1
|
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, Giussani DA, Hoes MF, Julian CG, LaVoie HA, Olfert IM, Ozanne SE, Bytautiene Prewit E, Warrington JP, Zhang L, Goulopoulou S. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2024; 327:H191-H220. [PMID: 38758127 PMCID: PMC11380979 DOI: 10.1152/ajpheart.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.
Collapse
Grants
- HL169157 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HD088590 NICHD NIH HHS
- HD083132 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- Jewish Heritage Fund for Excellence
- The Biotechnology and Biological Sciences Research Council
- P20GM103499 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- British Heart Foundation (BHF)
- R21 HD111908 NICHD NIH HHS
- Distinguished University Professor
- The Lister Insititute
- ES032920 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- Canadian Insitute's of Health Research Foundation Grant
- HL149608 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Royal Society (The Royal Society)
- U.S. Department of Defense (DOD)
- HL138181 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MC_00014/4 UKRI | Medical Research Council (MRC)
- HD111908 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP2002129 NHMRC Ideas Grant
- HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NS103017 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138181 NHLBI NIH HHS
- 20CSA35320107 American Heart Association (AHA)
- RG/17/12/33167 British Heart Foundation (BHF)
- National Heart Foundation Future Leader Fellowship
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155295 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HD088590-06 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- WVU SOM Synergy Grant
- R01 HL146562 NHLBI NIH HHS
- HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ES034646-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL150472 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 2021T017 Dutch Heart Foundation Dekker Grant
- R01 HL163003 NHLBI NIH HHS
- Christenson professor In Active Healthy Living
- National Heart Foundation
- Dutch Heart Foundation Dekker
- WVU SOM Synergy
- Jewish Heritage
- Department of Health | National Health and Medical Research Council (NHMRC)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Helen E Collins
- University of Louisville, Louisville, Kentucky, United States
| | - Barbara T Alexander
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alison S Care
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Mansoureh Eghbali
- University of California Los Angeles, Los Angeles, California, United States
| | | | | | - Colleen G Julian
- University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Holly A LaVoie
- University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - I Mark Olfert
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | | | | | - Junie P Warrington
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lubo Zhang
- Loma Linda University School of Medicine, Loma Linda, California, United States
| | | |
Collapse
|
2
|
The role of the blood-brain barrier during neurological disease and infection. Biochem Soc Trans 2023; 51:613-626. [PMID: 36929707 DOI: 10.1042/bst20220830] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
A healthy brain is protected by the blood-brain barrier (BBB), which is formed by the endothelial cells that line brain capillaries. The BBB plays an extremely important role in supporting normal neuronal function by maintaining the homeostasis of the brain microenvironment and restricting pathogen and toxin entry to the brain. Dysfunction of this highly complex and regulated structure can be life threatening. BBB dysfunction is implicated in many neurological diseases such as stroke, Alzheimer's disease, multiple sclerosis, and brain infections. Among other mechanisms, inflammation and/or flow disturbances are major causes of BBB dysfunction in neurological infections and diseases. In particular, in ischaemic stroke, both inflammation and flow disturbances contribute to BBB disruption, leading to devastating consequences. While a transient or minor disruption to the barrier function could be tolerated, chronic or a total breach of the barrier can result in irreversible brain damage. It is worth noting that timing and extent of BBB disruption play an important role in the process of any repair of brain damage and treatment strategies. This review evaluates and summarises some of the latest research on the role of the BBB during neurological disease and infection with a focus on the effects of inflammation and flow disturbances on the BBB. The BBB's crucial role in protecting the brain is also the bottleneck in central nervous system drug development. Therefore, innovative strategies to carry therapeutics across the BBB and novel models to screen drugs, and to study the complex, overlapping mechanisms of BBB disruption are urgently needed.
Collapse
|
3
|
Mechanical forces on trophoblast motility and its potential role in spiral artery remodeling during pregnancy. Placenta 2022; 123:46-53. [DOI: 10.1016/j.placenta.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/13/2022] [Indexed: 11/22/2022]
|
4
|
Siddiqui HB, Dogru S, Lashkarinia SS, Pekkan K. Soft-Tissue Material Properties and Mechanogenetics during Cardiovascular Development. J Cardiovasc Dev Dis 2022; 9:jcdd9020064. [PMID: 35200717 PMCID: PMC8876703 DOI: 10.3390/jcdd9020064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022] Open
Abstract
During embryonic development, changes in the cardiovascular microstructure and material properties are essential for an integrated biomechanical understanding. This knowledge also enables realistic predictive computational tools, specifically targeting the formation of congenital heart defects. Material characterization of cardiovascular embryonic tissue at consequent embryonic stages is critical to understand growth, remodeling, and hemodynamic functions. Two biomechanical loading modes, which are wall shear stress and blood pressure, are associated with distinct molecular pathways and govern vascular morphology through microstructural remodeling. Dynamic embryonic tissues have complex signaling networks integrated with mechanical factors such as stress, strain, and stiffness. While the multiscale interplay between the mechanical loading modes and microstructural changes has been studied in animal models, mechanical characterization of early embryonic cardiovascular tissue is challenging due to the miniature sample sizes and active/passive vascular components. Accordingly, this comparative review focuses on the embryonic material characterization of developing cardiovascular systems and attempts to classify it for different species and embryonic timepoints. Key cardiovascular components including the great vessels, ventricles, heart valves, and the umbilical cord arteries are covered. A state-of-the-art review of experimental techniques for embryonic material characterization is provided along with the two novel methods developed to measure the residual and von Mises stress distributions in avian embryonic vessels noninvasively, for the first time in the literature. As attempted in this review, the compilation of embryonic mechanical properties will also contribute to our understanding of the mature cardiovascular system and possibly lead to new microstructural and genetic interventions to correct abnormal development.
Collapse
Affiliation(s)
- Hummaira Banu Siddiqui
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
| | - Sedat Dogru
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Seyedeh Samaneh Lashkarinia
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Department of Bioengineering, Imperial College London, London SW7 2BX, UK
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey; (H.B.S.); (S.D.); (S.S.L.)
- Correspondence: ; Tel.: +90-(533)-356-3595
| |
Collapse
|
5
|
Pan Q, Feng W, Wang R, Tabuchi A, Li P, Nitzsche B, Fang L, Kuebler WM, Pries AR, Ning G. Pulsatility damping in the microcirculation: Basic pattern and modulating factors. Microvasc Res 2022; 139:104259. [PMID: 34624307 DOI: 10.1016/j.mvr.2021.104259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Blood flow pulsatility is an important determinant of macro- and microvascular physiology. Pulsatility is damped largely in the microcirculation, but the characteristics of this damping and the factors that regulate it have not been fully elucidated yet. Applying computational approaches to real microvascular network geometry, we examined the pattern of pulsatility damping and the role of potential damping factors, including pulse frequency, vascular viscous resistance, vascular compliance, viscoelastic behavior of the vessel wall, and wave propagation and reflection. To this end, three full rat mesenteric vascular networks were reconstructed from intravital microscopic recordings, a one-dimensional (1D) model was used to reproduce pulsatile properties within the network, and potential damping factors were examined by sensitivity analysis. Results demonstrate that blood flow pulsatility is predominantly damped at the arteriolar side and remains at a low level at the venular side. Damping was sensitive to pulse frequency, vascular viscous resistance and vascular compliance, whereas viscoelasticity of the vessel wall or wave propagation and reflection contributed little to pulsatility damping. The present results contribute to our understanding of mechanical forces and their regulation in the microcirculation.
Collapse
Affiliation(s)
- Qing Pan
- College of Information Engineering, Zhejiang University of Technology, 310023 Hangzhou, China
| | - Weida Feng
- College of Information Engineering, Zhejiang University of Technology, 310023 Hangzhou, China
| | - Ruofan Wang
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of MOE, Zhejiang University, 310027 Hangzhou, China
| | - Arata Tabuchi
- Institute of Physiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Peilun Li
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of MOE, Zhejiang University, 310027 Hangzhou, China
| | - Bianca Nitzsche
- Institute of Physiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Luping Fang
- College of Information Engineering, Zhejiang University of Technology, 310023 Hangzhou, China
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Axel R Pries
- Institute of Physiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany.
| | - Gangmin Ning
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of MOE, Zhejiang University, 310027 Hangzhou, China.
| |
Collapse
|
6
|
Sun J, Yuan J, Li B. SBP Is Superior to MAP to Reflect Tissue Perfusion and Hemodynamic Abnormality Perioperatively. Front Physiol 2021; 12:705558. [PMID: 34594235 PMCID: PMC8476970 DOI: 10.3389/fphys.2021.705558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/11/2021] [Indexed: 11/15/2022] Open
Abstract
Many articles have reported that intraoperative low mean artery pressure (MAP) or low systolic blood pressure (SBP) impacts on organs’ function and patients’ outcomes perioperatively. On the contrary, what type of blood pressure should be obtained still needs to be clarified. In our paper, we compared the influencing factors of MAP and SBP, and mathematical formula, arterial pulse contour calculation, and cardiovascular physiological knowledge were adopted to discuss how blood pressure can effectively reflect tissue perfusion and hemodynamic abnormality perioperatively. We concluded that MAP can reflect cardiac output change sensitively and SBP can reflect stroke volume change sensitively. Moreover, SBP can reflect the early hemodynamic changes, organs’ perfusion, and heart systolic function. Compared with MAP, perioperative monitoring of SBP and timely detection and treatment of abnormal SBP are very important for the early detection of hemodynamic abnormalities.
