1
|
Adel O, El-Sherbiny HR, Shahat AM, Ismail ST. Effect of a single dose of letrozole on ejaculation time, semen quality, and testicular hemodynamics in goat bucks subjected to heat stress. Vet Res Commun 2024:10.1007/s11259-024-10551-5. [PMID: 39382810 DOI: 10.1007/s11259-024-10551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Letrozole (LTZ) is an aromatase inhibitor that limits estrogen (E2) production and increases testosterone (T) levels. This research aimed to examine the impact of a single dose of LTZ on testicular hemodynamics, ejaculation time, and semen quality in goats under heat stress (HS). Therefore, Doppler examination and semen evaluation were performed on twelve mature bucks for two weeks (W-1, W-2) as pre-heat stress control during winter. Then during summer HS bucks were subjected to Doppler examination, semen evaluation, and hormonal analysis (T, E2, and LH) at 0 h. Afterward, bucks were assigned into two groups and subcutaneously injected with physiological saline (n = 6; CON) or LTZ (0.25 mg/kg BW; n = 6; LTZ). Both groups were subjected to Doppler scanning and hormonal analysis at 2, 4, 24, 48, 72, 96,144, and 168 h. Semen evaluation was performed at 48 and 168 h. The LTZ group showed increasing (P < 0.05) in semen volume, sperm motility, and viability and decreasing (P < 0.05) in ejaculation time and sperm abnormalities compared to CON group at 48 h. Additionally, T concentrations increased (P < 0.01) at 2, 24, and 48 h, E2 decreased (P < 0.01) from 2 to 48 h, and LH raised (P < 0.01) at 2 and 72 h in LTZ group compared to CON one. Doppler indices reduced (P < 0.05) at 96 h in LTZ group. semen pH and scrotal circumference were not affected by LTZ. In conclusion, LTZ administration shortened ejaculation time and enhanced semen quality in bucks during HS.
Collapse
Affiliation(s)
- Ola Adel
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| | - Hossam R El-Sherbiny
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Abdallah M Shahat
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Sayed Taha Ismail
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| |
Collapse
|
2
|
Kumar R, Kumar V, Gurusubramanian G, Rathore SS, Roy VK. Ellagic acid mitigates heat-induced testicular detriment in a mouse model. J Steroid Biochem Mol Biol 2024; 243:106576. [PMID: 38986958 DOI: 10.1016/j.jsbmb.2024.106576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
Heat stress has been shown to have a detrimental impact on testicular activity and spermatogenesis. Ellagic acid is a plant-derived organic compound that has a variety of biological functions. Thus, it is believed that ellagic acid may improve heat-stressed testicular dysfunction. There has been no research on the impact of ellagic acid on heat-stressed testicular dysfunction. The mice were divided into 4 groups. The first group was the normal control group (CN), and the second received heat stress (HS) by submerging the lower body for 15 min in a water bath with a thermostatically controlled temperature kept at 43°C (HS), and the third and fourth groups were subjected to heat-stress similar to group two and given two different dosages of ellagic acid (5 mg/kg (EH5) and 50 mg/kg (EH50) for 14 days. Ellagic acid at a dose of 50 mg/kg improved the level of circulating testosterone (increased 3βHSD) and decreases the oxidative stress. The testicular and epididymal architecture along with sperm parameters also showed improvement. Ellagic acid treatment significantly increases the germ cell proliferation (GCNA, BrdU staining) and Bcl2 expression and decreases active caspase 3 expression. Heat stress downregulated the expression of AR, ER-α and ER-β, and treatment with ellagic acid increased the expression of ER-α and ER-β markers in the 50 mg/kg treatment group. Thus, our finding suggests that ellagic acid ameliorates heat-induced testicular impairment through modulating testosterone synthesis, germ cell proliferation, and oxidative stress. These effects could be manifested by regulating androgen and estrogen receptors. However, the two doses showed differential effects of some parameters, which require further investigation.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Vikash Kumar
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | | | - Saurabh Singh Rathore
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar 845401, India.
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India.
| |
Collapse
|
3
|
Aghajanpour F, Abbaszadeh HA, Nazarian H, Afshar A, Soltani R, Bana Derakhshan H, Fadaei Fathabadi F, Norouzian M. Photobiomodulation Improves Histological Parameters of Testis and Spermatogenesis in Adult Mice Exposed to Scrotal Hyperthermia in the Prepubertal Phase. J Lasers Med Sci 2024; 15:e49. [PMID: 39450003 PMCID: PMC11499963 DOI: 10.34172/jlms.2024.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/28/2024] [Indexed: 10/26/2024]
Abstract
Introduction: Heat stress is one of the environmental causes of damage to the testis, whose effects are less known before puberty. The aim of the present study was to investigate the impact of photobiomodulation (PBM) on the testis of prepubertal mice subjected to hyperthermia. Methods: Twenty-four three-week-old prepubertal male mice were allocated to the following groups: I) control, II) scrotal hyperthermia (Hyp), and III) Hyp+PBM (n=8/each group). In order to induce hyperthermia, the scrotum was placed in water at 43 °C for 20 minutes every other day for a total duration of 10 days. In the Hyp+PBM group, after hyperthermia induction, the testis of the mice was subjected to laser irradiation at a wavelength of 890 nm (0.03 J/cm2 for 30 seconds) for 35 days. After the mice were sacrificed, the testis and epididymis were removed for testing. Results: Compared with those of the Hyp group, the sperm parameters of the laser irradiation group improved notably. In addition, histological examinations revealed that the final number of testis cells and the volume of tissue in the Hyp+PBM group were dramatically greater than those in the Hyp group. The analysis of molecular data revealed an increase in the expression of mitotic genes and testosterone levels and a decrease in the formation of reactive oxygen species (ROS) and the expression of the apoptotic gene in the testis subjected to PBM. Conclusion: Based on the present findings, laser therapy can reduce complications caused by scrotal hyperthermia during prepuberty and ameliorate spermatogenesis during puberty.
Collapse
Affiliation(s)
- Fakhroddin Aghajanpour
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Rayan Stem Cells and Regenerative Medicine Research Center, Ravan Sazeh Company, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azar Afshar
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Soltani
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homayoon Bana Derakhshan
- Department of Anesthesia and Operating Room, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei Fathabadi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Norouzian
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Calamai C, Chelli E, Ammar O, Tanturli M, Vignozzi L, Muratori M. Reliable Detection of Excessive Sperm Ros Production in Subfertile Patients: How Many Men with Oxidative Stress? Antioxidants (Basel) 2024; 13:1123. [PMID: 39334782 PMCID: PMC11429313 DOI: 10.3390/antiox13091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Sperm oxidative stress has been extensively associated to male infertility. However, tests to detect this parameter have not been yet introduced in clinical practice and no definitive data are present on the extent of oxidative stress in male infertility. In this study, we used a novel and reliable flow cytometric method to reveal sperm ROS production in subfertile patients (n = 131) and in healthy donors (n = 31). Oxidative stress was higher in subfertile patients (14.22 [10.21-22.08]%) than in healthy donors (9.75 [8.00-14.90]% (p < 0.01)), but no correlation was found with age, semen quality or sDF. We also failed to detect an increase in sperm ROS production with semen viscosity or leukocytospermia, but a sharp impact of semen bacteria was evident (with bacteria: 31.61 [14.08-46.78]% vs. without bacteria: 14.20 [10.12-22.00]%, p < 0.01). Finally, after establishing a threshold as the 95th percentile in healthy donors, we found that 29% of subfertile patients exceeded this threshold. The percentage decreased to 25.56% when we excluded subjects with bacteriospermia and increased to 60.87% when only these patients were considered. In conclusion, 29% of subfertile patients showed an excessive sperm ROS production. Surprisingly, this parameter appears to be independent from routine semen analysis and even sDF determination, promising to provide additional information on male infertility.
