNA-Seq, we predicted plant cell wall-, secondary metabolism-, and phytohormone-related genes whose products contributed to the development of the disease or provided asymptomatic plant-Pba interactions. By treatment tests, we confirmed that a switch from latent to typical Pba-caused infection is determined by the plant susceptible responses mediated by the joint action of ethylene and jasmonates.
Collapse
Affiliation(s)
- Ivan Tsers
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (I.T.); (O.P.); (V.M.); (O.P.); (N.G.); (V.V.); (Y.G.)
| | - Olga Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (I.T.); (O.P.); (V.M.); (O.P.); (N.G.); (V.V.); (Y.G.)
| | - Varvara Moruzhenkova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (I.T.); (O.P.); (V.M.); (O.P.); (N.G.); (V.V.); (Y.G.)
| | - Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (I.T.); (O.P.); (V.M.); (O.P.); (N.G.); (V.V.); (Y.G.)
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (I.T.); (O.P.); (V.M.); (O.P.); (N.G.); (V.V.); (Y.G.)
| | - Vladimir Vorob’ev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (I.T.); (O.P.); (V.M.); (O.P.); (N.G.); (V.V.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (I.T.); (O.P.); (V.M.); (O.P.); (N.G.); (V.V.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (I.T.); (O.P.); (V.M.); (O.P.); (N.G.); (V.V.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
12
|
Li Y, Shu P, Xiang L, Sheng J, Shen L. CRISPR/Cas9-Mediated SlATG5 Mutagenesis Reduces the Resistance of Tomato Fruit to Botrytis cinerea. Foods 2023; 12:2750. [PMID: 37509842 PMCID: PMC10380010 DOI: 10.3390/foods12142750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Tomato fruit is highly susceptible to infection by Botrytis cinerea (B. cinerea), a dominant pathogen, during storage. Recent studies have shown that autophagy is essential for plant defense against biotic and abiotic stresses. Autophagy-related gene 5 (ATG5) plays a key role in autophagosome completion and maturation, and is rapidly induced by B. cinerea, but the potential mechanisms of ATG5 in Solanum lycopersicum (SlATG5) in postharvest tomato fruit resistance to B. cinerea remain unclear. To elucidate the role of SlATG5 in tomato fruit resistant to B. cinerea, CRISPR/Cas9-mediated knockout of SlATG5 was used in this study. The results showed that slatg5 mutants were more vulnerable to B. cinerea and exhibited more severe disease symptoms and lower activities of disease-resistant enzymes, such as chitinase (CHI), β-1,3-glucanase (GLU), phenylalanine ammonia-lyase (PAL), and polyphenol oxidase (PPO), than the wild type (WT). Furthermore, the study observed that after inoculation with B. cinerea, the relative expression levels of genes related to salicylic acid (SA) signaling, such as SlPR1, SlEDS1, SlPAD4, and SlNPR1, were higher in slatg5 mutants than in WT. Conversely, the relative expression levels of jasmonic acid (JA) signaling-related genes SlLoxD and SlMYC2 were lower in slatg5 mutants than in WT. These findings suggested that SlATG5 positively regulated the resistance response of tomato fruit to B. cinerea by inhibiting the SA signaling pathway and activating the JA signaling pathway.
Collapse
Affiliation(s)
- Yujing Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Pan Shu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lanting Xiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China
| | - Lin Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
13
|
Lopes NDS, Santos AS, de Novais DPS, Pirovani CP, Micheli F. Pathogenesis-related protein 10 in resistance to biotic stress: progress in elucidating functions, regulation and modes of action. FRONTIERS IN PLANT SCIENCE 2023; 14:1193873. [PMID: 37469770 PMCID: PMC10352611 DOI: 10.3389/fpls.2023.1193873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/08/2023] [Indexed: 07/21/2023]
Abstract
Introduction The Family of pathogenesis-related proteins 10 (PR-10) is widely distributed in the plant kingdom. PR-10 are multifunctional proteins, constitutively expressed in all plant tissues, playing a role in growth and development or being induced in stress situations. Several studies have investigated the preponderant role of PR-10 in plant defense against biotic stresses; however, little is known about the mechanisms of action of these proteins. This is the first systematic review conducted to gather information on the subject and to reveal the possible mechanisms of action that PR-10 perform. Methods Therefore, three databases were used for the article search: PubMed, Web of Science, and Scopus. To avoid bias, a protocol with inclusion and exclusion criteria was prepared. In total, 216 articles related to the proposed objective of this study were selected. Results The participation of PR-10 was revealed in the plant's defense against several stressor agents such as viruses, bacteria, fungi, oomycetes, nematodes and insects, and studies involving fungi and bacteria were predominant in the selected articles. Studies with combined techniques showed a compilation of relevant information about PR-10 in biotic stress that collaborate with the understanding of the mechanisms of action of these molecules. The up-regulation of PR-10 was predominant under different conditions of biotic stress, in addition to being more expressive in resistant varieties both at the transcriptional and translational level. Discussion Biological models that have been proposed reveal an intrinsic network of molecular interactions involving the modes of action of PR-10. These include hormonal pathways, transcription factors, physical interactions with effector proteins or pattern recognition receptors and other molecules involved with the plant's defense system. Conclusion The molecular networks involving PR-10 reveal how the plant's defense response is mediated, either to trigger susceptibility or, based on data systematized in this review, more frequently, to have plant resistance to the disease.
Collapse
Affiliation(s)
- Natasha dos Santos Lopes
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Ariana Silva Santos
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Diogo Pereira Silva de Novais
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Carlos Priminho Pirovani
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Fabienne Micheli
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes Meditérranéennes et Tropicales (UMR AGAP Institut), Montpellier, France
| |
Collapse
|
14
|
Thakur R, Sharma S, Devi R, Sirari A, Tiwari RK, Lal MK, Kumar R. Exploring the molecular basis of resistance to Botrytis cinerea in chickpea genotypes through biochemical and morphological markers. PeerJ 2023; 11:e15560. [PMID: 37361041 PMCID: PMC10289086 DOI: 10.7717/peerj.15560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Chickpea (Cicer arietinum L.) is an important pulse crop around the globe and a valuable source of protein in the human diet. However, it is highly susceptible to various plant pathogens such as fungi, bacteria, and viruses, which can cause significant damage from the seedling phase until harvest, leading to reduced yields and affecting its production. Botrytis cinerea can cause significant damage to chickpea crops, especially under high humidity and moisture conditions. This fungus can cause grey mould disease, which can lead to wilting, stem and pod rot, and reduced yields. Chickpea plants have developed specific barriers to counteract the harmful effects of this fungus. These barriers include biochemical and structural defences. In this study, the defence responses against B. cinerea were measured by the quantification of biochemical metabolites such as antioxidant enzymes, malondialdehyde (MDA), proline, glutathione (GSH), H2O2, ascorbic acid (AA) and total phenol in the leaf samples of chickpea genotypes (one accession of wild Cicer species, viz. Cicer pinnatifidum188 identified with high level of resistance to Botrytis grey mould (BGM) and a cultivar, Cicer arietinumPBG5 susceptible to BGM grown in the greenhouse). Seedlings of both the genotypes were inoculated with (1 × 104 spore mL-1) inoculum of isolate 24, race 510 of B. cinerea and samples were collected after 1, 3, 5, and 7 days post-inoculation (dpi). The enhanced enzymatic activity was observed in the pathogen-inoculated leaf samples as compared to uninoculated (healthy control). Among inoculated genotypes, the resistant one exhibited a significant change in enzymatic activity, total phenolic content, MDA, proline, GSH, H2O2, and AA, compared to the susceptible genotype. The study also examined the isozyme pattern of antioxidant enzymes at various stages of B. cinerea inoculation. Results from scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy revealed that BGM had a more significant impact on susceptible genotypes compared to resistant ones when compared to the control (un-inoculated). In addition, SEM and FTIR spectroscopy analyses confirmed the greater severity of BGM on susceptible genotypes compared to their resistant counterparts. Our results suggest the role of antioxidant enzymes and other metabolites as defence tools and biochemical markers to understand compatible and non-compatible plant-pathogen interactions better. The present investigation will assist future plant breeding programs aimed at developing resistant varieties.
Collapse
Affiliation(s)
- Richa Thakur
- Punjab Agricultural University, Ludhiana, Punjab, India
| | | | - Rajni Devi
- Punjab Agricultural University, Ludhiana, Punjab, India
| | - Asmita Sirari
- Punjab Agricultural University, Ludhiana, Punjab, India
| | | | | | | |
Collapse
|
15
|
Li Z, Ahammed GJ. Salicylic acid and jasmonic acid in elevated CO 2-induced plant defense response to pathogens. JOURNAL OF PLANT PHYSIOLOGY 2023; 286:154019. [PMID: 37244001 DOI: 10.1016/j.jplph.2023.154019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Plants respond to elevated CO2 (eCO2) via a variety of signaling pathways that often rely on plant hormones. In particular, phytohormone salicylic acid (SA) and jasmonic acid (JA) play a key role in plant defense against diverse pathogens at eCO2. eCO2 affects the synthesis and signaling of SA and/or JA and variations in SA and JA signaling lead to variations in plant defense responses to pathogens. In general, eCO2 promotes SA signaling and represses the JA pathway, and thus diseases caused by biotrophic and hemibiotrophic pathogens are typically suppressed, while the incidence and severity of diseases caused by necrotrophic fungal pathogens are enhanced under eCO2 conditions. Moreover, eCO2-induced modulation of antagonism between SA and JA leads to altered plant immunity to different pathogens. Notably, research in this area has often yielded contradictory findings and these responses vary depending on plant species, growth conditions, photoperiod, and fertilizer management. In this review, we focus on the recent advances in SA, and JA signaling pathways in plant defense and their involvement in plant immune responses to pathogens under eCO2. Since atmospheric CO2 will continue to increase, it is crucial to further explore how eCO2 may alter plant defense and host-pathogen interactions in the context of climate change in both natural as well as agricultural ecosystems.
