1
|
Zhang YM, Dong WR, Lin CY, Xu WB, Li BZ, Liu GX, Shu MA. Risk assessment of pesticide compounds: IPT and TCZ cause hepatotoxicity, activate stress pathway and affect the composition of intestinal flora in red swamp crayfish (Procambarusclarkii). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123315. [PMID: 38185353 DOI: 10.1016/j.envpol.2024.123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Isoprothiolane (IPT) and tricyclazole (TCZ) are widely used in rice farming and recently in combined rice-fish farming. However, co-cultured animals are affected by these pesticides. To investigate the organismal effects and toxicity of pesticides, crayfish were exposed to 0, 1, 10, or 100 ppt TCZ or IPT for 7 days. Pesticide bioaccumulation, survival rate, metabolic parameters, structure of intestinal flora, and antioxidant-, apoptosis-, and HSP-related gene expression were determined. Pesticide exposure caused bioaccumulation of IPT or TCZ in the hepatopancreas and muscles of crayfish; however, IPT bioaccumulation was higher than that of TCZ. Both groups showed significant changes in hepatopancreatic serum biochemical parameters. Mitochondrial damage and chromosomal agglutination were observed in hepatopancreatic cells exposed to 100 ppt IPT or TCZ. IPT induced more significant changes in serum biochemical parameters than TCZ. The results of intestinal flora showed that Vibro, Flavobacterium, Anaerorhabdus and Shewanella may have potential for use as a bacterial marker of TCZ and IPT. Antioxidant-, apoptosis-, and HSP-related gene expression was disrupted by pesticide exposure, and was more seriously affected by IPT. The results suggest that IPT or TCZ induce hepatopancreatic cell toxicity; however, IPT or TCZ content in dietary crayfish exposed to 1 ppt was below the food safety residue standard. The data indicated that IPT exposure may be more toxic than TCZ exposure in hepatopancreas and intestines and toxicity of organism are alleviated by activating the pathway of stress-response, providing an understanding of pesticide compounds in rice-fish farming and food safety.
Collapse
Affiliation(s)
- Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guang-Xu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Tan B, Zeng Y, Li Y, Tan X, Liu C, Li L, Zhuang W, Li Z. Probing the effects of silicon amendment on combined stressors on rice: Lead pollution and blast fungus (Magnaporthe oryzae) infection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115443. [PMID: 37683428 DOI: 10.1016/j.ecoenv.2023.115443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 08/20/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
As agroecology deteriorates, agricultural production is threatened by the combined stressors of exposure to environmental pollutants and pathogenic microbes. Proper agronomic practices for crop growth management and fertilization require understanding plant tolerance strategies. Both rice blast and heavy metals substantially impair rice crops, while silicon (Si) is an effective amendment to alleviate the combined stressors. Herein, this study was conducted to investigate the rice physiology and pathology perspective on the mechanism of Si alleviation against both lead (Pb) toxicity and Magnaporthe oryzae infection, utilizing pot experiments with inoculation of the virulent Magnaporthe oryzae strain. Exogenous Si reduced the phyto-availability and plant absorption of Pb, resulting in a 73.5% reduction in exchangeable Pb concentration in soil and a 40.23% reduction in rice plants. Furthermore, Si addition boosted the plant antioxidant system by increasing the activities of related enzymes, as the activities of catalase, superoxide dismutase, and polyphenol oxidase were significantly improved while the activity of peroxidase in rice panicles decreased. As a result, an improvement in dry matter quantity by 19.19% was observed compared to treatments without Si application, and the panicle blast severity (PBS) was reduced by 0.4-37.52%. Notwithstanding the interaction between the combined stressors, this study revealed that the speciation of Pb formation in the rhizosphere was the primary contributor to the alleviation of abiotic stresses, whereas the regulation of oxidative stress by enzymatic antioxidants played a dominant role in alleviating Magnaporthe oryzae colonization and impairments. The regulation process may reveal the mechanism of siliceous fertilizer functioning in the paddy system. Thereby the role of exogenous Si in anti-fungal, heavy metal toxicology, and plant physiology needs further study to fully elucidate the role of Si amendment, which is proposed to be considered from the perspective of soil chemistry and plant physiology.
Collapse
Affiliation(s)
- Bo Tan
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, 610065 Chengdu, Sichuan, China
| | - Yue Zeng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, 610065 Chengdu, Sichuan, China
| | - Yihan Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, 610065 Chengdu, Sichuan, China
| | - Xiao Tan
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, 610065 Chengdu, Sichuan, China
| | - Chao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, 610065 Chengdu, Sichuan, China
| | - Longguo Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, 610065 Chengdu, Sichuan, China
| | - Wenhua Zhuang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, 610065 Chengdu, Sichuan, China.
| | - Zhuo Li
- Key Laboratory of Water Saving Agriculture in Hill Areas in Southern China of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, 610066 Chengdu, Sichuan, China
| |
Collapse
|
3
|
Jose RC, Kanchal T, Louis B, Talukdar NC, Chowdhury D. Grain Characteristics, Moisture, and Specific Peptides Produced by Ustilaginoidea virens Contribute to False Smut Disease in Rice ( Oryza sativa L.). Biomolecules 2023; 13:biom13040669. [PMID: 37189416 DOI: 10.3390/biom13040669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 05/17/2023] Open
Abstract
The fungus Ustilaginoidea virens, the causative agent of false smut in rice (Oryza sativa L.), is responsible for one of the severe grain diseases that lead to significant losses worldwide. In this research, microscopic and proteomic analyses were performed by comparing U. virens infected and non-infected grains of the susceptible and resistant rice varieties to provide insights into the molecular and ultrastructural factors involved in false smut formation. Prominent differentially expressed peptide bands and spots were detected due to false smut formation as revealed by sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional gel electrophoresis (2-DE) SDS-PAGE profiles and were identified using liquid chromatography-mass spectrometry (LC-MS/MS). The proteins identified from the resistant grains were involved in diverse biological processes such as cell redox homeostasis, energy, stress tolerance, enzymatic activities, and metabolic pathways. It was found that U. virens produces diverse degrading enzymes such as β-1, 3-endoglucanase, subtilisin-like protease, putative nuclease S1, transaldolase, putative palmitoyl-protein thioesterase, adenosine kinase, and DNase 1 that could discretely alter the host morphophysiology resulting in false smut. The fungus also produced superoxide dismutase, small secreted proteins, and peroxidases during the smut formation. This study revealed that the dimension of rice grain spikes, their elemental composition, moisture content, and the specific peptides produced by the grains and the fungi U. virens play a vital role in the formation of false smut.
Collapse
Affiliation(s)
- Robinson C Jose
- Institute of Advanced Study in Science and Technology, Guwahati 781035, India
- Institute of Bioresources and Sustainable Development (IBSD), Imphal 795001, India
| | - Thangjam Kanchal
- Institute of Bioresources and Sustainable Development (IBSD), Imphal 795001, India
| | - Bengyella Louis
- Department of Plant Sciences, University Park, Pennsylvania State University, 101 Tyson Bldg, State College, PA 16802, USA
| | - Narayan C Talukdar
- Institute of Advanced Study in Science and Technology, Guwahati 781035, India
- Faculty of Science, Assam Down Town University, Guwahati 781026, India
| | - Devasish Chowdhury
- Institute of Advanced Study in Science and Technology, Guwahati 781035, India
| |
Collapse
|
4
|
Li Y, Liu J, Lv P, Mi J, Zhao B. Silicon improves the photosynthetic performance of oat leaves infected with Puccinia graminis f. sp. avenae. FRONTIERS IN PLANT SCIENCE 2022; 13:1037136. [PMID: 36507416 PMCID: PMC9727285 DOI: 10.3389/fpls.2022.1037136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Stem rust, caused by Puccinia graminis f. sp. avenae (Pga) is a key disease affecting oat production worldwide. Silicon (Si) plays an essential role in enhancing plant resistance against pathogens. However, the scientific evidence of Si-mediated stem rust resistance of oat from the photosynthetic perspective has not been reported. The specific objective of this research was to investigate the effects of Si application on disease inhibition, photosynthetic gas exchange parameters, light response parameters, photosynthetic pigments and chlorophyll fluorescence parameters under Pga infection. Our results illustrated that Si application significantly reduced rust severity while the other parameters like net photosynthetic rate (P n), stomatal conductance (Gs), intercellular CO2 concentration (C i) and transpiration rate (T r) were significantly increased. Si application increased maximum photosynthetic rate (P nmax) and light saturation point (LSP), while reduced the dark respiration rate (Rd) and light compensation point (LCP). The results also indicated that Si application significantly increased the activities of maximum fluorescence (F m), variable fluorescence (F v), maximum quantum yield of photosystem II (F v/F m), photochemical quenching (qP), photosynthetic performance index (PI ABS), actual PSII quantum yield (ΦPSII), electron transfer rate (ETR), the absorbed light energy per unit reaction center (ABS/RC) and the dissipated energy per unit reaction center (DIo/RC), whereas it decreased the minimal fluorescence (F o), non-photochemical quenching (NPQ), the absorbed light energy used for electron transfer per unit reaction center (ETo/RC) and the absorbed light energy used for reduction of QA per unit reaction center (TRo/RC). The contents of chlorophyll a, b and carotenoids were also increased due to the change in the activity of parameters due to Si application as mentioned above. In conclusion, the results of the current study suggests that Si imparts tolerance to the stem rust possibly by the underlying mechanisms of improving gas exchange performance, and efficiency of the photochemical compounds in oat leaves.