Collapse
Affiliation(s)
- Jie Sun
- Department of Anesthesiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jing Yuan
- Department of Anesthesiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Bin Li
- Department of Anesthesiology, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Saw SN, Dai Y, Yap CH. A Review of Biomechanics Analysis of the Umbilical-Placenta System With Regards to Diseases. Front Physiol 2021; 12:587635. [PMID: 34475826 PMCID: PMC8406807 DOI: 10.3389/fphys.2021.587635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Placenta is an important organ that is crucial for both fetal and maternal health. Abnormalities of the placenta, such as during intrauterine growth restriction (IUGR) and pre-eclampsia (PE) are common, and an improved understanding of these diseases is needed to improve medical care. Biomechanics analysis of the placenta is an under-explored area of investigation, which has demonstrated usefulness in contributing to our understanding of the placenta physiology. In this review, we introduce fundamental biomechanics concepts and discuss the findings of biomechanical analysis of the placenta and umbilical cord, including both tissue biomechanics and biofluid mechanics. The biomechanics of placenta ultrasound elastography and its potential in improving clinical detection of placenta diseases are also discussed. Finally, potential future work is listed.
Collapse
Affiliation(s)
- Shier Nee Saw
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Yichen Dai
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Krause BJ. Novel insights for the role of nitric oxide in placental vascular function during and beyond pregnancy. J Cell Physiol 2021; 236:7984-7999. [PMID: 34121195 DOI: 10.1002/jcp.30470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
More than 30 years have passed since endothelial nitric oxide synthesis was described using the umbilical artery and vein endothelium. That seminal report set the cornerstone for unveiling the molecular aspects of endothelial function. In parallel, the understanding of placental physiology has gained growing interest, due to its crucial role in intrauterine development, with considerable long-term health consequences. This review discusses the evidence for nitric oxide (NO) as a critical player of placental development and function, with a special focus on endothelial nitric oxide synthase (eNOS) vascular effects. Also, the regulation of eNOS-dependent vascular responses in normal pregnancy and pregnancy-related diseases and their impact on prenatal and postnatal vascular health are discussed. Recent and compelling evidence has reinforced that eNOS regulation results from a complex network of processes, with novel data concerning mechanisms such as mechano-sensing, epigenetic, posttranslational modifications, and the expression of NO- and l-arginine-related pathways. In this regard, most of these mechanisms are expressed in an arterial-venous-specific manner and reflect traits of the fetal systemic circulation. Several studies using umbilical endothelial cells are not aimed to understand placental function but general endothelial function, reinforcing the influence of the placenta on general knowledge in physiology.
Collapse
Affiliation(s)
- Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| |
Collapse
|
9
|
Li Y, Lu Y, Chen Q, Kang Y, Yu L. Probing of peripheral blood mononuclear cells anchoring on TNF-alpha challenged-vascular endothelia in an in vitro model of the retinal microvascular. Biomed Microdevices 2018; 19:54. [PMID: 28612282 DOI: 10.1007/s10544-017-0194-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Retinopathy is a complication of diabetes that affects the eyes; it stems from damage to the microvasculature of the retina and eventually compromises vision. The diagnosis of retinopathy is difficult to make because there are no early symptoms or warning signs. Dysfunction of the retina's microvascular networks is believed to be associated with inflammatory cytokines and tumor necrosis factor alpha (TNF-α). To investigate the effect of these cytokines, such as TNF-α, a polydimethylsiloxane (PDMS)/glass hydride microfluidic device reflecting the physiological structure of the retina's microvasculature was developed. In this model, the bifurcations and tortuosity of branch vessels were based on photographs of the fundus and an endothelial cell layer (EA.hy926 cells) were reconstructed within the microfluidic network. The adhesion, spreading, and growth of cells was ensured by optimizing the conditions for cell seeding and perfusion. Fluorescent staining was used to visualize the cytoskeleton and measurement of the nitric oxide (NO) level proved that the endothelial EA.hy926 cells had spread in the direction of flow perfusion system, forming artificial vascular networks. The endothelial layer was further challenged by TNF-α perfusion. Cytokine treatment increased the anchoring of peripheral blood mononuclear cells (PBMCs) on the endothelial layer. The microfluidic device developed in this study provides a low-cost platform reflecting the physiological structures of the retina's microvasculature. It is anticipated that this device will be useful in evaluating the diseased retina as well as in drug screening.
Collapse
Affiliation(s)
- Yuan Li
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 40216, China
| | - Yao Lu
- Institute for Clean energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing, 400715, China
| | - Qiong Chen
- Institute for Clean energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- Institute for Clean energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing, 400715, China
| | - Ling Yu
- Institute for Clean energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing, 400715, China. .,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing, 400715, China.
| |
Collapse
|
10
|
Müller JJ, Schwab M, Rosenfeld CR, Antonow-Schlorke I, Nathanielsz PW, Rakers F, Schubert H, Witte OW, Rupprecht S. Fetal Sheep Mesenteric Resistance Arteries: Functional and Structural Maturation. J Vasc Res 2017; 54:259-271. [PMID: 28810262 DOI: 10.1159/000477629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 05/14/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Fetal blood pressure increases during late gestation; however, the underlying vascular mechanisms are unclear. Knowledge of the maturation of resistance arteries is important to identify the mechanisms and vulnerable periods for the development of vascular dysfunction in adulthood. METHODS We determined the functional and structural development of fetal sheep mesenteric resistance arteries using wire myography and immunohistochemistry. RESULTS Media mass and distribution of myosin heavy-chain isoforms showed no changes between 0.7 (100 ± 3 days) and 0.9 (130 ± 3 days) gestation. However, from 0.7 to 0.9 gestation, the resting wall tension increased accompanied by non-receptor-dependent (potassium) and receptor-dependent (noradrenaline; endothelin-1) increases in vasocontraction. Angiotensin II had no contractile effect at both ages. Endothelium-dependent relaxation to acetylcholine and prostaglandin E2 was absent at 0.7 but present at 0.9 gestation. Augmented vascular responsiveness was paralleled by the maturation of sympathetic and sensory vascular innervation. Non-endothelium-dependent relaxation to nitric oxide showed no maturational changes. The expression of vasoregulator receptors/enzymes did not increase between 0.7 and 0.9 gestation. CONCLUSION Vascular maturation during late ovine gestation involves an increase in resting wall tension and the vasoconstrictor and vasodilator capacity of the mesenteric resistance arteries. Absence of structural changes in the tunica media and the lack of an increase in vasoregulator receptor/enzyme expression suggest that vasoactive responses are due to the maturation of intracellular pathways at this gestational age.
Collapse
Affiliation(s)
- Julia J Müller
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang R, Pan Q, Kuebler WM, Li JKJ, Pries AR, Ning G. Modeling of pulsatile flow-dependent nitric oxide regulation in a realistic microvascular network. Microvasc Res 2017; 113:40-49. [PMID: 28478072 DOI: 10.1016/j.mvr.2017.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/14/2017] [Accepted: 05/02/2017] [Indexed: 11/29/2022]
Abstract
Hemodynamic pulsatility has been reported to regulate microcirculatory function. To quantitatively assess the impact of flow pulsatility on the microvasculature, a mathematical model was first developed to simulate the regulation of NO production by pulsatile flow in the microcirculation. Shear stress and pressure pulsatility were selected as regulators of endothelial NO production and NO-dependent vessel dilation as feedback to control microvascular hemodynamics. The model was then applied to a real microvascular network of the rat mesentery consisting of 546 microvessels. As compared to steady flow conditions, pulsatile flow increased the average NO concentration in arterioles from 256.8±93.1nM to 274.8±101.1nM (P<0.001), with a corresponding increase in vessel dilation by approximately 7% from 27.5±10.6% to 29.4±11.4% (P<0.001). In contrast, NO concentration and vessel size showed a far lesser increase (about 1.7%) in venules under pulsatile flow as compared to steady flow conditions. Network perfusion and flow heterogeneity were improved under pulsatile flow conditions, and vasodilation within the network was more sensitive to heart rate changes than pulse pressure amplitude. The proposed model simulates the role of flow pulsatility in the regulation of a complex microvascular network in terms of NO concentration and hemodynamics under varied physiological conditions.
Collapse
Affiliation(s)
- Ruofan Wang
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Qing Pan
- College of Information Engineering, Zhejiang University of Technology, 288 Liuhe Road, Hangzhou 310023, China
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science of St. Michael's, University of Toronto, 30 Bond Street, Toronto M5B 1W8, Canada; Department of Physiology and Center for Cardiovascular Research, Charité Universitätsmediz in Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - John K-J Li
- Cardiovascular Research, Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Axel R Pries
- Department of Physiology and Center for Cardiovascular Research, Charité Universitätsmediz in Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Gangmin Ning
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China.
| |
Collapse
|
12
|
Abstract
The endothelin (ET) system includes 3 small peptide hormones and a pair of G-protein-coupled receptors. This review first outlines the ET signaling pathway and ET metabolism. Next, it summarizes the role of ET1 signaling in craniofacial development. Then, it discusses observations relating ET signaling to osteoblastic and other osteosclerotic processes in cancer. Finally, it describes recent work in our laboratory that points to endothelin signaling as an upstream mediator of WNT signaling, promoting bone matrix synthesis and mineralization. It concludes with a statement of some remaining gaps in knowledge and proposals for future research.