Collapse
Affiliation(s)
- Costanza Calamai
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, I-50139 Florence, Italy
| | - Elena Chelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, I-50139 Florence, Italy
| | - Oumaima Ammar
- Department of Health Sciences, Section of Obstetrics and Gynecology, Careggi Hospital, University of Florence, I-50134 Florence, Italy
| | - Michele Tanturli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, I-50139 Florence, Italy
| | - Linda Vignozzi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, I-50139 Florence, Italy
- Andrology, Women's Endocrinology and Gender Incongruence Unit, AOU Careggi, I-50134 Florence, Italy
| | - Monica Muratori
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini, 6, I-50139 Florence, Italy
| |
Collapse
|
5
|
Daniels D, Berger Eberhardt A. Climate change, microplastics, and male infertility. Curr Opin Urol 2024; 34:366-370. [PMID: 38932480 DOI: 10.1097/mou.0000000000001201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW Semen quality is on the decline. While the etiology is unknown, recent literature suggests there may be a relationship between climate change, environmental toxins and male fertility. This review relays new information regarding associations between our environment and male infertility. RECENT FINDINGS Several recent studies have documented a negative association between heat stress and spermatogenesis, which suggests that climate change may be a factor in declining in sperm counts. The influence of particle pollution on spermatogenesis has also been recently investigated, with studies demonstrating a negative association. Another possible factor are microplastics, which have been posited to reduce sperm production. Recent animal studies have shown that microplastic exposure alters both adult sperm production and prenatal male genital development. The relationship between endocrine disrupting chemicals and male fertility remains an area of active study, with recent animal and human studies suggesting an association between these chemicals and male fertility. SUMMARY The etiology of the decline in male fertility over the past decades is yet unknown. However, changes in our environment as seen with climate change and exposure to pollutants and endocrine disrupting chemicals are proposed mechanisms for this decline. Further studies are needed to investigate this association further.
Collapse
Affiliation(s)
| | - Alexandra Berger Eberhardt
- Member of the Faculty, Harvard Medical School, Associate Surgeon, Brigham and Women's Hospital Department of Urology, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Lira FT, Campos LR, Roque M, Esteves SC. From pathophysiology to practice: addressing oxidative stress and sperm DNA fragmentation in Varicocele-affected subfertile men. Int Braz J Urol 2024; 50:530-560. [PMID: 39106113 PMCID: PMC11446552 DOI: 10.1590/s1677-5538.ibju.2024.9917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/09/2024] Open
Abstract
Varicocele can reduce male fertility potential through various oxidative stress mechanisms. Excessive production of reactive oxygen species may overwhelm the sperm's defenses against oxidative stress, damaging the sperm chromatin. Sperm DNA fragmentation, in the form of DNA strand breaks, is recognized as a consequence of the oxidative stress cascade and is commonly found in the ejaculates of men with varicocele and fertility issues. This paper reviews the current knowledge regarding the association between varicocele, oxidative stress, sperm DNA fragmentation, and male infertility, and examines the role of varicocele repair in alleviating oxidative-sperm DNA fragmentation in these patients. Additionally, we highlight areas for further research to address knowledge gaps relevant to clinical practice.
Collapse
Affiliation(s)
- Filipe Tenório Lira
- Andros RecifeRecifePEBrasilAndros Recife, Recife, PE, Brasil
- Instituto de Medicina Integral Prof. Fernando FigueiraDepartamento de UrologiaRecifePEBrasilDepartamento de Urologia, Instituto de Medicina Integral Prof. Fernando Figueira, Recife, PE, Brasil
- Hospital Santa Joana RecifeRecifeBrasilHospital Santa Joana Recife, Recife, PE, Brasil
| | - Lucas Ribeiro Campos
- Universidade Federal de Minas GeraisDepartamento de UrologiaBelo HorizonteMGBrasilDepartamento de Urologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brasil
| | - Matheus Roque
- Mater PrimeDepartamento de Medicina ReprodutivaSão PauloSPBrasilDepartamento de Medicina Reprodutiva, Mater Prime, São Paulo, SP, Brasil
| | - Sandro C. Esteves
- ANDROFERT - Clínica de Andrologia e Reprodução HumanaCentro de Referência. em Reprodução MasculinaCampinasSPBrasilANDROFERT - Clínica de Andrologia e Reprodução Humana, Centro de Referência. em Reprodução Masculina, Campinas, SP, Brasil
- Disciplina de Urologia da Universidade Estadual de CampinasDepartamento de CirurgiaCampinasSPBrasilDepartamento de Cirurgia, Disciplina de Urologia da Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brasil
- Aarhus UniversityFaculty of HealthDepartment of Clinical MedicineAarhusDenmarkDepartment of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Sadeghirad M, Soleimanzadeh A, Shalizar-Jalali A, Behfar M. Synergistic protective effects of 3,4-dihydroxyphenylglycol and hydroxytyrosol in male rats against induced heat stress-induced reproduction damage. Food Chem Toxicol 2024; 190:114818. [PMID: 38880467 DOI: 10.1016/j.fct.2024.114818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Testicular heat stress disrupts spermiogenesis and damages testicular tissue. The study aims to assess 3,4-dihydroxyphenylglycol (DHPG) and hydroxytyrosol (HT) from olive oil as antioxidants to reduce heat-induced testicular damage. Seven groups of 35 male rats were used. Group I got normal saline. Group 2 had HS (43 °C for 20 min/day) and normal saline for 60 days. Groups 3-7 had HS and DHPG/HT doses (0.5 mg/kg DHPG, 1 mg/kg DHPG, 5 mg/kg HT, 0.5 mg/kg DHPG + 5 mg/kg HT, and 1 mg/kg DHPG + 5 mg/kg HT). The evaluation included tests on testicular tissue, sperm quality, oxidative status, gene activity, and fertility after 60 days. After DHPG and HT treatment, sperm motility, viability, and plasma membrane functionality, as well as levels of total antioxidant capacity (TAC), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT), and Bcl-2 gene expression, and in vivo fertility indexes increased. Meanwhile, abnormal morphology and DNA damage decreased, along with levels of glutathione (GSH), nitric oxide (NO), and malondialdehyde (MDA), and Bax, caspase-3, and caspase-9 gene expression, compared to the HS group. The study found that DHPG and HT have a more substantial synergistic effect when used together, improving reproductive health.
Collapse
Affiliation(s)
- Milad Sadeghirad
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ali Soleimanzadeh
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Ali Shalizar-Jalali
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mehdi Behfar
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
8
|
Mehta P, Sethi S, Yadav SK, Gupta G, Singh R. Heat stress induced piRNA alterations in pachytene spermatocytes and round spermatids. Reprod Biol Endocrinol 2024; 22:87. [PMID: 39049033 PMCID: PMC11267754 DOI: 10.1186/s12958-024-01249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Spermatogenesis is a temperature-sensitive process, and elevation in temperature hampers this process quickly and significantly. We studied the molecular effects of testicular heating on piRNAs and gene expression in rat testicular germ cells. METHODS We generated a cryptorchid rat model by displacing the testis from the scrotal sac (34 °C) to the abdominal area (37 °C) and sacrificed animals after 1 day, 3 days, and 5 days. Pachytene spermatocytes and round spermatids were purified using elutriation centrifugation and percoll gradient methods. We performed transcriptome sequencing in pachytene spermatocytes and round spermatids to identify differentially expressed piRNAs and their probable targets, i.e., TE transcripts and mRNAs. RESULTS As a result of heat stress, we observed significant upregulation of piRNAs and TE transcripts in testicular germ cells. In addition to this, piRNA biogenesis machinery and heat shock proteins (Hsp70 and Hsp90 family members) were upregulated. mRNAs have also been proposed as targets for piRNAs; therefore, we shortlisted certain piRNA-mRNA pairs with an inverse relationship of expression. We observed that in testicular heat stress, the heat shock proteins go hand-in-hand with the upregulation of piRNA biogenesis machinery. The dysregulation of piRNAs in heat-stressed germ cells, increased ping-pong activity, and disturbed expression of piRNA target transcripts suggest a connection between piRNAs, mRNAs, and TE transcripts. CONCLUSIONS In heat stress, piRNAs, piRNA machinery, and heat shock proteins are activated to deal with low levels of stress, which is followed by a rescue approach in prolonged stressaccompained by high TE activity to allow genetic mutations, perhaps for survival and adaptability.
Collapse
Affiliation(s)
- Poonam Mehta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shruti Sethi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Santosh Kumar Yadav
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Gopal Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajender Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
9
|
Netherton JK, Ogle RA, Robinson BR, Molloy M, Krisp C, Velkov T, Casagranda F, Dominado N, Silva Balbin Villaverde AI, Zhang XD, Hime GR, Baker MA. The role of HnrnpF/H as a driver of oligoteratozoospermia. iScience 2024; 27:110198. [PMID: 39092172 PMCID: PMC11292545 DOI: 10.1016/j.isci.2024.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 06/03/2024] [Indexed: 08/04/2024] Open
Abstract
Male subfertility or infertility is a common condition often characterized by men producing a low number of sperm with poor quality. To gain insight into this condition, we performed a quantitative proteomic analysis of semen samples obtained from infertile and fertile men. At least 6 proteins showed significant differences in regulation of alternatively spliced isoforms. To investigate this link between aberrant alternative splicing and production of poor-quality spermatozoa, we overexpressed the hnrnpH/F-orthologue Glorund (Glo) in Drosophila, which was also found to be abundant in poor quality human sperm. Transgenic animals produced low numbers of morphologically defective spermatozoa and aberrant formation of the "dense body," an organelle akin to the mammalian manchette. Furthermore, fertility trials demonstrated that transgenic flies were either completely infertile or highly subfertile. These findings suggest that dysregulation of hnrnpH/F is likely to result in the production of low-quality semen, leading to subfertility or infertility in men.