Collapse
|
5
|
Vu Q, Dossa GS, Mundaca EA, Settele J, Crisol-Martínez E, Horgan FG. Combined Effects of Soil Silicon and Host Plant Resistance on Planthoppers, Blast and Bacterial Blight in Tropical Rice. INSECTS 2022; 13:insects13070604. [PMID: 35886780 PMCID: PMC9318006 DOI: 10.3390/insects13070604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Rice is often attacked by several herbivores and plant pathogens at the same time. Public research has mainly focused on enhancing rice resistance against these biotic stresses by selecting rice lines with resistance genes during breeding programs. However, rice resistance to biotic stresses is also affected by soil nutrients, including available nitrogen and silicon. Nitrogen tends to reduce resistance, but silicon can increase resistance. We assessed the effects of combining soil silicon with host plant resistance against rice planthoppers, blast disease, and bacterial blight disease. We used pure silicon (SiO2) to avoid the confounding effects of nutrients associated with silicates. We also assessed the effects of nitrogenous fertilizer on silicon-augmented resistance to planthoppers. We found that high nitrogen diminishes the capacity of soil silicon and host resistance to reduce planthopper fitness (i.e., nitrogen was antagonistic); but that silicon counters nitrogen-related reductions in rice antixenosis defenses (e.g., repellency) against gravid female planthoppers (i.e., an additive effect of silicon and resistance). Silicon augmented resistance against blast and bacterial blight, but the effects were most apparent on susceptible varieties. Plants infected with bacterial blight generally grew larger in silicon amended soils. We discuss how silicon improves seedling quality by augmenting broad-spectrum resistance. Abstract Soil silicon enhances rice defenses against a range of biotic stresses. However, the magnitude of these effects can depend on the nature of the rice variety. We conducted a series of greenhouse experiments to examine the effects of silicon on planthoppers (Nilaparvata lugens [BPH] and Sogatella furcifera [WBPH]), a leafhopper (Nephotettix virescens [GLH]), blast disease (Magnaporthe grisea) and bacterial blight (Xanthomonas oryzae) in susceptible and resistant rice. We added powdered silica gel (SiO2) to paddy soil at equivalent to 0.25, 1.0, and 4.0 t ha−1. Added silicon reduced BPH nymph settling, but the effect was negligible under high nitrogen. In a choice experiment, BPH egg-laying was lower than untreated controls under all silicon treatments regardless of nitrogen or variety, whereas, in a no-choice experiment, silicon reduced egg-laying on the susceptible but not the resistant (BPH32 gene) variety. Stronger effects in choice experiments suggest that silicon mainly enhanced antixenosis defenses. We found no effects of silicon on WBPH or GLH. Silicon reduced blast damage to susceptible and resistant (Piz, Piz-5 and Pi9 genes) rice. Silicon reduced damage from a virulent strain of bacterial blight but had little effect on a less virulent strain in susceptible and resistant (Xa4, Xa7 and Xa4 + Xa7 genes) varieties. When combined with resistance, silicon had an additive effect in reducing biomass losses to plants infested with bacterial blight (resistance up to 50%; silicon 20%). We discuss how silicon-containing soil amendments can be combined with host resistance to reduce biotic stresses in rice.
Collapse
Affiliation(s)
- Quynh Vu
- Cuulong Delta Rice Research Institute, Tan Thanh, Thoi Lai District, Can Tho 905660, Vietnam;
- Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, 06120 Halle, Germany;
- International Rice Research Institute, Makati 1226, Philippines;
| | | | - Enrique A. Mundaca
- Escuela de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Casilla 7-D, Curicó 3349001, Chile; (E.A.M.); (E.C.-M.)
| | - Josef Settele
- Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, 06120 Halle, Germany;
- German Centre for Integrative Biodiversity Research, Puschstrasse 4, 04103 Leipzig, Germany
- Institute of Biological Sciences, University of the Philippines (UPLB), Los Baños 4031, Philippines
| | - Eduardo Crisol-Martínez
- Escuela de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Casilla 7-D, Curicó 3349001, Chile; (E.A.M.); (E.C.-M.)
- EcoLaVerna Integral Restoration Ecology, Bridestown, Kildinan, T56 P499 County Cork, Ireland
- Association of Fruit and Vegetable Growers of Almeria (COEXPHAL), Carretera de Ronda 11, 04004 Almeria, Spain
| | - Finbarr G. Horgan
- Escuela de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Casilla 7-D, Curicó 3349001, Chile; (E.A.M.); (E.C.-M.)
- EcoLaVerna Integral Restoration Ecology, Bridestown, Kildinan, T56 P499 County Cork, Ireland
- Centre for Pesticide Suicide Prevention, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Correspondence:
| |
Collapse
|
6
|
Advances in Understanding Silicon Transporters and the Benefits to Silicon-Associated Disease Resistance in Plants. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Silicon (Si) is the second most abundant element after oxygen in the earth’s crust and soil. It is available for plant growth and development, and it is considered as quasi-essential for plant growth. The uptake and transport of Si is mediated by Si transporters. With the study of the molecular mechanism of Si uptake and transport in higher plants, different proteins and coding genes with different characteristics have been identified in numerous plants. Therefore, the accumulation, uptake and transport mechanisms of Si in various plants appear to be quite different. Many studies have reported that Si is beneficial for plant survival when challenged by disease, and it can also enhance plant resistance to pathogens, even at low Si accumulation levels. In this review, we discuss the distribution of Si in plants, as well as Si uptake, transport and accumulation, with a focus on recent advances in the study of Si transporters in different plants and the beneficial roles of Si in disease resistance. Finally, the application prospects are reviewed, leading to an exploration of the benefits of Si uptake for plant resistance against pathogens.
Collapse
|
7
|
Wang L, Ning C, Pan T, Cai K. Role of Silica Nanoparticles in Abiotic and Biotic Stress Tolerance in Plants: A Review. Int J Mol Sci 2022; 23:ijms23041947. [PMID: 35216062 PMCID: PMC8872483 DOI: 10.3390/ijms23041947] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
The demand for agricultural crops continues to escalate with the rapid growth of the population. However, extreme climates, pests and diseases, and environmental pollution pose a huge threat to agricultural food production. Silica nanoparticles (SNPs) are beneficial for plant growth and production and can be used as nanopesticides, nanoherbicides, and nanofertilizers in agriculture. This article provides a review of the absorption and transportation of SNPs in plants, as well as their role and mechanisms in promoting plant growth and enhancing plant resistance against biotic and abiotic stresses. In general, SNPs induce plant resistance against stress factors by strengthening the physical barrier, improving plant photosynthesis, activating defensive enzyme activity, increasing anti-stress compounds, and activating the expression of defense-related genes. The effect of SNPs on plants stress is related to the physical and chemical properties (e.g., particle size and surface charge) of SNPs, soil, and stress type. Future research needs to focus on the “SNPs–plant–soil–microorganism” system by using omics and the in-depth study of the molecular mechanisms of SNPs-mediated plant resistance.
