1
|
Guo G, Liu Z, Zeng J, Yan H, Chen G, Han P, He X, Zhou D, Weng S, He J, Wang M. Virome analysis unveils a rich array of newly identified viruses in the red swamp crayfish Procambarus clarkii. Virology 2025; 601:110308. [PMID: 39556981 DOI: 10.1016/j.virol.2024.110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
The red swamp crayfish (Procambarus clarkii) is the second most widely cultured crustacean globally. As a highly invasive species with a worldwide distribution, P. clarkii presents a substantial risk for the transmission of viral pathogens to native aquatic organisms. Recently, the emergence of growth retardation disease (GRD) in P. clarkii has led to significant production declines and economic losses. A comprehensive viromic analysis could offer valuable insights into the potential viral pathogens harbored by P. clarkii. Here we systematically examined the RNA viromes of healthy and GRD-affected P. clarkii collected from Qianjiang, China. Our investigation identified a total of 1729 viral species across 21 known viral taxa, with 1603 species being previously unreported. The orders Picornavirales, Tolivirales, and Nodamuvirales were predominant in both species count and relative abundance. Moreover, seven viruses exhibited higher abundance in GRD-affected P. clarkii compared to healthy individuals. Our work uncovers an unexpectedly diverse RNA viral community within P. clarkii and identifies potential viral pathogens associated with GRD in this species.
Collapse
Affiliation(s)
- Guangyu Guo
- School of Marine Sciences, State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhi Liu
- School of Marine Sciences, State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jiamin Zeng
- School of Life Sciences, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongyu Yan
- School of Life Sciences, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Gongrui Chen
- School of Life Sciences, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Peiyun Han
- School of Life Sciences, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinyi He
- School of Life Sciences, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Dandan Zhou
- School of Marine Sciences, State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Shaoping Weng
- School of Life Sciences, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianguo He
- School of Marine Sciences, State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Sun Yat-sen University, Zhuhai 519082, China; School of Life Sciences, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China.
| | - Muhua Wang
- School of Marine Sciences, State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Sun Yat-sen University, Zhuhai 519082, China; School of Life Sciences, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
2
|
He WZ, Liu SS, Pan LL. Enhanced association of whitefly-begomovirus competence with plant-mediated mutualism. PEST MANAGEMENT SCIENCE 2024. [PMID: 39691989 DOI: 10.1002/ps.8613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Vector-borne viruses often manipulate plant defenses against insect vectors, thereby impacting vector population dynamics and in turn virus spread. However, the factors regulating the outcome of insect vector-virus-plant tripartite interactions, such as the feature of virus-vector combinations, are understudied. RESULTS Using eight whitefly (Bemisia tabaci)-begomovirus combinations exhibiting different degrees of competence, namely virus transmission efficiency, we examined the association between whitefly-begomovirus competence and plant-mediated mutualism. We found that three begomoviruses, tomato yellow leaf curl virus (TYLCV), cotton leaf curl Multan virus (CLCuMuV) and Sri Lankan cassava mosaic virus (SLCMV), can effectively infect but cause distinct symptoms in tobacco (Nicotiana tabacum) plants. Although the efficient vectors Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) whiteflies performed significantly better on TYLCV-infected plants than on control plants, the less-efficient vector Asia II 1 performed similarly on TYLCV-infected and uninfected plants. CLCuMuV infection of plants significantly enhanced the performance of the efficient vector Asia II 1, whereas the performance of the inefficient vector MEAM1 was unaffected by the virus infection status of the plants. SLCMV infection of plants significantly increased the survival and fecundity of the efficient vector Asia II 1, but did not affect the performance of the poorer vectors MEAM1 and MED. CONCLUSION Combined analysis of our data and case studies from the literature indicates that plant-mediated mutualism between whiteflies and the begomoviruses they transmit is more likely to occur in competent combinations. Our findings shed novel light on the ecological principles governing the variations in insect vector-virus-plant tripartite interactions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen-Ze He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Long Pan
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- The Rural Development Academy, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Gomes M, Ralph TJ, Humphries MS, Graves BP, Kobayashi T, Gore DB. Waterborne contaminants in high intensity agriculture and plant production: A review of on-site and downstream impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:178084. [PMID: 39674148 DOI: 10.1016/j.scitotenv.2024.178084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Waterborne contaminants pose a significant risk to water quality and plant health in agricultural systems. This is particularly the case for relatively small-scale but intensive agricultural operations such as plant production nurseries that often rely on recycled irrigation water. The increasing global demand for plants requires improved water quality and more certainty around water availability, which may be difficult to predict and deliver due to variable and changing climate regimes. Production nurseries are moving to adopt best management practices that recycle water; however, the risks associated with waterborne contaminants of various types, including nutrients, pesticides, plant pathogens, micro-plastics, and toxic metals, are not well understood. We review and synthesise the physical and biogeochemical factors that contribute to waterborne contaminant risk, and the main types of contaminants that are likely to require management, at plant production nurseries. Catchment characteristics (i.e., topography, land use), hydroclimatic factors (i.e., storms, floods, droughts), and landscape hydrological and sediment connectivity influence surface runoff, sediment transport, and associated contaminant transfer and storage. High hydrological connectivity can increase the risk of contaminant transport from the surrounding landscape to nurseries, with potential negative impacts to water quality in reservoirs and in turn plant health. High connectivity may also increase the risk of contaminants (e.g., sediment, pesticides, and phytopathogens) being transferred from nursery farms into downstream waterways, with consequences for aquatic ecosystems. Like all intensive agricultural operations, nurseries need to consider sources of irrigation water, water treatment and management strategies, and catchment and hydroclimatic factors, to mitigate the spread of contaminants and reduce their impacts on both plant production and the surrounding environment. Further research is needed to quantify contaminant loads and transfer pathways in these agricultural systems, and to better understand the threshold levels of contaminants that adversely affect plant health and which may result in devastating economic losses.
Collapse
Affiliation(s)
- Megan Gomes
- School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa; School of Natural Sciences, Macquarie University, NSW, Australia.
| | - Timothy J Ralph
- School of Natural Sciences, Macquarie University, NSW, Australia
| | - Marc S Humphries
- School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Bradley P Graves
- School of Natural Sciences, Macquarie University, NSW, Australia
| | - Tsuyoshi Kobayashi
- Science and Insights Division, Department of Climate Change, Energy, the Environment and Water, NSW, Australia
| | - Damian B Gore
- School of Natural Sciences, Macquarie University, NSW, Australia
| |
Collapse
|
4
|
Guo X, Zhang P, Chen M, Li T, Hou C, Que X, Xu L, Zhou Z, Wang Q, Wang Z. Synthesis, structural modification, and biological activity of a novel bisindole alkaloid iheyamine A. Bioorg Chem 2024; 153:107757. [PMID: 39226649 DOI: 10.1016/j.bioorg.2024.107757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Diseases caused by plant viruses and pathogens pose a serious threat to crop yield and quality. Traditional pesticides have gradually developed drug resistance and brought certain environmental safety issues during long-term overuse. There is an urgent need to discover new candidate compounds to address these issues. In this study, we achieved the efficient synthesis of iheyamine A and its derivatives, and discovered their excellent antiviral activities against tobacco mosaic virus (TMV). Most compounds displayed higher antiviral activities against TMV than commercial ribavirin at 500 μg/mL, with compounds 3a (Inactive effect IC50: 162 µg/mL), 3d (Inactive effect IC50: 249 µg/mL), 6p (Inactive effect IC50: 254 µg/mL), and 7a (Inactive effect IC50: 234 µg/mL) exhibiting better antiviral activities than ningnanmycin at 500 μg/mL (Inactive effect IC50: 269 µg/mL). Meanwhile, the structure-activity relationships of this type of compounds were systematically studied. We chose 3a for further antiviral mechanism research and found that it can directly act on viral coat protein (CP). The interaction of 3a and CP was further verified via molecular docking. These compounds also showed broad-spectrum fungicidal activities against 8 plant pathogenic fungi, especially for P. piricola. This study provides a reference for the role of iheyamine alkaloids in combating plant pathogenic diseases.
