1
|
Li X, Weng Y, Chen Y, Liu K, Liu Y, Zhang K, Shi L, He S, Liu Z. CaARP1/CaSGT1 Module Regulates Vegetative Growth and Defense Response of Pepper Plants against Phytophthora capsici. PLANTS (BASEL, SWITZERLAND) 2024; 13:2849. [PMID: 39458796 PMCID: PMC11511434 DOI: 10.3390/plants13202849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Pepper (Capsicum annuum L.) suffers severe quality and yield loss from oomycete diseases caused by Phytophthora capsici. CaSGT1 was previously determined to positively regulate the immune response of pepper plants against P. capsici, but by which mechanism remains elusive. In the present study, the potential interacting proteins of CaSGT1 were isolated from pepper using a yeast two-hybrid system, among which CaARP1 was determined to interact with CaSGT1 via bimolecular fluorescence complementation (BiFC) and microscale thermophoresis (MST) assays. CaARP1 belongs to the auxin-repressed protein family, which is well-known to function in modulating plant growth. The transcriptional and protein levels of CaARP1 were both significantly induced by infection with P. capsici. Silencing of CaARP1 promotes the vegetative growth of pepper plants and attenuates its disease resistance to P. capsici, as well as compromising the hypersensitive response-like cell death in pepper leaves induced by PcINF1, a well-characterized typical PAMP from P. capsici. Chitin-induced transient expression of CaARP1 in pepper leaves enhanced its disease resistance to P. capsici, which is amplified by CaSGT1 co-expression as a positive regulator. Taken together, our result revealed that CaARP1 plays a dual role in the pepper, negatively regulating the vegetative growth and positively regulating plant immunity against P. capsici in a manner associated with CaSGT1.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yahong Weng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yufeng Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kaisheng Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanyan Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224002, China
| | - Kan Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanping Shi
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuilin He
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqin Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
New Insights into Bacillus-Primed Plant Responses to a Necrotrophic Pathogen Derived from the Tomato- Botrytis Pathosystem. Microorganisms 2022; 10:microorganisms10081547. [PMID: 36013965 PMCID: PMC9416759 DOI: 10.3390/microorganisms10081547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Induced systemic resistance (ISR) is one of the most studied mechanisms of plant−microbe interaction and is considered a very promising alternative for integrated pest management programs. In our study, we explored the plant defense response induced by Bacillus velezensis BBC047 in relation to its application before or after Botrytis cinerea infection of tomato plants. The inoculation of BBC047 did not considerably alter the gene expression of the tomato tissues, whereas infection with B. cinerea in BBC047-primed plants induced expression of LRR and NBS-LRR receptors, which are highly related to the ISR response. As expected, B. cinerea infection generated molecular patterns typical of a defense response to pathogen infection as the overexpression of pathogenesis-related proteins (PRs) in leaflets distant to the point of infection. The curative treatment (P + F + B) allowed us to gain insights into plant response to an inverted priming. In this treatment, B. cinerea caused the m tissue damage, extending nearly entirely across the entire infected leaves. Additionally, genes generally associated with early SAR response (<16 h) were overexpressed, and apparently, the beneficial strain was not perceived as such. Therefore, we infer that the plant defense to the curative treatment represents a higher degree of biological stress triggered by the incorporation of strain BBC047 as second arriving microorganism. We highlight the importance the phytosanitary status of plants prior to inoculation of beneficial microorganism for the biocontrol of pathogens.
Collapse
|
3
|
Pečenková T, Pejchar P, Moravec T, Drs M, Haluška S, Šantrůček J, Potocká A, Žárský V, Potocký M. Immunity functions of Arabidopsis pathogenesis-related 1 are coupled but not confined to its C-terminus processing and trafficking. MOLECULAR PLANT PATHOLOGY 2022; 23:664-678. [PMID: 35122385 PMCID: PMC8995067 DOI: 10.1111/mpp.13187] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 05/11/2023]
Abstract
The pathogenesis-related 1 (PR1) proteins are members of the cross-kingdom conserved CAP superfamily (from Cysteine-rich secretory protein, Antigen 5, and PR1 proteins). PR1 mRNA expression is frequently used for biotic stress monitoring in plants; however, the molecular mechanisms of its cellular processing, localization, and function are still unknown. To analyse the localization and immunity features of Arabidopsis thaliana PR1, we employed transient expression in Nicotiana benthamiana of the tagged full-length PR1 construct, and also disrupted variants with C-terminal truncations or mutations. We found that en route from the endoplasmic reticulum, the PR1 protein transits via the multivesicular body and undergoes partial proteolytic processing, dependent on an intact C-terminal motif. Importantly, only nonmutated or processing-mimicking variants of PR1 are secreted to the apoplast. The C-terminal proteolytic cleavage releases a protein fragment that acts as a modulator of plant defence responses, including localized cell death control. However, other parts of PR1 also have immunity potential unrelated to cell death. The described modes of the PR1 contribution to immunity were found to be tissue-localized and host plant ontogenesis dependent.
Collapse
Affiliation(s)
- Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
- Department of Experimental Plant BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
| | - Tomáš Moravec
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
| | - Matěj Drs
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
- Department of Experimental Plant BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Samuel Haluška
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
- Department of Experimental Plant BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Jiří Šantrůček
- Department of Biochemistry and MicrobiologyFaculty of Food and Biochemical TechnologyUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Andrea Potocká
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
| | - Viktor Žárský
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
- Department of Experimental Plant BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
- Department of Experimental Plant BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| |
Collapse
|
4
|
Li J, Feng H, Liu S, Liu P, Chen X, Yang J, He L, Yang J, Chen J. Phosphorylated viral protein evades plant immunity through interfering the function of RNA-binding protein. PLoS Pathog 2022; 18:e1010412. [PMID: 35294497 PMCID: PMC8959173 DOI: 10.1371/journal.ppat.1010412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/28/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Successful pathogen infection in plant depends on a proper interaction between the invading pathogen and its host. Post-translational modification (PTM) plays critical role(s) in plant-pathogen interaction. However, how PTM of viral protein regulates plant immunity remains poorly understood. Here, we found that S162 and S165 of Chinese wheat mosaic virus (CWMV) cysteine-rich protein (CRP) are phosphorylated by SAPK7 and play key roles in CWMV infection. Furthermore, the phosphorylation-mimic mutant of CRP (CRPS162/165D) but not the non-phosphorylatable mutant of CRP (CRPS162/165A) interacts with RNA-binding protein UBP1-associated protein 2C (TaUBA2C). Silencing of TaUBA2C expression in wheat plants enhanced CWMV infection. In contrast, overexpression of TaUBA2C in wheat plants inhibited CWMV infection. TaUBA2C inhibits CWMV infection through recruiting the pre-mRNA of TaNPR1, TaPR1 and TaRBOHD to induce cell death and H2O2 production. This effect can be supressed by CRPS162/165D through changing TaUBA2C chromatin-bound status and attenuating it’s the RNA- or DNA-binding activities. Taken together, our findings provide new knowledge on how CRP phosphorylation affects CWMV infection as well as the arms race between virus and wheat plants. Chinese wheat mosaic virus (CWMV) causes a damaging disease in cereal plants. However, CWMV interacts with host factors to facilitate virus infection is not clear yet. Here, we found that S162 and S165 of CWMV cysteine-rich protein (CRP) are phosphorylated by SAPK7 in vivo and in vitro. Mutational analyses have indicated that these two phosphorylation sites of CRP (CRPS162/165D) promoting CWMV infection in plants, due to the supressed cell death and H2O2 production. Further investigations found the CRPS162/165D can interact with TaUBA2C, while the non-phosphorylatable mutant of CRP (CRPS162/165A) does not. Futhermore, we have determined that CRPS162/165D and TaUBA2C interaction inhibited the formation of TaUBA2C speckles in nucleus to attenuate its RNA- and DNA-binding activity. We also showed that TaUBA2C recruit the pre-mRNA of TaNPR1, TaPR1 and TaRBOHD to up-regulated these genes expressions and then induce cell death and H2O2 production in plant. This effect can be supressed by the expression of CRPS162/165D, in a dose-dependent manner. Taken together, our discovery may provide a new sight for the arms race between virus and its host plants.
Collapse
Affiliation(s)
- Juan Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Huimin Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shuang Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jin Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Long He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (JY); (JC)
| | - Jianping Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (JY); (JC)
| |
Collapse
|
5
|
Jiang A, Guo Z, Pan J, Yang Y, Zhuang Y, Zuo D, Hao C, Gao Z, Xin P, Chu J, Zhong S, Li L. The PIF1-miR408-PLANTACYANIN repression cascade regulates light-dependent seed germination. THE PLANT CELL 2021; 33:1506-1529. [PMID: 33616669 PMCID: PMC8254493 DOI: 10.1093/plcell/koab060] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/11/2021] [Indexed: 05/15/2023]
Abstract
Light-dependent seed germination is a vital process for many seed plants. A decisive event in light-induced germination is degradation of the central repressor PHYTOCHROME INTERACTING FACTOR 1 (PIF1). The balance between gibberellic acid (GA) and abscisic acid (ABA) helps to control germination. However, the cellular mechanisms linking PIF1 turnover to hormonal balancing remain elusive. Here, employing far-red light-induced Arabidopsis thaliana seed germination as the experimental system, we identified PLANTACYANIN (PCY) as an inhibitor of germination. It is a blue copper protein associated with the vacuole that is both highly expressed in mature seeds and rapidly silenced during germination. Molecular analyses showed that PIF1 binds to the miR408 promoter and represses miR408 accumulation. This in turn posttranscriptionally modulates PCY abundance, forming the PIF1-miR408-PCY repression cascade for translating PIF1 turnover to PCY turnover during early germination. Genetic analysis, RNA-sequencing, and hormone quantification revealed that PCY is necessary and sufficient to maintain the PIF1-mediated seed transcriptome and the low-GA-high-ABA state. Furthermore, we found that PCY domain organization and regulation by miR408 are conserved features in seed plants. These results revealed a cellular mechanism whereby PIF1-relayed external light signals are converted through PCY turnover to internal hormonal profiles for controlling seed germination.
Collapse
Affiliation(s)
- Anlong Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jiawei Pan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yan Zhuang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Daqing Zuo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Chen Hao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Zhaoxu Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Peiyong Xin
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Author for correspondence:
| |
Collapse
|
6
|
Silicon supplementation improves early blight resistance in Lycopersicon esculentum Mill . by modulating the expression of defense-related genes and antioxidant enzymes. 3 Biotech 2021; 11:232. [PMID: 33968576 DOI: 10.1007/s13205-021-02789-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/12/2021] [Indexed: 01/24/2023] Open
Abstract
Early blight is the most devastating disease in tomato which causes huge yield losses across the globe. Hence, development of specific, efficient and ecofriendly tools are required to increase the disease resistance in tomato plants. Here, we systematically investigate the defensive role and priming effect of silicon (Si) in tomato plants under control and infected conditions. Based on the results, Si-treated tomato plants showed improved resistance to Alternaria solani as there was delay in symptoms and reduced disease severity than non-Si-treated plants. To further examine the Si-mediated molecular priming in tomato plants, expression profiling of defense-related genes like PR1, PR2, WRKYII, PR3, LOXD and JERF3 was studied in control, Si-supplemented, A. solani-inoculated and Si + A. solani-inoculated plants. Interestingly, Si significantly increased the expression of jasmonic acid (JA) marker genes (PR3, LOXD and JERF3) than salicylic acid (SA) marker genes (PR1, PR2 and WRKYII). However, Si + A. solani-inoculated plants showed higher expression levels of defence genes except WRKYII than A. solani-inoculated or Si-treated plants. Furthermore, pre-supplementation of Si to A. solani-infected tomato plants showed increased activity of antioxidant enzymes viz. superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR) and peroxidase (POD) than control, Si-treated and A. solani-inoculated plants. Altogether, present study highlights the defensive role of Si in tomato plants in response to A. solani by increasing not only the transcript levels of defense signature genes, but also the activity of antioxidant enzymes.