Collapse
Affiliation(s)
- Lei Wang
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, China; (L.W.); (C.N.); (T.P.)
- Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Chuanchuan Ning
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, China; (L.W.); (C.N.); (T.P.)
- Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Taowen Pan
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, China; (L.W.); (C.N.); (T.P.)
- Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Kunzheng Cai
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, China; (L.W.); (C.N.); (T.P.)
- Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-38297175
| |
Collapse
|
8
|
Combination of Strobilurin and Triazole Chemicals for the Management of Blast Disease in Mushk Budji -Aromatic Rice. J Fungi (Basel) 2021; 7:jof7121060. [PMID: 34947042 PMCID: PMC8707660 DOI: 10.3390/jof7121060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022] Open
Abstract
Rice blast is considered one of the most important fungal diseases of rice. Although diseases can be managed by using resistant cultivars, the blast pathogen has successfully overcome the single gene resistance in a short period and rendered several varieties susceptible to blast which were otherwise intended to be resistant. As such, chemical control is still the most efficient method of disease control for reducing the losses caused due to diseases. Field experiments were conducted over two successive years, 2018 and 2019, in temperate rice growing areas in northern India. All the fungicides effectively reduced leaf blast incidence and intensity, and neck blast incidence under field conditions. Tricyclazole proved most effective against rice blast and recorded a leaf blast incidence of only 8.41%. Among the combinations of fungicides, azoxystrobin + difenoconazole and azoxystrobin + tebuconazole were highly effective, recording a leaf blast incidence of 9.19 and 10.40%, respectively. The chemical combination mancozeb + carbendazim proved less effective in controlling the blast and it recorded a disease incidence of 27.61%. A similar trend was followed in neck blast incidence with tricyclazole, azoxystrobin + difenoconazole, and azoxystrobin + tebuconazole showing the highest levels of blast reductions. It is evident from the current study that the tested fungicide combinations can be used as alternatives to tricyclazole which is facing the challenges of fungicide resistance development and other environmental concerns and has been banned from use in India and other countries. The manuscript may provide a guideline of fungicide application to farmers cultivating susceptible varieties of rice.
Collapse
|
9
|
Distribution and diversity of algal communities in rice terrace agroecosystem of a hilly district of southern Assam, North-East India. Trop Ecol 2021. [DOI: 10.1007/s42965-021-00188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Influence of Silicon on Biocontrol Strategies to Manage Biotic Stress for Crop Protection, Performance, and Improvement. PLANTS 2021; 10:plants10102163. [PMID: 34685972 PMCID: PMC8537781 DOI: 10.3390/plants10102163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
Silicon (Si) has never been acknowledged as a vital nutrient though it confers a crucial role in a variety of plants. Si may usually be expressed more clearly in Si-accumulating plants subjected to biotic stress. It safeguards several plant species from disease. It is considered as a common element in the lithosphere of up to 30% of soils, with most minerals and rocks containing silicon, and is classified as a "significant non-essential" element for plants. Plant roots absorb Si, which is subsequently transferred to the aboveground parts through transpiration stream. The soluble Si in cytosol activates metabolic processes that create jasmonic acid and herbivore-induced organic compounds in plants to extend their defense against biotic stressors. The soluble Si in the plant tissues also attracts natural predators and parasitoids during pest infestation to boost biological control, and it acts as a natural insect repellent. However, so far scientists, policymakers, and farmers have paid little attention to its usage as a pesticide. The recent developments in the era of genomics and metabolomics have opened a new window of knowledge in designing molecular strategies integrated with the role of Si in stress mitigation in plants. Accordingly, the present review summarizes the current status of Si-mediated plant defense against insect, fungal, and bacterial attacks. It was noted that the Si-application quenches biotic stress on a long-term basis, which could be beneficial for ecologically integrated strategy instead of using pesticides in the near future for crop improvement and to enhance productivity.
Collapse
|
11
|
Sathe AP, Kumar A, Mandlik R, Raturi G, Yadav H, Kumar N, Shivaraj SM, Jaswal R, Kapoor R, Gupta SK, Sharma TR, Sonah H. Role of silicon in elevating resistance against sheath blight and blast diseases in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:128-139. [PMID: 34102436 DOI: 10.1016/j.plaphy.2021.05.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Rice blast caused by Magnaporthe oryzae and sheath blight caused by Rhizoctonia solani, are the two major diseases of rice that cause enormous losses in rice production worldwide. Identification and utilization of broad-spectrum resistance resources have been considered sustainable and effective strategies. However, the majority of the resistance genes and QTLs identified have often been found to be race-specific, and their resistance is frequently broken down due to continuous exposure to the pathogen. Therefore, integrated approaches to improve plant resistance against such devastating pathogen have great importance. Silicon (Si), a beneficial element for plant growth, has shown to provide a prophylactic effect against many pathogens. The application of Si helps the plants to combat the disease-causing pathogens, either through its deposition in different parts of the plant or through modulation/induction of specific defense genes by yet an unknown mechanism. Some reports have shown that Si imparts resistance to rice blast and sheath blight. The present review summarizes the mechanism of Si transport and deposition and its effect on rice growth and development. A special emphasis has been given to explore the existing evidence showing Si mediated blast and sheath blight resistance and the mechanism involved in resistance. This review will help to understand the prophylactic effects of Si against sheath blight and blast disease at the mechanical, physiological, and genetic levels. The information provided here will help develop a strategy to explore Si derived benefits for sustainable rice production.
Collapse
Affiliation(s)
| | - Amit Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Mohali, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Mohali, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Himanshu Yadav
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Nirbhay Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - S M Shivaraj
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Ritu Kapoor
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | | | - Tilak Raj Sharma
- Department of Crop Science, Indian Council of Agriculture Research (ICAR), New Delhi, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, India.
| |
Collapse
|
12
|
Hong DK, Talha J, Yao Y, Zou ZY, Fu HY, Gao SJ, Xie Y, Wang JD. Silicon enhancement for endorsement of Xanthomonas albilineans infection in sugarcane. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112380. [PMID: 34058676 DOI: 10.1016/j.ecoenv.2021.112380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 05/11/2023]
Abstract
Silicon (Si) is considered to be a plant growth and development regulator element as well as provide the regulatory response against various biotic stressors. However, the potential mechanism of Si enhancement to regulate plant disease resistance remains to be studied. Therefore, the current study evaluated the effects of Si application on the performance of sugarcane against Xanthomonas albilineans (Xa) infection. Si was applied exogenously (0, 3.85 and 7.70 g Si/kg soil) and the results show that plant height, stem circumference and leaf width of siliconized sugarcane have been improved, which effectively reduced the disease index (0.17-0.21) and incidence (58.2%-69.1%) after Xa infection. Lowest values of MDA (348.5 nmol g-1 FW) and H2O2 (3539.4 mmol/L) were observed in 7.70 g Si/kg soil followed by in 3.85 g Si/kg soil (MDA: 392.6 nmol g-1 FW and H2O2: 3134.6 mmol/L) than that of the control. Whereas, PAL enzyme activity (50.8 mmol/L), JA (230.2 mmol/L) and SA (2.7 ug mL-1) contents were significantly higher in 7.70 g Si/kg soil followed by in 3.85 g Si/kg soil (PAL: 46.3 mmol/L, JA: 182.7 mmol/L and SA: 2.4 ug mL-1) as compared to control. The lower MDA, H2O2 level and higher enzymatic activities were associated with the highest expression levels of their metabolic pathway associated genes i.e., ShMAPK1, ShLOX, ShPAL, ShAOS, ShAOC, ShC4H, ShCAT, Sh4CL and ShNPR1 (22.08, 15.56, 10.42, 3.35, 2.54, 2.14, 1.82, 1.67 and 1.22 folds, respectively) in 7.70 g Si/kg soil as compared to other experimental units and control. Overall, the results of current study indicates that siliconized sugarcane more actively regulates disease resistance through modulation of growth and MDA, H2O2, SA and JA associated metabolic pathways.