Collapse
Affiliation(s)
- Xin Guo
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Peiyao Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Miaomiao Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Taiqing Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Cancan Hou
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Xinyue Que
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Li Xu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Zhenghong Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
5
|
Thompson NS, Krum D, Chen YR, Torres MC, Trauger MA, Strike D, Weston Z, Polston JE, Curtis WR. Enabling biocontained plant virus transmission studies through establishment of an axenic whitefly (Bemisia tabaci) colony on plant tissue culture. Sci Rep 2024; 14:28169. [PMID: 39548114 PMCID: PMC11568280 DOI: 10.1038/s41598-024-73583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/18/2024] [Indexed: 11/17/2024] Open
Abstract
Whiteflies (Bemisia tabaci) and the diseases they transmit are a major detriment to crop yields and a significant contributor to world hunger. The highly evolved interactions of host plant, phloem-feeding insect vector with endosymbionts and persistently transmitted virus represent a tremendous challenge for interdisciplinary study. Presented here is the establishment of a colony of axenic whiteflies on tissue-cultured plants. Efficient colony establishment was achieved by a surface sterilization of eggs laid on axenic phototrophically tissue-cultured plants. The transfer of emerging whiteflies through coupled tissue culture vessels to new axenic plants facilitates robust subculturing and produces hundreds of whitefly adults per month. Whitefly proliferation on more than two dozen plant species is shown as well as in vitro testing of whitefly preference for different plants. This novel multi-organism system provides the high-level of biocontainment required by Federal permitting to conduct virus transmission experiments. Axenic whitefly adults were able to acquire and transmit a begomovirus into tissue-cultured plants, indicating that culturable gut microorganisms are not required for virus transmission. The approach described enables a wide range of hypotheses regarding whitefly phytopathology without the expense, facilities, and contamination ambiguity associated with current approaches.
Collapse
Affiliation(s)
- Natalie S Thompson
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David Krum
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yun-Ru Chen
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mariela C Torres
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Marena A Trauger
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Dalton Strike
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zachary Weston
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jane E Polston
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Wayne R Curtis
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Intercollege Program in Plant Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
6
|
He WZ, Rong T, Liu XY, Rao Q. Transcriptomic Profiling Unravels the Disruption of Photosynthesis Apparatuses and Induction of Immune Responses by a Bipartite Begomovirus in Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:3198. [PMID: 39599406 PMCID: PMC11598137 DOI: 10.3390/plants13223198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Diseases caused by begomoviruses such as tomato yellow leaf curl disease (TYLCD) are major constraints in agriculture. While the interactions between plants and monopartite begomoviruses during TYLCD pathogenesis have been explored extensively, how bipartite begomoviruses interact with tomato plants are understudied. Here we first found that a bipartite begomovirus tomato yellow leaf curl Thailand virus (TYLCTHV) induced stunted growth, leaf curl and yellowing in tomato plants. We then profiled the tomato transcriptomic changes in response to TYLCTHV infection. In total, we identified 2322 upregulated and 1377 downregulated genes. KEGG enrichment analysis of the differentially expressed genes (DEGs) revealed that many KEGG pathways regulating plant photosynthesis processes and defenses were enriched. Specifically, TYLCTHV infection disrupted the expression of DEGs that function in the light-harvesting chlorophyll protein complex, photosystem I and II, cytochrome b6/f complex, photosynthetic electron transport and F-type ATPase. Additionally, the expression of many DEGs regulating plant defenses including pathogen-associated molecular pattern (PAMP)-triggered immunity, effector-triggered immunity and hypersensitive response was upregulated upon TYLCTHV infection. Taken together, we found that during the pathogenesis of TYLCD induced by TYLCTHV, the virus actively disrupts plant photosynthesis processes and induces defense responses. Our findings add to our knowledge of TYLCD pathogenesis and plant-virus interactions in general.
Collapse
Affiliation(s)
| | | | | | - Qiong Rao
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (W.-Z.H.); (T.R.); (X.-Y.L.)
| |
Collapse
|
7
|
Sapkota B, Trandem N, Fránová J, Koloniuk I, Blystad DR, Hamborg Z. Incidence of aphid-transmitted viruses in raspberry and raspberry aphids in Norway and experiments on aphid transmission of black raspberry necrosis virus. FRONTIERS IN PLANT SCIENCE 2024; 15:1441145. [PMID: 39554520 PMCID: PMC11563961 DOI: 10.3389/fpls.2024.1441145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024]
Abstract
Raspberry (Rubus idaeus L.) is susceptible to aphid-borne viruses. We studied the incidence of four of them - black raspberry necrosis virus (BRNV), raspberry leaf mottle virus (RLMV), raspberry vein chlorosis virus (RVCV), and Rubus yellow net virus (RYNV) - in raspberry plants and aphids in and around Norwegian raspberry crops for three years (2019, 2021, and 2022). Most of the samples were from symptomatic plants. Applying RT-PCR, 274 leaf samples and 107 aphid samples were analyzed. All four viruses were found, but BRNV dominated: it was detected in 93% of the 178 leaf samples with virus and was the only virus that occurred more frequently as a single infection than in co-infections with the other viruses. The old cv. Veten had the highest virus incidence (97%) among the sampled plants, followed by uncultivated raspberry in the boundary vegetation (82%). All aphids identified were Amphorophora idaei and Aphis idaei. BRNV and/or RLMV was detected in 27% of the aphid samples. Notably, BRNV was detected in 30% of A. idaei samples, a species not known as a BRNV vector. In subsequent transmission experiments we found that although A. idaei can acquire BRNV within one hour, it did not transmit the virus to healthy raspberry plants. In contrast, Am. idaei, a known BRNV vector, was able to acquire the virus within one minute and transmit it within one hour of inoculation. Our study will improve the identification and management of BRNV.
Collapse
Affiliation(s)
- Bijaya Sapkota
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Nina Trandem
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Jana Fránová
- Biology Centre CAS, Institute of Plant Molecular Biology, České Budějovice, Czechia
| | - Igor Koloniuk
- Biology Centre CAS, Institute of Plant Molecular Biology, České Budějovice, Czechia
| | - Dag-Ragnar Blystad
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Zhibo Hamborg
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
8
|
He WZ, Liu SS, Pan LL. Transcriptional Modulation of Plant Defense Genes by a Bipartite Begomovirus Promotes the Performance of Its Whitefly Vector. Viruses 2024; 16:1654. [PMID: 39599769 PMCID: PMC11598951 DOI: 10.3390/v16111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
The majority of plant viruses rely on insect vectors for inter-plant transmission. Amid virus transmission, vector-borne viruses such as begomoviruses may significantly modulate host plants in various ways and, in turn, plant palatability to insect vectors. While many case studies on monopartite begomoviruses are available, bipartite begomoviruses are understudied. More importantly, detailed elucidation of the molecular mechanisms involved is limited. Here, we report the mechanisms by which an emerging bipartite begomovirus, the Sri Lankan cassava mosaic virus (SLCMV), modulates plant defenses against whitefly. SLCMV infection of tobacco (Nicotiana tabacum) plants significantly downregulated defenses against whitefly, as whitefly survival and fecundity increased significantly on virus-infected plants when compared to the controls. We then profiled SLCMV-induced transcriptomic changes in plants and identified a repertoire of differentially expressed genes (DEGs). GO enrichment analysis of DEGs demonstrated that the term defense response was significantly enriched. Functional analysis of DEGs associated with defense response revealed that four downregulated DEGs, including putative late blight resistance protein homolog R1B-17 (R1B-17), polygalacturonase inhibitor-like (PGI), serine/threonine protein kinase CDL1-like (CDL1), and Systemin B, directly contributed to plant defenses against whitefly. Taken together, our findings elucidate the role of novel plant factors involved in the modulation of plant defenses against whitefly by a bipartite begomovirus and shed new light on insect vector-virus-host plant tripartite interactions.