Collapse
Affiliation(s)
- Jasmin Kristianto
- Divisions of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - Michael G Johnson
- Department of Medicine, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| | - Rafia Afzal
- Department of Anesthesiology, Aga Khan University Hospital, Stadium Road, Karachi 74800, Pakistan
| | - Robert D Blank
- Divisions of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA; Medical Service, Clement J. Zablocki VAMC, 5000 West National Avenue, Milwaukee, WI 53295, USA.
| |
Collapse
|
13
|
Kristianto J, Johnson MG, Afzal R, Blank RD. WITHDRAWN: Endothelin signaling in bone. Transl Res 2016:S1931-5244(16)30366-8. [PMID: 27893988 DOI: 10.1016/j.trsl.2016.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022]
Affiliation(s)
- Jasmin Kristianto
- Endocrine and Reproductive Physiology Program, University of Wisconsin, Madison, Wis; Geriatrics Research, Education, and Clinical Center, William S. Middleton Veterans Hospital, Madison, Wis; Department of Medicine, University of Wisconsin, Madison, Wis; Division of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wis
| | - Michael G Johnson
- Endocrine and Reproductive Physiology Program, University of Wisconsin, Madison, Wis; Geriatrics Research, Education, and Clinical Center, William S. Middleton Veterans Hospital, Madison, Wis; Department of Medicine, University of Wisconsin, Madison, Wis
| | - Rafia Afzal
- Department of Anesthesiology, Aga Khan University Hospital, Karachi, Pakistan
| | - Robert D Blank
- Endocrine and Reproductive Physiology Program, University of Wisconsin, Madison, Wis; Geriatrics Research, Education, and Clinical Center, William S. Middleton Veterans Hospital, Madison, Wis; Division of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wis; Medical Service, Clement J. Zablocki VAMC, Milwaukee, Wis
| |
Collapse
|
14
|
Quillon A, Fromy B, Debret R. Endothelium microenvironment sensing leading to nitric oxide mediated vasodilation: A review of nervous and biomechanical signals. Nitric Oxide 2015; 45:20-6. [DOI: 10.1016/j.niox.2015.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
|
15
|
Ampey BC, Morschauser TJ, Lampe PD, Magness RR. Gap junction regulation of vascular tone: implications of modulatory intercellular communication during gestation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:117-32. [PMID: 25015806 DOI: 10.1007/978-1-4939-1031-1_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the vasculature, gap junctions (GJ) play a multifaceted role by serving as direct conduits for cell-cell intercellular communication via the facilitated diffusion of signaling molecules. GJs are essential for the control of gene expression and coordinated vascular development in addition to vascular function. The coupling of endothelial cells to each other, as well as with vascular smooth muscle cells via GJs, plays a relevant role in the control of vasomotor tone, tissue perfusion and arterial blood pressure. The regulation of cell-signaling is paramount to cardiovascular adaptations of pregnancy. Pregnancy requires highly developed cell-to-cell coupling, which is affected partly through the formation of intercellular GJs by Cx43, a gap junction protein, within adjacent cell membranes to help facilitate the increase of uterine blood flow (UBF) in order to ensure adequate perfusion for nutrient and oxygen delivery to the placenta and thus the fetus. One mode of communication that plays a critical role in regulating Cx43 is the release of endothelial-derived vasodilators such as prostacyclin (PGI2) and nitric oxide (NO) and their respective signaling mechanisms involving second messengers (cAMP and cGMP, respectively) that are likely to be important in maintaining UBF. Therefore, the assertion we present in this review is that GJs play an integral if not a central role in maintaining UBF by controlling rises in vasodilators (PGI2 and NO) via cyclic nucleotides. In this review, we discuss: (1) GJ structure and regulation; (2) second messenger regulation of GJ phosphorylation and formation; (3) pregnancy-induced changes in cell-signaling; and (4) the role of uterine arterial endothelial GJs during gestation. These topics integrate the current knowledge of this scientific field with interpretations and hypotheses regarding the vascular effects that are mediated by GJs and their relationship with vasodilatory vascular adaptations required for modulating the dramatic physiological rises in uteroplacental perfusion and blood flow observed during normal pregnancy.
Collapse
Affiliation(s)
- Bryan C Ampey
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, School Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53715, USA
| | | | | | | |
Collapse
|
16
|
Pan Q, Wang R, Reglin B, Cai G, Yan J, Pries AR, Ning G. A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks. J Biomech Eng 2014; 136:011009. [PMID: 24190506 DOI: 10.1115/1.4025879] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Indexed: 11/08/2022]
Abstract
Techniques that model microvascular hemodynamics have been developed for decades. While the physiological significance of pressure pulsatility is acknowledged, most of the microcirculatory models use steady flow approaches. To theoretically study the extent and transmission of pulsatility in microcirculation, dynamic models need to be developed. In this paper, we present a one-dimensional model to describe the dynamic behavior of microvascular blood flow. The model is applied to a microvascular network from a rat mesentery. Intravital microscopy was used to record the morphology and flow velocities in individual vessel segments, and boundaries are defined according to the experimental data. The system of governing equations constituting the model is solved numerically using the discontinuous Galerkin method. An implicit integration scheme is adopted to increase computing efficiency. The model allows the simulation of the dynamic properties of blood flow in microcirculatory networks, including the pressure pulsatility (quantified by a pulsatility index) and pulse wave velocity (PWV). From the main input arteriole to the main output venule, the pulsatility index decreases by 66.7%. PWV obtained along arterioles declines with decreasing diameters, with mean values of 77.16, 25.31, and 8.30 cm/s for diameters of 26.84, 17.46, and 13.33 μm, respectively. These results suggest that the 1D model developed is able to simulate the characteristics of pressure pulsatility and wave propagation in complex microvascular networks.
Collapse
|
17
|
Ramadoss J, Pastore MB, Magness RR. Endothelial caveolar subcellular domain regulation of endothelial nitric oxide synthase. Clin Exp Pharmacol Physiol 2014; 40:753-64. [PMID: 23745825 DOI: 10.1111/1440-1681.12136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/12/2022]
Abstract
Complex regulatory processes alter the activity of endothelial nitric oxide synthase (eNOS) leading to nitric oxide (NO) production by endothelial cells under various physiological states. These complex processes require specific subcellular eNOS partitioning between plasma membrane caveolar domains and non-caveolar compartments. Translocation of eNOS from the plasma membrane to intracellular compartments is important for eNOS activation and subsequent NO biosynthesis. We present data reviewing and interpreting information regarding: (i) the coupling of endothelial plasma membrane receptor systems in the caveolar structure relative to eNOS trafficking; (ii) how eNOS trafficking relates to specific protein-protein interactions for inactivation and activation of eNOS; and (iii) how these complex mechanisms confer specific subcellular location relative to eNOS multisite phosphorylation and signalling. Dysfunction in the regulation of eNOS activation may contribute to several disease states, in particular gestational endothelial abnormalities (pre-eclampsia, gestational diabetes etc.), that have life-long deleterious health consequences that predispose the offspring to develop hypertensive disease, Type 2 diabetes and adiposity.
Collapse
Affiliation(s)
- Jayanth Ramadoss
- Department of Obstetrics and Gynaecology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | |
Collapse
|
18
|
Campolo J, Vozzi F, Penco S, Cozzi L, Caruso R, Domenici C, Ahluwalia A, Rial M, Marraccini P, Parodi O. Vascular injury post stent implantation: different gene expression modulation in human umbilical vein endothelial cells (HUVECs) model. PLoS One 2014; 9:e90213. [PMID: 24587287 PMCID: PMC3935971 DOI: 10.1371/journal.pone.0090213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/27/2014] [Indexed: 12/14/2022] Open
Abstract
To explore whether stent procedure may influence transcriptional response of endothelium, we applied different physical (flow changes) and/or mechanical (stent application) stimuli to human endothelial cells in a laminar flow bioreactor (LFB) system. Gene expression analysis was then evaluated in each experimental condition. Human umbilical vein endothelial cells (HUVECs) were submitted to low and physiological (1 and 10 dyne/cm(2)) shear stress in absence (AS) or presence (PS) of stent positioning in a LFB system for 24 h. Different expressed genes, coming from Affymetrix results, were identified based on one-way ANOVA analysis with p values <0.01 and a fold changed >3 in modulus. Low shear stress was compared with physiological one in AS and PS conditions. Two major groups include 32 probes commonly expressed in both 1AS versus 10AS and 1PS versus 10PS comparison, and 115 probes consisting of 83 in addition to the previous 32, expressed only in 1PS versus 10PS comparison. Genes related to cytoskeleton, extracellular matrix, and cholesterol transport/metabolism are differently regulated in 1PS versus 10PS condition. Inflammatory and apoptotic mediators seems to be, instead, closely modulated by changes in flow (1 versus 10), independently of stent application. Low shear stress together with stent procedure are the experimental conditions that mainly modulate the highest number of genes in our human endothelial model. Those genes belong to pathways specifically involved in the endothelial dysfunction.