Collapse
|
7
|
Noman A, Aqeel M, Qari SH, Al Surhanee AA, Yasin G, Alamri S, Hashem M, M Al-Saadi A. Plant hypersensitive response vs pathogen ingression: Death of few gives life to others. Microb Pathog 2020; 145:104224. [PMID: 32360524 DOI: 10.1016/j.micpath.2020.104224] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
The hypersensitive response (HR) is a defense action against pathogen ingression. Typically, HR is predictable with the appearance of the dead, brown cells along with visible lesions. Although death during HR can be limited to the cells in direct contact with pathogens, yet cell death can also spread away from the infection site. The variety in morphologies of plant cell death proposes involvement of different pathways for triggering HR. It is considered that, despite the differences, HR in plants performs the resembling functions like that of animal programmed cell death (PCD) for confining pathogen progression. HR, in fact, crucially initiates systemic signals for activation of defense in distal plant parts that ultimately results in systemic acquired resistance (SAR). Therefore, HR can be separated from other local immune actions/responses at the infection site. HR comprises of serial events inclusive of transcriptional reprograming, Ca2+ influx, oxidative bursts and phyto-hormonal signaling. Although a lot of work has been done on HR in plants but many questions regarding mechanisms and consequences of HRs remain unaddressed.We have summarized the mechanistic roles and cellular events of plant cells during HR in defense regulation. Roles of different genes during HR have been discussed to clarify genetic control of HR in plants. Generally existing ambiguities about HR and programmed cell death at the reader level has been addressed.
Collapse
Affiliation(s)
- Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan.
| | - Muhammad Aqeel
- School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Sameer Hasan Qari
- Biology Department, Al-jumum University College, Umm Al Qura University, Makkah, Saudi Arabia
| | - Ameena A Al Surhanee
- Biology Department, College of Science, Jouf University, Sakaka, 2014, Saudi Arabia
| | - Ghulam Yasin
- Institute of Pure and Applied Biology, Bahau ud din Zakria University, Multan, Pakistan
| | - Saad Alamri
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Research center for advance materials science (RCAMS), King Khalid University, PO Box 9004 Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Assuit University, Botany and Microbiology department, Assuit. 71516, Egypt
| | | |
Collapse
|
8
|
Yu G, Wang X, Chen Q, Cui N, Yu Y, Fan H. Cucumber Mildew Resistance Locus O Interacts with Calmodulin and Regulates Plant Cell Death Associated with Plant Immunity. Int J Mol Sci 2019; 20:E2995. [PMID: 31248151 PMCID: PMC6627319 DOI: 10.3390/ijms20122995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
Pathogen-induced cell death is closely related to plant disease susceptibility and resistance. The cucumber (Cucumis sativus L.) mildew resistance locus O (CsMLO1) and calmodulin (CsCaM3) genes, as molecular components, are linked to nonhost resistance and hypersensitive cell death. In this study, we demonstrate that CsMLO1 interacts with CsCaM3 via yeast two-hybrid, firefly luciferase (LUC) complementation and bimolecular fluorescence complementation (BiFC) experiments. A subcellular localization analysis of green fluorescent protein (GFP) fusion reveals that CsCaM3 is transferred from the cytoplasm to the plasma membrane in Nicotiana benthamiana, and CsCaM3 green fluorescence is significantly attenuated via the coexpression of CsMLO1 and CsCaM3. CsMLO1 negatively regulates CsCaM3 expression in transiently transformed cucumbers, and hypersensitive cell death is disrupted by CsCaM3 and/or CsMLO1 expression under Corynespora cassiicola infection. Additionally, CsMLO1 silencing significantly enhances the expression of reactive oxygen species (ROS)-related genes (CsPO1, CsRbohD, and CsRbohF), defense marker genes (CsPR1 and CsPR3) and callose deposition-related gene (CsGSL) in infected cucumbers. These results suggest that the interaction of CsMLO1 with CsCaM3 may act as a cell death regulator associated with plant immunity and disease.
Collapse
Affiliation(s)
- Guangchao Yu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiangyu Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Qiumin Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
9
|
Sun Y, Wu Z, Wang Y, Yang J, Wei G, Chou M. Identification of Phytocyanin Gene Family in Legume Plants and their Involvement in Nodulation of Medicago truncatula. PLANT & CELL PHYSIOLOGY 2019; 60:900-915. [PMID: 30649463 DOI: 10.1093/pcp/pcz007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
The establishment of symbiosis between legume and rhizobium results in the formation of nodule. Phytocyanins (PCs) are a class of plant-specific blue copper proteins, playing critical roles in plant development including nodule formation. Although a few PC genes have been isolated from nodules, their functions are still unclear. Here, we performed a genome-wide identification of PC family in seven sequenced legume species (Medicago truncatula, Glycine max, Cicer arietinum, Cajanus cajan, Lotus japonicus, Vigna angularis and Phaseolus vulgaris) and found PCs experienced a remarkable expansion in M. truncatula and G. max. Further, we conducted an in-depth analysis of PC family in the model legume M. truncatula. Briefly, 82 MtPCs were divided into four subfamilies and clustered into seven clades, with a large proportion of tandem duplications and various cross-tissues expression patterns. Importantly, some PCs, such as MtPLC1, MtENODL27 and MtENODL28 were preferentially expressed in nodules. Further, RNA interference (RNAi) experiment revealed the knockdown of MtENDOL27 and MtENDOL28 impaired rhizobia infection, nodule numbers and nitrogenase activity. Moreover, in the MtENODL27-RNAi nodules, the infected cells were reduced and the symbiosomes did not reach the elongated stage, indicating MtENDOL27 is required for rhizobia infection and nodule development. In addition, co-expression analysis showed MtPLC1, MtENODL27 and MtENODL28 were grouped into two different functional modules and co-expressed with the known symbiotic nitrogen fixation-related genes, suggesting that they might participate in nodulation via different ways. In summary, this study provides a useful resource for future researches on the structure and function of PCs in nodulation.
Collapse
Affiliation(s)
- Yali Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| | - Zefeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| | - Yujie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| | - Jieyu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
10
|
Ali S, Mir ZA, Bhat JA, Tyagi A, Chandrashekar N, Yadav P, Rawat S, Sultana M, Grover A. Isolation and characterization of systemic acquired resistance marker gene PR1 and its promoter from Brassica juncea. 3 Biotech 2018; 8:10. [PMID: 29259885 DOI: 10.1007/s13205-017-1027-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/04/2017] [Indexed: 11/30/2022] Open
Abstract
Systemic acquired resistance (SAR) is an inducible defense response in plants that provides enhanced resistance against a variety of pathogens. In this regard, SAR marker gene PR1 (pathogenesis-related gene 1) was isolated from Brassica juncea and was named as BjPR1. The amino acid sequence of BjPR1 protein showed 99, 92, and 78% similarity with known PR1 proteins of Brassica rapa, Brassica napus, and Arabidopsis thaliana, respectively. Quantitative real-time PCR (qRT-PCR) analysis showed increased expression of BjPR1 gene both in local (infected) and distal (non-infected) leaves of B. juncea after Alternaria brassicae infection, whereas mechanical wounding showed expression only in local (wounded) leaves but not in distal (unwounded) leaves. Moreover, BjPR1 gene was strongly induced by salicylic acid (SA), whereas no such induction was observed following jasmonic acid (JA) or abscisic acid (ABA) treatments. To further elucidate gene regulation pattern of BjPR1, 2 kb promoter region of BjPR1 was isolated and subjected to in silico analysis which identified many potential cis-regulatory elements associated with plant defense as well as signaling pathways. The transient GUS expression analysis showed strong expression of GUS gene driven by BjPR1 promoter after SA treatment, while as ABA and JA downregulates GUS gene expression compared to control. In addition, BjPR1 promoter was significantly induced by wounding at local tissues. Hence, these results highlight the multiple role of BjPR1 gene in response to biotic and abiotic stresses. In addition, the present study also reported BjPR1 promoter as stress-specific inducible promoter that can be ideal candidate for controlling the expression of biotic stress response genes in transgenic plants.
Collapse
Affiliation(s)
- Sajad Ali
- National Research Centre on Plant Biotechnology, PUSA Campus, New Delhi, 110012 India
- Department of Advanced Zoology and Biotechnology, Presidency College, Chennai, India
| | - Zahoor Ahmad Mir
- National Research Centre on Plant Biotechnology, PUSA Campus, New Delhi, 110012 India
| | - Javaid Akhter Bhat
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Anshika Tyagi
- National Research Centre on Plant Biotechnology, PUSA Campus, New Delhi, 110012 India
| | - N Chandrashekar
- Division of Microbiology, CCUBGA, Indian Agricultural Research Institute, New Delhi, India
| | - Prashant Yadav
- National Research Centre on Plant Biotechnology, PUSA Campus, New Delhi, 110012 India
| | - Sandhya Rawat
- National Research Centre on Plant Biotechnology, PUSA Campus, New Delhi, 110012 India
| | - Mazher Sultana
- Department of Advanced Zoology and Biotechnology, Presidency College, Chennai, India
| | - Anita Grover
- National Research Centre on Plant Biotechnology, PUSA Campus, New Delhi, 110012 India
| |
Collapse
|
11
|
Hong JK, Hwang IS, Hwang BK. Functional roles of the pepper leucine-rich repeat protein and its interactions with pathogenesis-related and hypersensitive-induced proteins in plant cell death and immunity. PLANTA 2017; 246:351-364. [PMID: 28508261 DOI: 10.1007/s00425-017-2709-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/06/2017] [Indexed: 05/25/2023]
Abstract
Pepper leucine-rich repeat protein (CaLRR1) interacts with defense response proteins to regulate plant cell death and immunity. This review highlights the current understanding of the molecular functions of CaLRR1 and its interactor proteins. Plant cell death and immune responses to microbial pathogens are controlled by complex and tightly regulated molecular signaling networks. Xanthomonas campestris pv. vesicatoria (Xcv)-inducible pepper (Capsicum annuum) leucine-rich repeat protein 1 (CaLRR1) serves as a molecular marker for plant cell death and immunity signaling. In this review, we discuss recent advances in elucidating the functional roles of CaLRR1 and its interacting plant proteins, and understanding how they are involved in the cell death and defense responses. CaLRR1 physically interacts with pepper pathogenesis-related proteins (CaPR10 and CaPR4b) and hypersensitive-induced reaction protein (CaHIR1) to regulate plant cell death and defense responses. CaLRR1 is produced in the cytoplasm and trafficked to the extracellular matrix. CaLRR1 binds to CaPR10 in the cytoplasm and CaPR4b and CaHIR1 at the plasma membrane. CaLRR1 synergistically accelerates CaPR10-triggered hypersensitive cell death, but negatively regulates CaPR4b- and CaHIR1-triggered cell death. CaHIR1 interacts with Xcv filamentous hemagglutinin (Fha1) to trigger disease-associated cell death. The subcellular localization and cellular function of these CaLRR1 interactors during plant cell death and defense responses were elucidated by Agrobacterium-mediated transient expression, virus-induced gene silencing, and transgenic overexpression studies. CaPR10, CaPR4b, and CaHIR1 positively regulate defense signaling mediated by salicylic acid and reactive oxygen species, thereby activating hypersensitive cell death and disease resistance. A comprehensive understanding of the molecular functions of CaLRR1 and its interacting protein partners in cell death and defense responses will provide valuable information for the molecular genetics of plant disease resistance, which could be exploited as a sustainable disease management strategy.