Collapse
Affiliation(s)
- Jacob K. Netherton
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Rachel A. Ogle
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Benjamin R. Robinson
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mark Molloy
- Australian Proteome Analysis Facility, Department of Biomolecular Sciences, Macquarie University, NSW 2109 Australia
| | - Christoph Krisp
- Australian Proteome Analysis Facility, Department of Biomolecular Sciences, Macquarie University, NSW 2109 Australia
| | - Tony Velkov
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, VIC 3168, Australia
| | - Franca Casagranda
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicole Dominado
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Gary R. Hime
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark A. Baker
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
10
|
Chen W, Wang M, Wang H, Jiang Y, Zhu J, Zeng X, Xie H, Yang Q, Sun Y. Sestrin2 and Sestrin3 protect spermatogenesis against heat-induced meiotic defects†. Biol Reprod 2024; 111:197-211. [PMID: 38519102 DOI: 10.1093/biolre/ioae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/08/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
Heat stress induces testicular oxidative stress, impairs spermatogenesis, and increases the risk of male infertility. Recent studies have highlighted the antioxidative properties of the Sestrins family in reducing cellular oxidative damage. However, the role of Sestrins (Sestrin1, 2, and 3) in the testicular response to heat stress remains unclear. Here, we found that Sestrin2 and 3 were highly expressed in the testis relative to Sestrin1. Then, the Sestrin2-/- and Sestrin3-/- mice were generated by CRISPR/Cas9 to investigate the role of them on spermatogenesis after heat stress. Our data showed that Sestrin2-/- and Sestrin3-/- mice testes exhibited more severe damage manifested by exacerbated loss of germ cells and higher levels of oxidative stress as compared to wild-type counterparts after heat stress. Notably, Sestrin2-/- and Sestrin3-/- mice underwent a remarkable increase in heat-induced spermatocyte apoptosis than that of controls. Furthermore, the transcriptome landscape of spermatocytes and chromosome spreading showed that loss of Sestrin2 and Sestrin3 exacerbated meiotic failure by compromising DNA double-strand breaks repair after heat stress. Taken together, our work demonstrated a critical protective function of Sestrin2 and Sestrin3 in mitigating the impairments of spermatogenesis against heat stress.
Collapse
Affiliation(s)
- Wenhui Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengchen Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqing Jiang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Zeng
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huihui Xie
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Zetzsche J, Fallet M. To live or let die? Epigenetic adaptations to climate change-a review. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae009. [PMID: 39139701 PMCID: PMC11321362 DOI: 10.1093/eep/dvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Anthropogenic activities are responsible for a wide array of environmental disturbances that threaten biodiversity. Climate change, encompassing temperature increases, ocean acidification, increased salinity, droughts, and floods caused by frequent extreme weather events, represents one of the most significant environmental alterations. These drastic challenges pose ecological constraints, with over a million species expected to disappear in the coming years. Therefore, organisms must adapt or face potential extinctions. Adaptations can occur not only through genetic changes but also through non-genetic mechanisms, which often confer faster acclimatization and wider variability ranges than their genetic counterparts. Among these non-genetic mechanisms are epigenetics defined as the study of molecules and mechanisms that can perpetuate alternative gene activity states in the context of the same DNA sequence. Epigenetics has received increased attention in the past decades, as epigenetic mechanisms are sensitive to a wide array of environmental cues, and epimutations spread faster through populations than genetic mutations. Epimutations can be neutral, deleterious, or adaptative and can be transmitted to subsequent generations, making them crucial factors in both long- and short-term responses to environmental fluctuations, such as climate change. In this review, we compile existing evidence of epigenetic involvement in acclimatization and adaptation to climate change and discuss derived perspectives and remaining challenges in the field of environmental epigenetics. Graphical Abstract.
Collapse
Affiliation(s)
- Jonas Zetzsche
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| |
Collapse
|
12
|
Chankitisakul V, Authaida S, Boonkum W, Tuntiyasawasdikul S. Enhancement of cryopreserved rooster semen and fertility potential after oral administration of Thai ginger (Kaempferia parviflora) extract in Thai native chickens. Anim Biosci 2024; 37:1177-1184. [PMID: 38575123 PMCID: PMC11222835 DOI: 10.5713/ab.24.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE Semen cryopreservation is an effective method of preserving genetic material, particularly in native chicken breeds facing a substantial decline. In this study, we evaluated the quality of frozen/thawed rooster semen treated with different concentrations of oral administrations of black ginger (Kaempferia parviflora: KP) extract and determined its fertility. METHODS Thirty-two Thai native roosters (Pradu Hang Dum, 42 weeks old) were used in this study. The treatments were classified into four groups according to the concentration of KP extract administered to the roosters: 0, 100, 150, and 200 mg/kg body weight. The quality of fresh semen was analyzed before cryopreservation. Post-thaw sperm quality and fertility potential were determined. Also, lipid peroxidation was determined. RESULTS The results showed that sperm concentration and movement increased in roosters treated with 200 mg/kg of KP extract (p<0.05). The malondialdehyde (MDA) in the roosters receiving 200 mg/kg KP extract was lower than that in the other but had an insignificant difference within the KP treatment groups (p>0.05). The highest MDA levels were observed in the control group (p<0.05). The percentage of motile sperm (total motility and progressive motility) after semen thawing was higher in roosters that received 150 and 200 mg/kg KP extract than in those that received 100 mg/kg KP extract and the control (p<0.05). MDA levels decreased significantly in roosters that received 150 and 200 mg/kg KP extract than in those that received 100 mg/kg KP extract and the control (p<0.05). Fertility and hatchability were greater in the KP150 and KP200 groups than in the KP100 and control groups (p<0.05). CONCLUSION The optimal amount of KP extract influencing initial sperm quality was determined to be 200 mg/kg. However, 150 mg/kg was the optimal low dosage of KP extract administration that maintained sperm quality and fertility following semen cryopreservation.
Collapse
Affiliation(s)
- Vibuntita Chankitisakul
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen, 40002,
Thailand
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen, 40002,
Thailand
| | - Supakorn Authaida
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen, 40002,
Thailand
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen, 40002,
Thailand
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen, 40002,
Thailand
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen, 40002,
Thailand
| | - Sarunya Tuntiyasawasdikul
- Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002,
Thailand
| |
Collapse
|
13
|
Zhang X, Ji D, Zhang Y, Ge L, Xu S, Peng Y, Chen X, Ni J, Wang G, Ma Y, Pan F. Effects of environmental temperature extremes exposure on sperm quality - evidence from a prospective cohort study in Anhui Province, China. ENVIRONMENTAL RESEARCH 2024; 258:119462. [PMID: 38908664 DOI: 10.1016/j.envres.2024.119462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Extreme weather is becoming more frequent due to drastic changes in the climate. Despite this, the body of research focused on the association between temperature extreme events and sperm quality remains sparse. In this study, we elucidate the impact of exposure to environmental temperature extremes on sperm quality. Data for this investigation were derived from the Anhui Prospective Assisted Reproduction Cohort, encompassing the period from 2015 to 2020. Parameters such as sperm concentration, total sperm count, total motility, progressive motility, total motile sperm count, and progressive motile sperm count were quantified from semen samples. We assessed the exposure of participants to temperature extremes during the 0-90 days prior to sampling. This investigation encompassed 15,112 participants, yielding 28,267 semen samples. Our research findings indicate that exposure to low temperature extreme for three consecutive days (at the first percentile threshold) has a detrimental correlation with sperm count parameters and concentration. Similar trends were observed with the second percentile threshold, where significant adverse effects typically manifested after a four-day exposure sequence. Analysis of high temperature extreme showed that exposure at the 98th percentile had adverse effects on all six sperm quality parameters, and the sperm count parameter was particularly sensitive to high temperature, showing significant results immediately after three days of exposure. When considering even more temperature extreme (99th percentile), the negative consequences were more pronounced on the sperm count parameter. Additionally, progressive motility showed a stronger negative response. In summary, parameters associated with sperm count are particularly vulnerable to temperature extremes exposure. Exposure to high temperature extremes environments may also be associated with a decrease in sperm concentration and vitality. The findings of this study suggest that male population should pay attention to avoid exposure to temperature extreme environment, which has important significance for improving the quality of human fertility.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China;; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China
| | - Liru Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China;; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Siwen Xu
- School of Medicine, Tongji University, 500 Zhennan Road, Shanghai, 200333, China
| | - Yongzhen Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China;; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Xuyang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China;; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Jianping Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China;; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Guosheng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China;; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China;; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China;.