Collapse
Affiliation(s)
- Jonica Campolo
- CNR Institute of Clinical Physiology, Milan and Pisa, Italy
- * E-mail:
| | - Federico Vozzi
- CNR Institute of Clinical Physiology, Milan and Pisa, Italy
| | - Silvana Penco
- Department of Laboratory Medicine, Medical Genetics, Niguarda Ca' Granda Hospital Milan, Italy
| | - Lorena Cozzi
- CNR Institute of Clinical Physiology, Milan and Pisa, Italy
| | | | | | - Arti Ahluwalia
- Interdepartmental Research Centre “E. Piaggio”, University of Pisa, Pisa, Italy
| | - Michela Rial
- CNR Institute of Clinical Physiology, Milan and Pisa, Italy
| | | | - Oberdan Parodi
- CNR Institute of Clinical Physiology, Milan and Pisa, Italy
| |
Collapse
|
19
|
Petrella E, Pignatti L, Neri I, Facchinetti F. The l-arginine/nitric oxide pathway is impaired in overweight/obese pregnant women. Pregnancy Hypertens 2014; 4:150-5. [PMID: 26104420 DOI: 10.1016/j.preghy.2014.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/17/2014] [Accepted: 01/17/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate the l-arginine/NO system and its role in insulin signaling and endothelial function during the pregnancy of women of different BMI categories. STUDY DESIGN Twelve women with BMI⩾25 were compared with 10 normal-weight women in a fasting condition after the infusion of l-arginine (20g in 3h) and after the evaluation of the flow-mediated vasodilation (FMD) of the brachial artery between the 9th-12th and 24th-27th weeks. Blood samples for insulin and nitrite/nitrate (NOx) were collected at baseline and after 1, 2 and 3h after initiating the infusion. RESULTS In both trimesters, the baseline NOx levels were similar among groups. In the 1st trimester of the lean women, there was a NOx increase in response to l-Arg (AUC: 1328; 3, 3173), which had increased by the 2nd trimester (AUC: 3884; 1905, 7686); in overweight/obese women, no responses to l-Arg were found in the 1st or 2nd trimesters. In the 1st trimester, the insulin levels were significantly reduced in both groups after l-Arg infusion. Although the insulin levels in all BMI categories were higher in the 2nd trimester, such levels during weeks 24-27 were suppressed only in normal-weight women after l-Arg infusion. The FMD was higher during both trimesters in the lean controls and was impaired in the overweight/obese subjects. CONCLUSIONS NO availability is impaired in overweight/obese women during pregnancy, which affects endothelial functioning and interferes with insulin regulation. These mechanisms could be involved in the development of hypertensive disorders and glucose intolerance in this population.
Collapse
Affiliation(s)
- Elisabetta Petrella
- Mother-Infant Department, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucrezia Pignatti
- Mother-Infant Department, University of Modena and Reggio Emilia, Modena, Italy
| | - Isabella Neri
- Mother-Infant Department, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Facchinetti
- Mother-Infant Department, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
20
|
Bezinover D, Kadry Z, Uemura T, Sharghi M, Mastro AM, Sosnoski DM, Dalal P, Janicki PK. Association between plasma cyclic guanosine monophosphate levels and hemodynamic instability during liver transplantation. Liver Transpl 2013; 19:191-8. [PMID: 23161851 DOI: 10.1002/lt.23570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/23/2012] [Indexed: 12/19/2022]
Abstract
The activation of cyclic guanosine monophosphate (cGMP) production in patients with end-stage liver disease (ESLD) has been associated with hemodynamic instability during orthotopic liver transplantation (OLT). The aim of this prospective, observational study was to investigate the involvement of cGMP in the mediation of profound hypotension during liver graft reperfusion. An additional objective was to determine whether preoperative cGMP levels are associated with intraoperative hemodynamic instability. Forty-four consecutive patients undergoing OLT were included in the study. Blood samples for cGMP analysis were obtained from (1) the radial artery before the surgical incision; (2) the radial artery, portal vein, and flush blood during the anhepatic phase; and (3) the radial artery 20 minutes after liver graft reperfusion. On the basis of a statistical analysis, the patients were divided into 2 groups: group 1 (preoperative cGMP level ≥ 0.05 μmol/L) and group 2 (preoperative cGMP level < 0.05 μmol/L). We demonstrated a significant correlation between the preoperative levels of cGMP and the amount of catecholamine required to maintain hemodynamic stability during reperfusion (r = 0.52, P < 0.001), the length of the hospital stay (r = 0.38, P = 0.01), and the length of the intensive care unit (ICU) stay (r = 0.44, P = 0.004). We also demonstrated a significantly higher intraoperative catecholamine requirement (P < 0.001) and a prolonged postoperative ICU stay (P = 0.02) in group 1 patients versus group 2 patients. In conclusion, this study demonstrates increased baseline cGMP production in patients with ESLD, which is significantly associated with severe hypotension during OLT. We suggest that preoperative levels of cGMP correlate with hemodynamic instability during liver graft reperfusion.
Collapse
Affiliation(s)
- Dmitri Bezinover
- Department of Anesthesiology, Penn State Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033-0850, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Scott D, Tan Y, Shandas R, Stenmark KR, Tan W. High pulsatility flow stimulates smooth muscle cell hypertrophy and contractile protein expression. Am J Physiol Lung Cell Mol Physiol 2013; 304:L70-81. [PMID: 23087017 PMCID: PMC3543641 DOI: 10.1152/ajplung.00342.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 10/10/2012] [Indexed: 01/02/2023] Open
Abstract
Proximal arterial stiffening is an important predictor of events in systemic and pulmonary hypertension, partly through its contribution to downstream vascular abnormalities. However, much remains undetermined regarding the mechanisms involved in the vascular changes induced by arterial stiffening. We therefore addressed the hypothesis that high pulsatility flow, caused by proximal arterial stiffening, induces downstream pulmonary artery endothelial cell (EC) dysfunction that in turn leads to phenotypic change of smooth muscle cells (SMCs). To test the hypothesis, we employed a model pulmonary circulation in which upstream compliance regulates the pulsatility of flow waves imposed onto a downstream vascular mimetic coculture composed of pulmonary ECs and SMCs. The effects of high pulsatility flow on SMCs were determined both in the presence and absence of ECs. In the presence of ECs, high pulsatility flow increased SMC size and expression of the contractile proteins, smooth muscle α-actin (SMA) and smooth muscle myosin heavy chain (SM-MHC), without affecting proliferation. In the absence of ECs, high pulsatility flow decreased SMC expression of SMA and SM-MHC, without affecting SMC size or proliferation. To identify the molecular signals involved in the EC-mediated SMC responses, mRNA and/or protein expression of vasoconstrictors [angiotensin-converting enzyme (ACE) and endothelin (ET)-1], vasodilator (eNOS), and growth factor (TGF-β1) in EC were examined. Results showed high pulsatility flow decreased eNOS and increased ACE, ET-1, and TGF-β1 expression. ACE inhibition with ramiprilat, ET-1 receptor inhibition with bosentan, and treatment with the vasodilator bradykinin prevented flow-induced, EC-dependent SMC changes. In conclusion, high pulsatility flow stimulated SMC hypertrophy and contractile protein expression by altering EC production of vasoactive mediators and cytokines, supporting the idea of a coupling between proximal vascular stiffening, flow pulsatility, and downstream vascular function.
Collapse
Affiliation(s)
- Devon Scott
- Department of Mechanical Engineering, University of Colorado at Boulder, USA
| | | | | | | | | |
Collapse
|
22
|
Mechanisms of Periodic Acceleration Induced Endothelial Nitric Oxide Synthase (eNOS) Expression and Upregulation Using an In Vitro Human Aortic Endothelial Cell Model. Cardiovasc Eng Technol 2012. [DOI: 10.1007/s13239-012-0096-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Krause BJ, Prieto CP, Muñoz-Urrutia E, San Martín S, Sobrevia L, Casanello P. Role of arginase-2 and eNOS in the differential vascular reactivity and hypoxia-induced endothelial response in umbilical arteries and veins. Placenta 2012; 33:360-6. [PMID: 22391327 DOI: 10.1016/j.placenta.2012.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/01/2012] [Accepted: 02/04/2012] [Indexed: 11/28/2022]
Abstract
The main vasodilator in the placenta is nitric oxide (NO), which is synthesized by endothelial NO synthase (eNOS). Arginase-2 competes with eNOS for l-arginine, and its activity has been related with vascular dysfunction. Recently, we showed that hypoxia induces arginase-2, and decreases eNOS activity in human umbilical vein endothelial cells (HUVEC). However there is evidence that vascular responses to hypoxia are not similar throughout the placental vascular tree. We studied whether arginase-2 plays a role controlling vascular tone in human umbilical vessels, and the changes in the expression of arginase-2 and eNOS proteins by hypoxia in endothelial cells from umbilical arteries (HUAEC) and veins (HUVEC). In isolated umbilical vessels the presence of eNOS and arginase-2 was determined in the endothelium, and the NO-dependent vasoactive responses in the presence and absence of S-(2-boronoethyl)-L-cysteine (BEC, arginase inhibitor) were studied. Additionally, HUAEC and HUVEC were exposed (0-24 h) to hypoxia (2% O2) or normoxia (5% O2), and protein levels of eNOS (total and phosphorylated at serine-1177) and arginase-2 were determined. In umbilical arteries and veins arginase-2 and eNOS were detected mainly at the endothelium. BEC induced a higher concentration-dependent relaxation in umbilical arteries than veins, and these responses were NOS-dependent. In HUAEC exposed to hypoxia there were no changes in eNOS and arginase-2 levels, however there was a significant increase of p-eNOS. In contrast, HUVEC showed an increase in arginase-2 and a reduction of p-eNOS in response to hypoxia. These results show that arginases have a vascular role in placental vessels counteracting the NOS-dependent relaxation, which is differentially regulated in placental artery and vein endothelial cells.
Collapse
Affiliation(s)
- B J Krause
- Perinatology Research Laboratory and Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
During normal pregnancy, dramatically increased placental blood flow is critical for fetal growth and survival as well as neonatal birth weights and survivability. This increased blood flow results from angiogenesis, vasodilatation, and vascular remodeling. Locally produced growth factors including fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) are key regulators of placental endothelial functions including cell proliferation, migration, and vasodilatation. However, the precise signaling mechanisms underlying such regulation in fetoplacental endothelium are less well defined, specifically with regard to the interactions amongst protein kinases (PKs), protein phosphatase, and nitric oxide (NO). Recently, we and other researchers have obtained solid evidence showing that different signaling mechanisms participate in FGF2- and VEGFA-regulated fetoplacental endothelial cell proliferation and migration as well as NO production. This review will briefly summarize currently available data on signaling mediating fetoplacental angiogenesis with a specific emphasis on PKs, ERK1/2, AKT1, and p38 MAPK and protein phosphatases, PPP2 and PPP3.