Collapse
Affiliation(s)
- Zhe Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop safety and Disease Control, Luoyang, 471023, PR China.
| |
Collapse
|
16
|
Thakur R, Devi R, Lal MK, Tiwari RK, Sharma S, Kumar R. Morphological, ultrastructural and molecular variations in susceptible and resistant genotypes of chickpea infected with Botrytis grey mould. PeerJ 2023; 11:e15134. [PMID: 37009149 PMCID: PMC10064989 DOI: 10.7717/peerj.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Biotic stress due to fungal infection is detrimental to the growth and development of chickpea. In our study, two chickpea genotypes viz Cicer pinnatifidum (resistant) and PBG5 (susceptible) were inoculated with (1 × 104 spore mL−1) of nectrotrophic fungus Botrytis cinerea at seedling stage. These seedlings were evaluated for morphological, ultrastructural, and molecular differences after 3, 5 and 7 days post inoculation (dpi). Visual symptoms were recorded in terms of water-soaked lesions, rotten pods and twigs with fungal colonies. Light and scanning electron microscopy (SEM) revealed the differences in number of stomata, hyphal network and extent of topographical damage in resistant (C. pinnatifidum) and susceptible (PBG5) genotypes, which were validated by stomatal index studies done by using fluorescence microscopy in the infection process of B. cinerea in leaves of both chickpea genotypes. In case of control (water inoculated) samples, there were differences in PCR analysis done using five primers for screening the genetic variations between two genotypes. The presence of a Botrytis responsive gene (LrWRKY) of size ~300 bp was observed in uninoculated resistant genotype which might have a role in resistance against Botrytis grey mould. The present investigation provides information about the variation in the infection process of B. cinerea in two genotypes which can be further exploited to develop robust and effective strategies to manage grey mould disease.
Collapse
Affiliation(s)
- Richa Thakur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rahul Kumar Tiwari
- Division of Plant Protection, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Sucheta Sharma
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Ravinder Kumar
- Division of Plant Protection, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| |
Collapse
|
17
|
Sajeevan RS, Abdelmeguid I, Saripella GV, Lenman M, Alexandersson E. Comprehensive transcriptome analysis of different potato cultivars provides insight into early blight disease caused by Alternaria solani. BMC PLANT BIOLOGY 2023; 23:130. [PMID: 36882678 PMCID: PMC9993742 DOI: 10.1186/s12870-023-04135-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Early blight, caused by the necrotrophic fungal pathogen Alternaria solani, is an economically important disease affecting the tuber yield worldwide. The disease is mainly controlled by chemical plant protection agents. However, over-using these chemicals can lead to the evolution of resistant A. solani strains and is environmentally hazardous. Identifying genetic disease resistance factors is crucial for the sustainable management of early blight but little effort has been diverted in this direction. Therefore, we carried out transcriptome sequencing of the A. solani interaction with different potato cultivars with varying levels of early blight resistance to identify key host genes and pathways in a cultivar-specific manner. RESULTS In this study, we have captured transcriptomes from three different potato cultivars with varying susceptibility to A. solani, namely Magnum Bonum, Désirée, and Kuras, at 18 and 36 h post-infection. We identified many differentially expressed genes (DEGs) between these cultivars, and the number of DEGs increased with susceptibility and infection time. There were 649 transcripts commonly expressed between the potato cultivars and time points, of which 627 and 22 were up- and down-regulated, respectively. Interestingly, overall the up-regulated DEGs were twice in number as compared to down-regulated ones in all the potato cultivars and time points, except Kuras at 36 h post-inoculation. In general, transcription factor families WRKY, ERF, bHLH, MYB, and C2H2 were highly enriched DEGs, of which a significant number were up-regulated. The majority of the key transcripts involved in the jasmonic acid and ethylene biosynthesis pathways were highly up-regulated. Many transcripts involved in the mevalonate (MVA) pathway, isoprenyl-PP, and terpene biosynthesis were also up-regulated across the potato cultivars and time points. Compared to Magnum Bonum and Désirée, multiple components of the photosynthesis machinery, starch biosynthesis and degradation pathway were down-regulated in the most susceptible potato cultivar, Kuras. CONCLUSIONS Transcriptome sequencing identified many differentially expressed genes and pathways, thereby contributing to the improved understanding of the interaction between the potato host and A. solani. The transcription factors identified are attractive targets for genetic modification to improve potato resistance against early blight. The results provide important insights into the molecular events at the early stages of disease development, help to shorten the knowledge gap, and support potato breeding programs for improved early blight disease resistance.
Collapse
Affiliation(s)
- Radha Sivarajan Sajeevan
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 23422, Lomma, Sweden.
| | - Ingi Abdelmeguid
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 23422, Lomma, Sweden
- Department of Botany and Microbiology, Faculty of Science, Helwan University, Cairo, EG-11795, Egypt
| | - Ganapathi Varma Saripella
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422, Lomma, Sweden
- CropTailor AB, Department of Chemistry, Division of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Marit Lenman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 23422, Lomma, Sweden
| | - Erik Alexandersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 23422, Lomma, Sweden.
| |
Collapse
|
18
|
Hong JK, Sook Jo Y, Jeong DH, Woo SM, Park JY, Yoon DJ, Lee YH, Choi SH, Park CJ. Vapours from plant essential oils to manage tomato grey mould caused by Botrytis cinerea. Fungal Biol 2023; 127:985-996. [PMID: 37024158 DOI: 10.1016/j.funbio.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 03/11/2023]
Abstract
Tomato grey mould has been a great concern during tomato production. The in vitro antifungal activity of vapours emitted from four plant essential oils (EOs) (cinnamon oil, fennel oil, origanum oil, and thyme oil) were evaluated during in vitro conidial germination and mycelial growth of Botrytis cinerea, the causal agent of grey mould. Cinnamon oil vapour was the most effective in suppressing conidial germination, whereas the four EOs showed similar activities regarding inhibiting mycelial growth in dose-dependent manners. The in planta protection effect of the four EO vapours was also investigated by measuring necrotic lesions on tomato leaves inoculated by B. cinerea. Grey mould lesions on the inoculated leaves were reduced by the vapours from cinnamon oil, origanum oil and thyme oil at different levels, but fennel oil did not limit the spread of the necrotic lesions. Decreases in cuticle defect, lipid peroxidation, and hydrogen peroxide production in the B. cinerea-inoculated leaves were correlated with reduced lesions by the cinnamon oil vapours. The reduced lesions by the cinnamon oil vapour were well matched with arrested fungal proliferation on the inoculated leaves. The cinnamon oil vapour regulated tomato defence-related gene expression in the leaves with or without fungal inoculation. These results suggest that the plant essential oil vapours, notably cinnamon oil vapour, can provide eco-friendly alternatives to manage grey mould during tomato production.
Collapse
|
19
|
Wang Y, Yuan S, Shao C, Zhu W, Xiao D, Zhang C, Hou X, Li Y. BcOPR3 Mediates Defense Responses to Biotrophic and Necrotrophic Pathogens in Arabidopsis and Non-heading Chinese Cabbage. PHYTOPATHOLOGY 2022; 112:2523-2537. [PMID: 35852468 DOI: 10.1094/phyto-02-22-0049-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In plants, the salicylic acid (SA) and jasmonic acid (JA) signaling pathways usually mediate the defense response to biotrophic and necrotrophic pathogens, respectively. Our previous work showed that after non-heading Chinese cabbage (NHCC) was infected with the biotrophic pathogen Hyaloperonospora parasitica, expression of the JA biosynthetic gene BcOPR3 is induced; however, its molecular mechanism remains unclear. Here, we overexpressed BcOPR3 in Arabidopsis and silenced BcOPR3 in NHCC001 plants to study the defensive role of BcOPR3 in plants against pathogen invasion. The results showed that overexpression of BcOPR3 increased the susceptibility of Arabidopsis to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) but enhanced its resistance to Botrytis cinerea. BcOPR3-silenced NHCC001 plants with a 50% reduction in BcOPR3 expression increased their resistance to downy mildew by reducing the hyphal density and spores of H. parasitica. In addition, BcOPR3-partly silenced NHCC001 plants were also resistant to B. cinerea, which could be the result of a synergistic effect of JA and SA. These findings indicate a complicated role of BcOPR3 in the mediating defense responses to biotrophic and necrotrophic pathogens.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuilin Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Cen Shao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weitong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Changwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Singh R, Dwivedi A, Singh Y, Kumar K, Ranjan A, Verma PK. A Global Transcriptome and Co-expression Analysis Reveals Robust Host Defense Pathway Reprogramming and Identifies Key Regulators of Early Phases of Cicer-Ascochyta Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1034-1047. [PMID: 35939621 DOI: 10.1094/mpmi-06-22-0134-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ascochyta blight (AB) caused by the filamentous fungus Ascochyta rabiei is a major threat to global chickpea production. The mechanisms underlying chickpea response to A. rabiei remain elusive to date. Here, we investigated the comparative transcriptional dynamics of AB-resistant and -susceptible chickpea genotypes upon A. rabiei infection, to understand the early host defense response. Our findings revealed that AB-resistant plants underwent rapid and extensive transcriptional reprogramming compared with a susceptible host. At the early stage (24 h postinoculation [hpi]), mainly cell-wall remodeling and secondary metabolite pathways were highly activated, while differentially expressed genes related to signaling components, such as protein kinases, transcription factors, and hormonal pathways, show a remarkable upsurge at 72 hpi, especially in the resistant genotype. Notably, our data suggest an imperative role of jasmonic acid, ethylene, and abscisic acid signaling in providing immunity against A. rabiei. Furthermore, gene co-expression networks and modules corroborated the importance of cell-wall remodeling, signal transduction, and phytohormone pathways. Hub genes such as MYB14, PRE6, and MADS-SOC1 discovered in these modules might be the master regulators governing chickpea immunity. Overall, we not only provide novel insights for comprehensive understanding of immune signaling components mediating AB resistance and susceptibility at early Cicer-Ascochyta interactions but, also, offer a valuable resource for developing AB-resistant chickpea. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Ritu Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aditi Dwivedi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Yeshveer Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kamal Kumar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aashish Ranjan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
21
|
Zhou H, Hua J, Zhang J, Luo S. Negative Interactions Balance Growth and Defense in Plants Confronted with Herbivores or Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12723-12732. [PMID: 36165611 DOI: 10.1021/acs.jafc.2c04218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plants have evolved a series of defensive mechanisms against pathogens and herbivores, but the defense response always leads to decreases in growth or reproduction, which has serious implications for agricultural production. Growth and defense are negatively regulated not only through metabolic consumption but also through the antagonism of different phytohormones, such as jasmonic acid (JA) and salicylic acid (SA). Meanwhile, plants can limit the expression of defensive metabolites to reduce the costs of defense by producing constitutive defenses such as glandular trichomes or latex and accumulating specific metabolites, determining the activation of plant defense or the maintenance of plant growth. Interestingly, plant defense pathways might be prepared in advance which may be transmitted to descendants. Plants can also use external organisms to protect themselves, thus minimizing the costs of defense. In addition, plant relatives exhibit cooperation to deal with pathogens and herbivores, which is also a way to regulate growth and defense.