Collapse
Affiliation(s)
- Jeum Kyu Hong
- Laboratory of Plant Pathology and Protection, Department of Horticultural Science, College of Biosciences, Gyeongnam National University of Science and Technology, Jinju, 52725, Republic of Korea
| | - In Sun Hwang
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
12
|
Liu Z, Shi L, Yang S, Lin Y, Weng Y, Li X, Hussain A, Noman A, He S. Functional and Promoter Analysis of ChiIV3, a Chitinase of Pepper Plant, in Response to Phytophthora capsici Infection. Int J Mol Sci 2017; 18:E1661. [PMID: 28763001 PMCID: PMC5578051 DOI: 10.3390/ijms18081661] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 11/16/2022] Open
Abstract
Despite the involvement of many members of the chitinase family in plant immunity, the precise functions of the majority of the members remain poorly understood. Herein, the gene ChiIV3 in Capsicum annuum encoding a chitinase protein containing a chitin binding domain and targeting to the plasma membrane was found to be induced by Phytophthora capsici inoculation (PCI) and applied chitin treatment. Besides its direct inhibitory effect on growth of Phytophthora capsici (P. capsici), ChiIV3 was also found by virus-induced gene silencing (VIGS) and transient overexpression (TOE) in pepper plants to act as a positive regulator of plant cell death and in triggering defense signaling and upregulation of PR (pathogenesis related) genes against PCI. A 5' deletion assay revealed that pChiIV3-712 to -459 bp was found to be sufficient for ChiIV3' response to PCI. Furthermore, a mutation assay indicated that W-box-466 to -461 bp in pChiIV3-712 to -459 bp was noted to be the PCI-responsible element. These results collectively suggest that ChiIV3 acts as a likely antifungal protein and as a receptor for unidentified chitin in planta to trigger cell death and defense signaling against PCI.
Collapse
Affiliation(s)
- Zhiqin Liu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lanping Shi
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Sheng Yang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Youquan Lin
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yahong Weng
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xia Li
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ansar Hussain
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ali Noman
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shuilin He
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
13
|
Kim NH, Lee DH, Choi DS, Hwang BK. The pepper GNA-related lectin and PAN domain protein gene, CaGLP1, is required for plant cell death and defense signaling during bacterial infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:307-15. [PMID: 26706081 DOI: 10.1016/j.plantsci.2015.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 06/18/2015] [Accepted: 07/03/2015] [Indexed: 05/24/2023]
Abstract
Carbohydrate-binding proteins, commonly referred to as lectins or agglutinins, function in defense responses to microbial pathogens. Pepper (Capsicum annuum) GNA-related lectin and PAN-domain protein gene CaGLP1 was isolated and functionally characterized from pepper leaves infected with Xanthomonas campestris pv. vesicatoria (Xcv). CaGLP1 contained an amine-terminus prokaryotic membrane lipoprotein lipid attachment site, a Galanthus nivalis agglutinin (GNA)-related lectin domain responsible for the recognition of high-mannose N-glycans, and a carboxyl-terminus PAN/apple domain. RNA gel blot and immunoblot analyses determined that CaGLP1 was strongly induced in pepper by compatible and incompatible Xcv infection. CaGLP1 protein localized primarily to the plasma membrane and exhibited mannose-binding specificity. CaGLP1-silenced pepper plants were more susceptible to compatible or incompatible Xcv infection compared with that of non-silenced control plants. CaGLP1 silencing in pepper leaves did not accumulate H2O2 and induce cell death during incompatible Xcv infection. Defense-related CaDEF1 (defensin) gene expression was significantly reduced in CaGLP1-silenced pepper plants. CaGLP1-overexpression in Arabidopsis thaliana enhanced resistance to Pseudomonas syringae pv. tomato. Defense-related AtPDF1.2 expression was elevated in CaGLP1-overexpression lines. Together, these results suggest that CaGLP1 is required for plant cell death and defense responses through the reactive oxygen species burst and downstream defense-related gene expression in response to bacterial pathogen challenge.
Collapse
Affiliation(s)
- Nak Hyun Kim
- Department of Biology, The University of North Carolina at Chapel Hill, NC 27599-3280, USA
| | - Dong Hyuk Lee
- Department of Plant Pathology, University of California Davis, Davis, CA 95616-8751, USA
| | - Du Seok Choi
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, CA 92521, USA
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
14
|
Choi DS, Kim NH, Hwang BK. The pepper phosphoenolpyruvate carboxykinase CaPEPCK1 is involved in plant immunity against bacterial and oomycete pathogens. PLANT MOLECULAR BIOLOGY 2015; 89:99-111. [PMID: 26233534 DOI: 10.1007/s11103-015-0354-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 07/28/2015] [Indexed: 06/04/2023]
Abstract
Phosphoenolpyruvate carboxykinase, a member of the lyase family, is involved in the metabolic pathway of gluconeogenesis in organisms. Although the major function of PEPCK in gluconeogenesis is well established, it is unclear whether this enzyme is involved in plant immunity. Here, we isolated and identified the pepper (Capsicum annuum) PEPCK (CaPEPCK1) gene from pepper leaves infected with Xanthomonas campestris pv. vesicatoria (Xcv). CaPEPCK1 was strongly expressed in pepper leaves during the incompatible interaction with avirulent Xcv and in response to environmental stresses, especially salicylic acid (SA) treatment. PEPCK activity was low in healthy leaves but dramatically increased in avirulent Xcv-infected leaves. Knock-down expression of CaPEPCK1 by virus-induced gene silencing resulted in high levels of susceptibility to both virulent and avirulent Xcv infection. CaPEPCK1 silencing in pepper compromised induction of the basal defense-marker genes CaPR1 (pathogenesis-related 1 protein), CaPR10 (pathogenesis-related 10 protein) and CaDEF1 (defensin) during Xcv infection. SA accumulation was also significantly suppressed in the CaPEPCK1-silenced pepper leaves infected with Xcv. CaPEPCK1 in an Arabidopsis overexpression (OX) line inhibited the proliferation of Pseudomonas syringae pv. tomato (Pst) and Hyaloperonospora arabidopsidis (Hpa). CaPEPCK1-OX plants developed more rapidly, with enlarged leaves, compared to wild-type plants. The T-DNA insertion Arabidopsis orthologous mutants pck1-3 and pck1-4 were more susceptible to the bacterial Pst and oomycete Hpa pathogens than the wild type. Taken together, these results suggest that CaPEPCK positively contributes to plant innate immunity against hemibiotrophic bacterial and obligate biotrophic oomycete pathogens.
Collapse
Affiliation(s)
- Du Seok Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Nak Hyun Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.
| |
Collapse
|
15
|
Lim CW, Lim S, Baek W, Lee SC. The pepper late embryogenesis abundant protein CaLEA1 acts in regulating abscisic acid signaling, drought and salt stress response. PHYSIOLOGIA PLANTARUM 2015; 154:526-42. [PMID: 25302464 DOI: 10.1111/ppl.12298] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/11/2014] [Accepted: 09/26/2014] [Indexed: 05/08/2023]
Abstract
As sessile organisms, plants are constantly challenged by environmental stresses, including drought and high salinity. Among the various abiotic stresses, osmotic stress is one of the most important factors for growth and significantly reduces crop productivity in agriculture. Here, we report a function of the CaLEA1 protein in the defense responses of plants to osmotic stress. Our analyses showed that the CaLEA1 gene was strongly induced in pepper leaves exposed to drought and increased salinity. Furthermore, we determined that the CaLEA1 protein has a late embryogenesis abundant (LEA)_3 homolog domain highly conserved among other known group 5 LEA proteins and is localized in the processing body. We generated CaLEA1-silenced peppers and CaLEA1-overexpressing (OX) transgenic Arabidopsis plants to evaluate their responses to dehydration and high salinity. Virus-induced gene silencing of CaLEA1 in pepper plants conferred enhanced sensitivity to drought and salt stresses, which was accompanied by high levels of lipid peroxidation in dehydrated and NaCl-treated leaves. CaLEA1-OX plants exhibited enhanced sensitivity to abscisic acid (ABA) during seed germination and in the seedling stage; furthermore, these plants were more tolerant to drought and salt stress than the wild-type plants because of enhanced stomatal closure and increased expression of stress-responsive genes. Collectively, our data suggest that CaLEA1 positively regulates drought and salinity tolerance through ABA-mediated cell signaling.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Sohee Lim
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Woonhee Baek
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| |
Collapse
|
16
|
Lim CW, Baek W, Lim S, Han SW, Lee SC. Expression and Functional Roles of the Pepper Pathogen-Induced bZIP Transcription Factor CabZIP2 in Enhanced Disease Resistance to Bacterial Pathogen Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:825-33. [PMID: 25738319 DOI: 10.1094/mpmi-10-14-0313-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A pepper bZIP transcription factor gene, CabZIP2, was isolated from pepper leaves infected with a virulent strain of Xanthomonas campestris pv. vesicatoria. Transient expression analysis of the CabZIP2-GFP fusion protein in Nicotiana benthamiana revealed that the CabZIP2 protein is localized in the cytoplasm as well as the nucleus. The acidic domain in the N-terminal region of CabZIP2 that is fused to the GAL4 DNA-binding domain is required to activate the transcription of reporter genes in yeast. Transcription of CabZIP2 is induced in pepper plants inoculated with virulent or avirulent strains of X. campestris pv. vesicatoria. The CabZIP2 gene is also induced by defense-related hormones such as salicylic acid, methyl jasmonate, and ethylene. To elucidate the in vivo function of the CabZIP2 gene in plant defense, virus-induced gene silencing in pepper and overexpression in Arabidopsis were used. CabZIP2-silenced pepper plants were susceptible to infection by the virulent strain of X. campestris pv. vesicatoria, which was accompanied by reduced expression of defense-related genes such as CaBPR1 and CaAMP1. CabZIP2 overexpression in transgenic Arabidopsis plants conferred enhanced resistance to Pseudomonas syringae pv. tomato DC3000. Together, these results suggest that CabZIP2 is involved in bacterial disease resistance.
Collapse
Affiliation(s)
- Chae Woo Lim
- 1 Department of Life Science (BK21 program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Woonhee Baek
- 1 Department of Life Science (BK21 program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Sohee Lim
- 1 Department of Life Science (BK21 program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Sang-Wook Han
- 2 Department of Integrative Plant Science, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - Sung Chul Lee
- 1 Department of Life Science (BK21 program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| |
Collapse
|
17
|
Anil Kumar S, Hima Kumari P, Shravan Kumar G, Mohanalatha C, Kavi Kishor PB. Osmotin: a plant sentinel and a possible agonist of mammalian adiponectin. FRONTIERS IN PLANT SCIENCE 2015; 6:163. [PMID: 25852715 PMCID: PMC4360817 DOI: 10.3389/fpls.2015.00163] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 03/01/2015] [Indexed: 05/18/2023]
Abstract
Osmotin is a stress responsive antifungal protein belonging to the pathogenesis-related (PR)-5 family that confers tolerance to both biotic and abiotic stresses in plants. Protective efforts of osmotin in plants range from high temperature to cold and salt to drought. It lyses the plasma membrane of the pathogens. It is widely distributed in fruits and vegetables. It is a differentially expressed and developmentally regulated protein that protects the cells from osmotic stress and invading pathogens as well, by structural or metabolic alterations. During stress conditions, osmotin helps in the accumulation of the osmolyte proline, which quenches reactive oxygen species and free radicals. Osmotin expression results in the accumulation of storage reserves and increases the shelf-life of fruits. It binds to a seven-transmembrane-domain receptor-like protein and induces programmed cell death in Saccharomyces cerevisiae through RAS2/cAMP signaling pathway. Adiponectin, produced in adipose tissues of mammals, is an insulin-sensitizing hormone. Strangely, osmotin acts like the mammalian hormone adiponectin in various in vitro and in vivo models. Adiponectin and osmotin, the two receptor binding proteins do not share sequence similarity at the amino acid level, but interestingly they have a similar structural and functional properties. In experimental mice, adiponectin inhibits endothelial cell proliferation and migration, primary tumor growth, and reduces atherosclerosis. This retrospective work examines the vital role of osmotin in plant defense and as a potential targeted therapeutic drug for humans.