Collapse
Affiliation(s)
- Wen-Ze He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (W.-Z.H.); (S.-S.L.)
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (W.-Z.H.); (S.-S.L.)
| | - Li-Long Pan
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (W.-Z.H.); (S.-S.L.)
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Makhlouf L, El Fakhouri K, Kemal SA, Maafa I, Meftah Kadmiri I, El Bouhssini M. Potential of volatile organic compounds in the management of insect pests and diseases of food legumes: a comprehensive review. FRONTIERS IN PLANT SCIENCE 2024; 15:1430863. [PMID: 39430890 PMCID: PMC11486643 DOI: 10.3389/fpls.2024.1430863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/04/2024] [Indexed: 10/22/2024]
Abstract
Cool season legumes (Faba bean, chickpea, lentil, pea, and grass pea) are important protein harvests for food and nutrition security in many countries. They play key roles in sustainable cereal production through their ecological benefits. However, diseases and pests attack continue to have a substantial impact on crop yield and quality. Although growers used different control options to manage these biotic stresses such as pesticide application, cultural practices, and resistant varieties, there is a pressing need for the development of new, more cost-effective and environmentally friendly solution to help farmers in facing the existing environmental issues. Recently, there is a growing interest among researchers in exploiting Volatile Organic Compounds (VOCs) for the elaboration of disease and pest control strategies in food legumes and other crops. These compounds have important functions in ecological relationships occurring between plants and their surrounding environment, as well as plants and others species, such as pests and pathogens. Due to their unique properties, VOCs can be employed in improving management alternatives for food legume diseases and pests. In this assessment, we investigated the role of VOCs in plant-pest and plant-pathogen interactions and their present applications in pest and diseases control strategies. We emphasized the ecological importance of employing plant VOCs in legume farming and crop breeding. Additionally, we highlighted the potential of microbial VOCs in facilitating microbe-microbe, microbe-plant and microbe-plant-pest interactions, along with their role in food legume protection.
Collapse
Affiliation(s)
- Leila Makhlouf
- Laboratory of Entomology and Phytopathology, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Karim El Fakhouri
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Seid Ahmed Kemal
- Laboratory of Entomology and Phytopathology, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Ilyas Maafa
- Laboratory of Entomology and Phytopathology, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Issam Meftah Kadmiri
- Plant and Microbial Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Rescarch (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mustapha El Bouhssini
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
10
|
He WZ, Zhao L, Sun K, Feng Z, Zhou G, Rao Q. Transcriptomic profiling reveals the complex interaction between a bipartite begomovirus and a cucurbitaceous host plant. BMC Genomics 2024; 25:876. [PMID: 39294575 PMCID: PMC11409788 DOI: 10.1186/s12864-024-10781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Begomoviruses are major constraint in the production of many crops. Upon infection, begomoviruses may substantially modulate plant biological processes. While how monopartite begomoviruses interact with their plant hosts has been investigated extensively, bipartite begomoviruses-plant interactions are understudied. Moreover, as one of the major groups of hosts, cucurbitaceous plants have been seldom examined in the interaction with begomoviruses. RESULTS We profiled the zucchini transcriptomic changes induced by a bipartite begomovirus squash leaf curl China virus (SLCCNV). We identified 2275 differentially-expressed genes (DEGs), of which 1310 were upregulated and 965 were downregulated. KEGG enrichment analysis of the DEGs revealed that many pathways related to primary and secondary metabolisms were enriched. qRT-PCR verified the transcriptional changes of twelve selected DEGs induced by SLCCNV infection. Close examination revealed that the expression levels of all the DEGs of the pathway Photosynthesis were downregulated upon SLCCNV infection. Most DEGs in the pathway Plant-pathogen interaction were upregulated, including some positive regulators of plant defenses. Moreover, the majority of DEGs in the MAPK signaling pathway-plant were upregulated. CONCLUSION Our findings indicates that SLCCNV actively interact with its cucurbitaceous plant host by suppressing the conversion of light energy to chemical energy and inducing immune responses. Our study not only provides new insights into the interactions between begomoviruses and host plants, but also adds to our knowledge on virus-plant interactions in general.
Collapse
Affiliation(s)
- Wen-Ze He
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang A&F University, Hangzhou, 311300, China
| | - Li Zhao
- Hangzhou Agricultural Technology Extension Center, Hangzhou, 310058, China
| | - Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Zhen Feng
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang A&F University, Hangzhou, 311300, China
| | - Gen Zhou
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qiong Rao
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
11
|
Szydło W, Wosula EN, Knoell E, Hein GL, Mondal S, Tatineni S. Helper Component-Proteinase of Triticum Mosaic Virus Is a Viral Determinant of Wheat Curl Mite Transmission. PHYTOPATHOLOGY 2024; 114:1672-1679. [PMID: 38579745 DOI: 10.1094/phyto-02-24-0073-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Triticum mosaic virus (TriMV; genus Poacevirus; family Potyviridae) is an economically important virus in the Great Plains region of the United States. TriMV is transmitted by the wheat curl mite (Aceria tosichella) Type 2 genotype but not by Type 1. Helper component-proteinase (HC-Pro) is a vector transmission determinant for several potyvirids, but the role of HC-Pro in TriMV transmission is unknown. In this study, we examined the requirement of the HC-Pro cistron of TriMV for wheat curl mite (Type 2) transmission through deletion and point mutations and constructing TriMV chimeras with heterologous HC-Pros from other potyvirids. TriMV with complete deletion of HC-Pro failed to be transmitted by wheat curl mites at detectable levels. Furthermore, TriMV chimeras with heterologous HC-Pros from aphid-transmitted turnip mosaic virus and tobacco etch virus, or wheat curl mite-transmitted wheat streak mosaic virus, failed to be transmitted by wheat curl mites. These data suggest that heterologous HC-Pros did not complement TriMV for wheat curl mite transmission. A decreasing series of progressive nested in-frame deletions at the N-terminal region of HC-Pro comprising amino acids 3 to 125, 3 to 50, 3 to 25, 3 to 15, 3 to 8, and 3 and 4 abolished TriMV transmission by wheat curl mites. Additionally, mutation of conserved His20, Cys49, or Cys52 to Ala in HC-Pro abolished TriMV transmissibility by wheat curl mites. These data suggest that the N-terminal region of HC-Pro is crucial for TriMV transmission by wheat curl mites. Collectively, these data demonstrate that the HC-Pro cistron of TriMV is a viral determinant for wheat curl mite transmission.
Collapse
Affiliation(s)
- Wiktoria Szydło
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
- Center for Advanced Technology and Population Ecology Lab, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Everlyne N Wosula
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
| | - Elliot Knoell
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
| | - Gary L Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
| | - Shaonpius Mondal
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
| | - Satyanarayana Tatineni
- U.S. Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| |
Collapse
|
12
|
Kamel R, Aman R, Mahfouz MM. Viperin-like proteins interfere with RNA viruses in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1385169. [PMID: 38895613 PMCID: PMC11185175 DOI: 10.3389/fpls.2024.1385169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Plant viruses cause substantial losses in crop yield and quality; therefore, devising new, robust strategies to counter viral infections has important implications for agriculture. Virus inhibitory protein endoplasmic reticulum-associated interferon-inducible (Viperin) proteins are conserved antiviral proteins. Here, we identified a set of Viperin and Viperin-like proteins from multiple species and tested whether they could interfere with RNA viruses in planta. Our data from transient and stable overexpression of these proteins in Nicotiana benthamiana reveal varying levels of interference against the RNA viruses tobacco mosaic virus (TMV), turnip mosaic virus (TuMV), and potato virus x (PVX). Harnessing the potential of these proteins represents a novel avenue in plant antiviral approaches, offering a broader and more effective spectrum for application in plant biotechnology and agriculture. Identifying these proteins opens new avenues for engineering a broad range of resistance to protect crop plants against viral pathogens.