Collapse
Affiliation(s)
- Huiwen Zhou
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Juan Hua
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Jiaming Zhang
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| | - Shihong Luo
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
| |
Collapse
|
22
|
Tian T, Yu R, Suo Y, Cheng L, Li G, Yao D, Song Y, Wang H, Li X, Gao G. A Genome-Wide Analysis of StTGA Genes Reveals the Critical Role in Enhanced Bacterial Wilt Tolerance in Potato During Ralstonia solanacearum Infection. Front Genet 2022; 13:894844. [PMID: 35957683 PMCID: PMC9360622 DOI: 10.3389/fgene.2022.894844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
TGA is one of the members of TGACG sequence-specific binding protein family, which plays a crucial role in the regulated course of hormone synthesis as a stress-responsive transcription factor (TF). Little is known, however, about its implication in response to bacterial wilt disease in potato (Solanum tuberosum) caused by Ralstonia solanacearum. Here, we performed an in silico identification and analysis of the members of the TGA family based on the whole genome data of potato. In total, 42 StTGAs were predicted to be distributed on four chromosomes in potato genome. Phylogenetic analysis showed that the proteins of StTGAs could be divided into six sub-families. We found that many of these genes have more than one exon according to the conserved motif and gene structure analysis. The heat map inferred that StTGAs are generally expressed in different tissues which are at different stages of development. Genomic collinear analysis showed that there are homologous relationships among potato, tomato, pepper, Arabidopsis, and tobacco TGA genes. Cis-element in silico analysis predicted that there may be many cis-acting elements related to abiotic and biotic stress upstream of StTGA promoter including plant hormone response elements. A representative member StTGA39 was selected to investigate the potential function of the StTGA genes for further analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) assays indicated that the expression of the StTGAs was significantly induced by R. solanacearum infection and upregulated by exogenous salicylic acid (SA), abscisic acid (ABA), gibberellin 3 (GA3), and methyl jasmonate (MeJA). The results of yeast one-hybrid (Y1H) assay showed that StTGA39 regulates S. tuberosum BRI1-associated receptor kinase 1 (StBAK1) expression. Thus, our study provides a theoretical basis for further research of the molecular mechanism of the StTGA gene of potato tolerance to bacterial wilt.
Collapse
Affiliation(s)
- Tian Tian
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Ruimin Yu
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Yanyun Suo
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Lixiang Cheng
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Guizhi Li
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Dan Yao
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Yanjie Song
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Huanjun Wang
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Xinyu Li
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| | - Gang Gao
- College of Life Sciences, Shanxi Normal University, Taiyuan, China
| |
Collapse
|
23
|
Yang Y, Li HG, Liu M, Wang HL, Yang Q, Yan DH, Zhang Y, Li Z, Feng CH, Niu M, Liu C, Yin W, Xia X. PeTGA1 enhances disease resistance against Colletotrichum gloeosporioides through directly regulating PeSARD1 in poplar. Int J Biol Macromol 2022; 214:672-684. [PMID: 35738343 DOI: 10.1016/j.ijbiomac.2022.06.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/19/2022] [Accepted: 06/12/2022] [Indexed: 11/28/2022]
Abstract
Basic leucine zipper (bZIP) proteins play important roles in responding to biotic and abiotic stresses in plants. However, the molecular mechanisms of plant resistance to pathogens remain largely unclear in poplar. The present study isolated a TGACG-binding (TGA) transcription factor, PeTGA1, from Populus euphratica. PeTGA1 belongs to subgroup D of the bZIP family and was localized to the nucleus. To study the role PeTGA1 plays in response to Colletotrichum gloeosporioides, transgenic triploid white poplars overexpressing PeTGA1 were generated. Results showed that poplars with overexpressed PeTGA1 showed a higher effective defense response to C. gloeosporioides than the wild-type plants. A yeast one-hybrid assay and an electrophoretic mobility shift assay revealed that PeTGA1 could directly bind to the PeSARD1 (P. euphratica SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1) promoter, an important regulator for salicylic acid biosynthesis. The transactivation assays indicated that PeTGA1 activated the expression of PeSARD1, and PR1 (PATHOGENESIS-RELATED 1), a SA marker gene involved in SA signaling. Subsequently, we observed that the PeTGA1 overexpression lines showed elevated SA levels, thereby resulting in the increased resistance to C. gloeosporioides. Taken together, our results indicated that PeTGA1 may exert a key role in plant immunity not only by targeting PeSARD1 thus participating in the SA biosynthesis pathway but also by involving in SA signaling via activating the expression of PR1.
Collapse
Affiliation(s)
- Yanli Yang
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Hui-Guang Li
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Meiying Liu
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Hou-Ling Wang
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Qi Yang
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Dong-Hui Yan
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, The Key Laboratory of Forest Protection Affiliated to State Forestry and Grassland Administration of China, Beijing 100091, China.
| | - Ying Zhang
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhonghai Li
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Cong-Hua Feng
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Mengxue Niu
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Chao Liu
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Weilun Yin
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xinli Xia
- National Engineering Research Center of Tree breeding and Ecological remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
24
|
Xu X, Chen Y, Li B, Zhang Z, Qin G, Chen T, Tian S. Molecular mechanisms underlying multi-level defense responses of horticultural crops to fungal pathogens. HORTICULTURE RESEARCH 2022; 9:uhac066. [PMID: 35591926 PMCID: PMC9113409 DOI: 10.1093/hr/uhac066] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 05/21/2023]
Abstract
The horticultural industry helps to enrich and improve the human diet while contributing to growth of the agricultural economy. However, fungal diseases of horticultural crops frequently occur during pre- and postharvest periods, reducing yields and crop quality and causing huge economic losses and wasted food. Outcomes of fungal diseases depend on both horticultural plant defense responses and fungal pathogenicity. Plant defense responses are highly sophisticated and are generally divided into preformed and induced defense responses. Preformed defense responses include both physical barriers and phytochemicals, which are the first line of protection. Induced defense responses, which include innate immunity (pattern-triggered immunity and effector-triggered immunity), local defense responses, and systemic defense signaling, are triggered to counterstrike fungal pathogens. Therefore, to develop regulatory strategies for horticultural plant resistance, a comprehensive understanding of defense responses and their underlying mechanisms is critical. Recently, integrated multi-omics analyses, CRISPR-Cas9-based gene editing, high-throughput sequencing, and data mining have greatly contributed to identification and functional determination of novel phytochemicals, regulatory factors, and signaling molecules and their signaling pathways in plant resistance. In this review, research progress on defense responses of horticultural crops to fungal pathogens and novel regulatory strategies to regulate induction of plant resistance are summarized, and then the problems, challenges, and future research directions are examined.
Collapse
Affiliation(s)
- Xiaodi Xu
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
García-Machado FJ, García-García AL, Borges AA, Jiménez-Arias D. Root treatment with a vitamin K 3 derivative: a promising alternative to synthetic fungicides against Botrytis cinerea in tomato plants. PEST MANAGEMENT SCIENCE 2022; 78:974-981. [PMID: 34738317 DOI: 10.1002/ps.6707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Botrytis cinerea, the causal agent of gray mold has a great economic impact on several important crops. This necrotrophic fungus causes disease symptoms during vegetative growth and also into postharvest stages. The current method to combat this disease is fungicide application, with high economic costs and environmentally unsustainable impacts. Moreover, there is an increasing general public health concern about these strategies of crop protection. We studied the protection of tomato plants against B. cinerea by previous root treatment with menadione sodium bisulfite (MSB), a known plant defense activator. RESULTS Root treatment 48 h before inoculation with MSB 0.6 mmol L-1 reduced leaf lesion diameter by 30% and notably cell deaths, compared to control plants 72 h after inoculation. We studied the expression level of several pathogenesis-related (PR) genes from different defense transduction pathways, and found that MSB primes higher PR1 expression against B. cinerea. However, this stronger induced resistance was impaired in transgenic salicylic acid-deficient NahG line. Additionally, in the absence of pathogen challenge, MSB increased tomato plant growth by 28% after 10 days. Our data provide evidence that MSB protects tomato plants against B. cinerea by priming defense responses through the salicylic acid (SA)-dependent signaling pathway and reducing oxidative stress. CONCLUSION This work confirms the efficacy of MSB as plant defense activator against B. cinerea and presents a novel alternative to combat gray mold in important crops.
Collapse
Affiliation(s)
- Francisco J García-Machado
- Chemical Plant Defense Activators Group, Department of Life and Earth Sciences, IPNA-CSIC, Campus de Anchieta, La Laguna, Tenerife, Spain
- Applied Plant Biology Group, Department of Botany, Plant Physiology and Genetics. Universidad de La Laguna, Campus de Anchieta, La Laguna, Tenerife, Spain
| | - Ana L García-García
- Chemical Plant Defense Activators Group, Department of Life and Earth Sciences, IPNA-CSIC, Campus de Anchieta, La Laguna, Tenerife, Spain
- Applied Plant Biology Group, Department of Botany, Plant Physiology and Genetics. Universidad de La Laguna, Campus de Anchieta, La Laguna, Tenerife, Spain
| | - Andrés A Borges
- Chemical Plant Defense Activators Group, Department of Life and Earth Sciences, IPNA-CSIC, Campus de Anchieta, La Laguna, Tenerife, Spain
| | - David Jiménez-Arias
- Chemical Plant Defense Activators Group, Department of Life and Earth Sciences, IPNA-CSIC, Campus de Anchieta, La Laguna, Tenerife, Spain
| |
Collapse
|
26
|
Singh N, Nandi AK. AtOZF1 positively regulates JA signaling and SA-JA cross-talk in Arabidopsis thaliana. J Biosci 2022. [DOI: 10.1007/s12038-021-00243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Gupta GD, Bansal R, Mistry H, Pandey B, Mukherjee PK. Structure-function analysis reveals Trichoderma virens Tsp1 to be a novel fungal effector protein modulating plant defence. Int J Biol Macromol 2021; 191:267-276. [PMID: 34547313 DOI: 10.1016/j.ijbiomac.2021.09.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022]
Abstract
Trichoderma virens colonizes roots and develops a symbiotic relationship with plants where the fungal partner derives nutrients from plants and offers defence, in return. Tsp1, a small secreted cysteine-rich protein, was earlier found to be upregulated in co-cultivation of T. virens with maize roots. Tsp1 is well conserved in Ascomycota division of fungi, but none of its homologs have been studied yet. We have expressed and purified recombinant Tsp1, and resolved its structure to 1.25 Å resolutions, from two crystal forms, using Se-SAD methods. The Tsp1 adopts a β barrel fold and forms dimer in structure as well as in solution form. DALI based structure analysis revealed the structure similarity with two known fungal effector proteins: Alt a1 and PevD1. Structure and evolutionary analysis suggested that Tsp1 belongs to a novel effector protein family. Tsp1 acted as an inducer of salicylic acid mediated susceptibility in plants, rendering maize plants more susceptible to a necrotrophic pathogen Cochliobolus heterostrophus, as observed using plant defence assay and RT-qPCR analysis.