Collapse
Affiliation(s)
- Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715
- Address correspondence and reprint requests to: Jing Zheng, Ph.D., Departments of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, PAB1 Meriter Hospital, 202 S Park St., Madison, WI 53715. Phone: (608) 417-6314 Fax: (608) 257-1304.
| |
Collapse
|
25
|
Wavelet analysis of acute effects of static magnetic field on resting skin blood flow at the nail wall in young men. Microvasc Res 2011; 82:277-83. [DOI: 10.1016/j.mvr.2011.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 01/14/2011] [Accepted: 03/16/2011] [Indexed: 11/22/2022]
|
26
|
Krause B, Hanson M, Casanello P. Role of nitric oxide in placental vascular development and function. Placenta 2011; 32:797-805. [PMID: 21798594 PMCID: PMC3218217 DOI: 10.1016/j.placenta.2011.06.025] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 11/27/2022]
Abstract
Nitric oxide (NO) is one of the most pleiotropic signaling molecules at systemic and cellular levels, participating in vascular tone regulation, cellular respiration, proliferation, apoptosis and gene expression. Indeed NO actively participates in trophoblast invasion, placental development and represents the main vasodilator in this tissue. Despite the large number of studies addressing the role of NO in the placenta, its participation in placental vascular development and the effect of altered levels of NO on placental function remains to be clarified. This review draws a time-line of the participation of NO throughout placental vascular development, from the differentiation of vascular precursors to the consolidation of vascular function are considered. The influence of NO on cell types involved in the origin of the placental vasculature and the expression and function of the nitric oxide synthases (NOS) throughout pregnancy are described. The developmental processes involved in the placental vascular bed are considered, such as the participation of NO in placental vasculogenesis and angiogenesis through VEGF and Angiopoietin signaling molecules. The role of NO in vascular function once the placental vascular tree has developed, in normal pregnancy as well as in pregnancy-related diseases, is then discussed.
Collapse
Affiliation(s)
- B.J. Krause
- Division of Obstetrics and Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - M.A. Hanson
- Institute of Developmental Sciences, Academic Unit of Human Development & Health, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| | - P. Casanello
- Division of Obstetrics and Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| |
Collapse
|
27
|
Bevan HS, Slater SC, Clarke H, Cahill PA, Mathieson PW, Welsh GI, Satchell SC. Acute laminar shear stress reversibly increases human glomerular endothelial cell permeability via activation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 2011; 301:F733-42. [PMID: 21775480 PMCID: PMC3191806 DOI: 10.1152/ajprenal.00458.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Laminar shear stress is a key determinant of systemic vascular behavior, including through activation of endothelial nitric oxide synthase (eNOS), but little is known of its role in the glomerulus. We confirmed eNOS expression by glomerular endothelial cells (GEnC) in tissue sections and examined effects of acute exposure (up to 24 h) to physiologically relevant levels of laminar shear stress (10-20 dyn/cm(2)) in conditionally immortalized human GEnC. Laminar shear stress caused an orientation of GEnC and stress fibers parallel to the direction of flow and induced Akt and eNOS phosphorylation along with NO production. Inhibition of the phophatidylinositol (PI)3-kinase/Akt pathway attenuated laminar shear stress-induced eNOS phosphorylation and NO production. Laminar shear stress of 10 dyn/cm(2) had a dramatic effect on GEnC permeability, reversibly decreasing the electrical resistance across GEnC monolayers. Finally, the laminar shear stress-induced reduction in electrical resistance was attenuated by the NOS inhibitors l-N(G)-monomethyl arginine (l-NMMA) and l-N(G)-nitroarginine methyl ester (l-NAME) and also by inhibition of the PI3-kinase/Akt pathway. Hence we have shown for GEnC in vitro that acute permeability responses to laminar shear stress are dependent on NO, produced via activation of the PI3-kinase/Akt pathway and increased eNOS phosphorylation. These results suggest the importance of laminar shear stress and NO in regulating the contribution of GEnC to the permeability properties of the glomerular capillary wall.
Collapse
Affiliation(s)
- Heather S Bevan
- Academic Renal Unit, University of Bristol, Southmead Hospital, Bristol, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Cabral PD, Garvin JL. Luminal flow regulates NO and O2(-) along the nephron. Am J Physiol Renal Physiol 2011; 300:F1047-53. [PMID: 21345976 PMCID: PMC3094045 DOI: 10.1152/ajprenal.00724.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/22/2011] [Indexed: 11/22/2022] Open
Abstract
Urinary flow is not constant but in fact highly variable, altering the mechanical forces (shear stress, stretch, and pressure) exerted on the epithelial cells of the nephron as well as solute delivery. Nitric oxide (NO) and superoxide (O(2)(-)) play important roles in various processes within the kidney. Reductions in NO and increases in O(2)(-) lead to abnormal NaCl and water absorption and hypertension. In the last few years, luminal flow has been shown to be a regulator of NO and O(2)(-) production along the nephron. Increases in luminal flow enhance fluid, Na, and bicarbonate transport in the proximal tubule. However, we know of no reports directly addressing flow regulation of NO and O(2)(-) in this segment. In the thick ascending limb, flow-stimulated NO and O(2)(-) formation has been extensively studied. Luminal flow stimulates NO production by nitric oxide synthase type 3 and its translocation to the apical membrane in medullary thick ascending limbs. These effects are mediated by flow-induced shear stress. In contrast, flow-induced stretch and NaCl delivery stimulate O(2)(-) production by NADPH oxidase in this segment. The interaction between flow-induced NO and O(2)(-) is complex and involves more than one simply scavenging the other. Flow-induced NO prevents flow from increasing O(2)(-) production via cGMP-dependent protein kinase in thick ascending limbs. In macula densa cells, shear stress increases NO production and this requires that the primary cilia be intact. The role of luminal flow in NO and O(2)(-) production in the distal tubule is not known. In cultured inner medullary collecting duct cells, shear stress enhances nitrite accumulation, a measure of NO production. Although much progress has been made on this subject in the last few years, there are still many unanswered questions.
Collapse
Affiliation(s)
- Pablo D Cabral
- Hypertension and Vascular Research Div., Dept. of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | | |
Collapse
|
29
|
McCoy RJ, O'Brien FJ. Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: a review. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:587-601. [PMID: 20799909 DOI: 10.1089/ten.teb.2010.0370] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Bone tissue engineering aims to generate clinically applicable bone graft substitutes in an effort to ease the demands and reduce the potential risks associated with traditional autograft and allograft bone replacement procedures. Biomechanical stimuli play an important role under physiologically relevant conditions in the normal formation, development, and homeostasis of bone tissue--predominantly, strain (predicted levels in vivo for humans <2000 με) caused by physical deformation, and fluid shear stress (0.8-3 Pa), generated by interstitial fluid movement through lacunae caused by compression and tension under loading. Therefore, in vitro bone tissue cultivation strategies seek to incorporate biochemical stimuli in an effort to create more physiologically relevant constructs for grafting. This review is focused on collating information pertaining to the relationship between fluid shear stress, cellular deformation, and osteogenic differentiation, providing further insight into the optimal culture conditions for the creation of bone tissue substitutes.
Collapse
Affiliation(s)
- Ryan J McCoy
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | |
Collapse
|
30
|
Sager HB, Middendorff R, Rauche K, Weil J, Lieb W, Schunkert H, Ito WD. Temporal patterns of blood flow and nitric oxide synthase expression affect macrophage accumulation and proliferation during collateral growth. JOURNAL OF ANGIOGENESIS RESEARCH 2010; 2:18. [PMID: 20843382 PMCID: PMC2949609 DOI: 10.1186/2040-2384-2-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 09/16/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND The involvement of collateral blood flow/fluid shear stress, nitric oxide (NO), and macrophages during collateral growth (arteriogenesis) is established, but their interplay remains paradoxical. METHODS In order to further elucidate the "fluid shear stress/NO/macrophage" paradox, we investigated the time course of collateral blood flow (using a Doppler flow probe) and NOS expression (immunohistochemistry, Western blot) in growing rat collateral vessels after femoral artery occlusion and their impact on macrophage recruitment and collateral proliferation (immunohistochemistry, angiographies). RESULTS (values are given as mean ± standard error of mean) Early after occlusion, collateral blood flow was significantly reduced (pre- 90.0 ± 4.5 vs. post-occlusion 62.5 ± 5.9 μl/min; p < 0.01), and local inducible NOS (iNOS) and endothelial NOS (eNOS) expression were down-regulated (expression in % of non-occluded: eNOS 49.4 ± 11.8% and iNOS 54.5 ± 7.9% vs. non-occluded at 12 h after occlusion; p < 0.03). An artificial rise (induced by a peripheral vasodilatation) of the initially decreased collateral blood flow back to pre-occlusion levels reduced collateral macrophage recruitment (macrophages per collateral section: post- 42.5 ± 4.4 vs. artificial pre-occlusion 27.8 ± 2.0; p < 0.05) and diminished collateral proliferation (proliferative index: post- 0.54 ± 0.02 vs. artificial pre-occlusion 0.19 ± 0.04; p < 0.001) significantly 72 h after femoral artery occlusion. CONCLUSIONS We propose the following resolution of the "fluid shear stress/NO/macrophage" paradox: Collateral blood flow and NOS expression are initially reduced during arteriogenesis allowing macrophages to accumulate and therewith enhancing collateral proliferation. After homing of macrophages (24 h after occlusion), collateral blood flow and NOS expression recover in order to join the effects of macrophages for restoring blood flow.