Collapse
Affiliation(s)
| | | | - Magdy M. Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
13
|
Wang Y, Hu T, Li M, Yin X, Song L. Overexpression of the NbZFP1 encoding a C3HC4-type zinc finger protein enhances antiviral activity of Nicotiana benthamiana. Gene 2024; 908:148290. [PMID: 38367853 DOI: 10.1016/j.gene.2024.148290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Viral diseases are crucial determinants affecting tobacco cultivation, leading to a substantial annual decrease in production. Previous studies have demonstrated the regulatory function of the C3HC4 family of plant zinc finger proteins in combating bacterial diseases. However, it remains to be clarified whether this protein family also plays a role in regulating resistance against plant viruses. In this study, the successful cloning of the zinc finger protein coding gene NbZFP1 from Nicotiana benthamiana has been achieved. The full-length coding sequence of NbZFP1 is 576 bp. Further examination and analysis of this gene revealed its functional properties. The induction of NbZFP1 transcription in N. benthamiana has been observed in response to TMV, CMV, and PVY. Transgenic N. benthamiana plants over-expressing NbZFP1 demonstrated a notable augmentation in the production of chlorophyll a (P < 0.05). Moreover, NbZFP1-overexpressing tobacco exhibited significant resistance to TMV, CMV, and PVY, as evidenced by a decrease in virus copies (P < 0.05). In addition, the defense enzymes activities of PAL, POD, and CAT experienced a significant increase (P < 0.05). The up-regulated expression of genes of NbPAL, NbNPR1 and NbPR-1a, which play a crucial role in SA mediated defense, indicated that the NbZFP1 holds promise in enhancing the virus resistance of tobacco plant. Importantly, the results demonstrate that NbZFP1 can be considered as a viable candidate gene for the cultivation of crops with enhanced virus resistance.
Collapse
Affiliation(s)
- Yifan Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding(Guizhou), Guiyang 550025, Guizhou Province, China
| | - Ting Hu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Minxue Li
- Agricultural and Rural Bureau, Shuicheng District, Liupanshui City 553040, Guizhou Province, China
| | - Xiaodan Yin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding(Guizhou), Guiyang 550025, Guizhou Province, China
| | - Li Song
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Key Lab of Agro-Bioengineering, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
14
|
Tennant P, Rampersad S, Alleyne A, Johnson L, Tai D, Amarakoon I, Roye M, Pitter P, Chang PG, Myers Morgan L. Viral Threats to Fruit and Vegetable Crops in the Caribbean. Viruses 2024; 16:603. [PMID: 38675944 PMCID: PMC11053604 DOI: 10.3390/v16040603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Viruses pose major global challenges to crop production as infections reduce the yield and quality of harvested products, hinder germplasm exchange, increase financial inputs, and threaten food security. Small island or archipelago habitat conditions such as those in the Caribbean are particularly susceptible as the region is characterized by high rainfall and uniform, warm temperatures throughout the year. Moreover, Caribbean islands are continuously exposed to disease risks because of their location at the intersection of transcontinental trade between North and South America and their role as central hubs for regional and global agricultural commodity trade. This review provides a summary of virus disease epidemics that originated in the Caribbean and those that were introduced and spread throughout the islands. Epidemic-associated factors that impact disease development are also discussed. Understanding virus disease epidemiology, adoption of new diagnostic technologies, implementation of biosafety protocols, and widespread acceptance of biotechnology solutions to counter the effects of cultivar susceptibility remain important challenges to the region. Effective integrated disease management requires a comprehensive approach that should include upgraded phytosanitary measures and continuous surveillance with rapid and appropriate responses.
Collapse
Affiliation(s)
- Paula Tennant
- Department of Life Sciences, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica;
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
| | - Sephra Rampersad
- Department of Life Sciences, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago;
| | - Angela Alleyne
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill, Bridgetown BB11000, Barbados;
| | - Lloyd Johnson
- Department of Life Sciences, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica;
| | - Deiondra Tai
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
| | - Icolyn Amarakoon
- Department of Basic Medical Sciences, Biochemistry Section, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica;
| | - Marcia Roye
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
| | - Patrice Pitter
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
- Ministry of Agriculture, Bodles Research Station, Old Harbour, St. Catherine JMACE18, Jamaica; (P.-G.C.); (L.M.M.)
| | - Peta-Gaye Chang
- Ministry of Agriculture, Bodles Research Station, Old Harbour, St. Catherine JMACE18, Jamaica; (P.-G.C.); (L.M.M.)
| | - Lisa Myers Morgan
- Ministry of Agriculture, Bodles Research Station, Old Harbour, St. Catherine JMACE18, Jamaica; (P.-G.C.); (L.M.M.)
| |
Collapse
|
15
|
Abou Jawdah Y, Ezzeddine N, Fardoun A, Kharroubi S, Sobh H, Atamian HS, Skinner M, Parker B. Biological Control of Three Major Cucumber and Pepper Pests: Whiteflies, Thrips, and Spider Mites, in High Plastic Tunnels Using Two Local Phytoseiid Mites. PLANTS (BASEL, SWITZERLAND) 2024; 13:889. [PMID: 38592899 PMCID: PMC10976136 DOI: 10.3390/plants13060889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
To enhance food security, food safety, and environmental health, a bio-based integrated pest management (BIPM) strategy was evaluated at two coastal locations in Lebanon as an alternative to toxic pesticide sprays in commercial high-arched plastic tunnels common in many countries. The evaluation occurred during two cucumber and pepper cropping seasons: spring and fall. At each site, two commercial tunnels were used; farmers' conventional practices were applied in one tunnel, while the BIPM approach was followed in the second tunnel. In the farmers' practices, a total of 14 sprays of insecticide/acaricide mixtures were applied during the spring growing season, and 6 sprays were applied during the fall. In the BIPM tunnels, hotspot releases of local strains of Amblyseius swirskii and Phytoseiulus persimilis were applied. By the end of the spring season, the number of whitefly nymphs (WFNs)/leaf and thrips/leaf in the pesticide treatment were 4.8 and 0.06, respectively, compared to 0.1 and 0.33, respectively, in the BIPM treatment. Similarly, at the end of the fall season, the WFNs reached 19.7/leaf in the pesticide control as compared to 1.2/leaf in the BIPM treatment, proving the efficacy of A. swirskii. Farmers using conventional acaricides during both cropping seasons failed to control Tetranychus urticae, the two-spotted spider mite (TSSM). However, hotspot releases of P. persimilis were successful in controlling TSSM. By the end of June, the number of TSSMs reached 7.8/leaf in the BIPM treatment compared to 53/leaf in the pesticide treatment. Likewise, in December, TSSM numbers reached 9/leaf in the BIPM treatment compared to 40/leaf in the pesticide treatment. Preliminary observations of pepper showed that both predatory mites (A. swirskii and P. persimilis) gave similar or better efficacy against the three pests. The two local predatory phytoseiid mites seem to be effective in controlling these three major pests and to be adapted to local environmental conditions. A rate of increase of 0.86 was observed for P. persimilis and 0.22 for A. swirskii, in June, when maximum temperatures were close to 40 °C. This also shows a compatibility between the two predators. In conclusion, our BIPM approach was efficient under a Mediterranean climate in arched plastic tunnels with relatively poor aeration.