Collapse
Affiliation(s)
- Gagan D Gupta
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India.
| | - Ravindra Bansal
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Hiral Mistry
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Bharati Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Prasun K Mukherjee
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India; Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India.
| |
Collapse
|
28
|
Bhuiyan SA, Magarey RC, McNeil MD, Aitken KS. Sugarcane Smut, Caused by Sporisorium scitamineum, a Major Disease of Sugarcane: A Contemporary Review. PHYTOPATHOLOGY 2021; 111:1905-1917. [PMID: 34241540 DOI: 10.1094/phyto-05-21-0221-rvw] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sugarcane smut caused by the fungus Sporisorium scitamineum is one of the major diseases of sugarcane worldwide, causing significant losses in productivity and profitability of this perennial crop. Teliospores of this fungus are airborne, can travel long distances, and remain viable in hot and dry conditions for >6 months. The disease is easily recognized by its long whiplike sorus produced on the apex or side shoots of sugarcane stalks. Each sorus can release ≤100 million teliospores in a day; the spores are small (≤7.5 µ) and light and can survive in harsh environmental conditions. The airborne teliospores are the primary mode of smut spread around the world and across cane-growing regions. The most effective method of managing this disease is via resistant varieties. Because of the complex genomic makeup of sugarcane, selection for resistant traits is difficult in sugarcane breeding programs. In recent times, the application of molecular markers as a rapid tool of discarding susceptible genotypes early in the selection program has been investigated. Large effect resistance loci have been identified and have the potential to be used for marker-assisted selection to increase the frequency of resistant breeding lines in breeding programs. Recent developments in omics technologies (genomics, transcriptomics, proteomics, and metabolomics) have contributed to our understanding and provided insights into the mechanism of resistance and susceptibility. This knowledge will further our understanding of smut and its interactions with sugarcane genotypes and aid in the development of durable resistant varieties.
Collapse
Affiliation(s)
- Shamsul A Bhuiyan
- Sugar Research Australia, Woodford, QLD 4514, Australia, and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | | | - Meredith D McNeil
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD 4072, Australia
| | - Karen S Aitken
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD 4072, Australia
| |
Collapse
|
29
|
Jiang H, Gu S, Li K, Gai J. Two TGA Transcription Factor Members from Hyper-Susceptible Soybean Exhibiting Significant Basal Resistance to Soybean mosaic virus. Int J Mol Sci 2021; 22:11329. [PMID: 34768757 PMCID: PMC8583413 DOI: 10.3390/ijms222111329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022] Open
Abstract
TGA transcription factors (TFs) exhibit basal resistance in Arabidopsis, but susceptibility to a pathogen attack in tomatoes; however, their roles in soybean (Glycine max) to Soybean mosaic virus (SMV) are unknown. In this study, 27 TGA genes were isolated from a SMV hyper-susceptible soybean NN1138-2, designated GmTGA1~GmTGA27, which were clustered into seven phylogenetic groups. The expression profiles of GmTGAs showed that the highly expressed genes were mainly in Groups I, II, and VII under non-induction conditions, while out of the 27 GmTGAs, 19 responded to SMV-induction. Interestingly, in further transient N. benthamiana-SMV pathosystem assay, all the 19 GmTGAs overexpressed did not promote SMV infection in inoculated leaves, but they exhibited basal resistance except one without function. Among the 18 functional ones, GmTGA8 and GmTGA19, with similar motif distribution, nuclear localization sequence and interaction proteins, showed a rapid response to SMV infection and performed better than the others in inhibiting SMV multiplication. This finding suggested that GmTGA TFs may support basal resistance to SMV even from a hyper-susceptible source. What the mechanism of the genes (GmTGA8, GmTGA19, etc.) with basal resistance to SMV is and what their potential for the future improvement of resistance to SMV in soybeans is, are to be explored.
Collapse
Affiliation(s)
- Hua Jiang
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyu Gu
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Li
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Junyi Gai
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China; (H.J.); (S.G.); (K.L.)
- MOA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
30
|
Yan F, Cai T, Wu Y, Chen S, Chen J. Physiological and transcriptomics analysis of the effect of recombinant serine protease on the preservation of loquat. Genomics 2021; 113:3750-3761. [PMID: 34464718 DOI: 10.1016/j.ygeno.2021.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/29/2021] [Accepted: 08/22/2021] [Indexed: 02/06/2023]
Abstract
This study aimed to explore the effects of recombinant serine protease treatment on the development of post-harvest loquat diseases, fruit quality, and disease resistance enzyme activities. It also sought to analyze differential genes expression using RNA-seq technology. Transcriptomics analysis revealed 708 and 398 differentially expressed genes (DEGs) in loquat fruits treated with serine protease for 24 and 48 h. Furthermore, 2198 DEGs were obtained between 24 and 48 h after treatment. The genes encoding JAZ, MYC2 and ERF in the plant signal transduction pathway were significantly up-regulated. The resistance-related genes, such as PPO, PAL, TLP, WRKY, and transcription factors were also significantly up-regulated. These results indicated that the recombinant serine protease can induce plant signal transduction pathway in loquat fruit. The expression of some resistance-related genes enhanced the disease resistance of loquat fruit and revealed the molecular mechanism of loquat fruit resistance induced by recombinant serine protease.
Collapse
Affiliation(s)
- Fen Yan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Ting Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yunyun Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shuqiong Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Junying Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
31
|
Gorshkov V, Tsers I. Plant susceptible responses: the underestimated side of plant-pathogen interactions. Biol Rev Camb Philos Soc 2021; 97:45-66. [PMID: 34435443 PMCID: PMC9291929 DOI: 10.1111/brv.12789] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022]
Abstract
Plant susceptibility to pathogens is usually considered from the perspective of the loss of resistance. However, susceptibility cannot be equated with plant passivity since active host cooperation may be required for the pathogen to propagate and cause disease. This cooperation consists of the induction of reactions called susceptible responses that transform a plant from an autonomous biological unit into a component of a pathosystem. Induced susceptibility is scarcely discussed in the literature (at least compared to induced resistance) although this phenomenon has a fundamental impact on plant-pathogen interactions and disease progression. This review aims to summarize current knowledge on plant susceptible responses and their regulation. We highlight two main categories of susceptible responses according to their consequences and indicate the relevance of susceptible response-related studies to agricultural practice. We hope that this review will generate interest in this underestimated aspect of plant-pathogen interactions.
Collapse
Affiliation(s)
- Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia.,Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia
| | - Ivan Tsers
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia
| |
Collapse
|
32
|
Son GH, Moon J, Shelake RM, Vuong UT, Ingle RA, Gassmann W, Kim JY, Kim SH. Conserved Opposite Functions in Plant Resistance to Biotrophic and Necrotrophic Pathogens of the Immune Regulator SRFR1. Int J Mol Sci 2021; 22:6427. [PMID: 34204013 PMCID: PMC8233967 DOI: 10.3390/ijms22126427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
Plant immunity is mediated in large part by specific interactions between a host resistance protein and a pathogen effector protein, named effector-triggered immunity (ETI). ETI needs to be tightly controlled both positively and negatively to enable normal plant growth because constitutively activated defense responses are detrimental to the host. In previous work, we reported that mutations in SUPPRESSOR OF rps4-RLD1 (SRFR1), identified in a suppressor screen, reactivated EDS1-dependent ETI to Pseudomonas syringae pv. tomato (Pto) DC3000. Besides, mutations in SRFR1 boosted defense responses to the generalist chewing insect Spodoptera exigua and the sugar beet cyst nematode Heterodera schachtii. Here, we show that mutations in SRFR1 enhance susceptibility to the fungal necrotrophs Fusarium oxysporum f. sp. lycopersici (FOL) and Botrytis cinerea in Arabidopsis. To translate knowledge obtained in AtSRFR1 research to crops, we generated SlSRFR1 alleles in tomato using a CRISPR/Cas9 system. Interestingly, slsrfr1 mutants increased expression of SA-pathway defense genes and enhanced resistance to Pto DC3000. In contrast, slsrfr1 mutants elevated susceptibility to FOL. Together, these data suggest that SRFR1 is functionally conserved in both Arabidopsis and tomato and functions antagonistically as a negative regulator to (hemi-) biotrophic pathogens and a positive regulator to necrotrophic pathogens.
Collapse
Affiliation(s)
- Geon Hui Son
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; (G.H.S.); (J.M.); (R.M.S.); (U.T.V.); (J.-Y.K.)
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; (G.H.S.); (J.M.); (R.M.S.); (U.T.V.); (J.-Y.K.)
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; (G.H.S.); (J.M.); (R.M.S.); (U.T.V.); (J.-Y.K.)
| | - Uyen Thi Vuong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; (G.H.S.); (J.M.); (R.M.S.); (U.T.V.); (J.-Y.K.)
| | - Robert A. Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7700, South Africa;
| | - Walter Gassmann
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA;
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; (G.H.S.); (J.M.); (R.M.S.); (U.T.V.); (J.-Y.K.)
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; (G.H.S.); (J.M.); (R.M.S.); (U.T.V.); (J.-Y.K.)