Collapse
Affiliation(s)
- Hendrik B Sager
- Medizinische Klinik II, Universität zu Lübeck Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Cabral PD, Hong NJ, Garvin JL. Shear stress increases nitric oxide production in thick ascending limbs. Am J Physiol Renal Physiol 2010; 299:F1185-92. [PMID: 20719980 DOI: 10.1152/ajprenal.00112.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We showed that luminal flow stimulates nitric oxide (NO) production in thick ascending limbs. Ion delivery, stretch, pressure, and shear stress all increase when flow is enhanced. We hypothesized that shear stress stimulates NO in thick ascending limbs, whereas stretch, pressure, and ion delivery do not. We measured NO in isolated, perfused rat thick ascending limbs using the NO-sensitive dye DAF FM-DA. NO production rose from 21 ± 7 to 58 ± 12 AU/min (P < 0.02; n = 7) when we increased luminal flow from 0 to 20 nl/min, but dropped to 16 ± 8 AU/min (P < 0.02; n = 7) 10 min after flow was stopped. Flow did not increase NO in tubules from mice lacking NO synthase 3 (NOS 3). Flow stimulated NO production by the same extent in tubules perfused with ion-free solution and physiological saline (20 ± 7 vs. 24 ± 6 AU/min; n = 7). Increasing stretch while reducing shear stress and pressure lowered NO generation from 42 ± 9 to 17 ± 6 AU/min (P < 0.03; n = 6). In the absence of shear stress, increasing pressure and stretch had no effect on NO production (2 ± 8 vs. 8 ± 8 AU/min; n = 6). Similar results were obtained in the presence of tempol (100 μmol/l), a O(2)(-) scavenger. Primary cultures of thick ascending limb cells subjected to shear stresses of 0.02 and 0.55 dyne/cm(2) produced NO at rates of 55 ± 10 and 315 ± 93 AU/s, respectively (P < 0.002; n = 7). Pretreatment with the NOS inhibitor l-NAME (5 mmol/l) blocked the shear stress-induced increase in NO production. We concluded that shear stress rather than pressure, stretch, or ion delivery mediates flow-induced stimulation of NO by NOS 3 in thick ascending limbs.
Collapse
Affiliation(s)
- Pablo D Cabral
- Hypertension and Vascular Research Div., Dept. of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202, USA
| | | | | |
Collapse
|
32
|
Sprague B, Chesler NC, Magness RR. Shear stress regulation of nitric oxide production in uterine and placental artery endothelial cells: experimental studies and hemodynamic models of shear stresses on endothelial cells. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2010; 54:331-9. [PMID: 19876820 DOI: 10.1387/ijdb.082832bs] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Hemodynamic shear stress is the most powerful physiological regulator of endothelial Nitric Oxide Synthase (eNOS), leading to rapid rises in nitric oxide (NO). The substantial increases in uterine and placental blood flows throughout gestation rely heavily on the action of NO. We and others have investigated endothelial function in response to shear stress with cell culture models of shear stress. In order to apply the results of these studies more effectively, we need a more complete understanding of the origin and coupling of the hemodynamic forces and vascular tissue behavior. For example, equations commonly used to calculate in vivo shear stress incorporate assumptions of steady (non-pulsatile) blood flow and constant viscosity of blood (Newtonian fluid). Using computational models, we can estimate a waveform of shear stress over a cardiac cycle and the change in blood viscosity with shear rate and hematocrit levels, two variables that often change with size of vessel and location within a vascular tree. This review discusses hemodynamics as they apply to blood flow in vessels, in the hope that an integration of these fields can lead to improved in vitro shear stress experiments and understanding of NO production in uterine and placental vascular physiology during gestation.
Collapse
Affiliation(s)
- Benjamin Sprague
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, USA
| | | | | |
Collapse
|
33
|
SHIRASUNA K, ASAHI T, SASAKI M, SHIMIZU T, MIYAMOTO A. Distribution of Arteriolovenous Vessels, Capillaries and eNOS Expression in the Bovine Corpus Luteum During the Estrous Cycle: a Possible Implication of Different Sensitivity by Luteal Phase to PGF2.ALPHA. in the Increase of Luteal Blood Flow. J Reprod Dev 2010; 56:124-30. [DOI: 10.1262/jrd.09-106o] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Koumei SHIRASUNA
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine
| | - Takayuki ASAHI
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine
| | - Motoki SASAKI
- Department of Basic Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine
| | - Takashi SHIMIZU
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine
| | - Akio MIYAMOTO
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine
| |
Collapse
|
34
|
Li Y, Zheng J, Bird IM, Magness RR. Effects of Pulsatile Shear Stress on Signaling Mechanisms Controlling Nitric Oxide Production, Endothelial Nitric Oxide Synthase Phosphorylation, and Expression in Ovine Fetoplacental Artery Endothelial Cells. ACTA ACUST UNITED AC 2009; 12:21-39. [PMID: 16036314 DOI: 10.1080/10623320590933743] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During gestation, placental blood flow, endothelial nitric oxide (NO) production, and endothelial cell nitric oxide synthase (eNOS) expression are elevated dramatically. Shear stress can induce flow-mediated vasodilation, endothelial NO production, and eNOS expression. Both the activity and expression of eNOS are closely regulated because it is the rate-limiting enzyme essential for NO synthesis. The authors adapted CELLMAX artificial capillary modules to study the effects of pulsatile flow/shear stress on ovine fetoplacental artery endothelial (OFPAE) cell NO production, eNOS expression, and eNOS phosphorylation. This model allows for the adaptation of endothelial cells to low physiological flow environments and thus prolonged shear stresses. The cells were grown to confluence at 3 dynes/cm2, then were exposed to 10, 15, or 25 dynes/cm2 for up to 24 h and NO production, eNOS mRNA, and eNOS protein expression were elevated by shear stress in a graded fashion (p < .05). Production of NO by OFPAE cells exposed to pulsatile shear stress was de novo; i.e., inhibited by L-NMMA (N(G)-monomethyl-L-arginine) and reversed by excess NOS substrate L-arginine. Rises in NO production at 25 dynes/cm2 (8-fold) exceeded (p < .05) that seen for eNOS protein (3.6-fold) or eNOS mRNA (1.5-fold). Acute rises in NO production with shear stress occurred by eNOS activation, whereas prolonged NO rises were via elevations in both eNOS expression and enzyme activation. The authors therefore used Western analysis to investigate the signaling mechanisms underlying pulsatile shear stress-induced increases in eNOS phosphorylation and protein expression by "flow-adapted" OFPAE cells. Increasing shear stress from 3 to 15 dynes/cm2 very rapidly increased eNOS Ser1177, ERK1/2 (extracellular signal-regulated kinase 1 and 2) and Akt, but not p38 MAPK (p38 mitogen-activated protein kinase) phosphorylation by Western analysis. Phosphorylation of eNOS Ser1177 under shear stress was elevated by 20 min, a response that was blocked by PI-3K (phosphatidylinositol 3-kinase) inhibitors wortmannin and LY294002, but not the MEK (MAPK kinase) inhibitor UO126. Basic fibroblast growth factor (bFGF) enhanced eNOS protein levels in static culture via a MEK-mediated mechanism, but it could not further augment the elevated eNOS protein levels induced by 15 dynes/cm2 shear stress. Blocking of either signaling pathways or p38 MAPK did not change the shear stress-induced increase in eNOS protein levels. Therefore, shear stress induced rapid eNOS phosphorylation on Ser1177 in OFPAE cells through a PI-3K-dependent pathway. The bFGF-induced rise in eNOS protein levels in static culture was much less than those observed under flow and was blocked by inhibiting MEK. Prolonged shear stress-stimulated increases in eNOS protein levels were not affected by inhibition of MEK- or PI-3K-mediated pathways. In conclusion, pulsatile shear stress greatly induces NO production by OFPAE cells through the mechanisms of both PI-3K-mediated eNOS activation and elevations in eNOS protein levels; bFGF does not further stimulate eNOS expression under flow condition.
Collapse
Affiliation(s)
- Yun Li
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | | | | |
Collapse
|
35
|
Yalcin O, Ulker P, Yavuzer U, Meiselman HJ, Baskurt OK. Nitric oxide generation by endothelial cells exposed to shear stress in glass tubes perfused with red blood cell suspensions: role of aggregation. Am J Physiol Heart Circ Physiol 2008; 294:H2098-105. [PMID: 18326799 DOI: 10.1152/ajpheart.00015.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial function is modulated by wall shear stress acting on the vessel wall, which is determined by fluid velocity and the local viscosity near the vessel wall. Red blood cell (RBC) aggregation may affect the local viscosity by favoring axial migration. The aim of this study was to investigate the role of RBC aggregation, with or without altered plasma viscosity, in the mechanically induced nitric oxide (NO)-related mechanisms of endothelial cells. Human umbilical vein endothelial cells (HUVEC) were cultured on the inner surface of cylindrical glass capillaries that were perfused with RBC suspensions having normal and increased aggregation at a nominal shear stress of 15 dyn/cm(2). RBC aggregation was enhanced by two different approaches: 1) poloxamer-coated RBC suspended in normal, autologous plasma, resulting in enhanced aggregation but unchanged plasma viscosity and 2) normal RBC suspended in autologous plasma containing 0.5% dextran (mol mass 500 kDa), with a similar level of RBC aggregation but higher plasma viscosity. Compared with normal cells in unmodified plasma, perfusion with suspensions of poloxamer-coated RBC in normal plasma resulted in decreased levels of NO metabolites and serine 1177 phosphorylation of endothelial nitric oxide synthase (eNOS). Perfusion with normal RBC in plasma containing dextran resulted in a NO level that remained elevated, whereas only a modest decrease of phosphorylated eNOS level was observed. The results of this study suggest that increases of RBC aggregation tendency affect endothelial cell functions by altering local blood composition, especially if the alterations of RBC aggregation are due to modified cellular properties and not to plasma composition changes.