Collapse
Affiliation(s)
- Yusuf Abou Jawdah
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (N.E.); (A.F.); (H.S.)
| | - Nour Ezzeddine
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (N.E.); (A.F.); (H.S.)
| | - Aya Fardoun
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (N.E.); (A.F.); (H.S.)
| | - Samer Kharroubi
- Department of Nutrition and Food Sciences, Faculty of Agriculture and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
| | - Hana Sobh
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (N.E.); (A.F.); (H.S.)
| | - Hagop S. Atamian
- Biological Sciences Program, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA;
| | - Margaret Skinner
- Department of Plant and Soil Science, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA; (M.S.); (B.P.)
| | - Bruce Parker
- Department of Plant and Soil Science, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA; (M.S.); (B.P.)
| |
Collapse
|
16
|
Frascati F, Rotunno S, Accotto GP, Noris E, Vaira AM, Miozzi L. Exogenous Application of dsRNA for Protection against Tomato Leaf Curl New Delhi Virus. Viruses 2024; 16:436. [PMID: 38543801 PMCID: PMC10974794 DOI: 10.3390/v16030436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 05/23/2024] Open
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is an emerging plant pathogen, fast spreading in Asian and Mediterranean regions, and is considered the most harmful geminivirus of cucurbits in the Mediterranean. ToLCNDV infects several plant and crop species from a range of families, including Solanaceae, Cucurbitaceae, Fabaceae, Malvaceae and Euphorbiaceae. Up to now, protection from ToLCNDV infection has been achieved mainly by RNAi-mediated transgenic resistance, and non-transgenic fast-developing approaches are an urgent need. Plant protection by the delivery of dsRNAs homologous to a pathogen target sequence is an RNA interference-based biotechnological approach that avoids cultivating transgenic plants and has been already shown effective against RNA viruses and viroids. However, the efficacy of this approach against DNA viruses, particularly Geminiviridae family, is still under study. Here, the protection induced by exogenous application of a chimeric dsRNA targeting all the coding regions of the ToLCNDV DNA-A was evaluated in zucchini, an important crop strongly affected by this virus. A reduction in the number of infected plants and a delay in symptoms appearance, associated with a tendency of reduction in the viral titer, was observed in the plants treated with the chimeric dsRNA, indicating that the treatment is effective against geminiviruses but requires further optimization. Limits of RNAi-based vaccinations against geminiviruses and possible causes are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy (S.R.); (G.P.A.); (E.N.)
| | - Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy (S.R.); (G.P.A.); (E.N.)
| |
Collapse
|
17
|
Metwally RA, Taha MA, El-Moaty NMA, Abdelhameed RE. Attenuation of Zucchini mosaic virus disease in cucumber plants by mycorrhizal symbiosis. PLANT CELL REPORTS 2024; 43:54. [PMID: 38315215 PMCID: PMC10844420 DOI: 10.1007/s00299-023-03138-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
KEY MESSAGE Arbuscular mycorrhizal fungi generated systemic acquired resistance in cucumber to Zucchini yellow mosaic virus, indicating their prospective application in the soil as a sustainable, environmentally friendly approach to inhibit the spread of pathogens. The wide spread of plant pathogens affects the whole world, causing several plant diseases and threatening national food security as it disrupts the quantity and quality of economically important crops. Recently, environmentally acceptable mitigating practices have been required for sustainable agriculture, restricting the use of chemical fertilizers in agricultural areas. Herein, the biological control of Zucchini yellow mosaic virus (ZYMV) in cucumber (Cucumis sativus L.) plants using arbuscular mycorrhizal (AM) fungi was investigated. Compared to control plants, ZYMV-infected plants displayed high disease incidence (DI) and severity (DS) with various symptoms, including severe yellow mosaic, mottling and green blisters of leaves. However, AM fungal inoculation exhibited 50% inhibition for these symptoms and limited DS to 26% as compared to non-colonized ones. The detection of ZYMV by the Enzyme-Linked Immunosorbent Assay technique exhibited a significant reduction in AM-inoculated plants (5.23-fold) compared with non-colonized ones. Besides, mycorrhizal root colonization (F%) was slightly reduced by ZYMV infection. ZYMV infection decreased all growth parameters and pigment fractions and increased the malondialdehyde (MDA) content, however, these parameters were significantly enhanced and the MDA content was decreased by AM fungal colonization. Also, the protein, proline and antioxidant enzymes (POX and CAT) were increased with ZYMV infection with more enhancements due to AM root colonization. Remarkably, defence pathogenesis-related (PR) genes such as PR-a, PR-b, and PR-10 were quickly expressed in response to AM treatment. Our findings demonstrated the beneficial function of AM fungi in triggering the plant defence against ZYMV as they caused systemic acquired resistance in cucumber plants and supported their potential use in the soil as an environment-friendly method of hindering the spread of pathogenic microorganisms sustainably.
Collapse
Affiliation(s)
- Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed A Taha
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Nada M Abd El-Moaty
- Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Agricultural Research Center, Giza, Egypt
| | - Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
18
|
Gowtham HG, Hema P, Murali M, Shilpa N, Nataraj K, Basavaraj GL, Singh SB, Aiyaz M, Udayashankar AC, Amruthesh KN. Fungal Endophytes as Mitigators against Biotic and Abiotic Stresses in Crop Plants. J Fungi (Basel) 2024; 10:116. [PMID: 38392787 PMCID: PMC10890593 DOI: 10.3390/jof10020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
The escalating global food demand driven by a gradually expanding human population necessitates strategies to improve agricultural productivity favorably and mitigate crop yield loss caused by various stressors (biotic and abiotic). Biotic stresses are caused by phytopathogens, pests, and nematodes, along with abiotic stresses like salt, heat, drought, and heavy metals, which pose serious risks to food security and agricultural productivity. Presently, the traditional methods relying on synthetic chemicals have led to ecological damage through unintended impacts on non-target organisms and the emergence of microbes that are resistant to them. Therefore, addressing these challenges is essential for economic, environmental, and public health concerns. The present review supports sustainable alternatives, emphasizing the possible application of fungal endophytes as innovative and eco-friendly tools in plant stress management. Fungal endophytes demonstrate capabilities for managing plants against biotic and abiotic stresses via the direct or indirect enhancement of plants' innate immunity. Moreover, they contribute to elevated photosynthesis rates, stimulate plant growth, facilitate nutrient mineralization, and produce bioactive compounds, hormones, and enzymes, ultimately improving overall productivity and plant stress resistance. In conclusion, harnessing the potentiality of fungal endophytes represents a promising approach toward the sustainability of agricultural practices, offering effective alternative solutions to reduce reliance on chemical treatments and address the challenges posed by biotic and abiotic stresses. This approach ensures long-term food security and promotes environmental health and economic viability in agriculture.