Collapse
Affiliation(s)
- Ding-Kai Hong
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Javed Talha
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yang Yao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhi-Yuan Zou
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuan Xie
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jin-da Wang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
13
|
Rajput VD, Minkina T, Feizi M, Kumari A, Khan M, Mandzhieva S, Sushkova S, El-Ramady H, Verma KK, Singh A, van Hullebusch ED, Singh RK, Jatav HS, Choudhary R. Effects of Silicon and Silicon-Based Nanoparticles on Rhizosphere Microbiome, Plant Stress and Growth. BIOLOGY 2021; 10:791. [PMID: 34440021 PMCID: PMC8389584 DOI: 10.3390/biology10080791] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
Silicon (Si) is considered a non-essential element similar to cadmium, arsenic, lead, etc., for plants, yet Si is beneficial to plant growth, so it is also referred to as a quasi-essential element (similar to aluminum, cobalt, sodium and selenium). An element is considered quasi-essential if it is not required by plants but its absence results in significant negative consequences or anomalies in plant growth, reproduction and development. Si is reported to reduce the negative impacts of different stresses in plants. The significant accumulation of Si on the plant tissue surface is primarily responsible for these positive influences in plants, such as increasing antioxidant activity while reducing soil pollutant absorption. Because of these advantageous properties, the application of Si-based nanoparticles (Si-NPs) in agricultural and food production has received a great deal of interest. Furthermore, conventional Si fertilizers are reported to have low bioavailability; therefore, the development and implementation of nano-Si fertilizers with high bioavailability could be crucial for viable agricultural production. Thus, in this context, the objectives of this review are to summarize the effects of both Si and Si-NPs on soil microbes, soil properties, plant growth and various plant pathogens and diseases. Si-NPs and Si are reported to change the microbial colonies and biomass, could influence rhizospheric microbes and biomass content and are able to improve soil fertility.
Collapse
Affiliation(s)
- Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia; (T.M.); (A.K.); (S.M.); (S.S.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia; (T.M.); (A.K.); (S.M.); (S.S.)
| | - Morteza Feizi
- Department of Soil Science, University of Kurdistan, Sanandaj 66177-15175, Iran;
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia; (T.M.); (A.K.); (S.M.); (S.S.)
| | - Masudulla Khan
- School of Life and Basic Sciences, SIILAS, Jaipur National University, Jaipur 302017, India;
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia; (T.M.); (A.K.); (S.M.); (S.S.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia; (T.M.); (A.K.); (S.M.); (S.S.)
| | - Hassan El-Ramady
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | | | - Abhishek Singh
- Department of Agricultural Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India;
| | - Eric D. van Hullebusch
- CNRS, Institut de Physique du Globe de Paris, Université de Paris, F-75005 Paris, France;
| | - Rupesh Kumar Singh
- Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Hanuman Singh Jatav
- Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University, Jaipur 303329, India;
| | - Ravish Choudhary
- Division of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| |
Collapse
|
14
|
Song XP, Verma KK, Tian DD, Zhang XQ, Liang YJ, Huang X, Li CN, Li YR. Exploration of silicon functions to integrate with biotic stress tolerance and crop improvement. Biol Res 2021; 54:19. [PMID: 34238380 PMCID: PMC8265040 DOI: 10.1186/s40659-021-00344-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/29/2021] [Indexed: 12/04/2022] Open
Abstract
In the era of climate change, due to increased incidences of a wide range of various environmental stresses, especially biotic and abiotic stresses around the globe, the performance of plants can be affected by these stresses. After oxygen, silicon (Si) is the second most abundant element in the earth's crust. It is not considered as an important element, but can be thought of as a multi-beneficial quasi-essential element for plants. This review on silicon presents an overview of the versatile role of this element in a variety of plants. Plants absorb silicon through roots from the rhizospheric soil in the form of silicic or monosilicic acid. Silicon plays a key metabolic function in living organisms due to its relative abundance in the atmosphere. Plants with higher content of silicon in shoot or root are very few prone to attack by pests, and exhibit increased stress resistance. However, the more remarkable impact of silicon is the decrease in the number of seed intensities/soil-borne and foliar diseases of major plant varieties that are infected by biotrophic, hemi-biotrophic and necrotrophic pathogens. The amelioration in disease symptoms are due to the effect of silicon on a some factors involved in providing host resistance namely, duration of incubation, size, shape and number of lesions. The formation of a mechanical barrier beneath the cuticle and in the cell walls by the polymerization of silicon was first proposed as to how this element decreases plant disease severity. The current understanding of how this element enhances resistance in plants subjected to biotic stress, the exact functions and mechanisms by which it modulates plant biology by potentiating the host defence mechanism needs to be studied using genomics, metabolomics and proteomics. The role of silicon in helping the plants in adaption to biotic stress has been discussed which will help to plan in a systematic way the development of more sustainable agriculture for food security and safety in the future.
Collapse
Affiliation(s)
- Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Krishan K Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Dan-Dan Tian
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Xiao-Qiu Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Yong-Jian Liang
- Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, 532200, Guangxi, China
| | - Xing Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Chang-Ning Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China.
| |
Collapse
|
15
|
Silicon supplementation improves early blight resistance in Lycopersicon esculentum Mill . by modulating the expression of defense-related genes and antioxidant enzymes. 3 Biotech 2021; 11:232. [PMID: 33968576 DOI: 10.1007/s13205-021-02789-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/12/2021] [Indexed: 01/24/2023] Open
Abstract
Early blight is the most devastating disease in tomato which causes huge yield losses across the globe. Hence, development of specific, efficient and ecofriendly tools are required to increase the disease resistance in tomato plants. Here, we systematically investigate the defensive role and priming effect of silicon (Si) in tomato plants under control and infected conditions. Based on the results, Si-treated tomato plants showed improved resistance to Alternaria solani as there was delay in symptoms and reduced disease severity than non-Si-treated plants. To further examine the Si-mediated molecular priming in tomato plants, expression profiling of defense-related genes like PR1, PR2, WRKYII, PR3, LOXD and JERF3 was studied in control, Si-supplemented, A. solani-inoculated and Si + A. solani-inoculated plants. Interestingly, Si significantly increased the expression of jasmonic acid (JA) marker genes (PR3, LOXD and JERF3) than salicylic acid (SA) marker genes (PR1, PR2 and WRKYII). However, Si + A. solani-inoculated plants showed higher expression levels of defence genes except WRKYII than A. solani-inoculated or Si-treated plants. Furthermore, pre-supplementation of Si to A. solani-infected tomato plants showed increased activity of antioxidant enzymes viz. superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR) and peroxidase (POD) than control, Si-treated and A. solani-inoculated plants. Altogether, present study highlights the defensive role of Si in tomato plants in response to A. solani by increasing not only the transcript levels of defense signature genes, but also the activity of antioxidant enzymes.
Collapse
|
16
|
Mandlik R, Thakral V, Raturi G, Shinde S, Nikolić M, Tripathi DK, Sonah H, Deshmukh R. Significance of silicon uptake, transport, and deposition in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6703-6718. [PMID: 32592476 DOI: 10.1093/jxb/eraa301] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/20/2020] [Indexed: 05/28/2023]
Abstract
Numerous studies have shown the beneficial effects of silicon (Si) for plant growth, particularly under stress conditions, and hence a detailed understanding of the mechanisms of its uptake, subsequent transport, and accumulation in different tissues is important. Here, we provide a thorough review of our current knowledge of how plants benefit from Si supplementation. The molecular mechanisms involved in Si transport are discussed and we highlight gaps in our knowledge, particularly with regards to xylem unloading and transport into heavily silicified cells. Silicification of tissues such as sclerenchyma, fibers, storage tissues, the epidermis, and vascular tissues are described. Silicon deposition in different cell types, tissues, and intercellular spaces that affect morphological and physiological properties associated with enhanced plant resilience under various biotic and abiotic stresses are addressed in detail. Most Si-derived benefits are the result of interference in physiological processes, modulation of stress responses, and biochemical interactions. A better understanding of the versatile roles of Si in plants requires more detailed knowledge of the specific mechanisms involved in its deposition in different tissues, at different developmental stages, and under different environmental conditions.