Collapse
Affiliation(s)
- Ozlem Yalcin
- Department of Physiology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | | | | | | | | |
Collapse
|
36
|
Shirasuna K, Watanabe S, Asahi T, Wijayagunawardane MPB, Sasahara K, Jiang C, Matsui M, Sasaki M, Shimizu T, Davis JS, Miyamoto A. Prostaglandin F2alpha increases endothelial nitric oxide synthase in the periphery of the bovine corpus luteum: the possible regulation of blood flow at an early stage of luteolysis. Reproduction 2008; 135:527-39. [PMID: 18296510 DOI: 10.1530/rep-07-0496] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prostaglandin F(2)(alpha) (PGF(2)(alpha)) released from the uterus causes alterations in luteal blood flow, reduces progesterone secretion, and induces luteolysis in the bovine corpus luteum (CL). We have recently discovered that luteal blood flow in the periphery of the mature CL acutely increases coincidently with pulsatile increases in a metabolite of PGF(2)(alpha) (PGFM). In this study, we characterized changes in regional luteal blood flow together with regional alterations in endothelial nitric oxide synthase (eNOS) expression during spontaneous luteolysis and in response to PGF(2)(alpha). Smooth muscle actin-positive blood vessels larger than 20 microm were observed mainly in the periphery of mature CL. PGF(2)(alpha) receptor was localized to luteal cells and large blood vessels in the periphery of mid-CL. PGF(2)(alpha) acutely stimulated eNOS expression in the periphery but not in the center of mature CL. Injection of the NO donor S-nitroso-N-acetylpenicillamine into CL induced an acute increase in luteal blood flow and shortened the estrous cycle. In contrast, injection of the NOS inhibitor l-NAME into CL completely suppressed the acute increase in luteal blood flow induced by PGF(2)(alpha) and delayed the onset of luteolysis. In conclusion, PGF(2)(alpha) has a site-restricted action depending on not only luteal phase but also the region in the CL. PGF(2)(alpha) stimulates eNOS expression, vasodilation of blood vessels, and increased luteal blood flow in periphery of mature CL. Furthermore, the increased blood flow is mediated by NO, suggesting that the acute increase in peripheral blood flow to CL is one of the first physiological indicators of NO action in response to PGF(2)(alpha).
Collapse
Affiliation(s)
- Koumei Shirasuna
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Qian XX, Mata-Greenwood E, Liao WX, Zhang H, Zheng J, Chen DB. Transcriptional regulation of endothelial nitric oxide synthase expression in uterine artery endothelial cells by c-Jun/AP-1. Mol Cell Endocrinol 2007; 279:39-51. [PMID: 17933457 PMCID: PMC2131711 DOI: 10.1016/j.mce.2007.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 08/02/2007] [Accepted: 08/31/2007] [Indexed: 10/22/2022]
Abstract
Despite extensive studies have shown that increased endothelial nitric oxide synthase (NOS3) expression in the uterine artery endothelial cells (UAEC) plays a key role in uterine vasodilatation, the molecular mechanism controlling NOS3 expression in UAEC is unknown. According to the sheep NOS3 promoter sequence isolated in our laboratory, we hypothesize that the activator protein-1 (AP-1) site in the proximal sheep NOS3 promoter (TGAGTCA, -682 to -676) is important for NOS3 expression. We developed a c-Jun adenoviral expression system to overexpress c-Jun protein into UAEC to investigate the effects of c-Jun/AP-1 on NOS3 expression. Basal levels of c-Jun protein and mRNA were detected in UAEC. c-Jun protein was overexpressed in a concentration and time-dependent fashion in UAEC infected with sense c-Jun (S-c-Jun), but not sham and antisense c-Jun (A-c-Jun) adenoviruses. Infection with S-c-Jun adenovirus (25 MOI, multiplicity of infection) resulted in efficient c-Jun protein overexpression in UAEC up to 3 days. In S-c-Jun, but not sham and A-c-Jun adenovirus infected UAEC, NOS3 mRNA and protein levels were increased (P<0.05) compared to noninfected controls. Increased NOS3 expression was associated with increased total NOS activity. Transient transfections showed that c-Jun overexpression augmented the transactivation of the sheep NOS3 promoter-driven luciferase/reporter constructs with the AP-1 site but not of deletion constructs without the AP-1 site. When the AP-1 site was mutated, c-Jun failed to trans-activate the sheep NOS3 promoter. AP-1 DNA binding activity also increased in c-Jun overexpressed UAEC. Lastly, the pharmacological AP-1 activator phorbol myristate acetate increased AP-1 binding, trans-activated the wild-type but not the AP-1 mutant NOS3 promoter and dose-dependently stimulated UAEC NOS3 and c-Jun protein expression. Hence, our data show that c-Jun/AP-1 regulates NOS3 transcription involving the proximal AP-1 site in the 5'-regulatory region of the sheep NOS3 gene.
Collapse
Affiliation(s)
- Xiao-Xian Qian
- Department of Reproductive Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0802
| | - Eugenia Mata-Greenwood
- Department of Reproductive Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0802
| | - Wu Xiang Liao
- Department of Reproductive Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0802
| | - Honghai Zhang
- Department of Reproductive Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0802
| | - Jing Zheng
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53715
| | - Dong-bao Chen
- Department of Reproductive Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0802
| |
Collapse
|
38
|
Jensen E, Wood CE, Keller-Wood M. Reduction of Maternal Adrenal Steroids Results in Increased VEGF Protein Without Increased eNOS in the Ovine Placenta. Placenta 2007; 28:658-67. [PMID: 17113146 DOI: 10.1016/j.placenta.2006.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2006] [Revised: 08/23/2006] [Accepted: 09/01/2006] [Indexed: 11/19/2022]
Abstract
Fetal sheep studies have shown that reduced maternal cortisol or aldosterone levels alter placental morphology, with a reduction in placental blood flow. We have now tested the hypothesis that changes in placental morphology with relative adrenal hypoadrenalism are associated with changes in vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS). Four groups of late gestation pregnant ewes with singleton fetuses were studied; controls (intact adrenals), normal cortisol and aldosterone (ewes adrenalectomized and replaced with normal cortisol and aldosterone levels), low cortisol (ewes adrenalectomized and replaced with low cortisol levels), and low aldosterone (ewes adrenalectomized and replaced with low aldosterone levels). The placenta was categorized into A, B, C or D type placentomes. There were significantly more B and C type placentomes in the adrenalectomized groups than in controls. Overall, B types had more VEGF mRNA than A types. VEGF protein levels corresponding to a 23 kDa band were highest in low aldosterone animals in A and C type placentomes. VEGF protein levels corresponding to a 47 kDa band were higher in C type placentomes than A types; protein levels were also higher overall in low cortisol animals compared to controls. Fetoplacental eNOS protein levels were lower in the adrenalectomized groups than in controls. In conclusion, our results indicate that increases in cotyledonary VEGF(164) protein were associated with fetal tissue overgrowth in the placenta when the pregnancy-induced increase in adrenal steroids was prevented in the ewe. However, cotyledonary eNOS protein was suppressed with reduced maternal adrenal steroids, which is consistent with the reduced placental perfusion previously observed in this model.
Collapse
Affiliation(s)
- E Jensen
- Department of Pharmacodynamics, College of Medicine, University of Florida, Gainesville, FL, USA.
| | | | | |
Collapse
|
39
|
Song Y, Zheng J. Establishment of a functional ovine fetoplacental artery endothelial cell line with a prolonged life span. Biol Reprod 2006; 76:29-35. [PMID: 17005940 PMCID: PMC2711505 DOI: 10.1095/biolreprod.106.055921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
To study mechanisms governing fetoplacental vascular function, we have established a primary ovine fetoplacental artery endothelial (OFPAE) cell line. These OFPAE cells produce nitric oxide (NO), proliferate, and migrate in response to fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor (VEGF). To overcome the senescence crisis that this primary OFPAE cell line will eventually enter, we attempted to establish a functional OFPAE cell line with a prolonged life span by transfecting cells with plasmids containing a neomycin resistance gene and a simian virus 40 gene (SV40) expressing large T (T) and small t (t) antigens. The OFPAE cells at passage 8 were transfected. After neomycin selection, the surviving OFPAE (designated SV40 OFPAE) cells were expanded up to passage 80. Up to passage 30, these SV40 OFPAE cells maintained a morphology similar to untransfected OFPAE cells. Expression of T and t antigens in SV40 OFPAE cells was confirmed by immunocytochemistry. These SV40 OFPAE cells exhibited positive uptake of acetylated low-density lipoprotein (Ac-LDL) and positive staining for NO synthase 3 (NOS3) and formed capillary-like tube structures on Matrigel. Up to passages 20-23, these SV40 OFPAE cells proliferated (P < 0.05) and produced (P < 0.05) NO in response to both FGF2 and VEGF. Moreover, this cell proliferation stimulated by FGF2 and VEGF was dose-dependently inhibited (P < 0.05) by PD98059 (a selective mitogen-activated protein kinase 1 and 2 [MAP2K1/2, also termed MEK1/2] inhibitor) or by LY294002 (a selective phosphoinositide 3-kinase [PI3K] inhibitor). These data indicate that SV40 OFPAE cells, at least at passage 23, retain endothelial phenotypes and functions similar to their parental, untransfected OFPAE cells. Thus, a functional OFPAE cell line with an extended life span has been successfully established, potentially providing a valuable cell model for studying fetoplacental endothelial function.