Collapse
Affiliation(s)
- S. Anil Kumar
- Department of Genetics, Osmania University, HyderabadIndia
| | - P. Hima Kumari
- Department of Genetics, Osmania University, HyderabadIndia
| | | | | | | |
Collapse
|
18
|
Kim DS, Kim NH, Hwang BK. GLYCINE-RICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum). THE NEW PHYTOLOGIST 2015; 205:786-800. [PMID: 25323422 DOI: 10.1111/nph.13105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 09/01/2014] [Indexed: 05/10/2023]
Abstract
Plants use a variety of innate immune regulators to trigger cell death and defense responses against pathogen attack. We identified pepper (Capsicum annuum) GLYCINE-RICH RNA-BINDING PROTEIN1 (CaGRP1) as a RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 (CaPIK1)-interacting partner, based on bimolecular fluorescence complementation and coimmunoprecipitation analyses as well as gene silencing and transient expression analysis. CaGRP1 contains an N-terminal RNA recognition motif and a glycine-rich region at the C-terminus. The CaGRP1 protein had DNA- and RNA-binding activity in vitro. CaGRP1 interacted with CaPIK1 in planta. CaGRP1 and CaGRP1-CaPIK1 complexes were localized to the nucleus in plant cells. CaPIK1 phosphorylated CaGRP1 in vitro and in planta. Transient coexpression of CaGRP1 with CaPIK1 suppressed the CaPIK1-triggered cell death response, accompanied by a reduced CaPIK1-triggered reactive oxygen species (ROS) burst. The RNA recognition motif region of CaGRP1 was responsible for the nuclear localization of CaGRP1 as well as the suppression of the CaPIK1-triggered cell death response. CaGRP1 silencing in pepper conferred enhanced resistance to Xanthomonas campestris pv vesicatoria (Xcv) infection; however, CaPIK1-silenced plants were more susceptible to Xcv. CaGRP1 interacts with CaPIK1 and negatively regulates CaPIK1-triggered cell death and defense responses by suppressing ROS accumulation.
Collapse
Affiliation(s)
- Dae Sung Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Korea
| | | | | |
Collapse
|
19
|
Kim NH, Hwang BK. Pepper pathogenesis-related protein 4c is a plasma membrane-localized cysteine protease inhibitor that is required for plant cell death and defense signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:81-94. [PMID: 25335438 DOI: 10.1111/tpj.12709] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/05/2014] [Accepted: 10/15/2014] [Indexed: 05/20/2023]
Abstract
Xanthomonas campestris pv. vesicatoria (Xcv) type III effector AvrBsT triggers programmed cell death (PCD) and activates the hypersensitive response (HR) in plants. Here, we isolated and identified the plasma membrane localized pathogenesis-related (PR) protein 4c gene (CaPR4c) from pepper (Capsicum annuum) leaves undergoing AvrBsT-triggered HR cell death. CaPR4c encodes a protein with a signal peptide and a Barwin domain. Recombinant CaPR4c protein expressed in Escherichia coli exhibited cysteine protease-inhibitor activity and ribonuclease (RNase) activity. Subcellular localization analyses revealed that CaPR4c localized to the plasma membrane in plant cells. CaPR4c expression was rapidly and specifically induced by avirulent Xcv (avrBsT) infection. Transient expression of CaPR4c caused HR cell death in pepper leaves, which was accompanied by enhanced accumulation of H2 O2 and significant induction of some defense-response genes. Deletion of the signal peptide from CaPR4c abolished the induction of HR cell death, indicating a requirement for plasma membrane localization of CaPR4c for HR cell death. CaPR4c silencing in pepper disrupted both basal and AvrBsT-triggered resistance responses, and enabled Xcv proliferation in infected leaves. H2 O2 accumulation, cell-death induction, and defense-response gene expression were distinctly reduced in CaPR4c-silenced pepper. CaPR4c overexpression in transgenic Arabidopsis plants conferred greater resistance against infection by Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis. These results collectively suggest that CaPR4c plays an important role in plant cell death and defense signaling.
Collapse
Affiliation(s)
- Nak Hyun Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | | |
Collapse
|
20
|
Choi HW, Hwang BK. Molecular and cellular control of cell death and defense signaling in pepper. PLANTA 2015; 241:1-27. [PMID: 25252816 DOI: 10.1007/s00425-014-2171-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/11/2014] [Indexed: 06/03/2023]
Abstract
Pepper (Capsicum annuum L.) provides a good experimental system for studying the molecular and functional genomics underlying the ability of plants to defend themselves against microbial pathogens. Cell death is a genetically programmed response that requires specific host cellular factors. Hypersensitive response (HR) is defined as rapid cell death in response to a pathogen attack. Pepper plants respond to pathogen attacks by activating genetically controlled HR- or disease-associated cell death. HR cell death, specifically in incompatible interactions between pepper and Xanthomonas campestris pv. vesicatoria, is mediated by the molecular genetics and biochemical machinery that underlie pathogen-induced cell death in plants. Gene expression profiles during the HR-like cell death response, virus-induced gene silencing and transient and transgenic overexpression approaches are used to isolate and identify HR- or disease-associated cell death genes in pepper plants. Reactive oxygen species, nitric oxide, cytosolic calcium ion and defense-related hormones such as salicylic acid, jasmonic acid, ethylene and abscisic acid are involved in the execution of pathogen-induced cell death in plants. In this review, we summarize recent molecular and cellular studies of the pepper cell death-mediated defense response, highlighting the signaling events of cell death in disease-resistant pepper plants. Comprehensive knowledge and understanding of the cellular functions of pepper cell death response genes will aid the development of novel practical approaches to enhance disease resistance in pepper, thereby helping to secure the future supply of safe and nutritious pepper plants worldwide.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Republic of Korea
| | | |
Collapse
|
21
|
Choi DS, Kim NH, Hwang BK. Pepper mitochondrial FORMATE DEHYDROGENASE1 regulates cell death and defense responses against bacterial pathogens. PLANT PHYSIOLOGY 2014; 166:1298-311. [PMID: 25237129 PMCID: PMC4226358 DOI: 10.1104/pp.114.246736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Formate dehydrogenase (FDH; EC 1.2.1.2) is an NAD-dependent enzyme that catalyzes the oxidation of formate to carbon dioxide. Here, we report the identification and characterization of pepper (Capsicum annuum) mitochondrial FDH1 as a positive regulator of cell death and defense responses. Transient expression of FDH1 caused hypersensitive response (HR)-like cell death in pepper and Nicotiana benthamiana leaves. The D-isomer -: specific 2-hydroxyacid dehydrogenase signatures of FDH1 were required for the induction of HR-like cell death and FDH activity. FDH1 contained a mitochondrial targeting sequence at the N-terminal region; however, mitochondrial localization of FDH1 was not essential for the induction of HR-like cell death and FDH activity. FDH1 silencing in pepper significantly attenuated the cell death response and salicylic acid levels but stimulated growth of Xanthomonas campestris pv vesicatoria. By contrast, transgenic Arabidopsis (Arabidopsis thaliana) overexpressing FDH1 exhibited greater resistance to Pseudomonas syringae pv tomato in a salicylic acid-dependent manner. Arabidopsis transfer DNA insertion mutant analysis indicated that AtFDH1 expression is required for basal defense and resistance gene-mediated resistance to P. syringae pv tomato infection. Taken together, these data suggest that FDH1 has an important role in HR-like cell death and defense responses to bacterial pathogens.
Collapse
Affiliation(s)
- Du Seok Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Nak Hyun Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
22
|
Lim S, Baek W, Lee SC. Identification and functional roles of CaDIN1 in abscisic acid signaling and drought sensitivity. PLANT MOLECULAR BIOLOGY 2014; 86:513-25. [PMID: 25149469 DOI: 10.1007/s11103-014-0242-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/19/2014] [Indexed: 06/03/2023]
Abstract
Plants frequently face challenges caused by various abiotic stresses, including drought, and have evolved defense mechanisms to counteract the deleterious effects of these stresses. The phytohormone abscisic acid (ABA) is involved in signal transduction pathways that mediate defense responses of plants to abiotic stress. Here, we report a new function of the CaDIN1 protein in defense responses to abiotic stress. The CaDIN1 gene was strongly induced in pepper leaves exposed to ABA, NaCl, and drought stresses. CaDIN1 proteins share high sequence homology with other known DIN1 proteins and are localized in chloroplasts. We generated CaDIN1-silenced peppers and overexpressing transgenic Arabidopsis plants and evaluated their response to ABA and drought stress. Virus-induced gene silencing of CaDIN1 in pepper plants conferred enhanced tolerance to drought stress, which was accompanied by low levels of lipid peroxidation in dehydrated leaves. CaDIN1-overexpressing transgenic plants exhibited reduced sensitivity to ABA during seed germination and seedling stages. Transgenic plants were more vulnerable to drought than that by the wild-type plants because of decreased expression of ABA responsive stress-related genes and reduced stomatal closure in response to ABA. Together, these results suggest that CaDIN1 modulates drought sensitivity through ABA-mediated cell signaling.
Collapse
Affiliation(s)
- Sohee Lim
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | | | | |
Collapse
|
23
|
Kim DS, Choi HW, Hwang BK. Pepper mildew resistance locus O interacts with pepper calmodulin and suppresses Xanthomonas AvrBsT-triggered cell death and defense responses. PLANTA 2014; 240:827-39. [PMID: 25074588 DOI: 10.1007/s00425-014-2134-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/17/2014] [Indexed: 05/10/2023]
Abstract
MAIN CONCLUSION Pepper CaMLO2 specifically interacts with CaCaM1 and translocates cytoplasmic CaCaM1 to the plasma membrane, leading to the suppression of Xanthomonas AvrBsT-triggered Ca (2+) influx, hypersensitive cell death and defense responses. Pathogen-induced cell death is closely linked with disease susceptibility and resistance in plants. Pepper (Capsicum annuum) mildew resistance locus O (CaMLO2) and calmodulin (CaCaM1) genes are required for disease-associated cell death and hypersensitive cell death, respectively. Here, we demonstrate that pathogen-responsive CaMLO2 interacts with CaCaM1 in yeast and in planta. Bimolecular fluorescence complementation and co-immunoprecipitation analyses confirm a specific interaction between CaMLO2 and CaCaM1 at the plasma membrane (PM) in plant cells. Subcellular localization analyses of CaCaM1 fused to green fluorescent protein reveals that treatment with Ca(2+) and co-expression with CaMLO2 induce translocation of cytosolic CaCaM1 to the PM where CaMLO2 is localized. Transient CaMLO2 expression negatively regulates CaCaM1 accumulation in Nicotiana benthamiana. Xanthomonas avrBsT-triggered Ca(2+) influx and hypersensitive cell death are disrupted by CaCaM1 and/or CaMLO2 expression. CaMLO2 silencing in pepper significantly enhances reactive oxygen species burst, cell death, and resistance responses to Xanthomonas campestris pv. vesicatoria Ds1 and Ds1 (avrBsT), which is accompanied by enhanced induction of CaCaM1, CaPR1 (PR-1), and CaPO2 (peroxidase). These results suggest that CaMLO2 interacts with CaCaM1 and suppresses AvrBsT-triggered cell death and defense responses.
Collapse
Affiliation(s)
- Dae Sung Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Republic of Korea
| | | | | |
Collapse
|
24
|
Shin SH, Pak JH, Kim MJ, Kim HJ, Oh JS, Choi HK, Jung HW, Chung YS. An Acidic PATHOGENESIS-RELATED1 Gene of Oryza grandiglumis is Involved in Disease Resistance Response Against Bacterial Infection. THE PLANT PATHOLOGY JOURNAL 2014; 30:208-14. [PMID: 25289005 PMCID: PMC4174849 DOI: 10.5423/ppj.nt.11.2013.0112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/28/2014] [Accepted: 02/18/2014] [Indexed: 05/07/2023]
Abstract
Wild rice, Oryza grandiglumis shows hyper-resistance response to pathogen infection. In order to identify genes necessary for defense response in plants, we have carried out a subtractive hybridization coupled with a cDNA macroarray. An acidic PATHOGENESIS-RELATED1 (PR1) gene of the wild rice is highly identical to the acidic PR1 genes of different plant species. The OgPR1a cDNA has an apparent single open reading frame with a predicted molecular mass 40,621 Da and an isoelectic point of 5.14. Both in silico analysis and a transient expression assay in onion epidermal cells revealed that the OgPR1a protein could be localized in intercellular space in plants. The OgPR1a mRNA was strongly transcribed by the exogenous treatment with ethylene and jasmonic acid as well as protein phosphatase inhibitors. Additionally, ectopic expression of the OgPR1a conferred disease resistance on Arabidopsis to the bacterial and fungal infections.