Collapse
Affiliation(s)
- Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Vandana Thakral
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Suhas Shinde
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV, USA
| | - Miroslav Nikolić
- Plant Nutrition Research Group, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Durgesh K Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, UP, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
17
|
Ahanger MA, Bhat JA, Siddiqui MH, Rinklebe J, Ahmad P. Integration of silicon and secondary metabolites in plants: a significant association in stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6758-6774. [PMID: 32585681 DOI: 10.1093/jxb/eraa291] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/16/2020] [Indexed: 05/03/2023]
Abstract
As sessile organisms, plants are unable to avoid being subjected to environmental stresses that negatively affect their growth and productivity. Instead, they utilize various mechanisms at the morphological, physiological, and biochemical levels to alleviate the deleterious effects of such stresses. Amongst these, secondary metabolites produced by plants represent an important component of the defense system. Secondary metabolites, namely phenolics, terpenes, and nitrogen-containing compounds, have been extensively demonstrated to protect plants against multiple stresses, both biotic (herbivores and pathogenic microorganisms) and abiotic (e.g. drought, salinity, and heavy metals). The regulation of secondary metabolism by beneficial elements such as silicon (Si) is an important topic. Silicon-mediated alleviation of both biotic and abiotic stresses has been well documented in numerous plant species. Recently, many studies have demonstrated the involvement of Si in strengthening stress tolerance through the modulation of secondary metabolism. In this review, we discuss Si-mediated regulation of the synthesis, metabolism, and modification of secondary metabolites that lead to enhanced stress tolerance, with a focus on physiological, biochemical, and molecular aspects. Whilst mechanisms involved in Si-mediated regulation of pathogen resistance via secondary metabolism have been established in plants, they are largely unknown in the case of abiotic stresses, thus leaving an important gap in our current knowledge.
Collapse
Affiliation(s)
| | - Javaid Akhter Bhat
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Manzer H Siddiqui
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal, Germany
- Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| |
Collapse
|
18
|
Islam W, Tayyab M, Khalil F, Hua Z, Huang Z, Chen HYH. Silicon-mediated plant defense against pathogens and insect pests. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104641. [PMID: 32711774 DOI: 10.1016/j.pestbp.2020.104641] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/23/2020] [Accepted: 06/19/2020] [Indexed: 05/20/2023]
Abstract
Plant diseases and insect pests are one of the major limiting factors that reduce crop production worldwide. Silicon (Si) is one of the most abundant elements in the lithosphere and has a positive impact on plant health by effectively mitigating biotic and abiotic stresses. It also enhances plant resistance against insect pests and fungal, bacterial, and viral diseases. Therefore, this review critically converges its focus upon Si-mediated physical, biochemical, and molecular mechanisms in plant defense against pathogens and insect pests. It further explains Si-modulated interactive phytohormone signaling and enzymatic production and their involvement in inducing resistance against biotic stresses. Furthermore, this review highlights the recent research accomplishments which have successfully revealed the active role of Si in protecting plants against insect herbivory and various viral, bacterial, and fungal diseases. The article explores the potential in enhancing Si-mediated plant resistance against various economically important diseases and insect pests, further shedding light upon future issues regarding the role of Si in defense against pathogens and insect pests.
Collapse
Affiliation(s)
- Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China
| | - Muhammad Tayyab
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Farghama Khalil
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhang Hua
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China.
| | - Han Y H Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China; Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
19
|
GanoCare® Improves Oil Palm Growth and Resistance against Ganoderma Basal Stem Rot Disease in Nursery and Field Trials. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3063710. [PMID: 32420335 PMCID: PMC7204346 DOI: 10.1155/2020/3063710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/07/2019] [Indexed: 11/30/2022]
Abstract
Basal stem rot (BSR) caused by Ganoderma boninense is a major threat to sustainable oil palm production especially in Southeast Asia and has brought economic losses to the oil palm industry around the world. With no definitive cure at present, this study introduces a new fertilizer technology called GanoCare®, as an effort to suppress BSR incidence in oil palm. Experiments were carried out to evaluate the effect of GanoCare® on growth, physiology, and BSR disease suppression using sitting technique in the oil palm nursery stage. A follow-up using similar treatments was carried out in the field to test on severity of Ganoderma using baiting technique under natural condition. Treatments tested were 10 g/month and 30 g/three months given as pretreatment only or continuous treatment. Results showed that GanoCare® increased the height, bulb diameter, leaf area, chlorophyll content, photosynthesis rate, and fresh and dry weight of the leaf, bole, and root of oil palm seedlings in the nursery trial. Seedlings treated with GanoCare® exhibited reduced percentage of disease severity, incidence, and dead seedlings, compared to the control. In nursery and field, lowest percentage of dead seedlings due to Ganoderma was found in seedlings given combination of pretreatment and continuous treatment of 30 g/three months (T4) with 5.56 and 6.67%, while control seedlings significantly marked the maximum percentage of 94.45 and 93.33%. The most successful treatment in both nursery and field was T4 with disease reductions of 77.78 and 82.36%, respectively, proving that nutrients contained in GanoCare® are essential in allowing better development of a strong defense system in the seedlings.
Collapse
|
20
|
Guerriero G, Law C, Stokes I, Moore KL, Exley C. Rough and tough. How does silicic acid protect horsetail from fungal infection? J Trace Elem Med Biol 2018; 47:45-52. [PMID: 29544807 DOI: 10.1016/j.jtemb.2018.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 01/09/2023]
Abstract
Horsetail (Equisetum arvense) plants grew healthily for 10 weeks under both Si-deficient and Si-replete conditions. After 10 weeks, plants grown under Si-deficient conditions succumbed to fungal infection. We have used NanoSIMS and fluorescence microscopy to investigate silica deposition in the tissues of these plants. Horsetail grown under Si-deficient conditions did not deposit identifiable amounts of silica in their tissues. Plants grown under Si-replete conditions accumulated silica throughout their tissues and especially in the epidermis of the outer side of the leaf and the furrow region of the stem where it was continuous and often, as a double layer suggestive of a barrier function. We have previously shown, both in vivo (in horsetail and thale cress) and in vitro (using an undersaturated solution of Si(OH)4), that callose is a "catalyst" of plant silica deposition. Here we support this finding by comparing the deposition of silica to that of callose and by showing that they are co-localized. We propose the existence of a synergistic mechanical protection by callose and silica against pathogens in horsetail, whereby the induction of callose synthesis and deposition is the first, biochemical line of defence and callose-induced precipitation of silica is the second, adventitious mechanical barrier.
Collapse
Affiliation(s)
- Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch/Alzette, Luxembourg
| | - Chinnoi Law
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Stoke-on-Trent, UK
| | - Ian Stokes
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Stoke-on-Trent, UK
| | - Katie L Moore
- School of Materials and Photon Science Institute, University of Manchester, Oxford Road, Manchester, UK
| | - Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Stoke-on-Trent, UK.
| |
Collapse
|
21
|
Debona D, Rodrigues FA, Datnoff LE. Silicon's Role in Abiotic and Biotic Plant Stresses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:85-107. [PMID: 28504920 DOI: 10.1146/annurev-phyto-080516-035312] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Silicon (Si) plays a pivotal role in the nutritional status of a wide variety of monocot and dicot plant species and helps them, whether directly or indirectly, counteract abiotic and/or biotic stresses. In general, plants with a high root or shoot Si concentration are less prone to pest attack and exhibit enhanced tolerance to abiotic stresses such as drought, low temperature, or metal toxicity. However, the most remarkable effect of Si is the reduction in the intensities of a number of seedborne, soilborne, and foliar diseases in many economically important crops that are caused by biotrophic, hemibiotrophic, and necrotrophic plant pathogens. The reduction in disease symptom expression is due to the effect of Si on some components of host resistance, including incubation period, lesion size, and lesion number. The mechanical barrier formed by the polymerization of Si beneath the cuticle and in the cell walls was the first proposed hypothesis to explain how this element reduced the severity of plant diseases. However, new insights have revealed that many plant species supplied with Si have the phenylpropanoid and terpenoid pathways potentiated and have a faster and stronger transcription of defense genes and higher activities of defense enzymes. Photosynthesis and the antioxidant system are also improved for Si-supplied plants. Although the current understanding of how this overlooked element improves plant reaction against pathogen infections, pest attacks, and abiotic stresses has advanced, the exact mechanism(s) by which it modulates plant physiology through the potentiation of host defense mechanisms still needs further investigation at the genomic, metabolomic, and proteomic levels.