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
33
|
Genome-Wide Identification and Expression of Chitinase Class I Genes in Garlic ( Allium sativum L.) Cultivars Resistant and Susceptible to Fusarium proliferatum. PLANTS 2021; 10:plants10040720. [PMID: 33917252 PMCID: PMC8068077 DOI: 10.3390/plants10040720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Vegetables of the Allium genus are prone to infection by Fusarium fungi. Chitinases of the GH19 family are pathogenesis-related proteins inhibiting fungal growth through the hydrolysis of cell wall chitin; however, the information on garlic (Allium sativum L.) chitinases is limited. In the present study, we identified seven class I chitinase genes, AsCHI1–7, in the A. sativum cv. Ershuizao genome, which may have a conserved function in the garlic defense against Fusarium attack. The AsCHI1–7 promoters contained jasmonic acid-, salicylic acid-, gibberellins-, abscisic acid-, auxin-, ethylene-, and stress-responsive elements associated with defense against pathogens. The expression of AsCHI2, AsCHI3, and AsCHI7 genes was constitutive in Fusarium-resistant and -susceptible garlic cultivars and was mostly induced at the early stage of F. proliferatum infection. In roots, AsCHI2 and AsCHI3 mRNA levels were increased in the susceptible and decreased in the resistant cultivar, whereas in cloves, AsCHI7 and AsCHI5 expression was decreased in the susceptible but increased in the resistant plants, suggesting that these genes are involved in the garlic response to Fusarium proliferatum attack. Our results provide insights into the role of chitinases in garlic and may be useful for breeding programs to increase the resistance of Allium crops to Fusarium infections.
Collapse
|
34
|
Kumar R, Mukherjee PK. Trichoderma virens Bys1 may competitively inhibit its own effector protein Alt a 1 to stabilize the symbiotic relationship with plant-evidence from docking and simulation studies. 3 Biotech 2021; 11:144. [PMID: 33708467 PMCID: PMC7910336 DOI: 10.1007/s13205-021-02652-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022] Open
Abstract
The filamentous fungi Trichoderma spp. are widely used for plant growth promotion and disease control. They form stable symbiosis-like relationship with roots. Unlike plant pathogens and mycorrhizae, the molecular events leading to the development of this association is not well understood. Pathogens deploy effector proteins to suppress or evade plant defence. Indirect evidences suggest that Trichoderma spp. can also deploy effector-like proteins to suppress plant defence favouring colonization of roots. Here, using computer simulation, we provide evidence that Trichoderma virens may deploy analogues of host defence proteins to "neutralize" its own effector protein to minimize damage to host tissues, as one of the mechanisms to achieve a stable symbiotic relationship with plants. We provide evidence that T. virens Bys1 protein has a structure similar to plant PR5/thaumatin-like protein and can bind Alt a 1 with a very high affinity, which might lead to the inactivation of its own effector protein. We have, for the first time, predicted a fungal protein that is a competitive inhibitor of a fungal effector protein deployed by many pathogenic fungi to suppress plant defence, and this protein/gene can potentially be used to enhance plant defence through transgenic or other approaches. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02652-8.
Collapse
Affiliation(s)
- Rakesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Prasun K. Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| |
Collapse
|
35
|
Ramu VS, Oh S, Lee HK, Nandety RS, Oh Y, Lee S, Nakashima J, Tang Y, Senthil-Kumar M, Mysore KS. A Novel Role of Salt- and Drought-Induced RING 1 Protein in Modulating Plant Defense Against Hemibiotrophic and Necrotrophic Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:297-308. [PMID: 33231502 DOI: 10.1094/mpmi-09-20-0257-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many plant-encoded E3 ligases are known to be involved in plant defense. Here, we report a novel role of E3 ligase SALT- AND DROUGHT-INDUCED RING FINGER1 (SDIR1) in plant immunity. Even though SDIR1 is reasonably well-characterized, its role in biotic stress response is not known. The silencing of SDIR1 in Nicotiana benthamiana reduced the multiplication of the virulent bacterial pathogen Pseudomonas syringae pv. tabaci. The Arabidopsis sdir1 mutant is resistant to virulent pathogens, whereas SDIR1 overexpression lines are susceptible to both host and nonhost hemibiotrophic bacterial pathogens. However, sdir1 mutant and SDIR1 overexpression lines showed hypersusceptibility and resistance, respectively, against the necrotrophic pathogen Erwinia carotovora. The mutant of SDIR1 target protein, i.e., SDIR-interacting protein 1 (SDIR1P1), also showed resistance to host and nonhost pathogens. In SDIR1 overexpression plants, transcripts of NAC transcription factors were less accumulated and the levels of jasmonic acid (JA) and abscisic acid were increased. In the sdir1 mutant, JA signaling genes JAZ7 and JAZ8 were downregulated. These data suggest that SDIR1 is a susceptibility factor and its activation or overexpression enhances disease caused by P. syringae pv. tomato DC3000 in Arabidopsis. Our results show a novel role of SDIR1 in modulating plant defense gene expression and plant immunity.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Vemanna S Ramu
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- Laboratory of Plant Functional Genomics, Regional Center for Biotechnology, Faridabad, India
| | - Sunhee Oh
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Hee-Kyung Lee
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | | | - Youngjae Oh
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL 33598, U.S.A
| | - Seonghee Lee
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL 33598, U.S.A
| | - Jin Nakashima
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Yuhong Tang
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | | | | |
Collapse
|
36
|
Stumpf S, Leach L, Srinivasan R, Coolong T, Gitaitis R, Dutta B. Foliar Chemical Protection Against Pantoea ananatis in Onion Is Negated by Thrips Feeding. PHYTOPATHOLOGY 2021; 111:258-267. [PMID: 32748732 DOI: 10.1094/phyto-05-20-0163-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Center rot of onion, caused by Pantoea ananatis, is an economically important disease in onion production in Georgia and elsewhere in the United States. Growers rely on frequent foliar applications of bactericides and, in some cases, plant defense inducers to manage this disease. However, regular prophylactic application of these chemicals is not cost-effective and may not be environmentally friendly. Thrips (Thrips tabaci and Frankliniella fusca) are vectors of P. ananatis, and their feeding may compromise the effectiveness of foliar applications against P. ananatis. In this study, foliar treatments with acibenzolar-S-methyl (Actigard 50WG), cupric hydroxide (Kocide 3000), and Actigard plus Kocide were evaluated for their effectiveness in the presence and absence of thrips infestation at two critical onion growth stages: bulb initiation and bulb swelling. Onion growth stage had no impact on the effectiveness of either Kocide or Actigard. In the absence of thrips, Kocide application resulted in reduced center rot incidence compared with Actigard, regardless of the growth stage. However, when thrips were present, the efficacy of both Kocide and Actigard was reduced, with bulb incidence not significantly different from the nontreated control. In independent greenhouse studies in the presence or absence of thrips, it was observed that use of protective chemicals (Kocide, Actigard, and their combinations) at different rates also affected pathogen progression into internal neck tissue and incidence of bulb rot. These results suggest that thrips infestation can reduce the efficacy of protective chemical treatments against P. ananatis. Thrips feeding on onion foliage and resulting feeding scars could facilitate P. ananatis entry and subsequently compromise the efficacy of protective chemical treatments. Therefore, an effective center rot management strategy should likely include thrips management in addition to bactericides at susceptible growth stages of onion.
Collapse
Affiliation(s)
- Spencer Stumpf
- Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton, GA 31793
| | - Leana Leach
- Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton, GA 31793
| | | | - Timothy Coolong
- Department of Horticulture, University of Georgia, Athens, GA 30602
| | - Ron Gitaitis
- Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton, GA 31793
| | - Bhabesh Dutta
- Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton, GA 31793
| |
Collapse
|
37
|
Jaiswal AK, Mengiste TD, Myers JR, Egel DS, Hoagland LA. Tomato Domestication Attenuated Responsiveness to a Beneficial Soil Microbe for Plant Growth Promotion and Induction of Systemic Resistance to Foliar Pathogens. Front Microbiol 2020; 11:604566. [PMID: 33391227 PMCID: PMC7775394 DOI: 10.3389/fmicb.2020.604566] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Crop domestication events followed by targeted breeding practices have been pivotal for improvement of desirable traits and to adapt cultivars to local environments. Domestication also resulted in a strong reduction in genetic diversity among modern cultivars compared to their wild relatives, though the effect this could have on tripartite relationships between plants, belowground beneficial microbes and aboveground pathogens remains undetermined. We quantified plant growth performance, basal resistance and induced systemic resistance (ISR) by Trichoderma harzianum, a beneficial soil microbe against Botrytis cinerea, a necrotrophic fungus and Phytophthora infestans, a hemi-biotrophic oomycete, in 25 diverse tomato genotypes. Wild tomato related species, tomato landraces and modern commercial cultivars that were conventionally or organically bred, together, representing a domestication gradient were evaluated. Relationships between basal and ISR, plant physiological status and phenolic compounds were quantified to identify potential mechanisms. Trichoderma enhanced shoot and root biomass and ISR to both pathogens in a genotype specific manner. Moreover, improvements in plant performance in response to Trichoderma gradually decreased along the domestication gradient. Wild relatives and landraces were more responsive to Trichoderma, resulting in greater suppression of foliar pathogens than modern cultivars. Photosynthetic rate and stomatal conductance of some tomato genotypes were improved by Trichoderma treatment whereas leaf nitrogen status of the majority of tomato genotypes were not altered. There was a negative relationship between basal resistance and induced resistance for both diseases, and a positive correlation between Trichoderma-ISR to B. cinerea and enhanced total flavonoid contents. These findings suggest that domestication and breeding practices have altered plant responsiveness to beneficial soil microbes. Further studies are needed to decipher the molecular mechanisms underlying the differential promotion of plant growth and resistance among genotypes, and identify molecular markers to integrate selection for responsiveness into future breeding programs.