Collapse
Affiliation(s)
| | - Jing Zheng
- Correspondence: Jing Zheng, Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, PAB1, Meriter Hospital, 202 South Park St., Madison, WI 53715. FAX: 608 257 1304; e-mail:
| |
Collapse
|
40
|
Vara DS, Punshon G, Sales KM, Salacinski HJ, Dijk S, Brown RA, Hamilton G, Seifalian AM. Development of an RNA isolation procedure for the characterisation of human endothelial cell interactions with polyurethane cardiovascular bypass grafts. Biomaterials 2005; 26:3987-93. [PMID: 15626446 DOI: 10.1016/j.biomaterials.2004.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 10/20/2004] [Indexed: 11/29/2022]
Abstract
To date no reliable method has been developed for the isolation of RNA from cells seeded onto cylindrical vascular grafts. This study was performed in order to develop a reliable methodology for isolating RNA from cylindrical conduits made from poly(carbonate-urea)urethane (PU). Human umbilical vein EC were seeded onto PU vascular grafts and an Alamar blue assay performed to assess cell viability. Cells were prepared for RNA extraction by trypsinisation, cell scraping and direct application of cell lysis buffer. In all cases RNA was extracted using a "Qiagen RNeasy" kit. Alamar blue showed viable cells were present on all of the seeded PU vascular grafts. Levels of RNA extracted from the cells removed from the graft by the trypsinisation yielded 0.130 microg/microl, by scraping 0.078 microg/microl and by direct lysing 0.093 microg/microl of RNA, respectively. RTPCR was conducted successfully for GAPDH and TGF-beta1. Trypsinisation prior to RNA extraction provided the highest RNA yield and attained near complete cell removal ensuring that gene expression obtained was representative.
Collapse
Affiliation(s)
- Dina S Vara
- Biomaterial & Tissue Engineering Centre, University Department of Surgery, University College London, Rolland Hill Street, Hampstead, London NW3 2PF, UK
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zheng J, Wen Y, Chen DB, Bird IM, Magness RR. Angiotensin II Elevates Nitric Oxide Synthase 3 Expression and Nitric Oxide Production Via a Mitogen-Activated Protein Kinase Cascade in Ovine Fetoplacental Artery Endothelial Cells1. Biol Reprod 2005; 72:1421-8. [PMID: 15728793 DOI: 10.1095/biolreprod.104.039172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Normal pregnancy is associated with high angiotensin II (ANG II) concentrations in the maternal and fetal circulation. These high levels of ANG II may promote production vasodilators such as nitric oxide (NO). ANG II receptors are expressed in ovine fetoplacental artery endothelial (OFPAE) cells and mediate ANG II-stimulated OFPAE cell proliferation. Herein, we tested whether ANG II stimulated NO synthase 3 (NOS3, also known as eNOS) expression and total NO (NO(x)) production via activation of mitogen-activated protein kinase 3/1 (MAPK3/1, also known as ERK1/2) in OFPAE cells. ANG II elevated (P < 0.05) eNOS protein, but not mRNA levels with a maximum effect at 10 nM. ANG II also dose dependently increased (P < 0.05) NO(x) production with a maximal effect at doses of 1-100 nM. Activation of ERK1/2 by ANG II was determined by immunocytochemistry and Western blot analysis. ANG II rapidly induced positive staining for phosphorylated ERK1/2, appearing in cytosol after 1-5 min of ANG II treatment, accumulating in nuclei after 10 min, and disappearing at 15 min. ANG II increased (P < 0.05) phosphorylated ERK1/2 protein levels. Activation of ERK1/2 was confirmed by an immunocomplex kinase assay using ELK1 as a substrate. PD98059 significantly inhibited ANG II-induced ERK1/2 activation, and the ANG II-elevated eNOS protein levels but only partially reduced ANG II-increased NO(x) production. Thus, in OFPAE cells, the ANG II increased NO(x) production is associated with elevated eNOS protein expression, which is mediated at least in part via activation of the mitogen-activated protein kinase kinase1 and kinase2 (MAP2K1 and MAP2K2, known also as MEK1/2)/ERK1/2 cascade. Together with our previous observation that ANG II stimulates OFPAE cell proliferation, these data suggest that ANG II is a key regulator for both vasodilation and angiogenesis in the ovine fetoplacenta.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, Wisconsin 53715, USA.
| | | | | | | | | |
Collapse
|
42
|
Zheng J, Bird IM, Chen DB, Magness RR. Angiotensin II regulation of ovine fetoplacental artery endothelial functions: interactions with nitric oxide. J Physiol 2005; 565:59-69. [PMID: 15790666 PMCID: PMC1464493 DOI: 10.1113/jphysiol.2004.082420] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During normal pregnancy, elevated angiotensin II (Ang II) concentrations in the maternal and fetal circulations are associated with dramatic increases in placental angiogenesis and blood flow. Much is known about a local renin-angiotensin system within the uteroplacental vasculature. However, the roles of Ang II in regulating fetoplacental vascular functions are less well defined. In the fetal placenta, the overall in vivo vasoconstrictor responses of the blood vessels to Ang II infusion is thought to be less than that in its maternal counterpart, even though infused Ang II induces vasoconstriction. Recent data from our laboratories suggest that Ang II stimulates cell proliferation and increases endothelial nitric oxide synthase (eNOS) and production of nitric oxide (NO) in ovine fetoplacental artery endothelial cells. These data imply that elevations of the known vasoconstrictor Ang II in the fetal circulation may indeed play a role in the marked increases in fetoplacental angiogenesis and that Ang II-elevated endothelial NO production may partly attenuate Ang II-induced vasoconstriction on vascular smooth muscle. Together with both of these processes, the high levels of Ang II in the fetal circulation may serve to modulate overall fetoplacental vascular resistance. In this article, we review currently available data on the expression of Ang II receptors in the ovine fetal placenta with particular emphasis on the effects of Ang II on ovine fetoplacental endothelium. The potential cellular mechanisms underlying the regulation of Ang II on endothelial growth and vasodilator production are discussed.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Obstetrics, Perinatal Research Laboratories, University of Wisconsin, 7E Meriter Hospital, Madison, WI 53715, USA.
| | | | | | | |
Collapse
|
43
|
Xiao XM, Li LP. l-Arginine treatment for asymmetric fetal growth restriction. Int J Gynaecol Obstet 2004; 88:15-8. [PMID: 15617699 DOI: 10.1016/j.ijgo.2004.09.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 09/22/2004] [Accepted: 09/22/2004] [Indexed: 11/22/2022]
Abstract
OBJECTIVES [corrected] To investigate the effects of L-Arginine in treating asymmetric fetal growth restriction (FGR). METHODS A total of 66 pregnant women whose fetuses were diagnosed with asymmetric fetal growth restriction were divided into two groups. Group 1 consisted of 36 women who were given routine therapy alone; group 2 consisted of 30 women who were given L-Arginine and routine therapy; and the control group consisted of 30 more women with a normal pregnancy. RESULTS Before treatment, mean maternal serum levels of NO2-/NO3- were significantly lower in groups 1 and 2 than in the control group (P<0.01). After treatment, maternal serum levels of NO2-/NO3- were considerably higher in group 2 than in group 1 (P<0.01). Mean birth weight was significantly higher in group 2 than in group 1 (P<0.05), but still lower in group 2 than in the control group (P<0.01). CONCLUSIONS A deficiency in nitric oxide may play an important role in the development of asymmetric fetal growth restriction. L-Arginine can be used to increase maternal NO2-/NO3- levels and newborn birth weight.
Collapse
Affiliation(s)
- X M Xiao
- Department of Gynecology/Obstetrics, First Affiliated Hospital of Jinan University, Guangzhou, China
| | | |
Collapse
|
44
|
Li Y, Zheng J, Bird IM, Magness RR. Mechanisms of shear stress-induced endothelial nitric-oxide synthase phosphorylation and expression in ovine fetoplacental artery endothelial cells. Biol Reprod 2003; 70:785-96. [PMID: 14627548 DOI: 10.1095/biolreprod.103.022293] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Placental blood flow, nitric-oxide (NO) levels, and endothelial NO synthase (eNOS) expression increase during human and ovine pregnancy. Shear stress stimulates NO production and eNOS expression in ovine fetoplacental artery endothelial (OFPAE) cells. Because eNOS is the rate-limiting enzyme essential for NO synthesis, its activity and expression are both closely regulated. We investigated signaling mechanisms underlying pulsatile shear stress-induced increases in eNOS phosphorylation and protein expression by OFPAE cells. The OFPAE cells were cultured at 3 dynes/cm2 shear stress, then exposed to 15 dynes/cm2 shear stress. Western blot analysis for phosphorylated ERK1/2, Akt, p38 mitogen activated protein kinase (MAPK), and eNOS showed that shear stress rapidly increased phosphorylation of ERK1/2 and Akt but not of p38 MAPK. Phosphorylation of eNOS Ser1177 under shear stress was elevated by 20 min, a response that was blocked by the phosphatidyl inositol-3-kinase (PI-3K)-inhibitors wortmannin and LY294002 but not by the mitogen activated protein kinase kinase (MEK)-inhibitor UO126. Basic fibroblast growth factor (bFGF) enhanced eNOS protein levels in static culture via a MEK-mediated mechanism, but it could not further augment the elevated eNOS protein levels otherwise induced by the 15 dynes/cm2 shear stress. Blockade of either signaling pathway changed the shear stress-induced increase in eNOS protein levels. In conclusion, shear stress induced rapid eNOS phosphorylation on Ser1177 in OFPAE cells through a PI-3K-dependent pathway. The bFGF-induced rise in eNOS protein levels in static culture was much less than those observed under flow and was blocked by inhibition of MEK. Prolonged shear stress-stimulated increases in eNOS protein were not affected by inhibition of MEK- or PI-3K-mediated pathways.
Collapse
Affiliation(s)
- Yun Li
- Perinatal Research Laboratories, Departments of Obstetrics and Gynecology
| | | | | | | |
Collapse
|