Collapse
Affiliation(s)
- Sang Hyun Shin
- National Crop Experiment Station, Rural Development Administration, Suwon 441-100, Korea
| | - Jung-Hun Pak
- Department of Genetic Engineering, Dong-A University, Busan 604-714, Korea
| | - Mi Jin Kim
- Department of Genetic Engineering, Dong-A University, Busan 604-714, Korea
| | - Hye Jeong Kim
- Department of Genetic Engineering, Dong-A University, Busan 604-714, Korea
| | - Ju Sung Oh
- Department of Genetic Engineering, Dong-A University, Busan 604-714, Korea
| | - Hong Kyu Choi
- Department of Genetic Engineering, Dong-A University, Busan 604-714, Korea
| | - Ho Won Jung
- Department of Genetic Engineering, Dong-A University, Busan 604-714, Korea
- Co-Corresponding authors. H.W. Jung, Phone) +82-51-200-7536, FAX) +82-51-200-7505, E-mail)
| | - Young Soo Chung
- Department of Genetic Engineering, Dong-A University, Busan 604-714, Korea
- Y.S. Chung, Phone) +82-51-200-7510, FAX) +82-51-200-7505, E-mail)
| |
Collapse
|
25
|
Kim DS, Hwang BK. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2295-306. [PMID: 24642849 PMCID: PMC4036500 DOI: 10.1093/jxb/eru109] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Phenylalanine ammonia-lyase (PAL) has a crucial role in secondary phenylpropanoid metabolism and is one of the most extensively studied enzymes with respect to plant responses to biotic and abiotic stress. Here, we identified the pepper (Capsicum annuum) PAL (CaPAL1) gene, which was induced in pepper leaves by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaPAL1-silenced pepper plants exhibited increased susceptibility to virulent and avirulent Xcv infection. Reactive oxygen species (ROS), hypersensitive cell death, expression of the salicylic acid (SA)-dependent marker gene CaPR1, SA accumulation, and induction of PAL activity were significantly compromised in the CaPAL1-silenced pepper plants during Xcv infection. Overexpression (OX) of CaPAL1 in Arabidopsis conferred increased resistance to Pseudomonas syringae pv. tomato (Pst) and Hyaloperonospora arabidopsidis infection. CaPAL1-OX leaves exhibited restricted Pst growth, increased ROS burst and cell death, and induction of PR1 expression and SA accumulation. The increase in PAL activity in healthy and Pst-infected leaves was higher in CaPAL1-OX plants than in wild-type Arabidopsis. Taken together, these results suggest that CaPAL1 acts as a positive regulator of SA-dependent defence signalling to combat microbial pathogens via its enzymatic activity in the phenylpropanoid pathway.
Collapse
Affiliation(s)
- Dae Sung Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Republic of Korea
| |
Collapse
|
26
|
Kim DS, Jeun Y, Hwang BK. The pepper patatin-like phospholipase CaPLP1 functions in plant cell death and defense signaling. PLANT MOLECULAR BIOLOGY 2014; 84:329-44. [PMID: 24085708 DOI: 10.1007/s11103-013-0137-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 09/24/2013] [Indexed: 05/06/2023]
Abstract
Phospholipases hydrolyze phospholipids into fatty acids and other lipophilic substances. Phospholipid signaling is crucial for diverse cellular processes in plants. However, the precise role of phospholipases in plant cell death and defense signaling is not fully understood. Here, we identified a pepper (Capsicum annuum) patatin-like phospholipase (CaPLP1) gene that is transcriptionally induced in pepper leaves by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaPLP1 containing an N-terminal signal peptide localized to the cytoplasm and plasma membrane, leading to the secretion into the apoplastic regions. Silencing of CaPLP1 in pepper conferred enhanced susceptibility to Xcv infection. Defense responses to Xcv, including the generation of reactive oxygen species (ROS), hypersensitive cell death and the expression of the salicylic acid (SA)-dependent marker gene CaPR1, were compromised in the CaPLP1-silenced pepper plants. Transient expression of CaPLP1 in pepper leaves induced the accumulation of fluorescent phenolics, expression of the defense marker genes CaPR1 and CaSAR82A, and generation of ROS, ultimately leading to the hypersensitive cell death response. Overexpression (OX) of CaPLP1 in Arabidopsis also conferred enhanced resistance to Pseudomonas syringae pv. tomato (Pst) and Hyaloperonospora arabidopsidis infection. CaPLP1-OX leaves showed reduced Pst growth, enhanced ROS burst and electrolyte leakage, induction of the defense response genes AtPR1, AtRbohD and AtGST, as well as constitutive activation of both the SA-dependent gene AtPR1 and the JA-dependent gene AtPDF1.2. Together, these results suggest that CaPLP1 is involved in plant defense and cell death signaling in response to microbial pathogens.
Collapse
Affiliation(s)
- Dae Sung Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | | | | |
Collapse
|
27
|
Hwang IS, Choi DS, Kim NH, Kim DS, Hwang BK. The pepper cysteine/histidine-rich DC1 domain protein CaDC1 binds both RNA and DNA and is required for plant cell death and defense response. THE NEW PHYTOLOGIST 2014; 201:518-530. [PMID: 24117868 DOI: 10.1111/nph.12521] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
Plant defense against microbial pathogens is coordinated by a complex regulatory network. Cysteine/histidine-rich DC1 domain proteins mediate a variety of cellular processes involved in plant growth, development and stress responses. We identified a pepper (Capsicum annuum) cysteine/histidine-rich DC1 domain protein gene, CaDC1, which positively regulates plant defense during microbial infection, based on gene silencing and transient expression in pepper, as well as ectopic expression in Arabidopsis. Induction of CaDC1 by avirulent Xanthomonas campestris pv vesicatoria (Xcv) infection was pronounced at both transcriptional and translational levels in pepper leaves. Purified CaDC1 protein bound to both DNA and RNA in vitro, especially in the presence of Zn(2+). CaDC1 was localized to both the nucleus and the cytoplasm, which was required for plant cell death signaling. The nuclear localization of CaDC1 was dependent on the divergent C1 (DC1) domain. CaDC1 silencing in pepper conferred increased susceptibility to Xcv infection, which was accompanied by reduced salicylic acid accumulation and defense-related gene expression. Ectopic expression of CaDC1 in Arabidopsis enhanced resistance to Hyaloperonospora arabidopsidis. CaDC1 binds both RNA and DNA and functions as a positive regulator of plant cell death and SA-dependent defense responses.
Collapse
Affiliation(s)
- In Sun Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Du Seok Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Nak Hyun Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Dae Sung Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| |
Collapse
|
28
|
Choi HW, Kim NH, Lee YK, Hwang BK. The pepper extracellular xyloglucan-specific endo-β-1,4-glucanase inhibitor protein gene, CaXEGIP1, is required for plant cell death and defense responses. PLANT PHYSIOLOGY 2013; 161:384-96. [PMID: 23093361 PMCID: PMC3532269 DOI: 10.1104/pp.112.203828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/19/2012] [Indexed: 05/19/2023]
Abstract
Plants produce various proteinaceous inhibitors to protect themselves against microbial pathogen attack. A xyloglucan-specific endo-β-1,4-glucanase inhibitor1 gene, CaXEGIP1, was isolated and functionally characterized in pepper (Capsicum annuum) plants. CaXEGIP1 was rapidly and strongly induced in pepper leaves infected with avirulent Xanthomonas campestris pv vesicatoria, and purified CaXEGIP1 protein significantly inhibited the hydrolytic activity of the glycoside hydrolase74 family xyloglucan-specific endo-β-1,4-glucanase from Clostridium thermocellum. Soluble-modified green fluorescent protein-tagged CaXEGIP1 proteins were mainly localized to the apoplast of onion (Allium cepa) epidermal cells. Agrobacterium tumefaciens-mediated overexpression of CaXEGIP1 triggered pathogen-independent, spontaneous cell death in pepper and Nicotiana benthamiana leaves. CaXEGIP1 silencing in pepper conferred enhanced susceptibility to virulent and avirulent X. campestris pv vesicatoria, accompanied by a compromised hypersensitive response and lowered expression of defense-related genes. Overexpression of dexamethasone:CaXEGIP1 in Arabidopsis (Arabidopsis thaliana) enhanced resistance to Hyaloperonospora arabidopsidis infection. Comparative histochemical and proteomic analyses revealed that CaXEGIP1 overexpression induced a spontaneous cell death response and also increased the expression of some defense-related proteins in transgenic Arabidopsis leaves. This response was also accompanied by cell wall thickening and darkening. Together, these results suggest that pathogen-inducible CaXEGIP1 positively regulates cell death-mediated defense responses in plants.
Collapse
|
29
|
Kim DS, Hwang BK. The pepper MLO gene, CaMLO2, is involved in the susceptibility cell-death response and bacterial and oomycete proliferation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:843-55. [PMID: 22913752 DOI: 10.1111/tpj.12003] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Loss-of-function alleles of the mildew resistance locus O (MLO) gene provide broad-spectrum powdery mildew disease resistance. Here, we identified a pepper (Capsicum annuum) MLO gene (CaMLO2) that is transcriptionally induced by Xanthomonas campestris pv. vesicatoria (Xcv) infection. Topology and subcellular localization analyses reveal that CaMLO2 is a plasma membrane-anchored and amphiphilic Ca²⁺-dependent calmodulin-binding protein. CaMLO2 expression is up-regulated by Xcv and salicylic acid, as well as abiotic stresses. Silencing of CaMLO2 in pepper plants confers enhanced resistance against virulent Xcv, but not against avirulent Xcv. This resistance is accompanied by a compromised susceptibility cell-death response and reduced bacterial growth, as well as an accelerated reactive oxygen species burst. Virulent Xcv infection drastically induces expression of the salicylic acid-dependent defense marker gene CaPR1 in CaMLO2-silenced leaves. CaMLO2 over-expression in Arabidopsis enhances susceptibility to Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis. Leaves of plants over-expressing CaMLO2 exhibit a susceptibility cell-death response and high bacterial growth during virulent Pst DC3000 infection. These are accompanied by enhanced electrolyte leakage but compromised induction of some defense response genes and the reactive oxygen species. Together, our results suggest that CaMLO2 is involved in the susceptibility cell-death response and bacterial and oomycete proliferation in pepper and Arabidopsis.
Collapse
Affiliation(s)
- Dae Sung Kim
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Korea
| | | |
Collapse
|
30
|
Lee DH, Kim DS, Hwang BK. The pepper RNA-binding protein CaRBP1 functions in hypersensitive cell death and defense signaling in the cytoplasm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:235-248. [PMID: 22640562 DOI: 10.1111/j.1365-313x.2012.05063.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The regulation of gene expression via post-transcriptional modification by RNA-binding proteins is crucial for plant disease and innate immunity. Here, we report the identification of the pepper (Capsicum annuum) RNA-binding protein1 gene (CaRBP1) as essential for hypersensitive cell death and defense signaling in the cytoplasm. CaRBP1 contains an RNA recognition motif and is rapidly and strongly induced in pepper by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaRBP1 displays in vitro RNA- and DNA-binding activity and in planta nucleocytoplasmic localization. Transient expression of CaRBP1 in pepper leaves triggers cell-death and defense responses. Notably, cytoplasmic localization of CaRBP1, mediated by the N-terminal region of CaRBP1, is essential for the hypersensitive cell-death response. Silencing of CaRBP1 in pepper plants significantly enhances susceptibility to avirulent Xcv infection. This is accompanied by compromised hypersensitive cell death, production of reactive oxygen species in oxidative bursts, expression of defense marker genes and accumulation of endogenous salicylic acid and jasmonic acid. Over-expression of CaRBP1 in Arabidopsis confers reduced susceptibility to infection by the biotrophic oomycete Hyaloperonospora arabidopsidis. Together, these results suggest that cytoplasmic localization of CaRBP1 is required for plant signaling of hypersensitive cell-death and defense responses.