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China;; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China;.
| |
Collapse
|
14
|
Sales K, Thomas P, Gage MJG, Vasudeva R. Experimental heatwaves reduce the effectiveness of ejaculates at occupying female reproductive tracts in a model insect. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231949. [PMID: 38721134 PMCID: PMC11076118 DOI: 10.1098/rsos.231949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 07/31/2024]
Abstract
Globally, heatwaves have become more common with hazardous consequences on biological processes. Research using a model insect (Tribolium castaneum) found that 5-day experimental heatwave conditions damaged several aspects of male reproductive biology, while females remained unaffected. However, females' reproductive fitness may still be impacted, as insects typically store sperm from multiple males in specialized organs for prolonged periods. Consequently, using males which produce sperm with green fluorescent protein (GFP)-tagged sperm nuclei, we visualized in vivo whether thermal stress affects the ejaculate occupancy across female storage sites under two scenarios; (i) increasing time since insemination and (ii) in the presence of defending competitor sperm. We reconfirmed that sperm from heatwave-exposed males sired fewer offspring with previously mated females and provided new scenarios for in vivo distributions of heat-stress-exposed males' sperm. Sperm from heatwave-exposed males occupied a smaller area and were at lower densities across the females' storage sites. Generally, sperm occupancy decreased with time since insemination, and sperm from the first male to mate dominated the long-term storage site. Reassuringly, although heated males' ejaculate was less successful in occupying female tracts, they were not lost from female storage at a faster rate and were no worse than control males in their offensive ability to enter storage sites occupied by competitor sperm. Future work should consider the potential site-specificity of factors influencing sperm storage where amenable.
Collapse
Affiliation(s)
- Kris Sales
- Forest Research, Inventory, Forecasting and Operational Support (IFOS), FarnhamGU10 4LH, UK
| | - Paul Thomas
- School of Biological Sciences, University of East Anglia, NorwichNR4 7TJ, UK
| | - Matthew J. G. Gage
- School of Biological Sciences, University of East Anglia, NorwichNR4 7TJ, UK
| | - Ramakrishnan Vasudeva
- School of Biological Sciences, University of East Anglia, NorwichNR4 7TJ, UK
- School of Biology, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
15
|
Mohammadi T. Ameliorative effects of omega-3 and omega-6 on spermatogenesis, testicular antioxidant status and in vivo fertility index in heat-stressed rats. J Therm Biol 2024; 122:103885. [PMID: 38861860 DOI: 10.1016/j.jtherbio.2024.103885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The current study aimed to investigate the use of omega-6 (ω6) or omega-3 (ω3) in reducing heat-induced damage to the testicles. This is due to the known detrimental effects of heat and the potential protective properties of ω6 and ω3. In the study, 48 male rats were divided into eight groups, each containing 6 rats. Group I (control) received normal saline. Group 2 was exposed to high temperatures (43 °C for 20 min/day) and also received normal saline for 60 days. Groups 3-7 underwent identical HS conditions and received varying doses of ω6 or ω3 (0.5 mg/kg DHPG, 1 mg/kg DHPG, 5 mg/kg HT, 0.5 mg/kg DHPG + 5 mg/kg HT, and 1 mg/kg DHPG + 5 mg/kg HT), respectively. After 60 days, various tests were conducted on the testicular tissue, sperm quality, oxidative status, gene activity, and in vivo fertility indexes to evaluate the effects of the treatments. Treatment with ω6 and ω3 could reduce abnormal morphology and DNA damage while increasing total and progressive motility, characteristics motility, viability, and plasma membrane functional impairment compared with HS-exposed groups. Antioxidant status levels in testicular tissue were improved after administration of ω6 and ω3. Furthermore, after receiving ω6 and ω3, there were significantly lower expression levels of P53 and Caspase-3 and significantly higher expression levels of Bcl-2 compared to the HS-exposed group. Furthermore, the results showed that administration of ω6 and ω3 to rats exposed to HS could increase their in vivo fertility indexes compared to the group not exposed to HS. According to our data, all doses of ω6 and ω3 (particularly doses of ω6-1.25 and ω3-300) can improve the testicular damage, testicular antioxidant defense mechanism, regulate germ cell apoptosis, and increase in vivo fertility indexes.
Collapse
Affiliation(s)
- Tohid Mohammadi
- Department of Basic Science, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
| |
Collapse
|
16
|
Eslamizad M, Albrecht D, Kuhla B, Koch F. Cellular and mitochondrial adaptation mechanisms in the colon of lactating dairy cows during hyperthermia. J Dairy Sci 2024; 107:3292-3305. [PMID: 38056565 DOI: 10.3168/jds.2023-24004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Heat stress causes barrier dysfunction and inflammation of the small intestine of several species. However, less is known about the molecular and cellular mechanisms underlying the response of the bovine large intestine to hyperthermia. We aimed to identify changes in the colon of dairy cows in response to constant heat stress using a proteomic approach. Eighteen lactating Holstein dairy cows were kept under constant thermoneutral conditions (16°C and 68% relative humidity [RH]; temperature-humidity index [THI] = 60) for 6 d (period 1) with free access to feed and water. Thereafter, 6 cows were equally allocated to (1) thermoneutral condition with ad libitum feeding (TNAL; 16°C, RH = 68%, THI = 60), (2) heat stress condition (HS; 28°C, RH = 50%, THI = 76) with ad libitum feeding, or (3) pair-feeding at thermoneutrality (TNPF; 16°C, RH = 68%, THI = 60) for another 7 d (period 2). Rectal temperature, milk yield, dry matter and water intake were monitored daily. Then, cows were slaughtered and colon mucosa samples were taken for proteomic analysis. Physiological data were analyzed by ANOVA and colon proteome data were processed using DESeq2 package in R. Rectal temperature was significantly higher in HS than in TNPF and TNAL cows in period 2. Proteomic analysis revealed an enrichment of activated pathways related to colonic barrier function and inflammation, heat shock proteins, AA metabolism, reduced overall protein synthesis rate, and post-transcriptional regulation induced by heat stress. Further regulations were found for enzymes of the tricarboxylic acid cycle and components of the mitochondrial electron transport chain, presumably to reduce the generation of reactive oxygen species, maintain cellular ATP levels, and prevent apoptosis in the colon of HS cows. These results highlight the cellular, extracellular, and mitochondrial adaptations of the colon during heat stress and suggest a dysfunction of the hindgut barrier integrity potentially resulting in a "leaky" colon.
Collapse
Affiliation(s)
- Mehdi Eslamizad
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner," 18196 Dummerstorf, Germany
| | - Dirk Albrecht
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, 17489 Greifswald, Germany
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner," 18196 Dummerstorf, Germany
| | - Franziska Koch
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner," 18196 Dummerstorf, Germany.
| |
Collapse
|
17
|
Hsieh KL, Sun TB, Huang KH, Lin CH, Tang LY, Liu CL, Chao CM, Chang CP. Hyperbaric oxygen preconditioning normalizes scrotal temperature, sperm quality, testicular structure, and erectile function in adult male rats subjected to exertional heat injury. Mol Cell Endocrinol 2024; 584:112175. [PMID: 38341020 DOI: 10.1016/j.mce.2024.112175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Testicular hyperthermia has been noted in men who work in high ambient temperatures. Scrotal temperatures above the normal range caused germ cell loss in the testes and resulted in male subfertility. In adult male rats, exercising at a higher environmental temperature (36 °C with relative humidity of 50%, 52 min) caused exertional heat stroke (EHS) characterized by scrotal hyperthermia, impaired sperm quality, dysmorphology in testes, prostates and bladders, and erectile dysfunction. Here, we aim to ascertain whether hyperbaric oxygen preconditioning (HBOP: 100% O2 at 2.0 atm absolute [ATA] for 2 h daily for 14 days consequently before the onset of EHS) is able to prevent the problem of EHS-induced sterility, testes, prostates, and bladders dysmorphology and erectile dysfunction. At the end of exertional heat stress compared to normobaric air (NBA or non-HBOP) rats, the HBOP rats exhibited lower body core temperature (40 °C vs. 43 °C), lower scrotal temperature (34 °C vs. 36 °C), lower neurological severity scores (2.8 vs. 5.8), higher erectile ability, (5984 mmHg-sec vs. 3788 mmHg-sec), higher plasma testosterone (6.8 ng/mL vs. 3.5 ng/mL), lower plasma follicle stimulating hormone (196.3 mIU/mL vs. 513.8 mIU/mL), lower plasma luteinizing hormone (131 IU/L vs. 189 IU/L), lower plasma adrenocorticotropic hormone (5136 pg/mL vs. 6129 pg/mL), lower plasma corticosterone (0.56 ng/mL vs. 1.18 ng/mL), lower sperm loss and lower values of histopathological scores for epididymis, testis, seminal vesicle, prostate, and bladder. Our data suggest that HBOP reduces body core and scrotal hyperthermia and improves sperm loss, testis/prostate/bladder dysmorphology, and erectile dysfunction after EHS in rats.