Collapse
Affiliation(s)
- Amit K Jaiswal
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Tesfaye D Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - James R Myers
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Daniel S Egel
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Lori A Hoagland
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
38
|
Li R, Wang L, Li Y, Zhao R, Zhang Y, Sheng J, Ma P, Shen L. Knockout of SlNPR1 enhances tomato plants resistance against Botrytis cinerea by modulating ROS homeostasis and JA/ET signaling pathways. PHYSIOLOGIA PLANTARUM 2020; 170:569-579. [PMID: 32840878 DOI: 10.1111/ppl.13194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Tomato is one of the most popular horticultural crops, and many commercial tomato cultivars are particularly susceptible to Botrytis cinerea. Non-expressor of pathogenesis-related gene 1 (NPR1) is a critical component of the plant defense mechanisms. However, our understanding of how SlNPR1 influences disease resistance in tomato is still limited. In this study, two independent slnpr1 mutants were used to study the role of SlNPR1 in tomato resistance against B. cinerea. Compared to (WT), slnpr1 leaves exhibited enhanced resistance against B. cinerea with smaller lesion sizes, higher activities of chitinase (CHI), β-1, 3-glucanases (GLU) and phenylalanine ammonia-lyase (PAL), and significantly increased expressions of pathogenesis-related genes (PRs). The increased activities of peroxidase (POD), ascorbate peroxidase (APX) and decreased catalase (CAT) activities collectively regulated reactive oxygen species (ROS) homeostasis in slnpr1 mutants. The integrity of the cell wall in slnpr1 mutants was maintained. Moreover, the enhanced resistance was further reflected by induction of defense genes involved in jasmonic acid (JA) and ethylene (ET) signaling pathways. Taken together, these findings revealed that knocking out SlNPR1 resulted in increased activities of defense enzymes, changes in ROS homeostasis and integrity of cell walls, and activation of JA and ET pathways, which confers resistance against B. cinerea in tomato plants.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Liu Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yujing Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ruirui Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing, 100872, China
| | - Peihua Ma
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, 20740, USA
| | - Lin Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
39
|
Wu F, Qi J, Meng X, Jin W. miR319c acts as a positive regulator of tomato against Botrytis cinerea infection by targeting TCP29. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110610. [PMID: 33180702 DOI: 10.1016/j.plantsci.2020.110610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
miR319 family is one of the oldest and most conservative miRNA families in plant and plays an important role in plant development and abiotic stress response. In our previous study, the abundance of sly-miR319c was increased in tomatoes infected by B. cinerea, but the roles and regulatory mechanisms of sly-miR319c in B. cinerea-infected tomato remain unclear. In this study, we confirmed that miR319c was increased in tomato with B. cinerea infection. In contrast, A TCP transcript factor, TCP29, targeted by sly-miR319c was decreased in B. cinerea-infected tomato. Therefore, transgenic Arabidopsis overexpressing sly-miR319c or its target were generated for understanding the biological roles and molecular mechanism of miR319c in B.cinerea-infected plants. Results showed that miR319c overexpression improved the resistance of transgenic plants to B. cinerea, whereas TCP29 overexpression increased the susceptibility of transgenic plant to B. cinerea. So far, TCP transcription factors have been reported mainly in developmental processes. Our data indicate that TCP29 act as a negative regulator to B.cinerea infection. In conclusion, our results indicate that sly-miR319c is a positive regulator of tomato resistance to B. cinerea infection by targeting TCP29.
Collapse
Affiliation(s)
- Fangli Wu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jingyi Qi
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xin Meng
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weibo Jin
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
40
|
Wang CJ, Wang YZ, Chu ZH, Wang PS, Liu BY, Li BY, Yu XL, Luan BH. Endophytic Bacillus amyloliquefaciens YTB1407 elicits resistance against two fungal pathogens in sweet potato (Ipomoea batatas (L.) Lam.). JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153260. [PMID: 32846310 DOI: 10.1016/j.jplph.2020.153260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
The endophytic Bacillus amyloliquefaciens YTB1407 was previously reported to promote the growth of sweet potato (Ipomoea batatas cv. Yanshu 25). Here, we demonstrate in both in vitro and pot trial assays that pre-treatment with YTB1407 suspension could enhance resistance against root rot disease and black rot disease, caused by Fusarium solani Mart. Sacc. f. sp. batatas McClure and Ceratocystis fimbriata Ell. & Halst on sweet potato, respectively. When seedlings were infected with fungal pathogens at 10 days post irrigation, pre-treatment with YTB1407 suspension decreased these pathogens and YTB1407 bacterial biomass in sweet potato roots. The pre-treatment activated the expression of salicylic acid (SA)-responsive PR-1 gene, raised SA content, and reduced hydrogen peroxide (H2O2) in the host to resist F. solani, while it enhanced the expression levels of SA-responsive NPR1 and PR1 genes and increased SA content to resist C. fimbriata. The disease resistance control effect initiated by pre-treatment with YTB1407 for root rot pathogen (F. solani) was better than for black rot pathogen (C. fimbriata). The results indicated that Bacillus amyloliquefaciens YTB1407 played a pivotal role in enhancing resistance to two fungi pathogens in sweet potato, through production of some antifungal metabolites to decrease infection in the early stage as well as induction of SA-dependent systemic resistance.
Collapse
Affiliation(s)
- Cui-Juan Wang
- Institute of Plant Protection, Yantai Academy of Agricultural Sciences, Yantai, 265500, PR China
| | - Ying-Zi Wang
- Institute of Plant Protection, Yantai Academy of Agricultural Sciences, Yantai, 265500, PR China.
| | - Zhao-Hui Chu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Pei-Song Wang
- Institute of Plant Protection, Yantai Academy of Agricultural Sciences, Yantai, 265500, PR China
| | - Bao-You Liu
- Institute of Plant Protection, Yantai Academy of Agricultural Sciences, Yantai, 265500, PR China
| | - Bao-Yan Li
- Institute of Plant Protection, Yantai Academy of Agricultural Sciences, Yantai, 265500, PR China
| | - Xiao-Li Yu
- Institute of Plant Protection, Yantai Academy of Agricultural Sciences, Yantai, 265500, PR China
| | - Bing-Hui Luan
- Institute of Plant Protection, Yantai Academy of Agricultural Sciences, Yantai, 265500, PR China
| |
Collapse
|
41
|
Brouwer SM, Odilbekov F, Burra DD, Lenman M, Hedley PE, Grenville-Briggs L, Alexandersson E, Liljeroth E, Andreasson E. Intact salicylic acid signalling is required for potato defence against the necrotrophic fungus Alternaria solani. PLANT MOLECULAR BIOLOGY 2020; 104:1-19. [PMID: 32562056 PMCID: PMC7417411 DOI: 10.1007/s11103-020-01019-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/02/2020] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Using disease bioassays and transcriptomic analysis we show that intact SA-signalling is required for potato defences against the necrotrophic fungal pathogen Alternaria solani. ABSTRACT Early blight, caused by the necrotrophic fungus Alternaria solani, is an increasing problem in potato cultivation. Studies of the molecular components defining defence responses to A. solani in potato are limited. Here, we investigate plant defence signalling with a focus on salicylic acid (SA) and jasmonic acid (JA) pathways in response to A. solani. Our bioassays revealed that SA is necessary to restrict pathogen growth and early blight symptom development in both potato foliage and tubers. This result is in contrast to the documented minimal role of SA in resistance of Arabidopsis thaliana against necrotrophic pathogens. We also present transcriptomic analysis with 36 arrays of A. solani inoculated SA-deficient, JA-insensitive, and wild type plant lines. A greater number of genes are differentially expressed in the SA-deficient mutant plant line compared to the wild type and JA- insensitive line. In wild type plants, genes encoding metal ion transporters, such as copper, iron and zinc transporters were upregulated and transferase-encoding genes, for example UDP-glucoronosyltransferase and Serine-glyoxylate transferase, were downregulated. The SA-deficient plants show upregulation of genes enriched in GO terms related to oxidoreductase activity, respiratory chain and other mitochondrial-related processes. Pathogenesis-related genes, such as genes encoding chitinases and PR1, are upregulated in both the SA-deficient and wild type plants, but not in the JA-insensitive mutants. The combination of our bioassays and the transcriptomic analysis indicate that intact SA signalling, and not JA signalling, is required for potato defences against the necrotrophic pathogen A. solani. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (10.1007/s11103-020-01019-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophie M Brouwer
- Department of Plant Protection Biology, Swedish Agricultural University, Alnarp, Sweden
| | - Firuz Odilbekov
- Department of Plant Protection Biology, Swedish Agricultural University, Alnarp, Sweden
| | - Dharani Dhar Burra
- Department of Plant Protection Biology, Swedish Agricultural University, Alnarp, Sweden
| | - Marit Lenman
- Department of Plant Protection Biology, Swedish Agricultural University, Alnarp, Sweden
| | - Pete E Hedley
- Department of Cell and Molecular Sciences, Genome Technology, James Hutton Institute, Dundee, Scotland, UK
| | | | - Erik Alexandersson
- Department of Plant Protection Biology, Swedish Agricultural University, Alnarp, Sweden
| | - Erland Liljeroth
- Department of Plant Protection Biology, Swedish Agricultural University, Alnarp, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish Agricultural University, Alnarp, Sweden.
| |
Collapse
|
42
|
Williamson-Benavides BA, Sharpe RM, Nelson G, Bodah ET, Porter LD, Dhingra A. Identification of Fusarium solani f. sp. pisi ( Fsp) Responsive Genes in Pisum sativum. Front Genet 2020; 11:950. [PMID: 33014017 PMCID: PMC7461991 DOI: 10.3389/fgene.2020.00950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
Pisum sativum (pea) is rapidly emerging as an inexpensive and significant contributor to the plant-derived protein market. Due to its nitrogen-fixation capability, short life cycle, and low water usage, pea is a useful cover-and-break crop that requires minimal external inputs. It is critical for sustainable agriculture and indispensable for future food security. Root rot in pea, caused by the fungal pathogen Fusarium solani f. sp. pisi (Fsp), can result in a 15-60% reduction in yield. It is urgent to understand the molecular basis of Fsp interaction in pea to develop root rot tolerant cultivars. A complementary genetics and gene expression approach was undertaken in this study to identify Fsp-responsive genes in four tolerant and four susceptible pea genotypes. Time course RNAseq was performed on both sets of genotypes after the Fsp challenge. Analysis of the transcriptome data resulted in the identification of 42,905 differentially expressed contigs (DECs). Interestingly, the vast majority of DECs were overexpressed in the susceptible genotypes at all sampling time points, rather than in the tolerant genotypes. Gene expression and GO enrichment analyses revealed genes coding for receptor-mediated endocytosis, sugar transporters, salicylic acid synthesis, and signaling, and cell death were overexpressed in the susceptible genotypes. In the tolerant genotypes, genes involved in exocytosis, and secretion by cell, the anthocyanin synthesis pathway, as well as the DRR230 gene, a pathogenesis-related (PR) gene, were overexpressed. The complementary genetic and RNAseq approach has yielded a set of potential genes that could be targeted for improved tolerance against root rot in P. sativum. Fsp challenge produced a futile transcriptomic response in the susceptible genotypes. This type of response is hypothesized to be related to the speed at which the pathogen infestation advances in the susceptible genotypes and the preexisting level of disease-preparedness in the tolerant genotypes.