Collapse
Affiliation(s)
- Dong Hyuk Lee
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Korea
| | | | | |
Collapse
|
31
|
Hwang IS, An SH, Hwang BK. Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:749-62. [PMID: 21535260 DOI: 10.1111/j.1365-313x.2011.04622.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Asparagine synthetase is a key enzyme in the production of the nitrogen-rich amino acid asparagine, which is crucial to primary nitrogen metabolism. Despite its importance physiologically, the roles that asparagine synthetase plays during plant defense responses remain unknown. Here, we determined that pepper (Capsicum annuum) asparagine synthetase 1 (CaAS1) is essential for plant defense to microbial pathogens. Infection with Xanthomonas campestris pv. vesicatoria (Xcv) induced early and strong CaAS1 expression in pepper leaves and silencing of this gene resulted in enhanced susceptibility to Xcv infection. Transgenic Arabidopsis (Arabidopsis thaliana) plants that overexpressed CaAS1 exhibited enhanced resistance to Pseudomonas syringae pv. tomato DC3000 and Hyaloperonospora arabidopsidis. Increased CaAS1 expression influenced early defense responses in diseased leaves, including increased electrolyte leakage, reactive oxygen species and nitric oxide bursts. In plants, increased conversion of aspartate to asparagine appears to be associated with enhanced resistance to bacterial and oomycete pathogens. In CaAS1-silenced pepper and/or CaAS1-overexpressing Arabidopsis, CaAS1-dependent changes in asparagine levels correlated with increased susceptibility or defense responses to microbial pathogens, respectively. Linking transcriptional and targeted metabolite studies, our results suggest that CaAS1 is required for asparagine synthesis and disease resistance in plants.
Collapse
Affiliation(s)
- In Sun Hwang
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Korea
| | | | | |
Collapse
|
32
|
Lee DH, Choi HW, Hwang BK. The pepper E3 ubiquitin ligase RING1 gene, CaRING1, is required for cell death and the salicylic acid-dependent defense response. PLANT PHYSIOLOGY 2011; 156:2011-25. [PMID: 21628629 PMCID: PMC3149946 DOI: 10.1104/pp.111.177568] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/25/2011] [Indexed: 05/19/2023]
Abstract
Ubiquitination is essential for ubiquitin/proteasome-mediated protein degradation in plant development and defense. Here, we identified a novel E3 ubiquitin ligase RING1 gene, CaRING1, from pepper (Capsicum annuum). In pepper, CaRING1 expression is induced by avirulent Xanthomonas campestris pv vesicatoria infection. CaRING1 contains an amino-terminal transmembrane domain and a carboxyl-terminal RING domain. In addition, it displays in vitro E3 ubiquitin ligase activity, and the RING domain is essential for E3 ubiquitin ligase activity in CaRING1. CaRING1 also localizes to the plasma membrane. In pepper plants, virus-induced gene silencing of CaRING1 confers enhanced susceptibility to avirulent X. campestris pv vesicatoria infection, which is accompanied by compromised hypersensitive cell death, reduced expression of PATHOGENESIS-RELATED1, and lowered salicylic acid levels in leaves. Transient expression of CaRING1 in pepper leaves induces cell death and the defense response that requires the E3 ubiquitin ligase activity of CaRING1. By contrast, overexpression of CaRING1 in Arabidopsis (Arabidopsis thaliana) confers enhanced resistance to hemibiotrophic Pseudomonas syringae pv tomato and biotrophic Hyaloperonospora arabidopsidis infections. Taken together, these results suggest that CaRING1 is involved in the induction of cell death and the regulation of ubiquitination during the defense response to microbial pathogens.
Collapse
|
33
|
Kim DS, Hwang BK. The pepper receptor-like cytoplasmic protein kinase CaPIK1 is involved in plant signaling of defense and cell-death responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:642-55. [PMID: 21299658 DOI: 10.1111/j.1365-313x.2011.04525.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Certain protein kinases have been shown to be crucial for plant cell signaling pathways associated with plant immune responses. Here we identified a pepper (Capsicum annuum) receptor-like cytoplasmic protein kinase (RLCK) gene (CaPIK1) that is transcriptionally activated by infection with Xanthomonas campestris pv. vesicatoria (Xcv). Silencing of CaPIK1 in pepper plants confers enhanced susceptibility to Xcv infection. Salicylic acid-dependent defense responses are attenuated in the CaPIK1-silenced plants, including expression of salicylic acid-dependent genes, but not of a jasmonic acid-regulated gene. Induction of salicylic acid accumulation by Xcv infection is compromised in CaPIK1-silenced plants. The functional CaPIK1 protein not only autophosphorylates, but also phosphorylates myelin basic protein. CaPIK1 exists in the cytoplasm and also localizes to the plasma membrane of plant cells via its N-terminus. Transient expression of CaPIK1 in pepper leaves leads to generation of reactive oxygen species (ROS), ultimately leading to hypersensitive cell death. Over-expression (OX) of CaPIK1 in Arabidopsis enhances the basal resistance to infection with Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis, associated with elevated ROS bursts. Salicylic acid levels in CaPIK1-OX plants are higher than those in wild-type plants. Together, these results suggest that CaPIK1 modulates the signaling required for the salicylic acid-dependent defense response to pathogen infection.
Collapse
Affiliation(s)
- Dae Sung Kim
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Korea
| | | |
Collapse
|
34
|
Choi DS, Hwang BK. Proteomics and functional analyses of pepper abscisic acid-responsive 1 (ABR1), which is involved in cell death and defense signaling. THE PLANT CELL 2011; 23:823-42. [PMID: 21335377 PMCID: PMC3077778 DOI: 10.1105/tpc.110.082081] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/10/2011] [Accepted: 01/25/2011] [Indexed: 05/20/2023]
Abstract
Abscisic acid (ABA) is a key regulator of plant growth and development, as well as plant defense responses. A high-throughput in planta proteome screen identified the pepper (Capsicum annuum) GRAM (for glucosyltransferases, Rab-like GTPase activators, and myotubularins) domain-containing ABA-RESPONSIVE1 (ABR1), which is highly induced by infection with avirulent Xanthomonas campestris pv vesicatoria and also by treatment with ABA. The GRAM domain is essential for the cell death response and for the nuclear localization of ABR1. ABR1 is required for priming cell death and reactive oxygen species production, as well as ABA-salicylic acid (SA) antagonism. Silencing of ABR1 significantly compromised the hypersensitive response but enhanced bacterial pathogen growth and ABA levels in pepper. High levels of ABA in ABR1-silenced plants antagonized the SA levels induced by pathogen infection. Heterologous transgenic expression of ABR1 in Arabidopsis thaliana conferred enhanced resistance to Pseudomonas syringae pv tomato and Hyaloperonospora arabidopsidis infection. The susceptibility of the Arabidopsis ABR1 putative ortholog mutant, abr1, to these pathogens also supports the involvement of ABR1 in disease resistance. Together, these results reveal ABR1 as a novel negative regulator of ABA signaling and suggest that the nuclear ABR1 pool is essential for the cell death induction associated with ABA-SA antagonism.
Collapse
|
35
|
Hwang IS, Hwang BK. The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. PLANT PHYSIOLOGY 2011; 155:447-63. [PMID: 21205632 PMCID: PMC3075774 DOI: 10.1104/pp.110.164848] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 10/06/2010] [Indexed: 05/18/2023]
Abstract
Plant mannose-binding lectins (MBLs) are crucial for plant defense signaling during pathogen attack by recognizing specific carbohydrates on pathogen surfaces. In this study, we isolated and functionally characterized a novel pepper (Capsicum annuum) MBL gene, CaMBL1, from pepper leaves infected with Xanthomonas campestris pv vesicatoria (Xcv). The CaMBL1 gene contains a predicted Galanthus nivalis agglutinin-related lectin domain responsible for the recognition of high-mannose N-glycans but lacks a middle S-locus glycoprotein domain and a carboxyl-terminal PAN-Apple domain. The CaMBL1 protein exhibits binding specificity for mannose and is mainly localized to the plasma membrane. Immunoblotting using a CaMBL1-specific antibody revealed that CaMBL1 is strongly expressed and accumulates in pepper leaves during avirulent Xcv infection. The transient expression of CaMBL1 induces the accumulation of salicylic acid (SA), the activation of defense-related genes, and the cell death phenotype in pepper. The G. nivalis agglutinin-related lectin domain of CaMBL1 is responsible for cell death induction. CaMBL1-silenced pepper plants are more susceptible to virulent or avirulent Xcv infection compared with unsilenced control plants, a phenotype that is accompanied by lowered reactive oxygen species accumulation, reduced expression of downstream SA target genes, and a concomitant decrease in SA accumulation. In contrast, CaMBL1 overexpression in Arabidopsis (Arabidopsis thaliana) confers enhanced resistance to Pseudomonas syringae pv tomato and Alternaria brassicicola infection. Together, these data suggest that CaMBL1 plays a key role in the regulation of plant cell death and defense responses through the induction of downstream defense-related genes and SA accumulation after the recognition of microbial pathogens.
Collapse
|
36
|
Hwang IS, Hwang BK. Role of the pepper cytochrome P450 gene CaCYP450A in defense responses against microbial pathogens. PLANTA 2010; 232:1409-1421. [PMID: 20830594 DOI: 10.1007/s00425-010-1266-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 08/27/2010] [Indexed: 05/29/2023]
Abstract
Plant cytochrome P450 enzymes are involved in a wide range of biosynthetic reactions, leading to various fatty acid conjugates, plant hormones, or defensive compounds. Herein, we have identified the pepper cytochrome P450 gene CaCYP450A, which is differentially induced during Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaCYP450A contains a heme-binding motif, PXFXXGXRXCXG, located in the C-terminal region and a hydrophobic membrane anchor region at the N terminal. Knock-down of CaCYP450A by virus-induced gene silencing (VIGS) led to increased susceptibility to Xcv infection in pepper. CaCYP450A-overexpressing Arabidopsis plants exhibited lower pathogen growth and reduced disease symptoms, and they were more resistant to Pseudomonas syringae pv. tomato (Pst) and Hyaloperonospora arabidopsidis than wild-type plants. Overexpression of CaCYP450A also enhanced H(2)O(2) accumulation and cell death. However, CaCYP450A Arabidopsis ortholog CYP94B3 mutants showed enhanced susceptibility to virulent Pst DC3000, but not to avirulent Pst DC3000 avrRpm1 or virulent H. arabidopsidis infection. Taken together, these results suggest that CaCYP450A is required for defense responses to microbial pathogens in plants. The nucleotide sequence data reported here has been deposited in the GenBank database under the accession number HM581974.
Collapse
Affiliation(s)
- In Sun Hwang
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Korea
| | | |
Collapse
|
37
|
Kim NH, Choi HW, Hwang BK. Xanthomonas campestris pv. vesicatoria effector AvrBsT induces cell death in pepper, but suppresses defense responses in tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1069-82. [PMID: 20615117 DOI: 10.1094/mpmi-23-8-1069] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A type III effector protein, AvrBsT, is secreted into plant cells from Xanthomonas campestris pv. vesicatoria Bv5-4a, which causes bacterial spot disease on pepper (Capsicum annuum) and tomato (Solanum lycopersicum). To define the function and recognition of AvrBsT in the two host plants, avrBsT was introduced into the virulent pepper strain X. campestris pv. vesicatoria Ds1. Expression of AvrBsT in Ds1 rendered the strain avirulent to pepper plants. Infection of pepper leaves with Ds1 (avrBsT) expressing AvrBsT but not with near-isogenic control strains triggered a hypersensitive response (HR) accompanied by strong H(2)O(2) generation, callose deposition, and defense-marker gene expressions. Mutation of avrBsT, however, compromised HR induction by X. campestris pv. vesicatoria Bv5-4a, suggesting its avirulence function in pepper plants. In contrast, AvrBsT acted as a virulence factor in tomato plants. Growth of strains Ds1 (avrBsT) and Bv5-4a DeltaavrBsT was significantly enhanced and reduced, respectively, in tomato leaves. X. campestris pv. vesicatoria-expressed AvrBsT also significantly compromised callose deposition and defense-marker gene expression in tomato plants. Together, these results suggest that the X. campestris pv. vesicatoria type III effector AvrBsT is differentially recognized by pepper and tomato plants.