Collapse
Affiliation(s)
- Kun-Lin Hsieh
- Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan; Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Tzong-Bor Sun
- Department of Hyperbaric Oxygen Medicine, Chi-Mei Medical Center, Tainan, Taiwan; Division of Plastic Surgery, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan.
| | - Kuan-Hua Huang
- Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan.
| | - Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| | - Ling-Yu Tang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| | - Chien-Liang Liu
- Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan.
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan; Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan, Taiwan.
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| |
Collapse
|
18
|
Wang C, Yu Q, Chu T, Wang F, Dong F, Xin H, Wang D, Liu Y, Zhai J. Relationship of environmental exposure temperature and temperature extremes on sperm DNA fragmentation index in men with different BMI values and the indirect effect of DNA fragmentation index on semen parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170292. [PMID: 38278223 DOI: 10.1016/j.scitotenv.2024.170292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Prior studies have established a significant correlation between the DNA fragmentation index (DFI) and infertility. Additionally, certain investigations suggest that environmental exposure may serve as an etiological factor impacting semen quality. This study aimed to explore the impact of season, ambient temperature, and weather extremes on the DFI of sperm, along with other relevant parameters. Furthermore, it sought to assess how ambient temperature affects the DFI of sperm and other semen parameters in populations with varying BMI values. Additionally, the study analyzed the transient indirect effect of DFI on sperm parameters. This retrospective study analyzed semen samples from 11,877 men, selected based on female factor considerations, spanning from January 2016 to December 2021. Participants were grouped according to the season of semen collection. The results showed that samples collected in summer had a lower semen volume and sperm motility, while those collected in autumn had a lower DFI. We analyzed the exposure-response ratio between environmental exposure temperature and semen parameters using a generalized additive model. Results showed that the curve of the exposure-response relationship was U-shaped or inverted U-shaped; when the air temperature exposure was below the threshold, for each degree of temperature increase, the total sperm motility, sperm concentration, and progressive motility increased by 0.16 %, 0.29 × 10 (Levine, 1999)/ml and 0.14 %, respectively, while the DFI and inactivity rate decreased by 0.078 % and 0.15 %, respectively. When the air temperature exposure exceeded the threshold, for each degree of temperature increase, the sperm concentration, total sperm motility, semen volume and progressive motility decreased by 0.42 × 10 (Levine, 1999)/ml, 0.11 %, 0.0078 ml and 0.15 %, respectively, while the DFI and inactivity rate increased by 0.13 % and 0.12 %, respectively. Extremely cold weather during spermatogenesis was positively correlated with DFI, and extremely hot weather was negatively correlated with sperm motility. Subgroup analysis revealed that individuals classified as overweight / obese exhibited more pronounced changes in sperm parameters and the DFI in response to variations in environmental exposure temperature compared to those with a normal BMI. In the analysis of the relationship between DFI and sperm parameters, the results showed an inverted U-shape relationship between DFI and semen volume, and a negative correlation between DFI and sperm concentration and sperm motility. And we found that ambient temperature affects sperm parameters through DFI at low as well as average temperatures, whereas at high temperatures this indirect effect is no longer present.
Collapse
Affiliation(s)
- Chen Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Qiwei Yu
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Ting Chu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Fang Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Fangli Dong
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Hang Xin
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Di Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yaping Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Jun Zhai
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
19
|
Raoofi A, Gholami O, Mokhtari H, Bagheri F, Rustamzadeh A, Nasiry D, Ghaemi A. Caffeine attenuates spermatogenic disorders in mice with induced chronic scrotal hyperthermia. Clin Exp Reprod Med 2024; 51:28-41. [PMID: 38433013 PMCID: PMC10914498 DOI: 10.5653/cerm.2023.06142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/20/2023] [Accepted: 09/19/2023] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE Chronic scrotal hyperthermia (SHT) can lead to serious disorders of the male reproductive system, with oxidative stress playing a key role in the onset of these dysfunctions. Thus, we evaluated the impact of caffeine, a potent antioxidant, on cellular and tissue disorders in mice with chronic SHT. METHODS In this experimental study, 56 adult male NMRI mice were allocated into seven equal groups. Apart from the non-treated control group, all were exposed to heat stress. Two groups, termed "preventive" and "curative," were orally administered caffeine. The preventive mice began receiving caffeine immediately prior to heat exposure, while for the curative group, a caffeine regimen was initiated 15 consecutive days following cessation of heat exposure. Each treated group was subdivided based on pairing with a positive control (Pre/curative [Cur]+PC) or a vehicle (Pre/Cur+vehicle). Upon conclusion of the study, we assessed sperm characteristics, testosterone levels, stereological parameters, apoptosis, antioxidant and oxidant levels, and molecular markers. RESULTS Sperm parameters, testosterone levels, stereological parameters, biochemical factors (excluding malondialdehyde [MDA]), and c-kit gene expression were significantly elevated in the preventive and curative groups, especially the former, relative to the other groups. Conversely, expression levels of the heat shock protein 72 (HSP72) and nuclear factor kappa beta (NF-κβ) genes, MDA levels, and apoptotic cell density were markedly lower in both caffeine-treated groups relative to the other groups, with more pronounced differences observed in the preventive group. CONCLUSION Overall, caffeine attenuated cellular and molecular abnormalities induced by heat stress in the testis, particularly in the mice treated under the preventive condition.
Collapse
Affiliation(s)
- Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Omid Gholami
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hossein Mokhtari
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sar, Iran
| | - Fatemeh Bagheri
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Auob Rustamzadeh
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Nasiry
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sar, Iran
| | - Alireza Ghaemi
- Department of Basic Sciences and Nutrition, Health Sciences Research Center, Faculty of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
20
|
Rachman MP, Bamidele O, Dessie T, Smith J, Hanotte O, Gheyas AA. Genomic analysis of Nigerian indigenous chickens reveals their genetic diversity and adaptation to heat-stress. Sci Rep 2024; 14:2209. [PMID: 38278850 PMCID: PMC10817956 DOI: 10.1038/s41598-024-52569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
Indigenous poultry breeds from Africa can survive in harsh tropical environments (such as long arid seasons, excessive rain and humidity, and extreme heat) and are resilient to disease challenges, but they are not productive compared to their commercial counterparts. Their adaptive characteristics are in response to natural selection or to artificial selection for production traits that have left selection signatures in the genome. Identifying these signatures of positive selection can provide insight into the genetic bases of tropical adaptations observed in indigenous poultry and thereby help to develop robust and high-performing breeds for extreme tropical climates. Here, we present the first large-scale whole-genome sequencing analysis of Nigerian indigenous chickens from different agro-climatic conditions, investigating their genetic diversity and adaptation to tropical hot climates (extreme arid and extreme humid conditions). The study shows a large extant genetic diversity but low level of population differentiation. Using different selection signature analyses, several candidate genes for adaptation were detected, especially in relation to thermotolerance and immune response (e.g., cytochrome P450 2B4-like, TSHR, HSF1, CDC37, SFTPB, HIF3A, SLC44A2, and ILF3 genes). These results have important implications for conserving valuable genetic resources and breeding improvement of chickens for thermotolerance.
Collapse
Affiliation(s)
- Mifta P Rachman
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK.
| | - Oladeji Bamidele
- African Chicken Genetic Gains (ACGG), Department of Animal Sciences, Obafemi Awolowo University, Ile Ife, 220282, Nigeria
| | - Tadelle Dessie
- LiveGene-CTLGH, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Jacqueline Smith
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Olivier Hanotte
- LiveGene-CTLGH, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia.