Collapse
Affiliation(s)
| | - Richard M Sharpe
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Grant Nelson
- Molecular Plant Sciences, Washington State University, Pullman, WA, United States
| | - Eliane T Bodah
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Lyndon D Porter
- USDA-ARS, Grain Legume Genetics and Physiology Research Unit, Prosser, WA, United States
| | - Amit Dhingra
- Molecular Plant Sciences, Washington State University, Pullman, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
43
|
Fass MI, Rivarola M, Ehrenbolger GF, Maringolo CA, Montecchia JF, Quiroz F, García-García F, Blázquez JD, Hopp HE, Heinz RA, Paniego NB, Lia VV. Exploring sunflower responses to Sclerotinia head rot at early stages of infection using RNA-seq analysis. Sci Rep 2020; 10:13347. [PMID: 32770047 PMCID: PMC7414910 DOI: 10.1038/s41598-020-70315-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
Sclerotinia head rot (SHR), caused by the necrotrophic fungus Sclerotinia sclerotiorum, is one of the most devastating sunflower crop diseases. Despite its worldwide occurrence, the genetic determinants of plant resistance are still largely unknown. Here, we investigated the Sclerotinia-sunflower pathosystem by analysing temporal changes in gene expression in one susceptible and two tolerant inbred lines (IL) inoculated with the pathogen under field conditions. Differential expression analysis showed little overlapping among ILs, suggesting genotype-specific control of cell defense responses possibly related to differences in disease resistance strategies. Functional enrichment assessments yielded a similar pattern. However, all three ILs altered the expression of genes involved in the cellular redox state and cell wall remodeling, in agreement with current knowledge about the initiation of plant immune responses. Remarkably, the over-representation of long non-coding RNAs (lncRNA) was another common feature among ILs. Our findings highlight the diversity of transcriptional responses to SHR within sunflower breeding lines and provide evidence of lncRNAs playing a significant role at early stages of defense.
Collapse
Affiliation(s)
- Mónica I Fass
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina.
| | - Máximo Rivarola
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina
| | - Guillermo F Ehrenbolger
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina
| | - Carla A Maringolo
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce, Balcarce, Argentina
| | - Juan F Montecchia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina
| | - Facundo Quiroz
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce, Balcarce, Argentina
| | | | - Joaquín Dopazo Blázquez
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, 41013, Sevilla, Spain.,INB-ELIXIR-Es, FPS, Hospital Virgen del Rocío, 42013, Sevilla, Spain
| | - H Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), 1428, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ruth A Heinz
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina
| | - Norma B Paniego
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina
| | - Verónica V Lia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham B1686IGC, Buenos Aires, Argentina
| |
Collapse
|
44
|
Lakhssassi N, Piya S, Bekal S, Liu S, Zhou Z, Bergounioux C, Miao L, Meksem J, Lakhssassi A, Jones K, Kassem MA, Benhamed M, Bendahmane A, Lambert K, Boualem A, Hewezi T, Meksem K. A pathogenesis-related protein GmPR08-Bet VI promotes a molecular interaction between the GmSHMT08 and GmSNAP18 in resistance to Heterodera glycines. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1810-1829. [PMID: 31960590 PMCID: PMC7336373 DOI: 10.1111/pbi.13343] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 05/19/2023]
Abstract
Soybean cyst nematode (SCN, Heterodera glycines) is the most devastating pest affecting soybean production worldwide. SCN resistance requires both the GmSHMT08 and the GmSNAP18 in 'Peking'-type resistance. Here, we describe the molecular interaction between GmSHMT08 and GmSNAP18, which is potentiated by a pathogenesis-related protein GmPR08-Bet VI. Like GmSNAP18 and GmSHMT08, GmPR08-Bet VI expression was induced in response to SCN and its overexpression decreased SCN cysts by 65% in infected transgenic soybean roots. Overexpression of GmPR08-Bet VI did not have an effect on SCN resistance when the two cytokinin-binding sites in GmPR08-Bet VI were mutated, indicating a new role of GmPR08-Bet VI in SCN resistance. GmPR08-Bet VI was mapped to a QTL for resistance to SCN using different mapping populations. GmSHMT08, GmSNAP18 and GmPR08-Bet VI localize to the cytosol and plasma membrane. GmSNAP18 expression and localization hyper-accumulated at the plasma membrane and was specific to the root cells surrounding the nematode in SCN-resistant soybeans. Genes encoding key components of the salicylic acid signalling pathway were induced under SCN infection. GmSNAP18 and GmPR08-Bet VI were also induced under salicylic acid and cytokinin exogenous treatments, while GmSHMT08 was induced only when the resistant GmSNAP18 was present, pointing to the presence of a molecular crosstalk between SCN-resistant genes and defence genes. Expression analysis of GmSHMT08 and GmSNAP18 identified the need of a minimum expression requirement to trigger the SCN resistance reaction. These results provide insight into a new response mechanism towards plant nematode resistance involving haplotype compatibility, gene dosage and hormone signalling.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Sarbottam Piya
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Sadia Bekal
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Shiming Liu
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Zhou Zhou
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Catherine Bergounioux
- INRAInstitute of Plant Sciences Paris‐Saclay (IPS2)CNRSUniversité Paris‐SudOrsayFrance
| | - Long Miao
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | | | - Aicha Lakhssassi
- Faculty of Sciences and TechnologiesUniversity of LorraineNancyFrance
| | - Karen Jones
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | | | - Moussa Benhamed
- INRAInstitute of Plant Sciences Paris‐Saclay (IPS2)CNRSUniversité Paris‐SudOrsayFrance
| | - Abdelhafid Bendahmane
- INRAInstitute of Plant Sciences Paris‐Saclay (IPS2)CNRSUniversité Paris‐SudOrsayFrance
| | - Kris Lambert
- Department of Crop SciencesUniversity of IllinoisUrbanaILUSA
| | - Adnane Boualem
- INRAInstitute of Plant Sciences Paris‐Saclay (IPS2)CNRSUniversité Paris‐SudOrsayFrance
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| |
Collapse
|
45
|
Ding L, Li M, Guo X, Tang M, Cao J, Wang Z, Liu R, Zhu K, Guo L, Liu S, Tan X. Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1255-1270. [PMID: 31693306 PMCID: PMC7152613 DOI: 10.1111/pbi.13289] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 05/18/2023]
Abstract
Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is a devastating disease of rapeseed (Brassica napus L.). To date, the genetic mechanisms of rapeseed' interactions with S. sclerotiorum are not fully understood, and molecular-based breeding is still the most effective control strategy for this disease. Here, Arabidopsis thaliana GDSL1 was characterized as an extracellular GDSL lipase gene functioning in Sclerotinia resistance. Loss of AtGDSL1 function resulted in enhanced susceptibility to S. sclerotiorum. Conversely, overexpression of AtGDSL1 in B. napus enhanced resistance, which was associated with increased reactive oxygen species (ROS) and salicylic acid (SA) levels, and reduced jasmonic acid levels. In addition, AtGDSL1 can cause an increase in lipid precursor phosphatidic acid levels, which may lead to the activation of downstream ROS/SA defence-related pathways. However, the rapeseed BnGDSL1 with highest sequence similarity to AtGDSL1 had no effect on SSR resistance. A candidate gene association study revealed that only one AtGDSL1 homolog from rapeseed, BnaC07g35650D (BnGLIP1), significantly contributed to resistance traits in a natural B. napus population, and the resistance function was also confirmed by a transient expression assay in tobacco leaves. Moreover, genomic analyses revealed that BnGLIP1 locus was embedded in a selected region associated with SSR resistance during the breeding process, and its elite allele type belonged to a minor allele in the population. Thus, BnGLIP1 is the functional equivalent of AtGDSL1 and has a broad application in rapeseed S. sclerotiorum-resistance breeding.
Collapse
Affiliation(s)
- Li‐Na Ding
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Ming Li
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Xiao‐Juan Guo
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Min‐Qiang Tang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jun Cao
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Zheng Wang
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Rui Liu
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Ke‐Ming Zhu
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Sheng‐Yi Liu
- The Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Xiao‐Li Tan
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| |
Collapse
|
46
|
Li Y, Qiu L, Zhang Q, Zhuansun X, Li H, Chen X, Krugman T, Sun Q, Xie C. Exogenous sodium diethyldithiocarbamate, a Jasmonic acid biosynthesis inhibitor, induced resistance to powdery mildew in wheat. PLANT DIRECT 2020; 4:e00212. [PMID: 32285024 PMCID: PMC7146025 DOI: 10.1002/pld3.212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/08/2020] [Accepted: 03/08/2020] [Indexed: 05/22/2023]
Abstract
Jasmonic acid (JA) is an important plant hormone associated with plant-pathogen defense. To study the role of JA in plant-fungal interactions, we applied a JA biosynthesis inhibitor, sodium diethyldithiocarbamate (DIECA), on wheat leaves. Our results showed that application of 10 mM DIECA 0-2 days before inoculation effectively induced resistance to powdery mildew (Bgt) in wheat. Transcriptome analysis identified 364 up-regulated and 68 down-regulated differentially expressed genes (DEGs) in DIECA-treated leaves compared with water-treated leaves. Gene ontology (GO) enrichment analysis of the DEGs revealed important GO terms and pathways, in particular, response to growth hormones, activity of glutathione metabolism (e.g., glutathione transferase activity), oxalate oxidase, and chitinase activity. Gene annotaion revealed that some pathogenesis-related (PR) genes, such as PR1.1, PR1, PR10, PR4a, Chitinase 8, beta-1,3-glucanase, RPM1, RGA2, and HSP70, were induced by DIECA treatment. DIECA reduced JA and auxin (IAA) levels, while increased brassinosteroid, glutathione, and ROS lesions in wheat leaves, which corroborated with the transcriptional changes. Our results suggest that DIECA can be applied to increase plant immunity and reduce the severity of Bgt disease in wheat fields.