Collapse
Affiliation(s)
- H G Gowtham
- Department of Studies and Research in Food Science and Nutrition, KSOU, Mysuru 570006, Karnataka, India
| | - P Hema
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Mahadevamurthy Murali
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - N Shilpa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - K Nataraj
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
- PG Department of Botany, Maharani's Science College for Women, JLB Road, Mysuru 570005, Karnataka, India
| | - G L Basavaraj
- PG Department of Botany, Maharani's Science College for Women, JLB Road, Mysuru 570005, Karnataka, India
| | - Sudarshana Brijesh Singh
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - A C Udayashankar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Kestur Nagaraj Amruthesh
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| |
Collapse
|
19
|
Kim DY, Patel SKS, Rasool K, Lone N, Bhatia SK, Seth CS, Ghodake GS. Bioinspired silver nanoparticle-based nanocomposites for effective control of plant pathogens: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168318. [PMID: 37956842 DOI: 10.1016/j.scitotenv.2023.168318] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Plant pathogens, including bacteria, fungi, and viruses, pose significant challenges to the farming community due to their extensive diversity, the rapidly evolving phenomenon of multi-drug resistance (MDR), and the limited availability of effective control measures. Amid mounting global pressure, particularly from the World Health Organization, to limit the use of antibiotics in agriculture and livestock management, there is increasing consideration of engineered nanomaterials (ENMs) as promising alternatives for antimicrobial applications. Studies focusing on the application of ENMs in the fight against MDR pathogens are receiving increasing attention, driven by significant losses in agriculture and critical knowledge gaps in this crucial field. In this review, we explore the potential contributions of silver nanoparticles (AgNPs) and their nanocomposites in combating plant diseases, within the emerging interdisciplinary arena of nano-phytopathology. AgNPs and their nanocomposites are increasingly acknowledged as promising countermeasures against plant pathogens, owing to their unique physicochemical characteristics and inherent antimicrobial properties. This review explores recent advancements in engineered nanocomposites, highlights their diverse mechanisms for pathogen control, and draws attention to their potential in antibacterial, antifungal, and antiviral applications. In the discussion, we briefly address three crucial dimensions of combating plant pathogens: green synthesis approaches, toxicity-environmental concerns, and factors influencing antimicrobial efficacy. Finally, we outline recent advancements, existing challenges, and prospects in scholarly research to facilitate the integration of nanotechnology across interdisciplinary fields for more effective treatment and prevention of plant diseases.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | | | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nasreena Lone
- School of Allied Healthcare and Sciences, JAIN Deemed University, Whitefield, Bangalore 560066, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
20
|
Kapytina A, Kolchenko M, Kerimbek N, Pozharskiy AS, Nizamdinova G, Taskuzhina A, Adilbayeva K, Khusnitdinova M, Amidullayeva M, Moisseyev R, Kachiyeva Z, Gritsenko D. Distribution of Wheat-Infecting Viruses and Genetic Variability of Wheat Streak Mosaic Virus and Barley Stripe Mosaic Virus in Kazakhstan. Viruses 2024; 16:96. [PMID: 38257796 PMCID: PMC10819362 DOI: 10.3390/v16010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Wheat is an essential cereal crop for the economy and food safety of Kazakhstan. In the present work, a screening of wheat and barley from different regions of Kazakhstan was conducted using newly developed specific primers for reverse transcription PCR and loop-mediated isothermal amplification (LAMP) assays. In total, 82 and 19 of 256 samples of wheat and barley tested positive for wheat streak mosaic virus (WSMV) and barley stripe mosaic virus (BSMV), respectively. A phylogenetic analysis using two independent methods revealed that most of the analyzed isolates had a European origin. Molecular data on the distribution and diversity of cereal viruses in Kazakhstan were obtained for the first time and will help lay a foundation for the implementation of genetics and genomics in wheat phyto-epidemiology in the country.
Collapse
Affiliation(s)
- Anastasiya Kapytina
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.K.); (N.K.); (M.A.); (Z.K.)
| | - Mariya Kolchenko
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.K.); (N.K.); (M.A.); (Z.K.)
| | - Nazym Kerimbek
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.K.); (N.K.); (M.A.); (Z.K.)
- Department of Molecular Biology and Genetics, Al Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Alexandr S. Pozharskiy
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.K.); (N.K.); (M.A.); (Z.K.)
| | - Gulnaz Nizamdinova
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.K.); (N.K.); (M.A.); (Z.K.)
| | - Aisha Taskuzhina
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.K.); (N.K.); (M.A.); (Z.K.)
- Department of Molecular Biology and Genetics, Al Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Kamila Adilbayeva
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.K.); (N.K.); (M.A.); (Z.K.)
| | - Marina Khusnitdinova
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.K.); (N.K.); (M.A.); (Z.K.)
| | - Malika Amidullayeva
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.K.); (N.K.); (M.A.); (Z.K.)
| | - Ruslan Moisseyev
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.K.); (N.K.); (M.A.); (Z.K.)
- Department of Molecular Biology and Genetics, Al Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Zulfiya Kachiyeva
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.K.); (N.K.); (M.A.); (Z.K.)
- Research Institute of Applied and Fundamental Medicine, Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Dilyara Gritsenko
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.K.); (N.K.); (M.A.); (Z.K.)
| |
Collapse
|
21
|
Tatineni S, Alexander J, Kovacs F. The HC-Pro cistron of Triticum mosaic virus is dispensable for systemic infection in wheat but is required for symptom phenotype and efficient genome amplification. Virus Res 2024; 339:199277. [PMID: 38008221 PMCID: PMC10730876 DOI: 10.1016/j.virusres.2023.199277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
Triticum mosaic virus (TriMV), the type species of the genus Poacevirus in the family Potyviridae, is an economically important wheat curl mite-transmitted wheat-infecting virus in the Great Plains region of the USA. In this study, the functional genomics of helper component-proteinase (HC-Pro) encoded by TriMV was examined using a reverse genetics approach. TriMV with complete deletion of HC-Pro cistron elicited systemic infection in wheat, indicating that HC-Pro cistron is dispensable for TriMV systemic infection. However, TriMV lacking HC-Pro caused delayed systemic infection with mild symptoms that resulted in little or no stunting of plants with a significant reduction in the accumulation of genomic RNA copies and coat protein (CP). Sequential deletion mutagenesis from the 5' end of HC-Pro cistron in the TriMV genome revealed that deletions within amino acids 3 to 25, except for amino acids 3 and 4, elicited mild symptoms with reduced accumulation of genomic RNA and CP. Surprisingly, TriMV with deletion of amino acids 3 to 50 or 3 to 125 in HC-Pro elicited severe symptoms with a substantial increase in genomic RNA copies but a drastic reduction in CP accumulation. Additionally, TriMV with heterologous HC-Pro from other potyvirids produced symptom phenotype and genomic RNA accumulation similar to that of TriMV without HC-Pro, suggesting that HC-Pros of other potyvirids were not effective in complementing TriMV in wheat. Our data indicate that HC-Pro is expendable for replication of TriMV but is required for efficient viral genomic RNA amplification and symptom development. The availability of TriMV with various deletions in the HC-Pro cistron will facilitate the examination of the requirement of HC-Pro for wheat curl mite transmission.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA.
| | - Jeffrey Alexander
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Frank Kovacs
- Department of Chemistry, University of Nebraska-Kearney, Kearney, NE 68849, USA
| |
Collapse
|
22
|
Erokhin D, Popletaeva S, Sinelnikov I, Rozhkova A, Shcherbakova L, Dzhavakhiya V. Some Structural Elements of Bacterial Protein MF3 That Influence Its Ability to Induce Plant Resistance to Fungi, Viruses, and Other Plant Pathogens. Int J Mol Sci 2023; 24:16374. [PMID: 38003563 PMCID: PMC10671687 DOI: 10.3390/ijms242216374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The ability of the MF3 protein from Pseudomonas fluorescens to protect plants by inducing their resistance to pathogenic fungi, bacteria, and viruses is well confirmed both in greenhouses and in the field; however, the molecular basis of this phenomenon remains unexplored. To find a relationship between the primary (and spatial) structure of the protein and its target activity, we analyzed the inducing activity of a set of mutants generated by alanine scanning and an alpha-helix deletion (ahD) in the part of the MF3 molecule previously identified by our group as a 29-amino-acid peptide working as the inducer on its own. Testing the mutants' inducing activity using the "tobacco-tobacco mosaic virus" pathosystem revealed that some of them showed an almost threefold (V60A and V62A) or twofold (G51A, L58A, ahD) reduction in inducing activity compared to the wild-type MF3 type. Interestingly, these mutations demonstrated close proximity in the homology model, probably contributing to MF3 reception in a host plant.