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Almas A Gheyas
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
21
|
Kumar R, Kumar V, Gurusubramanian G, Rathore SS, Roy VK. Morin hydrate ameliorates heat-induced testicular impairment in a mouse model. Mol Biol Rep 2024; 51:103. [PMID: 38219219 DOI: 10.1007/s11033-023-09157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Heat stress is known to adversely affect testicular activity and manifest the pathogenesis of spermatogenesis. Morin hydrate is a plant-derived compound, which contains a wide range of biological activities. Thus, it is hypothesized that morin hydrate might have an ameliorative effect on heat-induced testicular impairment. There has not been any research on the impact of morin hydrate on heat-induced testicular damage. METHODS The experimental mice were divided into four groups, groups1 as the normal control group (CN), and the second which underwent heat stress (HS) by immersing the lower body for 15 min in a thermostatically controlled water bath kept at 43 °C (HS), and third and fourth heat-stressed followed by two different dosages of morin hydrate 10 mg/kg (HSM10) and 100 mg/kg (HSM100) for 14 days. RESULTS Morin hydrate treatment at 10 mg/kg improved, circulating testosterone levels (increases 3βHSD), and oxidative stress along with improvement in the testis and caput and corpus epididymis histoarchitecture, however, both doses of morin hydrate improved sperm parameters. Morin hydrate treatment significantly increases germ cell proliferation, (GCNA, BrdU staining), expression of Bcl2 and decreases expression of active caspase 3. Heat stress also decreased the expression of AR, ER- α, and ER-β, and Morin hydrate treatment increased the expression of these markers in the 10 mg/kg treatment group. CONCLUSION Morin hydrate ameliorates heat-induced testicular impairment modulating testosterone synthesis, germ cell proliferation, and oxidative stress. These effects could be manifested by regulating androgen and estrogen receptors. However, the two doses showed differential effects of some parameters, which requires further investigations.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Biotechnology, Mahatma Gandhi Central University, East Champaran, Motihari, Bihar, 845401, India
| | - Vikash Kumar
- Department of Biotechnology, Mahatma Gandhi Central University, East Champaran, Motihari, Bihar, 845401, India
| | | | - Saurabh Singh Rathore
- Department of Biotechnology, Mahatma Gandhi Central University, East Champaran, Motihari, Bihar, 845401, India.
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796 004, India.
| |
Collapse
|
22
|
Liu P, Shao Y, Liu C, Lv X, Afedo SY, Bao W. Special Staining and Protein Expression of VEGF/EGFR and P53/NF-κB in Cryptorchid Tissue of Erhualian Pigs. Life (Basel) 2024; 14:100. [PMID: 38255715 PMCID: PMC10817362 DOI: 10.3390/life14010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Erhualian pigs exhibit one of the highest reproductive rates globally, and cryptorchidism is a crucial factor affecting reproductive abilities of boars. This investigation focused on cryptorchid tissues from Erhualian pigs, where the histological structure of cryptorchidism was observed using specialized staining. In addition, protein expression of P53/NF-κB in cryptorchid tissues was assessed using Western blot and immunohistochemistry. In comparison to normal Erhualian testes, Masson's trichrome staining indicated a reduction in collagen fibers in the connective tissue and around the basal membrane of the seminiferous tubules in cryptorchid testes. Moreover, collagen fiber distribution was observed to be disordered. Verhoeff Van Gieson (EVG) and argyrophilic staining demonstrated brownish-black granular nucleoli organized regions in mesenchymal cells and germ cells. When compared to normal testicles, the convoluted seminiferous tubules of cryptorchids exhibited a significantly reduced number and diameter (p < 0.01). Notably, VEGF/EGFR and P53/NF-κB expression in cryptorchidism significantly differed from that in normal testes. In particular, the expression of VEGF and P53 in cryptorchid tissues was significantly higher than that in normal testes tissues, whereas the expression of EGFR in cryptorchid tissues was significantly lower than that in normal testes tissues (all p < 0.01). NF-κB expressed no difference in both conditions. The expressions of VEGF and NF-κB were observed in the cytoplasm of testicular Leydig cells and spermatogenic cells, but they were weak in the nucleus. EGFR and P53 were more positively expressed in the cytoplasm of these cells, with no positive expression in the nucleus. Conclusion: There were changes in the tissue morphology and structure of the cryptorchid testis, coupled with abnormally high expression of VEGF and P53 proteins in Erhualian pigs. We speculate that this may be an important limiting factor to fecundity during cryptorchidism.
Collapse
Affiliation(s)
- Penggang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Yiming Shao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Caihong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Seth Yaw Afedo
- Department of Animal Science, School of Agriculture, University of Cape Coast, Cape Coast P.O. Box 5007, Ghana
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
23
|
Paskeh MDA, Babaei N, Hashemi M, Doosti A, Hushmandi K, Entezari M, Samarghandian S. The protective impact of curcumin, vitamin D and E along with manganese oxide and Iron (III) oxide nanoparticles in rats with scrotal hyperthermia: Role of apoptotic genes, miRNA and circRNA. J Trace Elem Med Biol 2024; 81:127320. [PMID: 37913559 DOI: 10.1016/j.jtemb.2023.127320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 06/08/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Infertility is one of the major factors affecting most people around the world. Short-term exposure to high temperatures can cause hyperthermia, which is one of the causes of male infertility. The aim of this study was to investigate the protective effect of curcumin, vitamins D and E along with Iron (III) oxide nanoparticles (Fe2O3-NPs) and manganese oxide nanoparticles (MnO2-NPs) on semen parameters and its effect on miRNA21 and circRNA0001518 expression. MATERIAL AND METHODS In this study, the lower part of the rat was exposed to 43 °C for 5 weeks every other day for 5 weeks. Then the animals were killed. Tissue samples were collected for sperm parameters analysis, and tissue samples were taken for evaluation of apoptosis levels in germ cells, and RNA extraction in order to examine the expression of Bax, Bcl-2, miRNA, and CircRNA genes. RESULTS The results of this study showed that administration of curcumin, vitamin D, and vitamin E with Fe2O3-NPs and MnO2-NPs can improve the parameters of semen, Bax gene expression, Bcl-2 as well as miRNA and CircRNA in rats with testicular hyperthermia. In addition, curcumin by reducing the toxicity of Fe2O3 nanoparticles was able to reduce its negative effects and also reduce apoptosis in germ cells. This decrease in apoptosis was attributed to decreased Bcl-2 gene expression and increased expression of Bax, miRNA-21, and circRNA0001518. CONCLUSION All the results of this study confirmed that Fe2O3-NPs and Mno2-NPs containing antioxidants or vitamins are useful in improving fertility in rats due to scrotal hyperthermia. Although Fe2O3-NPs and Mno2-NPs containing both antioxidants and vitamins had a greater effect on improving fertility and reducing the toxic effects of nanoparticles.
Collapse
Affiliation(s)
| | - Nahid Babaei
- Department of Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
24
|
Stojilković N, Radović B, Vukelić D, Ćurčić M, Antonijević Miljaković E, Buha Đorđević A, Baralić K, Marić Đ, Bulat Z, Đukić-Ćosić D, Antonijević B. Involvement of toxic metals and PCBs mixture in the thyroid and male reproductive toxicity: In silico toxicogenomic data mining. ENVIRONMENTAL RESEARCH 2023; 238:117274. [PMID: 37797666 DOI: 10.1016/j.envres.2023.117274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Toxicological research is mostly limited to considering the effects of a single substance, even though the real exposure of people is reflected in their daily exposure to many different chemical substances in low-doses. This in silico toxicogenomic study aims to provide evidence for the selected environmental (organo)metals (lead, cadmium, methyl mercury) + polychlorinated biphenyls mixture involvement in the possible alteration of thyroid, and male reproductive system function, and furthermore to predict the possible toxic mechanisms of the environmental cocktail. The Comparative Toxicogenomic Database, GeneMANIA online software, and ToppGene Suite portal were used as the main tools for toxicogenomic data mining and gene ontology analysis. The results show that 35 annotated common genes between selected chemicals and endocrine system diseases can interact on the co-expression level. Our study highlighted the disruption of the cytokines, the cell's response to oxidative stress, and the influence of the transcription factors as the potential core of toxicological mechanisms of the discussed mixture's effects. The connected toxicological effects of the tested mixture were abnormal sperm cells, a disrupted level of testosterone, and thyroid hormones. The core mechanisms of these effects were inflammation, oxidative stress, disruption of androgen receptor signaling, and the alteration of the FOXO3-Keap-1/NRF2-HMOX1-NQO1 pathway signaling most likely controlled by the co-expression of overlapped genes among used chemicals. This in silico research can be used as a potential core for the determination of biomarkers that can be monitored in future further in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Nikola Stojilković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Biljana Radović
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Dragana Vukelić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Aleksandra Buha Đorđević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| |
Collapse
|
25
|
Wang K, Li Z, Li Y, Li X, Suo Y, Li C. Impacts of elevated temperature on morphology, oxidative stress levels, and testosterone synthesis in ex vivo cultured porcine testicular tissue. Theriogenology 2023; 212:181-188. [PMID: 37742481 DOI: 10.1016/j.theriogenology.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Heat stress has been recognized as a major environmental factor affecting reproductive performance in livestock. However, the underlying mechanisms through which high temperature impairs testicular function remain elusive. This study aimed to investigate the effects of high temperature on morphology, oxidative stress levels, and testosterone synthesis in porcine testicular tissue in vitro. Testicular tissue samples from boars were subjected to different temperature conditions: control (37 °C) and heat stress (39 °C) for 4 h. The morphology of the testicular tissue was assessed using histological analysis, while oxidative stress levels were evaluated by measuring reactive oxygen species (ROS) production and antioxidant enzyme activities. Additionally, the expression of key enzymes involved in testosterone synthesis was examined using quantitative real-time polymerase chain reaction (qRT-PCR). Our results revealed that exposure to high temperatures significantly altered testicular tissue morphology. Histological analysis demonstrated degeneration and disorganization of seminiferous tubules, reduction in germ cell populations, and disruption of the blood-testis barrier. Moreover, high-temperature exposure significantly increased ROS production and decreased the activities of antioxidant enzymes (p < 0.05), indicating elevated oxidative stress levels in the testicular tissue. Furthermore, qRT-PCR analysis showed that high-temperature exposure suppressed the expression of key enzymes involved in testosterone synthesis, including steroidogenic acute regulatory protein and cytochrome P450 family 11 subfamilies A member 1. These findings suggest high temperature impairs testicular function by disrupting testicular morphology, inducing oxidative stress, and inhibiting testosterone synthesis. In conclusion, our study demonstrates that high-temperature exposure adversely affects morphology, oxidative stress levels, and testosterone synthesis in porcine testicular tissue. These findings provide insights into the potential mechanisms underlying heat-induced reproductive dysfunction in male pigs and highlight the importance of heat stress management in swine production to maintain optimal reproductive performance. Further investigations are warranted to elucidate the precise molecular pathways involved in the heat-induced testicular impairments observed in this study.