Collapse
Affiliation(s)
- Yinghui Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- Institute of EvolutionUniversity of Haifa, Mt. CarmelHaifaIsrael
| | - Lina Qiu
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Qiang Zhang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Xiangxi Zhuansun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Huifang Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Xin Chen
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Tamar Krugman
- Institute of EvolutionUniversity of Haifa, Mt. CarmelHaifaIsrael
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| |
Collapse
|
47
|
Genotypic Variation in Resistance Gene-Mediated Calcium Signaling and Hormonal Signaling Involved in Effector-Triggered Immunity or Disease Susceptibility in the Xanthomonas campestris pv. Campestris- Brassica napus Pathosystem. PLANTS 2020; 9:plants9030303. [PMID: 32121557 PMCID: PMC7154883 DOI: 10.3390/plants9030303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022]
Abstract
To characterize cultivar variation in resistance gene (R-gene)-mediated calcium signaling and hormonal regulation in effector-triggered immunity (ETI) and disease susceptibility, Xanthomonas campestris pv. campestris (Xcc) was inoculated in two Brassica napus cultivars (cvs. Capitol and Mosa). At 14 days post inoculation (DPI) with Xcc, there was a necrotic lesion in cv. Mosa along with the significant accumulation of H2O2 and malondialdehyde (MDA), whereas no visual symptom was observed in cv. Capitol. The cultivar variations in the R-gene expressions were found in response to Xcc. ZAR1 is a coiled-coil-nucleotide binding site-leucine-rich repeat (CC-NB-LRR)-type R-gene that is significantly induced in cv. Capitol, whereas toll/interleukin-1 receptor-nucleotide binding site-leucine-rich repeat (TIR-NB-LRR)-type R-gene, TAO1, is significantly upregulated in cv. Mosa Xcc-inoculated plants. The defense-related gene's non-race-specific disease resistance 1 (NDR1) and mitogen-activated protein kinase 6 (MAPK6) were enhanced, whereas calcium-dependent protein kinase (CDPK5) and calcium-sensing protein 60g (CBP60g) were depressed in cv. Capitol Xcc inoculated plants, and opposite results were found in cv. Mosa. The calcium-sensing receptor (CAS), calmodulin (CaM), expression was induced in both the cultivars. However, the CAS induction rate was much higher in cv. Mosa than in cv. Capitol in response to Xcc. The phytohormone salicylic acid (SA) and jasmonic acid (JA) levels were significantly higher in cv. Capitol along with the enhanced SA receptors (NPR3 and NPR4) and JA synthesis and signaling-related gene expression (LOX2, PDF1.2), whereas the JA level was significantly lower in cv. Mosa Xcc inoculated plants. The SA synthesis and signaling-related genes (ICS1, NPR1) and SA were present at higher levels in cv. Mosa; additionally, the SA level present was much higher in the susceptible cultivar (cv. Mosa) than in the resistant cultivar (cv. Capitol) in response to Xcc. These results indicate that ZAR1 mediated the coordinated action of SA and JA synthesis and signaling to confirm ETI, whereas TAO1 enhanced the synthesis of SA through CAS and CBP60g to antagonize JA synthesis and signaling to cause disease susceptibility in the Brassica napus-Xcc pathosystem.
Collapse
|
48
|
Chávez-Arias CC, Gómez-Caro S, Restrepo-Díaz H. Physiological Responses to the Foliar Application of Synthetic Resistance Elicitors in Cape Gooseberry Seedlings Infected with Fusarium oxysporum f. sp. physali. PLANTS 2020; 9:plants9020176. [PMID: 32024161 PMCID: PMC7076635 DOI: 10.3390/plants9020176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/27/2019] [Accepted: 01/26/2020] [Indexed: 11/16/2022]
Abstract
Vascular wilt caused by Fusarium oxysporum is the most limiting disease that affects cape gooseberry (Physalis peruviana L.) crops in Colombia. The use of synthetic elicitors for vascular wilt management is still scarce in Andean fruit species. The objective of the present study was to evaluate the effect and number of foliar applications of synthetic elicitors such as jasmonic acid (JA), salicylic acid (SA), brassinosteroids (BR), or a commercial resistance elicitor based on botanical extracts (BE) on disease progress and their effect on the physiology of cape gooseberry plants inoculated with F. oxysporum f. sp. physali. Groups of ten plants were separately sprayed once, twice, or three times with a foliar synthetic elicitor, respectively. Elicitor applications were performed at the following concentrations: JA (10 mL L−1), SA (100 mg L−1), BR (1 mL L−1) and BE (2.5 mL of commercial product (Loker®) L−1). The results showed that three foliar BR, SA, or BE applications reduced the area under the disease progress, severity index, and vascular browning in comparison to inoculated plants without any elicitor spray. Three BR, SA, or BE sprays also favored stomatal conductance, water potential, growth (total dry weight and leaf area) and fluorescence parameters of chlorophyll compared with inoculated and untreated plants with no elicitor sprays. Three foliar sprays of SA, BR, or BE enhanced photosynthetic pigments (leaf total chlorophyll and carotenoid content) and proline synthesis and decreased oxidative stress in Foph-inoculated plants. In addition, the effectiveness of three foliar BR, SA, or BE sprays was corroborated by three-dimensional plot and biplot analysis, in which it can evidence that stomatal conductance, proline synthesis, and efficacy percentage were accurate parameters to predict Foph management. On the hand, JA showed the lowest level of amelioration of the negative effects of Foph inoculation. In conclusion, the use of the synthetic elicitors BR, SA, or BE can be considered as a tool complementary for the commercial management of vascular wilt in areas where this disease is a limiting factor.
Collapse
|
49
|
Zheng X, Koopmann B, von Tiedemann A. Role of Salicylic Acid and Components of the Phenylpropanoid Pathway in Basal and Cultivar-Related Resistance of Oilseed Rape ( Brassica napus) to Verticillium longisporum. PLANTS 2019; 8:plants8110491. [PMID: 31717946 PMCID: PMC6918302 DOI: 10.3390/plants8110491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 11/16/2022]
Abstract
Enhanced resistance is a key strategy of controlling 'Verticillium stem striping' in Brassica napus caused by the soil-borne vascular pathogen Verticillium longisporum. The present study analyses the role of a broad range of components in the phenylpropanoid and salicylic acid (SA) pathways in basal and cultivar-related resistance of B. napus towards V. longisporum. A remarkable increase of susceptibility to V. longisporum in SA-deficient transgenic NahG plants indicated an essential role of SA in basal resistance of B. napus to V. longisporum. Accordingly, elevated SA levels were also found in a resistant and not in a susceptible cultivar during early asymptomatic stages of infection (7 dpi), which was associated with increased expression of PR1 and PR2. In later symptomatic stages (14 or 21 dpi), SA responses did not differ anymore between cultivars varying in resistance. In parallel, starting at 7 dpi, an overall increase in phenylpropanoid syntheses developed in the resistant cultivar, including the activity of some key enzymes, phenylalanine ammonium lyase (PAL), cinnamyl alcohol dehydrogenase (CAD) and peroxidase (POX) and the expression of key genes, PAL4, CCoAMT, CCR, POX. As a consequence, a remarkable increase in the levels of phenolic acids (t-cinnamic acid, p-coumaric acid, caffeic acid, ferulic acid, sinapic acid) occurred associated with cultivar resistance. A principal component analysis including all 27 traits studied indicated that component 1 related to SA synthesis (PR1, PR2, POX, level of free SA) and component 2 related to lignin synthesis (level of free ferulic acid, free p-coumaric acid, conjugated t-cinnamic acid) were the strongest factors to determine cultivar-related resistance. This study provides evidence that both SA and phenolic acid synthesis are important in cultivar-related resistance, however, with differential roles during asymptomatic and symptomatic stages of infection.
Collapse
Affiliation(s)
- Xiaorong Zheng
- Correspondence: (X.Z.); (A.v.T.); Tel.: +49-(0)551-39-33720 (X.Z.); +49-(0)551-39-23701 (A.v.T.)
| | | | - Andreas von Tiedemann
- Correspondence: (X.Z.); (A.v.T.); Tel.: +49-(0)551-39-33720 (X.Z.); +49-(0)551-39-23701 (A.v.T.)
| |
Collapse
|
50
|
Manoharan B, Qi SS, Dhandapani V, Chen Q, Rutherford S, Wan JS, Jegadeesan S, Yang HY, Li Q, Li J, Dai ZC, Du DL. Gene Expression Profiling Reveals Enhanced Defense Responses in an Invasive Weed Compared to Its Native Congener During Pathogenesis. Int J Mol Sci 2019; 20:E4916. [PMID: 31623404 PMCID: PMC6801458 DOI: 10.3390/ijms20194916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022] Open
Abstract
Invasive plants are a huge burden on the environment, and modify local ecosystems by affecting the indigenous biodiversity. Invasive plants are generally less affected by pathogens, although the underlying molecular mechanisms responsible for their enhanced resistance are unknown. We investigated expression profiles of three defense hormones (salicylic acid, jasmonic acid, and ethylene) and their associated genes in the invasive weed, Alternanthera philoxeroides, and its native congener, A. sessilis, after inoculation with Rhizoctonia solani. Pathogenicity tests showed significantly slower disease progression in A. philoxeroides compared to A. sessilis. Expression analyses revealed jasmonic acid (JA) and ethylene (ET) expressions were differentially regulated between A. philoxeroides and A. sessilis, with the former having prominent antagonistic cross-talk between salicylic acid (SA) and JA, and the latter showing weak or no cross-talk during disease development. We also found that JA levels decreased and SA levels increased during disease development in A. philoxeroides. Variations in hormonal gene expression between the invasive and native species (including interspecific differences in the strength of antagonistic cross-talk) were identified during R. solani pathogenesis. Thus, plant hormones and their cross-talk signaling may improve the resistance of invasive A. philoxeroides to pathogens, which has implications for other invasive species during the invasion process.
Collapse
Affiliation(s)
- Bharani Manoharan
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Shan-Shan Qi
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Vignesh Dhandapani
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Qi Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Susan Rutherford
- The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia.
| | - Justin Sh Wan
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
- The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia.
| | - Sridharan Jegadeesan
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel.
| | - Hong-Yu Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Qin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jian Li
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhi-Cong Dai
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
- Institute of Agricultural Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China..
| | - Dao-Lin Du
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|