Collapse
Affiliation(s)
- Daniel Debona
- Department of Plant Pathology, Laboratory of Host-Pathogen Interaction, Viçosa Federal University, Viçosa, Minas Gerais State, Brazil, 36570-900;
| | - Fabrício A Rodrigues
- Department of Plant Pathology, Laboratory of Host-Pathogen Interaction, Viçosa Federal University, Viçosa, Minas Gerais State, Brazil, 36570-900;
| | - Lawrence E Datnoff
- Department of Plant Pathology & Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803;
| |
Collapse
|
22
|
Wang M, Gao L, Dong S, Sun Y, Shen Q, Guo S. Role of Silicon on Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2017; 8:701. [PMID: 28529517 PMCID: PMC5418358 DOI: 10.3389/fpls.2017.00701] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/18/2017] [Indexed: 05/18/2023]
Abstract
Although silicon (Si) is not recognized as an essential element for general higher plants, it has beneficial effects on the growth and production of a wide range of plant species. Si is known to effectively mitigate various environmental stresses and enhance plant resistance against both fungal and bacterial pathogens. In this review, the effects of Si on plant-pathogen interactions are analyzed, mainly on physical, biochemical, and molecular aspects. In most cases, the Si-induced biochemical/molecular resistance during plant-pathogen interactions were dominated as joint resistance, involving activating defense-related enzymes activates, stimulating antimicrobial compound production, regulating the complex network of signal pathways, and activating of the expression of defense-related genes. The most previous studies described an independent process, however, the whole plant resistances were rarely considered, especially the interaction of different process in higher plants. Si can act as a modulator influencing plant defense responses and interacting with key components of plant stress signaling systems leading to induced resistance. Priming of plant defense responses, alterations in phytohormone homeostasis, and networking by defense signaling components are all potential mechanisms involved in Si-triggered resistance responses. This review summarizes the roles of Si in plant-microbe interactions, evaluates the potential for improving plant resistance by modifying Si fertilizer inputs, and highlights future research concerning the role of Si in agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
23
|
Idan AA, Sijam K, Kadir J, Rashid TS, Awla HK, Alsultan W. Biological Control of <i>Pyricularia oryzae</i> Using Antifungal Compounds Produced by <i>Aspergillus niger</i>. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ajps.2017.810166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Chen TK, Yang HT, Fang SC, Lien YC, Yang TT, Ko SS. Hybrid-Cut: An Improved Sectioning Method for Recalcitrant Plant Tissue Samples. J Vis Exp 2016:54754. [PMID: 27911377 PMCID: PMC5226275 DOI: 10.3791/54754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Maintaining plant section integrity is essential for studying detailed anatomical structures at the cellular, tissue, or even organ level. However, some plant cells have rigid cell walls, tough fibers and crystals (calcium oxalate, silica, etc.), and high water content that often disrupt tissue integrity during plant tissue sectioning. This study establishes a simple Hybrid-Cut tissue sectioning method. This protocol modifies a paraffin-based sectioning technique and improves the integrity of tissue sections from different plants. Plant tissues were embedded in paraffin before sectioning in a cryostat at -16 °C. Sectioning under low temperature hardened the paraffin blocks, reduced tearing and scratching, and improved tissue integrity significantly. This protocol was successfully applied to calcium oxalate-rich Phalaenopsis orchid tissues as well as recalcitrant tissues such as reproductive organs and leaves of rice, maize, and wheat. In addition, the high quality of tissue sections from Hybrid-Cut could be used in combination with in situ hybridization (ISH) to provide spatial expression patterns of genes of interest. In conclusion, this protocol is particularly useful for recalcitrant plant tissue containing high crystal or silica content. Good quality tissue sections enable morphological and other biological studies.
Collapse
Affiliation(s)
- Tien-Kuan Chen
- Academia Sinica Biotechnology Center in Southern Taiwan; Agricultural Biotechnology Research Center, Academia Sinica
| | - Hui-Ting Yang
- Academia Sinica Biotechnology Center in Southern Taiwan; Agricultural Biotechnology Research Center, Academia Sinica
| | - Su-Chiung Fang
- Academia Sinica Biotechnology Center in Southern Taiwan; Agricultural Biotechnology Research Center, Academia Sinica
| | - Yi-Chen Lien
- Academia Sinica Biotechnology Center in Southern Taiwan; Agricultural Biotechnology Research Center, Academia Sinica
| | - Ting-Ting Yang
- Academia Sinica Biotechnology Center in Southern Taiwan; Agricultural Biotechnology Research Center, Academia Sinica
| | - Swee-Suak Ko
- Academia Sinica Biotechnology Center in Southern Taiwan; Agricultural Biotechnology Research Center, Academia Sinica;
| |
Collapse
|
25
|
Lavinsky AO, Detmann KC, Reis JV, Ávila RT, Sanglard ML, Pereira LF, Sanglard LMVP, Rodrigues FA, Araújo WL, DaMatta FM. Silicon improves rice grain yield and photosynthesis specifically when supplied during the reproductive growth stage. JOURNAL OF PLANT PHYSIOLOGY 2016; 206:125-132. [PMID: 27744227 DOI: 10.1016/j.jplph.2016.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 05/09/2023]
Abstract
Silicon (Si) has been recognized as a beneficial element to improve rice (Oryza sativa L.) grain yield. Despite some evidence suggesting that this positive effect is observed when Si is supplied along the reproductive growth stage (from panicle initiation to heading), it remains unclear whether its supplementation during distinct growth phases can differentially impact physiological aspects of rice and its yield and the underlying mechanisms. Here, we investigated the effects of additions/removals of Si at different growth stages and their impacts on rice yield components, photosynthetic performance, and expression of genes (Lsi1, Lsi2 and Lsi6) involved in Si distribution within rice shoots. Positive effects of Si on rice production and photosynthesis were manifested when it was specifically supplied during the reproductive growth stage, as demonstrated by: (1) a high crop yield associated with higher grain number and higher 1000-grain weight, whereas the leaf area and whole-plant biomass remained unchanged; (2) an increased sink strength which, in turn, exerted a feed-forward effect on photosynthesis that was coupled with increases in both stomatal conductance and biochemical capacity to fix CO2; (3) higher Si amounts in the developing panicles (and grain husks) in good agreement with a remarkable up-regulation of Lsi6 (and to a lesser extent Lsi1). We suggest that proper levels of Si in these reproductive structures seem to play an as yet unidentified role culminating with higher grain number and size.
Collapse
Affiliation(s)
- Alyne O Lavinsky
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Kelly C Detmann
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Josimar V Reis
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Rodrigo T Ávila
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Matheus L Sanglard
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Lucas F Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Lílian M V P Sanglard
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Fabrício A Rodrigues
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Wagner L Araújo
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
26
|
Araujo L, Paschoalino RS, Rodrigues FÁ. Microscopic Aspects of Silicon-Mediated Rice Resistance to Leaf Scald. PHYTOPATHOLOGY 2016; 106:132-41. [PMID: 26237696 DOI: 10.1094/phyto-04-15-0109-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This study investigated the effect of silicon (Si) on the potentiation of rice resistance against leaf scald at the microscopic level. Rice plants ('Primavera') were grown in a nutrient solution containing 0 (-Si) or 2 mM (+Si) Si. The foliar Si concentration of the +Si plants (3.6 dag/kg) increased in comparison with the -Si plants (0.3 dag/kg). An X-ray microanalysis revealed that the leaf tissue of +Si plants infected with Microdochium oryzae had higher peaks and deposition of insoluble Si than that of -Si plants. The high foliar Si concentration for the +Si plants reduced the expansion of leaf scald lesions. Scanning electron microscopy revealed that fungal hyphae and appressorium-like structures of M. oryzae were more abundant in the leaf surface of -Si plants relative to +Si plants. At both histopathological and ultrastructural levels, fungal hyphae grew abundantly into the leaf tissue of -Si plants. By contrast, rice cell walls were rarely degraded and fungal hyphae were often surrounded by amorphous granular material in the leaf tissue of +Si plants. Conidiophores emerged from stomata 36 h after fungal penetration, and conidia were noticed inside the leaf tissue of the -Si plants in great abundance. The collective results of the present study showed a high concentration and deposition of Si and a considerable deposition of phenolic-like compounds in the leaf tissue of +Si plants. These results indicate that the potentiation of the phenylpropanoid pathway in these plants supplied with Si was favorable for the increase in rice resistance to leaf scald.