Collapse
Affiliation(s)
- Kai Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaojian Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yansen Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaotong Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunpeng Suo
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
26
|
Moeinzadeh A, Ashtari B, Garcia H, Koruji M, Velazquez CA, Bagher Z, Barati M, Shabani R, Davachi SM. The Effect of Chitosan/Alginate/Graphene Oxide Nanocomposites on Proliferation of Mouse Spermatogonial Stem Cells. J Funct Biomater 2023; 14:556. [PMID: 38132810 PMCID: PMC10744091 DOI: 10.3390/jfb14120556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Male survivors of childhood cancer have been known to be afflicted with azoospermia. To combat this, the isolation and purification of spermatogonial stem cells (SSCs) are crucial. Implementing scaffolds that emulate the extracellular matrix environment is vital for promoting the regeneration and proliferation of SSCs. This research aimed to evaluate the efficiency of nanocomposite scaffolds based on alginate, chitosan, and graphene oxide (GO) in facilitating SSCs proliferation. To analyze the cytotoxicity of the scaffolds, an MTT assay was conducted at 1, 3, and 7 days, and the sample containing 30 µg/mL of GO (ALGCS/GO30) exhibited the most favorable results, indicating its optimal performance. The identity of the cells was confirmed using flow cytometry with C-Kit and GFRα1 markers. The scaffolds were subjected to various analyses to characterize their properties. FTIR was employed to assess the chemical structure, XRD to examine crystallinity, and SEM to visualize the morphology of the scaffolds. To evaluate the proliferation of SSCs, qRT-PCR was used. The study's results demonstrated that the ALGCS/GO30 nanocomposite scaffold exhibited biocompatibility and facilitated the attachment and proliferation of SSCs. Notably, the scaffold displayed a significant increase in proliferation markers compared to the control group, indicating its ability to support SSC growth. The expression level of the PLZF protein was assessed using the Immunocytochemistry method. The observations confirmed the qRT-PCR results, which indicated that the nanocomposite scaffolds had higher levels of PLZF protein expression than scaffolds without GO. The biocompatible ALGCS/GO30 is a promising alternative for promoting SSC proliferation in in vitro applications.
Collapse
Affiliation(s)
- Alaa Moeinzadeh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Ashtari
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Heriberto Garcia
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA
| | - Morteza Koruji
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Carlo Alberto Velazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Sciences and Technology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA
| |
Collapse
|
27
|
Cabrita E, Pacchiarini T, Fatsini E, Sarasquete C, Herráez MP. Post-thaw quality assessment of testicular fragments as a source of spermatogonial cells for surrogate production in the flatfish Solea senegalensis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023:10.1007/s10695-023-01232-2. [PMID: 37644252 DOI: 10.1007/s10695-023-01232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Cryopreservation of germ cells would facilitate the availability of cells at any time allowing the selection of donors and maintaining quality control for further applications such as transplantation and germline recovery. In the present study, we analyzed the efficiency of four cryopreservation protocols applied either to isolated cell suspensions or to testes fragments from Senegalese sole. In testes fragments, the quality of cryopreserved germ cells was analyzed in vitro in terms of cell recovery, integrity and viability, DNA integrity (fragmentation and apoptosis), and lipid peroxidation (malondialdehyde levels). Transplantation of cryopreserved germ cells was performed to check the capacity of cells to in vivo incorporate into the gonadal primordium of Senegalese sole early larval stages (6 days after hatching (dah), pelagic live), during metamorphosis (10 dah) and at post-metamorphic stages (16 dah and 20 dah, benthonic life). Protocols incorporating dimethyl sulfoxide (DMSO) as a cryoprotectant showed higher number of recovered spermatogonia, especially in samples cryopreserved with L-15 + DMSO (0.39 ± 0.18 × 106 cells). Lipid peroxidation and DNA fragmentation were also significantly lower in this treatment compared with other treatments. An important increase in oxidation (MDA levels) was detected in samples containing glycerol as a cryoprotectant, reflected also in terms of DNA damage. Transplantation of L-15 + DMSO cryopreserved germ cells into larvae during early metamorphosis (10 dah, 5.2 mm) showed higher incorporation of cells (27.30 ± 5.27%) than other larval stages (lower than 11%). Cryopreservation of germ cells using testes fragments frozen with L-15 + DMSO was demonstrated to be a useful technique to store Senegalese sole germline.
Collapse
Affiliation(s)
- Elsa Cabrita
- Centre of Marine Sciences-CCMAR, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal.
| | - Tiziana Pacchiarini
- Sea4tech, Incubadora de Alta Tecnología INCUBAZUL, Edificio Europa, Zona Franca de Cádiz, Cádiz, Spain
| | - Elvira Fatsini
- Centre of Marine Sciences-CCMAR, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal
| | - Carmen Sarasquete
- Institute of Marine Science of Andalusia- ICMAN.CSIC, Av Republica Saharaui 2, 11510 Puerto Real, Cádiz, Spain
| | - María Paz Herráez
- Dept. Biologia Molecular, Facultad de Biologia, Universidad de León, 24071, León, Spain
| |
Collapse
|
28
|
Rodrigues JND, Guimarães JD, Fonseca JF, Penitente-Filho JM, Rangel PSC, López CJR, Freitas RS, Castilho EFD, Rodrigues LFDS, Oliveira MEF, Garcia AR. Climatic seasons and time of the day influence thermoregulation and testicular hemodynamics in Santa Inês rams raised under humid tropical conditions. J Therm Biol 2023. [DOI: 10.1016/j.jtherbio.2023.103546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
29
|
Robinson BR, Netherton JK, Ogle RA, Baker MA. Testicular heat stress, a historical perspective and two postulates for why male germ cells are heat sensitive. Biol Rev Camb Philos Soc 2023; 98:603-622. [PMID: 36412227 DOI: 10.1111/brv.12921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022]
Abstract
Herein, we compare the different experimental regimes used to induce testicular heat stress and summarise their impact on sperm production and male fertility. Irrespective of the protocol used, scrotal heat stress causes loss of sperm production. This is first seen 1-2 weeks post heat stress, peaking 4-5 weeks thereafter. The higher the temperature, or the longer the duration of heat, the more pronounced germ cell loss becomes, within extreme cases this leads to azoospermia. The second, and often underappreciated impact of testicular hyperthermia is the production of poor-quality spermatozoa. Typically, those cells that survive hyperthermia develop into morphologically abnormal and poorly motile spermatozoa. While both apoptotic and non-apoptotic pathways are known to contribute to hyperthermic germ cell loss, the mechanisms leading to formation of poor-quality sperm remain unclear. Mechanistically, it is unlikely that testicular hyperthermia affects messenger RNA (mRNA) abundance, as a comparison of four different mammalian studies shows no consistent single gene changes. Using available evidence, we propose two novel models to explain how testicular hyperthermia impairs sperm formation. Our first model suggests aberrant alternative splicing, while the second model proposes a loss of RNA repression. Importantly, neither model requires consistent changes in RNA species.