Collapse
Affiliation(s)
- Nak Hyun Kim
- Korea University, Anam-dong, Seoul, Republic of Korea
| | | | | |
Collapse
|
38
|
Hwang IS, Hwang BK. The pepper 9-lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. PLANT PHYSIOLOGY 2010; 152:948-67. [PMID: 19939946 PMCID: PMC2815858 DOI: 10.1104/pp.109.147827] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 11/24/2009] [Indexed: 05/20/2023]
Abstract
Lipoxygenases (LOXs) are crucial for lipid peroxidation processes during plant defense responses to pathogen infection. A pepper (Capsicum annuum) 9-LOX gene, CaLOX1, which encodes a 9-specific lipoxygenase, was isolated from pepper leaves. Recombinant CaLOX1 protein expressed in Escherichia coli catalyzed the hydroperoxidation of linoleic acid, with a K(m) value of 113. 9 mum. Expression of CaLOX1 was differentially induced in pepper leaves not only during Xanthomonas campestris pv vesicatoria (Xcv) infection but also after exposure to abiotic elicitors. Transient expression of CaLOX1 in pepper leaves induced the cell death phenotype and defense responses. CaLOX1-silenced pepper plants were more susceptible to Xcv and Colletotrichum coccodes infection, which was accompanied by reduced expression of defense-related genes, lowered lipid peroxidation, as well as decreased reactive oxygen species and lowered salicylic acid accumulation. Infection with Xcv, especially in an incompatible interaction, rapidly stimulated LOX activity in unsilenced, but not CaLOX1-silenced, pepper leaves. Furthermore, overexpression of CaLOX1 in Arabidopsis (Arabidopsis thaliana) conferred enhanced resistance to Pseudomonas syringae pv tomato, Hyaloperonospora arabidopsidis, and Alternaria brassicicola. In contrast, mutation of the Arabidopsis CaLOX1 ortholog AtLOX1 significantly increased susceptibility to these three pathogens. Together, these results suggest that CaLOX1 and AtLOX1 positively regulate defense and cell death responses to microbial pathogens.
Collapse
Affiliation(s)
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Seoul 136–713, Republic of Korea
| |
Collapse
|
39
|
Choi HW, Lee DH, Hwang BK. The pepper calmodulin gene CaCaM1 is involved in reactive oxygen species and nitric oxide generation required for cell death and the defense response. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1389-400. [PMID: 19810808 DOI: 10.1094/mpmi-22-11-1389] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Calcium signaling has emerged as an important signal transduction pathway of higher plants in response to biotic and abiotic stresses. Ca2+-bound calmodulin (CaM) plays a critical role in decoding and transducing stress signals by activating specific targets. Here, we isolated and functionally characterized the pathogen-responsive CaM gene, Capsicum annuum calmodulin 1 (CaCaM1), from pepper (C. annuum) plants. The cellular function of CaCaM1 was verified by Agrobacterium spp.-mediated transient expression in pepper and transgenic overexpression in Arabidopsis thaliana. Agrobacterium spp.-mediated transient expression of CaCaM1 activated reactive oxygen species (ROS), nitric oxide (NO) generation, and hypersensitive response (HR)-like cell death in pepper leaves, ultimately leading to local acquired resistance to Xanthomonas campestris pv. vesicatoria. CaCaM1-overexpression (OX) Arabidopsis exhibited enhanced resistance to Pseudomonas syringae and Hyaloperonospora parasitica, which was accompanied by enhanced ROS and NO generation and HR-like cell death. Treatment with the calcium-channel blocker suppressed the oxidative and NO bursts and HR-like cell death that were triggered by CaCaM1 expression in pepper and Arabidopsis, suggesting that calcium influx is required for the activation of CaCaM1-mediated defense responses in plants. Upon treatment with the CaM antagonist, virulent P. syringae pv. tomato-induced NO generation was also compromised in CaCaM1-OX leaves. Together, these results suggest that the CaCaM1 gene functions in ROS and NO generation are essential for cell death and defense responses in plants.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Republic of Korea
| | | | | |
Collapse
|
40
|
Salvianti F, Bettini PP, Giordani E, Sacchetti P, Bellini E, Buiatti M. Identification by suppression subtractive hybridization of genes expressed in pear (Pyrus spp.) upon infestation with Cacopsylla pyri (Homoptera: Psyllidae). JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1808-1816. [PMID: 18343531 DOI: 10.1016/j.jplph.2007.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 12/04/2007] [Accepted: 12/05/2007] [Indexed: 05/26/2023]
Abstract
The molecular interaction between pear tree (Pyrus spp.) and the phloem-feeding psylla Cacopsylla pyri (Linnaeus) was investigated through the construction and characterization of cDNA subtracted libraries. Genes expressed upon insect infestation were identified in the susceptible pear cultivar Bartlett and in the resistant selection NY10355. In both interactions, genes involved in the plant defense response were induced, confirming the observed similarity between the response to pathogens and to insects with piercing/sucking mouthparts. However, the two expression profiles were found to be different, with more genes involved in the response to biotic and abiotic stress being activated in the resistant plant than in the susceptible one. Further characterization of the identified genes could lead to the development of molecular markers associated with tolerance/resistance to pear psylla.
Collapse
Affiliation(s)
- Francesca Salvianti
- Dipartimento di Biologia Animale e Genetica Leo Pardi, Università degli Studi di Firenze, via Romana 17-19, 50121 Firenze, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Choi HW, Lee BG, Kim NH, Park Y, Lim CW, Song HK, Hwang BK. A role for a menthone reductase in resistance against microbial pathogens in plants. PLANT PHYSIOLOGY 2008; 148:383-401. [PMID: 18599651 PMCID: PMC2528125 DOI: 10.1104/pp.108.119461] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 06/25/2008] [Indexed: 05/20/2023]
Abstract
Plants elaborate a vast array of enzymes that synthesize defensive secondary metabolites in response to pathogen attack. Here, we isolated the pathogen-responsive CaMNR1 [menthone: (+)-(3S)-neomenthol reductase] gene, a member of the short-chain dehydrogenase/reductase (SDR) superfamily, from pepper (Capsicum annuum) plants. Gas chromatography-mass spectrometry analysis revealed that purified CaMNR1 and its ortholog AtSDR1 from Arabidopsis (Arabidopsis thaliana) catalyze a menthone reduction with reduced nicotinamide adenine dinucleotide phosphate as a cofactor to produce neomenthol with antimicrobial activity. CaMNR1 and AtSDR1 also possess a significant catalytic activity for neomenthol oxidation. We examined the cellular function of the CaMNR1 gene by virus-induced gene silencing and ectopic overexpression in pepper and Arabidopsis plants, respectively. CaMNR1-silenced pepper plants were significantly more susceptible to Xanthomonas campestris pv vesicatoria and Colletotrichum coccodes infection and expressed lower levels of salicylic acid-responsive CaBPR1 and CaPR10 and jasmonic acid-responsive CaDEF1. CaMNR1-overexpressing Arabidopsis plants exhibited enhanced resistance to the hemibiotrophic pathogen Pseudomonas syringae pv tomato DC3000 and the biotrophic pathogen Hyaloperonospora parasitica isolate Noco2, accompanied by the induction of AtPR1 and AtPDF1.2. In contrast, mutation in the CaMNR1 ortholog AtSDR1 significantly enhanced susceptibility to both pathogens. Together, these results indicate that the novel menthone reductase gene CaMNR1 and its ortholog AtSDR1 positively regulate plant defenses against a broad spectrum of pathogens.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Laboratory of Molecular Plant Pathology , School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Hong JK, Choi DS, Kim SH, Yi SY, Kim YJ, Hwang BK. Distinct roles of the pepper pathogen-induced membrane protein gene CaPIMP1 in bacterial disease resistance and oomycete disease susceptibility. PLANTA 2008; 228:485-497. [PMID: 18506481 DOI: 10.1007/s00425-008-0752-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 05/08/2008] [Indexed: 05/26/2023]
Abstract
Plant integral membrane proteins have essential roles in diverse internal and external physiological processes as signal receptors or ion transporters. The pepper CaPIMP1 gene encoding a putative integral membrane protein with four transmembrane domains was isolated and functionally characterized from pepper leaves infected with the avirulent strain Xanthomonas campestris pv. vesicatoria (Xcv). CaPIMP1-green fluorescence protein (GFP) fusions localized to the plasma membrane in onion cells, as observed by confocal microscopy. CaPIMP1 was expressed in an organ-specific manner in healthy pepper plants. Infection with Xcv induced differential accumulation of CaPIMP1 transcripts in pepper leaf tissues during compatible and incompatible interactions. The function of CaPIMP1 was examined by using the virus-induced gene silencing technique in pepper plants and by overexpression in Arabidopsis. CaPIMP1-silenced pepper plants were highly susceptible to Xcv infection and expressed lower levels of the defense-related gene CaSAR82A. CaPIMP1 overexpression (CaPIMP1-OX) in transgenic Arabidopsis conferred enhanced resistance to P. syringae pv. tomato infection, accompanied by enhanced AtPDF1.2 gene expression. In contrast, CaPIMP1-OX plants were highly susceptible to the biotrophic oomycete Hyaloperonospora parasitica. Taken together, we propose that CaPIMP1 plays distinct roles in both bacterial disease resistance and oomycete disease susceptibility.
Collapse
Affiliation(s)
- Jeum Kyu Hong
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Republic of Korea
| | | | | | | | | | | |
Collapse
|
43
|
An SH, Choi HW, Hwang IS, Hong JK, Hwang BK. A novel pepper membrane-located receptor-like protein gene CaMRP1 is required for disease susceptibility, methyl jasmonate insensitivity and salt tolerance. PLANT MOLECULAR BIOLOGY 2008; 67:519-533. [PMID: 18427932 DOI: 10.1007/s11103-008-9337-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 04/09/2008] [Indexed: 05/26/2023]
Abstract
Plant receptor proteins are involved in the signaling networks required for defense against pathogens. The novel pepper pathogen-induced gene CaMRP1 was isolated from pepper leaves infected with Xanthomonas campestris pv. vesicatoria (Xcv). This gene is predicted to encode a membrane-located receptor-like protein that has an N-terminal signal peptide and a C-terminal transmembrane helix. A CaMRP1-GFP fusion protein localized primarily to the plasma membrane of plant cells. Strong and early induction of CaMRP1 expression occurred following exposure of pepper plants to Xcv, Colletotricum coccodes, methyl jasmonate (MeJA) and wounding stress. Virus-induced gene silencing (VIGS) of CaMRP1 in pepper conferred enhanced basal resistance to Xcv infection, accompanied by induction of genes encoding basic PR1 (CaBPR1), defensin (CaDEF1) and SAR8.2 (CaSAR82A). In contrast, CaMRP1 overexpression (OX) in transgenic Arabidopsis plants resulted in increased disease susceptibility to Hyaloperonospora parasitica infection. Arabidopsis plants overexpressing CaMRP1 exhibited insensitivity to MeJA by causing reduced expression of MeJA-responsive genes. Overexpression also resulted in tolerance to NaCl and during salt stress, the expression of several abscisic acid-responsive genes was induced. Together, these results suggest that pepper CaMRP1 may belong to a new subfamily of membrane-located receptor-like proteins that regulate disease susceptibility, MeJA-insensitivity and salt tolerance.