Collapse
Affiliation(s)
- Leonardo Araujo
- Universidade Federal de Viçosa, Departamento de Fitopatologia, Laboratório da Interação Planta-Patógeno, Viçosa, Minas Gerais State, CEP 36570-900, Brazil
| | - Rayane Silva Paschoalino
- Universidade Federal de Viçosa, Departamento de Fitopatologia, Laboratório da Interação Planta-Patógeno, Viçosa, Minas Gerais State, CEP 36570-900, Brazil
| | - Fabrício Ávila Rodrigues
- Universidade Federal de Viçosa, Departamento de Fitopatologia, Laboratório da Interação Planta-Patógeno, Viçosa, Minas Gerais State, CEP 36570-900, Brazil
| |
Collapse
|
27
|
Awla HK, Kadir J, Othman R, Rashid TS, Wong MY. Bioactive Compounds Produced by <i>Streptomyces</i> sp. Isolate UPMRS4 and Antifungal Activity against <i>Pyricularia oryzae</i>. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ajps.2016.77103] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Rahman A, Wallis CM, Uddin W. Silicon-Induced Systemic Defense Responses in Perennial Ryegrass Against Infection by Magnaporthe oryzae. PHYTOPATHOLOGY 2015; 105:748-57. [PMID: 25738553 DOI: 10.1094/phyto-12-14-0378-r] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sustainable integrated disease management for gray leaf spot of perennial ryegrass may involve use of plant defense elicitors with compatible traditional fungicides to reduce disease incidence and severity. Silicon (Si) has previously been identified as a potential inducer or modulator of plant defenses against different fungal pathogens. To this end, perennial ryegrass was inoculated with the causal agent of gray leaf spot, Magnaporthe oryzae, when grown in soil that was nonamended or amended with three different levels of calcium silicate (1, 5, or 10 metric tons [t]/ha). When applied at a rate of 5 t/ha, calcium silicate was found to significantly suppress gray leaf spot in perennial ryegrass, including a significant reduction of disease incidence (39.5%) and disease severity (47.3%). Additional studies observed nonpenetrated papillae or cell-wall appositions harboring callose, phenolic autofluorogens, and lignin-associated polyphenolic compounds in grass grown in the Si-amended soil. Regarding defense-associated enzyme levels, only following infection did grass grown in Si-amended soil exhibit greater activities of peroxidase and polyphenol oxidase than equivalent inoculated control plants. Also following infection with M. oryzae, grass levels of several phenolic acids, including chlorogenic acid and flavonoids, and relative expression levels of genes encoding phenylalanine ammonia lyase (PALa and PALb) and lipoxygenase (LOXa) significantly increased in Si-amended plants compared with that of nonamended control plants. These results suggest that Si-mediated increase of host defense responses to fungal pathogens in perennial ryegrass has a great potential to be part of an effective integrated disease management strategy against gray leaf spot development.
Collapse
Affiliation(s)
- Alamgir Rahman
- First and third authors: Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park 16802; and second author: United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Christopher M Wallis
- First and third authors: Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park 16802; and second author: United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Wakar Uddin
- First and third authors: Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park 16802; and second author: United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| |
Collapse
|
29
|
Keutmann IC, Melzer B, Seidel R, Thomann R, Speck T. Review: The Functions of Phytoliths in Land Plants. BIOLOGICALLY-INSPIRED SYSTEMS 2015. [DOI: 10.1007/978-94-017-9398-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Nascimento KJT, Debona D, França SKS, Gonçalves MGM, DaMatta FM, Rodrigues FÁ. Soybean Resistance to Cercospora sojina Infection Is Reduced by Silicon. PHYTOPATHOLOGY 2014; 104:1183-91. [PMID: 24805073 DOI: 10.1094/phyto-02-14-0047-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Frogeye leaf spot, caused by Cercospora sojina, is one of the most important leaf diseases of soybean worldwide. Silicon (Si) is known to increase the resistance of several plant species to pathogens. The cultivars Bossier and Conquista, which are susceptible and resistant, respectively, to frogeye leaf spot, supplied and nonsupplied with Si were examined for the activities of defense enzymes and the concentrations of total soluble phenolics (TSP) and lignin-thioglycolic acid (LTGA) derivatives at 8, 14, and 16 days after inoculation (dai) with C. sojina. The importance of cell wall degrading enzymes (CWDE) to the infection process of C. sojina and the effect of Si on their activities were also determined. Soybean plants were grown in hydroponic culture containing either 0 or 2 mM Si (-Si and +Si, respectively) and noninoculated or C. sojina inoculated. Severity of frogeye leaf spot was higher in cultivar Bossier plants than cultivar Conquista and also in the +Si plants compared with their -Si counterparts. Except for the concentrations of TSP and LTGA derivatives, activities of defense enzymes and the CWDE did not change for +Si noninoculated plants regardless of the cultivar. The activities of lipoxygenases, phenylalanine ammonia-lyases, chitinases, and polyphenoloxidases as well as the activities of CWDE decreased for the +Si inoculated plants. The results from this study demonstrated that defense enzyme activities decreased in soybean plants supplied with Si, which compromised resistance to C. sojina infection.
Collapse
|
31
|
Ning D, Song A, Fan F, Li Z, Liang Y. Effects of slag-based silicon fertilizer on rice growth and brown-spot resistance. PLoS One 2014; 9:e102681. [PMID: 25036893 PMCID: PMC4103847 DOI: 10.1371/journal.pone.0102681] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 06/21/2014] [Indexed: 11/19/2022] Open
Abstract
It is well documented that slag-based silicon fertilizers have beneficial effects on the growth and disease resistance of rice. However, their effects vary greatly with sources of slag and are closely related to availability of silicon (Si) in these materials. To date, few researches have been done to compare the differences in plant performance and disease resistance between different slag-based silicon fertilizers applied at the same rate of plant-available Si. In the present study both steel and iron slags were chosen to investigate their effects on rice growth and disease resistance under greenhouse conditions. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the effects of slags on ultrastructural changes in leaves of rice naturally infected by Bipolaris oryaze, the causal agent of brown spot. The results showed that both slag-based Si fertilizers tested significantly increased rice growth and yield, but decreased brown spot incidence, with steel slag showing a stronger effect than iron slag. The results of SEM analysis showed that application of slags led to more pronounced cell silicification in rice leaves, more silica cells, and more pronounced and larger papilla as well. The results of TEM analysis showed that mesophyll cells of slag-untreated rice leaf were disorganized, with colonization of the fungus (Bipolaris oryzae), including chloroplast degradation and cell wall alterations. The application of slag maintained mesophyll cells relatively intact and increased the thickness of silicon layer. It can be concluded that applying slag-based fertilizer to Si-deficient paddy soil is necessary for improving both rice productivity and brown spot resistance. The immobile silicon deposited in host cell walls and papillae sites is the first physical barrier for fungal penetration, while the soluble Si in the cytoplasm enhances physiological or induced resistance to fungal colonization.