Collapse
Affiliation(s)
- Denis Erokhin
- All-Russian Research Institute of Phytopathology, 143050 Bolshie Vyazemy, Russia; (D.E.); (S.P.); (V.D.)
| | - Sophya Popletaeva
- All-Russian Research Institute of Phytopathology, 143050 Bolshie Vyazemy, Russia; (D.E.); (S.P.); (V.D.)
| | - Igor Sinelnikov
- Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119991 Moscow, Russia; (I.S.); (A.R.)
| | - Alexandra Rozhkova
- Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119991 Moscow, Russia; (I.S.); (A.R.)
| | - Larisa Shcherbakova
- All-Russian Research Institute of Phytopathology, 143050 Bolshie Vyazemy, Russia; (D.E.); (S.P.); (V.D.)
| | - Vitaly Dzhavakhiya
- All-Russian Research Institute of Phytopathology, 143050 Bolshie Vyazemy, Russia; (D.E.); (S.P.); (V.D.)
| |
Collapse
|
23
|
Shahriari Z, Su X, Zheng K, Zhang Z. Advances and Prospects of Virus-Resistant Breeding in Tomatoes. Int J Mol Sci 2023; 24:15448. [PMID: 37895127 PMCID: PMC10607384 DOI: 10.3390/ijms242015448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Plant viruses are the main pathogens which cause significant quality and yield losses in tomato crops. The important viruses that infect tomatoes worldwide belong to five genera: Begomovirus, Orthotospovirus, Tobamovirus, Potyvirus, and Crinivirus. Tomato resistance genes against viruses, including Ty gene resistance against begomoviruses, Sw gene resistance against orthotospoviruses, Tm gene resistance against tobamoviruses, and Pot 1 gene resistance against potyviruses, have been identified from wild germplasm and introduced into cultivated cultivars via hybrid breeding. However, these resistance genes mainly exhibit qualitative resistance mediated by single genes, which cannot protect against virus mutations, recombination, mixed-infection, or emerging viruses, thus posing a great challenge to tomato antiviral breeding. Based on the epidemic characteristics of tomato viruses, we propose that future studies on tomato virus resistance breeding should focus on rapidly, safely, and efficiently creating broad-spectrum germplasm materials resistant to multiple viruses. Accordingly, we summarized and analyzed the advantages and characteristics of the three tomato antiviral breeding strategies, including marker-assisted selection (MAS)-based hybrid breeding, RNA interference (RNAi)-based transgenic breeding, and CRISPR/Cas-based gene editing. Finally, we highlighted the challenges and provided suggestions for improving tomato antiviral breeding in the future using the three breeding strategies.
Collapse
Affiliation(s)
- Zolfaghar Shahriari
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
- Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz 617-71555, Iran
| | - Xiaoxia Su
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| | - Kuanyu Zheng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| |
Collapse
|
24
|
Liu X, Wang Y, Han L, Xia Y, Xie J. A virus induces alterations in root morphology while exerting minimal effects on the rhizosphere and endosphere microorganisms in rice. FEMS Microbiol Ecol 2023; 99:fiad113. [PMID: 37742208 DOI: 10.1093/femsec/fiad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
The highly destructive southern rice black-streaked dwarf virus (SRBSDV) causes significant losses in rice production. To understand its impact on rice root, we studied fibrous root development and root microbiota variation (rhizosphere and endosphere) after SRBSDV infection. SRBSDV infection reduced the number and length of fibrous roots in rice. Interestingly, the rhizosphere had higher bacterial diversity and abundance at the initial (0 days) and 30-day postinfection stages, while 30-day-old roots showed increased diversity and abundance. However, there were no significant differences in microbiota diversity between infected and noninfected rice plants. The major rhizosphere microbiota included Proteobacteria, Bacteroidota, Acidobacteriota, and Planctomycetota, comprising about 80% of the community. The endosphere was dominated by Proteobacteria and Cyanobacteria, constituting over 90%, with Bacteroidota as the next most prominent group. Further, we identified differentially expressed genes related to plant-pathogen interactions, plant hormone signal, and ABC transporters, potentially affecting root morphology. Notably, specific bacteria (e.g. Inquilinus and Actinoplanes) showed correlations with these pathways. In conclusion, SRBSDV primarily influences root growth through host metabolism, rather than exerting direct effects on the root microbiota. These insights into the interactions among the pathogen, rice plant, and associated microbiota could have implications for managing SRBSDV's detrimental effects on rice production.
Collapse
Affiliation(s)
- Xuewei Liu
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| | - Yirong Wang
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| | - Lijuan Han
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| | - Yuxian Xia
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| | - Jiaqin Xie
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| |
Collapse
|
25
|
Andika IB, Tian M, Bian R, Cao X, Luo M, Kondo H, Sun L. Cross-Kingdom Interactions Between Plant and Fungal Viruses. Annu Rev Virol 2023; 10:119-138. [PMID: 37406341 DOI: 10.1146/annurev-virology-111821-122539] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The large genetic and structural divergences between plants and fungi may hinder the transmission of viruses between these two kingdoms to some extent. However, recent accumulating evidence from virus phylogenetic analyses and the discovery of naturally occurring virus cross-infection suggest the occurrence of past and current transmissions of viruses between plants and plant-associated fungi. Moreover, artificial virus inoculation experiments showed that diverse plant viruses can multiply in fungi and vice versa. Thus, virus cross-infection between plants and fungi may play an important role in the spread, emergence, and evolution of both plant and fungal viruses and facilitate the interaction between them. In this review, we summarize current knowledge related to cross-kingdom virus infection in plants and fungi and further discuss the relevance of this new virological topic in the context of understanding virus spread and transmission in nature as well as developing control strategies for crop plant diseases.
Collapse
Affiliation(s)
- Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China;
| | - Mengyuan Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China;
| | - Ruiling Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China;
| | - Xinran Cao
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China;
| | - Ming Luo
- College of Agronomy, Xinjiang Agricultural University, Urumqi, China
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China;
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| |
Collapse
|
26
|
Jovanović I, Frantová N, Zouhar J. A sword or a buffet: plant endomembrane system in viral infections. FRONTIERS IN PLANT SCIENCE 2023; 14:1226498. [PMID: 37636115 PMCID: PMC10453817 DOI: 10.3389/fpls.2023.1226498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
The plant endomembrane system is an elaborate collection of membrane-bound compartments that perform distinct tasks in plant growth and development, and in responses to abiotic and biotic stresses. Most plant viruses are positive-strand RNA viruses that remodel the host endomembrane system to establish intricate replication compartments. Their fundamental role is to create optimal conditions for viral replication, and to protect replication complexes and the cell-to-cell movement machinery from host defenses. In addition to the intracellular antiviral defense, represented mainly by RNA interference and effector-triggered immunity, recent findings indicate that plant antiviral immunity also includes membrane-localized receptor-like kinases that detect viral molecular patterns and trigger immune responses, which are similar to those observed for bacterial and fungal pathogens. Another recently identified part of plant antiviral defenses is executed by selective autophagy that mediates a specific degradation of viral proteins, resulting in an infection arrest. In a perpetual tug-of-war, certain host autophagy components may be exploited by viral proteins to support or protect an effective viral replication. In this review, we present recent advances in the understanding of the molecular interplay between viral components and plant endomembrane-associated pathways.
Collapse
Affiliation(s)
- Ivana Jovanović
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Nicole Frantová
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jan Zouhar
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
27
|
Jiang T, Zhou T. Unraveling the Mechanisms of Virus-Induced Symptom Development in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2830. [PMID: 37570983 PMCID: PMC10421249 DOI: 10.3390/plants12152830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Plant viruses, as obligate intracellular parasites, induce significant changes in the cellular physiology of host cells to facilitate their multiplication. These alterations often lead to the development of symptoms that interfere with normal growth and development, causing USD 60 billion worth of losses per year, worldwide, in both agricultural and horticultural crops. However, existing literature often lacks a clear and concise presentation of the key information regarding the mechanisms underlying plant virus-induced symptoms. To address this, we conducted a comprehensive review to highlight the crucial interactions between plant viruses and host factors, discussing key genes that increase viral virulence and their roles in influencing cellular processes such as dysfunction of chloroplast proteins, hormone manipulation, reactive oxidative species accumulation, and cell cycle control, which are critical for symptom development. Moreover, we explore the alterations in host metabolism and gene expression that are associated with virus-induced symptoms. In addition, the influence of environmental factors on virus-induced symptom development is discussed. By integrating these various aspects, this review provides valuable insights into the complex mechanisms underlying virus-induced symptoms in plants, and emphasizes the urgency of addressing viral diseases to ensure sustainable agriculture and food production.