Collapse
Affiliation(s)
- Soo Hyun An
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Republic of Korea
| | | | | | | | | |
Collapse
|
44
|
An SH, Sohn KH, Choi HW, Hwang IS, Lee SC, Hwang BK. Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. PLANTA 2008; 228:61-78. [PMID: 18327607 PMCID: PMC2413075 DOI: 10.1007/s00425-008-0719-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 02/18/2008] [Indexed: 05/07/2023]
Abstract
Pectin is one of the main components of the plant cell wall that functions as the primary barrier against pathogens. Among the extracellular pectinolytic enzymes, pectin methylesterase (PME) demethylesterifies pectin, which is secreted into the cell wall in a highly methylesterified form. Here, we isolated and functionally characterized the pepper (Capsicum annuum L.) gene CaPMEI1, which encodes a pectin methylesterase inhibitor protein (PMEI), in pepper leaves infected by Xanthomonas campestris pv. vesicatoria (Xcv). CaPMEI1 transcripts are localized in the xylem of vascular bundles in leaf tissues, and pathogens and abiotic stresses can induce differential expression of this gene. Purified recombinant CaPMEI1 protein not only inhibits PME, but also exhibits antifungal activity against some plant pathogenic fungi. Virus-induced gene silencing of CaPMEI1 in pepper confers enhanced susceptibility to Xcv, accompanied by suppressed expression of some defense-related genes. Transgenic Arabidopsis CaPMEI1-overexpression lines exhibit enhanced resistance to Pseudomonas syringae pv. tomato, mannitol and methyl viologen, but not to the biotrophic pathogen Hyaloperonospora parasitica. Together, these results suggest that CaPMEI1, an antifungal protein, may be involved in basal disease resistance, as well as in drought and oxidative stress tolerance in plants.
Collapse
Affiliation(s)
- Soo Hyun An
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713 Republic of Korea
| | - Kee Hoon Sohn
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713 Republic of Korea
- Sainsbury Laboratory, John Innes Centre, Norwich, NR4 7UH UK
| | - Hyong Woo Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713 Republic of Korea
| | - In Sun Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713 Republic of Korea
| | - Sung Chul Lee
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713 Republic of Korea
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720-3102 USA
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713 Republic of Korea
| |
Collapse
|
45
|
Wang X, Wang H, Li Y, Cao K, Ge X. A rice lipid transfer protein binds to plasma membrane proteinaceous sites. Mol Biol Rep 2008; 36:745-50. [PMID: 18461470 DOI: 10.1007/s11033-008-9238-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Accepted: 03/26/2008] [Indexed: 11/30/2022]
Abstract
Nonspecific lipid transfer protein (nsLTP) is usually basic and secreted low-molecular-mass protein in plants. The 3-D structure of nsLTP1 resembles that of elicitin produced by the plant pathogen Phytophthora cryptogea, which can bind to the plant plasma membrane putative receptor and activate the downstream responses. It is inferred that nsLTP1 may have similar binding sites on the plasma membranes. In this work, rice recombinant protein TRX-nsLTP110 labeled with (125)I was shown to bind to rice plasma membrane preparations in a saturable curve, with an apparent K(d) of 13.6 nM and B(max) of 150 fmol/mg proteins. Competition experiments revealed that the binding of TRX-nsLTP110 was specific, in contrast to the nonspecific binding of the fusion tag thioredoxin. Protease treatment assay showed that the binding sites were proteinaceous. Our results suggest that the binding sites of nsLTPs on plasma membranes may be ubiquitous in the plant kingdom. They may be competed out from the binding sites under pathogen attack, supporting a role for nsLTP1 in host defense response to pathogens.
Collapse
Affiliation(s)
- Xiaofeng Wang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Handan Road 220#, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
46
|
Zhao CJ, Wang AR, Shi YJ, Wang LQ, Liu WD, Wang ZH, Lu GD. Identification of defense-related genes in rice responding to challenge by Rhizoctonia solani. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:501-16. [PMID: 18075727 DOI: 10.1007/s00122-007-0686-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 11/23/2007] [Indexed: 05/04/2023]
Abstract
Rice sheath blight, caused by Rhizoctonia solani is one of the major diseases of rice. The pathogen infects rice plants directly through stomata or using lobate appressoria and hyphal masses called infection cushions. The infection structures were normally found at 36 h post-inoculation. During infection, the pathogenesis-related genes, PR1b and PBZ1 were induced in rice plants. To identify rice genes induced early in the defense response, suppression subtractive hybridization (SSH) was used to generate a cDNA library enriched for transcripts differentially expressed during infection by R. solani. After differential screening by membrane-based hybridization and subsequent confirmation by reverse Northern blot analysis, selected clones were sequenced. Fifty unique cDNA clones were found and assigned to five different functional categories. Most of the genes were not previously identified as being induced in response to pathogens. We examined expression of 100 rice genes induced by infection with Magnaporthe grisea, Xanthomonas oryzae pv. oryze (Xoo) and X. oryzae pv. oryzicola (Xooc). Twenty-five of them were found to be differentially expressed after the sheath blight infection, suggesting overlap of defense responses to different fungal and bacterial pathogens infection.
Collapse
Affiliation(s)
- Chang-Jiang Zhao
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Hong JK, Choi HW, Hwang IS, Kim DS, Kim NH, Choi DS, Kim YJ, Hwang BK. Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. PLANTA 2008; 227:539-58. [PMID: 17929052 DOI: 10.1007/s00425-007-0637-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 09/23/2007] [Indexed: 05/18/2023]
Abstract
GDSL-type lipase is a hydrolytic enzyme whose amino acid sequence contains a pentapeptide motif (Gly-X-Ser-X-Gly) with active serine (Ser). Pepper GDSL-type lipase (CaGLIP1) gene was isolated and functionally characterized from pepper leaf tissues infected by Xanthomonas campestris pv. vesicatoria (Xcv). The CaGLIP1 protein was located in the vascular tissues of Arabidopsis root. The CaGLIP1 gene was preferentially expressed in pepper leaves during the compatible interaction with Xcv. Treatment with salicylic acid, ethylene and methyl jasmonate induced CaGLIP1 gene expression in pepper leaves. Sodium nitroprusside, methyl viologen, high salt, mannitol-mediated dehydration and wounding also induced early and transient CaGLIP1 expression in pepper leaf tissues. Virus-induced gene silencing of CaGLIP1 in pepper conferred enhanced resistance to Xcv, accompanied by the suppressed expression of basic PR1 (CaBPR1) and defensin (CaDEF1) genes. The CaGLIP1 lipase produced in Escherichia coli hydrolyzed the substrates of short and long chain nitrophenyl esters. The CaGLIP1-overexpressing Arabidopsis exhibited enhanced hydrolytic activity toward short and long chain nitrophenyl ester, as well as enhanced susceptibility to the bacterial pathogen Pseudomonas syringae pv. tomato and the biotrophic oomycete Hyaloperonospora parasitica. SA-induced expression of AtPR1 and AtGST1, also was delayed in CaGLIP1-overexpressing plants by SA application. During seed germination and plant growth, the CaGLIP1 transgenic plants showed drought tolerance and differential expression of drought- and abscisic acid (ABA)-inducible genes AtRD29A, AtADH and AtRab18. ABA treatment differentially regulated seed germination and gene expression in wild-type and CaGLIP1 transgenic Arabidopsis. Overexpression of CaGLIP1 also regulated glucose- and oxidative stress signaling. Together, these results indicate that CaGLIP1 modulates disease susceptibility and abiotic stress tolerance.
Collapse
Affiliation(s)
- Jeum Kyu Hong
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Choi HW, Kim YJ, Lee SC, Hong JK, Hwang BK. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. PLANT PHYSIOLOGY 2007; 145:890-904. [PMID: 17905862 PMCID: PMC2048806 DOI: 10.1104/pp.107.103325] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 09/26/2007] [Indexed: 05/17/2023]
Abstract
Reactive oxygen species (ROS) are responsible for mediating cellular defense responses in plants. Controversy has existed over the origin of ROS in plant defense. We have isolated a novel extracellular peroxidase gene, CaPO2, from pepper (Capsicum annuum). Local or systemic expression of CaPO2 is induced in pepper by avirulent Xanthomonas campestris pv vesicatoria (Xcv) infection. We examined the function of the CaPO2 gene in plant defense using the virus-induced gene silencing technique and gain-of-function transgenic plants. CaPO2-silenced pepper plants were highly susceptible to Xcv infection. Virus-induced gene silencing of the CaPO2 gene also compromised hydrogen peroxide (H(2)O(2)) accumulation and hypersensitive cell death in leaves, both locally and systemically, during avirulent Xcv infection. In contrast, overexpression of CaPO2 in Arabidopsis (Arabidopsis thaliana) conferred enhanced disease resistance accompanied by cell death, H(2)O(2) accumulation, and PR gene induction. In CaPO2-overexpression Arabidopsis leaves infected by Pseudomonas syringae pv tomato, H(2)O(2) generation was sensitive to potassium cyanide (a peroxidase inhibitor) but insensitive to diphenylene iodonium (an NADPH oxidase inhibitor), suggesting that H(2)O(2) generation depends on peroxidase in Arabidopsis. Together, these results indicate that the CaPO2 peroxidase is involved in ROS generation, both locally and systemically, to activate cell death and PR gene induction during the defense response to pathogen invasion.
Collapse
Affiliation(s)
- Hyong Woo Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | | | | | | | | |
Collapse
|
49
|
Jung HW, Hwang BK. The leucine-rich repeat (LRR) protein, CaLRR1, interacts with the hypersensitive induced reaction (HIR) protein, CaHIR1, and suppresses cell death induced by the CaHIR1 protein. MOLECULAR PLANT PATHOLOGY 2007; 8:503-14. [PMID: 20507517 DOI: 10.1111/j.1364-3703.2007.00410.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Leucine-rich repeat proteins (LRRs) function in a number of signal transduction pathways via protein-protein interactions. The gene encoding a small protein of pepper, CaLRR1, is specifically induced upon pathogen challenge and treatment with pathogen-associated molecular patterns (PAMPs). We identified a pepper hypersensitive induced reaction (CaHIR1) protein that interacts with the LRR domain of the CaLRR1 protein using yeast two-hybrid screening. Ectopic expression of the pepper CaHIR1 gene induces cell death in tobacco and Arabidopsis, indicating that the CaHIR1 protein may be a positive regulator of HR-like cell death. Because transformation is very difficult in pepper plants, we over-expressed CaLRR1 and CaHIR1 in Arabidopsis to determine cellular functions of the two genes. The over-expression of the CaHIR1 gene, but not the CaLRR1 gene, in transgenic Arabidopsis confers disease resistance in response to Pseudomonas syringae infection, accompanied by the strong expression of PR genes, the accumulation of both salicylic acid and H(2)O(2), and K(+) efflux in plant cells. In Arabidopsis and tobacco plants over-expressing both CaHIR1 and CaLRR1, the CaLRR1 protein suppresses not only CaHIR1-induced cell death, but also PR gene expression elicited by CaHIR1 via its association with HIR protein. We propose that the CaLRR1 protein functions as a novel negative regulator of CaHIR1-mediated cell death responses in plants.
Collapse
Affiliation(s)
- Ho Won Jung
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Korea
| | | |
Collapse
|
50
|
Reilly K, Bernal D, Cortés DF, Gómez-Vásquez R, Tohme J, Beeching JR. Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration. PLANT MOLECULAR BIOLOGY 2007; 64:187-203. [PMID: 17318318 DOI: 10.1007/s11103-007-9144-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 01/28/2007] [Indexed: 05/03/2023]
Abstract
Storage roots of cassava (Manihot esculenta Crantz) exhibit a rapid post-harvest physiological deterioration (PPD) response that can occur within 24-72 h of harvest. PPD is an enzymatically mediated oxidative process with parallels to plant wound, senescence and defence responses. To characterise those genes that show significant change in expression during the PPD response we have used cDNA microarray technology to carry out a large-scale analysis of the cassava root transcriptome during the post-harvest period. We identified 72 non-redundant expressed sequence tags which showed altered regulation during the post-harvest period. Of these 63 were induced, whilst 9 were down-regulated. RNA blot analysis of selected genes was used to verify and extend the microarray data. Additional microarray hybridisation experiments allowed the identification of 21 root-specific and 24 root-wounding-specific sequences. Many of the up-regulated and PPD-specific expressed sequence tags were predicted to play a role in cellular processes including reactive oxygen species turnover, cell wall repair, programmed cell death, ion, water or metabolite transport, signal transduction or perception, stress response, metabolism and biosynthesis, and activation of protein synthesis.
Collapse
Affiliation(s)
- Kim Reilly
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | | | | | | | | | | |
Collapse
|