Collapse
Affiliation(s)
- Dongfeng Ning
- Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Alin Song
- Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fenliang Fan
- Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaojun Li
- Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongchao Liang
- Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Wang L, Cai K, Chen Y, Wang G. Silicon-mediated tomato resistance against Ralstonia solanacearum is associated with modification of soil microbial community structure and activity. Biol Trace Elem Res 2013; 152:275-83. [PMID: 23371799 DOI: 10.1007/s12011-013-9611-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/14/2013] [Indexed: 11/28/2022]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a serious soil-borne disease of Solanaceae crops. In this study, the soil microbial effects of silicon-induced tomato resistance against R. solanacearum were investigated through pot experiment. The results showed that exogenous 2.0 mM Si treatment reduced the disease index of bacterial wilt by 19.18 % to 52.7 % compared with non-Si-treated plants. The uptake of Si was significantly increased in the Si-treated tomato plants, where the Si content was higher in the roots than that in the shoots. R. solanacearum inoculation resulted in a significant increase of soil urease activity and reduction of soil sucrase activity, but had no effects on soil acid phosphatase activity. Si supply significantly increased soil urease and soil acid phosphatase activity under pathogen-inoculated conditions. Compared with the non-inoculated treatment, R. solanacearum infection significantly reduced the amount of soil bacteria and actinomycetes by 52.5 % and 16.5 %, respectively, but increased the ratio of soil fungi/soil bacteria by 93.6 %. After R. solanacearum inoculation, Si amendments significantly increased the amount of soil bacteria and actinomycetes and reduced soil fungi/soil bacteria ratio by 53.6 %. The results suggested that Si amendment is an effective approach to control R. solanacearum. Moreover, Si-mediated resistance in tomato against R. solanacearum is associated with the changes of soil microorganism amount and soil enzyme activity.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Tropical Agro-environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | | | | | | |
Collapse
|
33
|
Domínguez-Garay A, Berná A, Ortiz-Bernad I, Esteve-Núñez A. Silica colloid formation enhances performance of sediment microbial fuel cells in a low conductivity soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2117-2122. [PMID: 23327463 DOI: 10.1021/es303436x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The performance of sediment microbial fuel cells (SMFCs) is usually limited by the structure, moisture, and salt content of the soil where they are allocated. Despite the influence of soil, so far most of efforts to improve SMFCs have been limited to the hardware design of the bioelectrochemical device. Our main objective was to enhance performance of SMFCs by stimulating the in situ formation of silica colloids in a low conductivity rice paddy soil. Our results have revealed that the presence of a silica colloid network, described by cryo-SEM analysis, reduced soil resistivity, enhanced ion mobility and consequently enhanced the power production by a factor of 10. Furthermore, our silica-supplemented soil showed better utilization of the electron donor, either acetate or natural rice root exudates, by electrogenic microbial populations. Sustainable manipulation of soil micromorphology using environmentally friendly reagents such as silica offers a novel approach for enhancing the performance of in situ microbial electrochemical applications in low conductivity soils, thus silica colloid geoengineering should be considered as part of future applications of SMFCs.
Collapse
Affiliation(s)
- Ainara Domínguez-Garay
- Department of Analytical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| | | | | | | |
Collapse
|
34
|
Li W, Shao M, Zhong W, Yang J, Okada K, Yamane H, Zhang L, Wang G, Wang D, Xiao S, Chang S, Qian G, Liu F. Ectopic expression of Hrf1 enhances bacterial resistance via regulation of diterpene phytoalexins, silicon and reactive oxygen species burst in rice. PLoS One 2012; 7:e43914. [PMID: 22970151 PMCID: PMC3435380 DOI: 10.1371/journal.pone.0043914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 07/27/2012] [Indexed: 12/18/2022] Open
Abstract
Harpin proteins as elicitor derived from plant gram negative bacteria such as Xanthomonas oryzae pv. oryzae (Xoo), Erwinia amylovora induce disease resistance in plants by activating multiple defense responses. However, it is unclear whether phytoalexin production and ROS burst are involved in the disease resistance conferred by the expression of the harpin(Xoo) protein in rice. In this article, ectopic expression of hrf1 in rice enhanced resistance to bacterial blight. Accompanying with the activation of genes related to the phytoalexin biosynthesis pathway in hrf1-transformed rice, phytoalexins quickly and consistently accumulated concurrent with the limitation of bacterial growth rate. Moreover, the hrf1-transformed rice showed an increased ability for ROS scavenging and decreased hydrogen peroxide (H(2)O(2)) concentration. Furthermore, the localization and relative quantification of silicon deposition in rice leaves was detected by scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometer (EDS). Finally, the transcript levels of defense response genes increased in transformed rice. These results show a correlation between Xoo resistance and phytoalexin production, H(2)O(2), silicon deposition and defense gene expression in hrf1-transformed rice. These data are significant because they provide evidence for a better understanding the role of defense responses in the incompatible interaction between bacterial disease and hrf1-transformed plants. These data also supply an opportunity for generating nonspecific resistance to pathogens.
Collapse
Affiliation(s)
- Wenqi Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Min Shao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Weigong Zhong
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jie Yang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Lei Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Guang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Dong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Shanshan Xiao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Shanshan Chang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Fengquan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
- * E-mail:
| |
Collapse
|
35
|
Abed-Ashtiani F, Kadir JB, Selamat AB, Hanif AHBM, Nasehi A. Effect of Foliar and Root Application of Silicon Against Rice Blast Fungus in MR219 Rice Variety. THE PLANT PATHOLOGY JOURNAL 2012; 28:164-171. [DOI: 10.5423/ppj.2012.28.2.164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
36
|
Kablan L, Lagauche A, Delvaux B, Legr Ve A. Silicon Reduces Black Sigatoka Development in Banana. PLANT DISEASE 2012; 96:273-278. [PMID: 30731798 DOI: 10.1094/pdis-04-11-0274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The effect of silicon (Si) uptake on the susceptibility of Musa acuminata to Mycosphaerella fijiensis was investigated in three experiments conducted under controlled conditions. Plants were grown in the presence of Si or not, in pots adapted for a hydroponic culture system or in pots filled with compost. The banana leaves were inoculated after 4 or 6 months of plant growth by spraying conidial suspensions or by brushing mycelia fragments. The disease progress over time was assessed using quantitative and qualitative scales. At the end of each experiment, disease severity was also analyzed using the image analysis software ASSESS. The Si concentration in the leaves of plants supplied with Si reached 10 to 28 g/kg of dry matter. The first symptoms appeared 18 days after inoculation. The disease developed more rapidly and more severely on banana plants grown without Si than on plants supplied with Si. The areas under the disease progress curve (AUDPCs) calculated for plants grown with Si were significantly lower than the AUDPCs for plants not supplied with Si, regardless of inoculation method. Thus, Si supply could be a valuable tool in integrated pest management against M. fijiensis by reducing the disease pressure on banana.
Collapse
Affiliation(s)
- L Kablan
- Earth and Life Institute, Applied Microbiology (ELIM) and Earth and Life Institute, Environmental Science (ELIE)
| | | | | | - A Legr Ve
- ELIM, Université catholique de Louvain, Croix du Sud 2/3, B-1348 Louvainla-Neuve, Belgium
| |
Collapse
|
37
|
Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M. Physiological functions of beneficial elements. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:267-74. [PMID: 19477676 DOI: 10.1016/j.pbi.2009.04.009] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 04/01/2009] [Accepted: 04/22/2009] [Indexed: 05/02/2023]
Abstract
Aluminum (Al), cobalt (Co), sodium (Na), selenium (Se), and silicon (Si) are considered beneficial elements for plants: they are not required by all plants but can promote plant growth and may be essential for particular taxa. These beneficial elements have been reported to enhance resistance to biotic stresses such as pathogens and herbivory, and to abiotic stresses such as drought, salinity, and nutrient toxicity or deficiency. The beneficial effects of low doses of Al, Co, Na and Se have received little attention compared to toxic effects that typically occur at higher concentrations. Better understanding of the effects of beneficial elements is important to improve crop productivity and enhance plant nutritional value for a growing world population.
Collapse
|
38
|
Cai K, Gao D, Chen J, Luo S. Probing the mechanisms of silicon-mediated pathogen resistance. PLANT SIGNALING & BEHAVIOR 2009; 4:1-3. [PMID: 19568332 PMCID: PMC2634059 DOI: 10.4161/psb.4.1.7280] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 10/28/2008] [Indexed: 05/20/2023]
Abstract
Silicon is the second most abundant mineral element in soil, it has important role in alleviating various environmental stresses and enhancing plant resistance against pathogen, but the exact mechanism by which Si mediates pathogen resistance remains unclear. One of the resistance mechanisms is related to silicon deposition in leaf that acts as a physical barrier to hinder pathogen penetration. But more evidence show that silicon can induce defense responses that are functionally similar to systemic acquired resistance, Si-treated plants can significantly increase antioxidant enzyme activities and the production of antifungal compounds such as phenolic metabolism product, phytoalexins and pathogenesis-related proteins etc. Molecular and biochemical detections show that Si can activate the expression of defense-related genes and may play important role in the transduction of plant stress signal such as salicylic acid, jasmonic acid and ethylene.
Collapse
Affiliation(s)
- Kunzheng Cai
- Key Laboratory of Ecological Agriculture of Ministry of Agriculture, South China Agricultural University, Guangzhou, China.
| | | | | | | |
Collapse
|