Collapse
Affiliation(s)
| | - Tao Zhou
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
28
|
Zou Y, Zhang Y, Liu X, Song H, Cai Q, Wang S, Yi C, Chen J. Research Progress of Benzothiazole and Benzoxazole Derivatives in the Discovery of Agricultural Chemicals. Int J Mol Sci 2023; 24:10807. [PMID: 37445983 DOI: 10.3390/ijms241310807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Benzoxazole and benzothiazole have a broad spectrum of agricultural biological activities, such as antibacterial, antiviral, and herbicidal activities, which are important fused heterocyclic scaffold structures in agrochemical discovery. In recent years, great progress has been made in the research of benzoxazoles and benzothiazoles, especially in the development of herbicides and insecticides. With the widespread use of benzoxazoles and benzothiazoles, there may be more new products containing benzoxazoles and benzothiazoles in the future. We systematically reviewed the application of benzoxazoles and benzothiazoles in discovering new agrochemicals in the past two decades and summarized the antibacterial, fungicidal, antiviral, herbicidal, and insecticidal activities of the active compounds. We also discussed the structural-activity relationship and mechanism of the active compounds. This work aims to provide inspiration and ideas for the discovery of new agrochemicals based on benzoxazole and benzothiazole.
Collapse
Affiliation(s)
- Yue Zou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xing Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongyi Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Qingfeng Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Sheng Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chongfen Yi
- Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Jixiang Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
29
|
Nigam D, Muthukrishnan E, Flores-López LF, Nigam M, Wamaitha MJ. Comparative Genome Analysis of Old World and New World TYLCV Reveals a Biasness toward Highly Variable Amino Acids in Coat Protein. PLANTS (BASEL, SWITZERLAND) 2023; 12:1995. [PMID: 37653912 PMCID: PMC10223811 DOI: 10.3390/plants12101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Begomoviruses, belonging to the family Geminiviridae and the genus Begomovirus, are DNA viruses that are transmitted by whitefly Bemisia tabaci (Gennadius) in a circulative persistent manner. They can easily adapt to new hosts and environments due to their wide host range and global distribution. However, the factors responsible for their adaptability and coevolutionary forces are yet to be explored. Among BGVs, TYLCV exhibits the broadest range of hosts. In this study, we have identified variable and coevolving amino acid sites in the proteins of Tomato yellow leaf curl virus (TYLCV) isolates from Old World (African, Indian, Japanese, and Oceania) and New World (Central and Southern America). We focused on mutations in the coat protein (CP), as it is highly variable and interacts with both vectors and host plants. Our observations indicate that some mutations were accumulating in Old World TYLCV isolates due to positive selection, with the S149N mutation being of particular interest. This mutation is associated with TYLCV isolates that have spread in Europe and Asia and is dominant in 78% of TYLCV isolates. On the other hand, the S149T mutation is restricted to isolates from Saudi Arabia. We further explored the implications of these amino acid changes through structural modeling. The results presented in this study suggest that certain hypervariable regions in the genome of TYLCV are conserved and may be important for adapting to different host environments. These regions could contribute to the mutational robustness of the virus, allowing it to persist in different host populations.
Collapse
Affiliation(s)
- Deepti Nigam
- Institute for Genomics of Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University (TTU), Lubbock, TX 79409, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | | | - Luis Fernando Flores-López
- Departamento de Biotecnología y Bioquímica, Centro de Investigacióny de Estudios Avanzados de IPN (CINVESTAV) Unidad Irapuato, Irapuato 368224, Mexico
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar 246174, Uttarakhand, India
| | - Mwathi Jane Wamaitha
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi P.O. Box 14733-00800, Kenya
| |
Collapse
|
30
|
Li J, Wu X, Liu H, Wang X, Yi S, Zhong X, Wang Y, Wang Z. Identification and Molecular Characterization of a Novel Carlavirus Infecting Chrysanthemum morifolium in China. Viruses 2023; 15:v15041029. [PMID: 37113009 PMCID: PMC10141686 DOI: 10.3390/v15041029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Chrysanthemum (Chrysanthemum morifolium) is an important ornamental and medicinal plant suffering from many viruses and viroids worldwide. In this study, a new carlavirus, tentatively named Chinese isolate of Carya illinoinensis carlavirus 1 (CiCV1-CN), was identified from chrysanthemum plants in Zhejiang Province, China. The genome sequence of CiCV1-CN was 8795 nucleotides (nt) in length, with a 68-nt 5'-untranslated region (UTR) and a 76-nt 3'-UTR, which contained six predicted open reading frames (ORFs) that encode six corresponding proteins of various sizes. Phylogenetic analyses based on full-length genome and coat protein sequences revealed that CiCV1-CN is in an evolutionary branch with chrysanthemum virus R (CVR) in the Carlavirus genus. Pairwise sequence identity analysis showed that, except for CiCV1, CiCV1-CN has the highest whole-genome sequence identity of 71.3% to CVR-X6. At the amino acid level, the highest identities of predicted proteins encoded by the ORF1, ORF2, ORF3, ORF4, ORF5, and ORF6 of CiCV1-CN were 77.1% in the CVR-X21 ORF1, 80.3% in the CVR-X13 ORF2, 74.8% in the CVR-X21 ORF3, 60.9% in the CVR-BJ ORF4, 90.2% in the CVR-X6 and CVR-TX ORF5s, and 79.4% in the CVR-X21 ORF6. Furthermore, we also found a transient expression of the cysteine-rich protein (CRP) encoded by the ORF6 of CiCV1-CN in Nicotiana benthamiana plants using a potato virus X-based vector, which can result in a downward leaf curl and hypersensitive cell death over the time course. These results demonstrated that CiCV1-CN is a pathogenic virus and C. morifolium is a natural host of CiCV1.
Collapse
Affiliation(s)
- Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xiaoyin Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Hui Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaomei Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Shaokui Yi
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xueting Zhong
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| |
Collapse
|
31
|
Majumdar A, Sharma A, Belludi R. Natural and Engineered Resistance Mechanisms in Plants against Phytoviruses. Pathogens 2023; 12:619. [PMID: 37111505 PMCID: PMC10143959 DOI: 10.3390/pathogens12040619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Plant viruses, as obligate intracellular parasites, rely exclusively on host machinery to complete their life cycle. Whether a virus is pathogenic or not depends on the balance between the mechanisms used by both plants and viruses during the intense encounter. Antiviral defence mechanisms in plants can be of two types, i.e., natural resistance and engineered resistance. Innate immunity, RNA silencing, translational repression, autophagy-mediated degradation, and resistance to virus movement are the possible natural defence mechanisms against viruses in plants, whereas engineered resistance includes pathogen-derived resistance along with gene editing technologies. The incorporation of various resistance genes through breeding programmes, along with gene editing tools such as CRISPR/Cas technologies, holds great promise in developing virus-resistant plants. In this review, different resistance mechanisms against viruses in plants along with reported resistance genes in major vegetable crops are discussed.
Collapse
Affiliation(s)
- Anik Majumdar
- Department of Plant Pathology, College of Agriculture, Punjab Agricultural University, Ludhiana 141004, Punjab, India; (A.M.); (R.B.)
| | - Abhishek Sharma
- Department of Vegetable Science, College of Horticulture and Forestry, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Rakesh Belludi
- Department of Plant Pathology, College of Agriculture, Punjab Agricultural University, Ludhiana 141004, Punjab, India; (A.M.); (R.B.)
| |
Collapse
|