Collapse
Affiliation(s)
- Benjamin R Robinson
- Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jacob K Netherton
- Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Rachel A Ogle
- Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mark A Baker
- Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
30
|
Samir H, ElSayed MI, Radwan F, Hedia M, Hendawy H, Hendawy AO, Elbadawy M, Watanabe G. An updated insight on testicular hemodynamics: Environmental, physiological, and technical perspectives in farm and companion animals. Vet Res Commun 2022; 47:323-345. [DOI: 10.1007/s11259-022-10022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022]
Abstract
Abstract
In all organs, control of blood flow is important but might be particularly critical for testicular functions. This is because of the very low oxygen concentration and high metabolic rate of the seminiferous tubules, the physiological temperature of the testis, and its location outside the abdominal cavity. Many factors affect the characteristics of TBF in farm and companion animals, such as environment (thermal and seasonal effects) and physiological (species, breeds, age, body weight, and sexual maturity). Thermal environment stress has detrimental effects on spermatogenesis and consequently has more serious impacts on both human and animal fertility. Numerous studies have been performed to assess TBF in different animal species including bulls, rams, bucks, alpacas, stallions, and dogs with varied results. Hence, assessment of TBF by Doppler ultrasonography is of great importance to estimate the effect of high environment temperature on testicular functions. Also, differences observed in the TBF may result from different technical aspects such as the identification of the segment of the testicular artery to be examined. In the current review, we focused on the imperative roles of TBF in various animal species. Besides, we discussed in detail various factors that could affect TBF. These factors can significantly modify the TBF and thus should be considered when establishing reference values in farm animals for better clinical diagnosis. The information provided in this review is valuable for researchers and veterinarians to help them a better understanding of testicular hemodynamics for the proper evaluation of breeding soundness examination in males.
Collapse
|
31
|
Cao B, Qin J, Pan B, Qazi IH, Ye J, Fang Y, Zhou G. Oxidative Stress and Oocyte Cryopreservation: Recent Advances in Mitigation Strategies Involving Antioxidants. Cells 2022; 11:cells11223573. [PMID: 36429002 PMCID: PMC9688603 DOI: 10.3390/cells11223573] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Oocyte cryopreservation is widely used in assisted-reproductive technology and animal production. However, cryopreservation not only induces a massive accumulation of reactive oxygen species (ROS) in oocytes, but also leads to oxidative-stress-inflicted damage to mitochondria and the endoplasmic reticulum. These stresses lead to damage to the spindle, DNA, proteins, and lipids, ultimately reducing the developmental potential of oocytes both in vitro and in vivo. Although oocytes can mitigate oxidative stress via intrinsic antioxidant systems, the formation of ribonucleoprotein granules, mitophagy, and the cryopreservation-inflicted oxidative damage cannot be completely eliminated. Therefore, exogenous antioxidants such as melatonin and resveratrol are widely used in oocyte cryopreservation to reduce oxidative damage through direct or indirect scavenging of ROS. In this review, we discuss analysis of various oxidative stresses induced by oocyte cryopreservation, the impact of antioxidants against oxidative damage, and their underlying mechanisms. We hope that this literature review can provide a reference for improving the efficiency of oocyte cryopreservation.
Collapse
Affiliation(s)
- Beijia Cao
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China
| | - Jianpeng Qin
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Pan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China
| | - Izhar Hyder Qazi
- Department of Veterinary Anatomy, Histology, and Embryology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Jiangfeng Ye
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Fang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Correspondence: (Y.F.); (G.Z.); Tel.: +86-431-8554-2291 (Y.F.); +86-28-8629-1010 (G.Z.)
| | - Guangbin Zhou
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (Y.F.); (G.Z.); Tel.: +86-431-8554-2291 (Y.F.); +86-28-8629-1010 (G.Z.)
| |
Collapse
|
32
|
McKinnon CJ, Joglekar DJ, Hatch EE, Rothman KJ, Wesselink AK, Willis MD, Wang TR, Mikkelsen EM, Eisenberg ML, Wise LA. Male personal heat exposures and fecundability: A preconception cohort study. Andrology 2022; 10:1511-1521. [PMID: 35924639 PMCID: PMC9588744 DOI: 10.1111/andr.13242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Several studies indicate adverse effects of selected heat exposures on semen quality, but few studies have directly evaluated fertility as an endpoint. OBJECTIVE We evaluated prospectively the association between male heat exposures and fecundability, the per-cycle probability of conception. MATERIALS AND METHODS We analyzed data from 3041 couples residing in the United States or Canada who enrolled in a prospective preconception cohort study (2013-2021). At enrollment, males reported on several heat-related exposures, such as use of saunas, hot baths, seat heaters, and tight-fitting underwear. Pregnancy status was updated on female follow-up questionnaires every 8 weeks until conception or a censoring event (initiation of fertility treatment, cessation of pregnancy attempts, withdrawal, loss to follow-up, or 12 cycles), whichever came first. We used proportional probabilities regression models to estimate fecundability ratios (FR) and 95% confidence intervals (CIs) for the association between heat exposures and fecundability, mutually adjusting for heat exposures and other potential confounders. RESULTS We observed small inverse associations for hot bath/tub use (≥3 vs. 0 times/month: FR = 0.87, 95% CI: 0.70-1.07) and fever in the 3 months before baseline (FR = 0.94, 95% CI: 0.79-1.12; one cycle of follow-up: FR = 0.84, 95% CI: 0.64-1.11). Little association was found for sauna use, hours of laptop use on one's lap, seat heater use, time spent sitting, and use of tight-fitting underwear. Based on a cumulative heat metric, FRs for 1, 2, 3, and ≥4 versus 0 heat exposures were 0.99 (95% CI: 0.87-1.12), 1.03 (95% CI: 0.89-1.19), 0.94 (95% CI: 0.74-1.19), and 0.77 (95% CI: 0.50-1.17), respectively. Associations were stronger among men aged ≥30 years (≥4 vs. 0 heat exposures: FR = 0.60, 95% CI: 0.34-1.04). CONCLUSION Male use of hot tubs/baths and fever showed weak inverse associations with fecundability. Cumulative exposure to multiple heat sources was associated with a moderate reduction in fecundability, particularly among males aged ≥30 years.
Collapse
Affiliation(s)
- Craig J. McKinnon
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, Massachusetts 02118
| | - Dhruv J. Joglekar
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, Massachusetts 02118
| | - Elizabeth E. Hatch
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, Massachusetts 02118
| | - Kenneth J. Rothman
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, Massachusetts 02118
- RTI International, 3040 East Cornwallis Road, P.O. Box 12194 Research Triangle Park, North Carolina, 27709
| | - Amelia K. Wesselink
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, Massachusetts 02118
| | - Mary D. Willis
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, Massachusetts 02118
| | - Tanran R. Wang
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, Massachusetts 02118
| | - Ellen M. Mikkelsen
- Department of Clinical Epidemiology, Aarhus University Hospital, Olof Palmes Allé 43-45 8200 Aarhus N, Denmark
| | - Michael L. Eisenberg
- Department of Urology and Obstetrics & Gynecology, Stanford University School of Medicine, 291 Campus Drive, Stanford, California
| | - Lauren A. Wise
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, Massachusetts 02118
| |
Collapse
|
33
|
Habibi P, Ostad SN, Heydari A, Aliebrahimi S, Montazeri V, Foroushani AR, Monazzam MR, Ghazi-Khansari M, Golbabaei F. Effect of heat stress on DNA damage: a systematic literature review. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:2147-2158. [PMID: 36178536 DOI: 10.1007/s00484-022-02351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Thermal stress has a direct effect on various types of DNA damage, which depends on the stage of the cell cycle when the cell is exposed to different climate conditions. A literature review was conducted to systematically investigate and assess the overall effect of heat stress and DNA damage following heat exposure. In this study, electronic databases including PubMed, Scopus, and Web of Science were searched to find relevant literature on DNA damage in different ambient temperatures. Outcomes included (1) measurement of DNA damage in heat exposure, (2) three different quantification methods (comet assay, 8-hydroxy-2-deoxyguanosine (8-OHdG), and γ-H2AX), and (3) protocols used for moderate (31) and high temperatures (42). The evidence shows that long exposure and very high temperature can induce an increase in DNA damage through aggregate in natural proteins, ROS generation, cell death, and reproductive damage in hot-humid and hot-dry climate conditions. A substantial increase in DNA damage occurs following acute heat stress exposure, especially in tropical and subtropical climate conditions. The results of this systematic literature review showed a positive association between thermal stress exposure and inhibition of repair of DNA damage.
Collapse
Affiliation(s)
- Peymaneh Habibi
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Naser Ostad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahad Heydari
- Department of Health in Disaster and Emergencies, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shima Aliebrahimi
- Artificial Intelligence Department, Smart University of Medical Sciences, Tehran, Iran
| | - Vahideh Montazeri
- Artificial Intelligence Department, Smart University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Monazzam
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Golbabaei
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Heidarizadi S, Rashidi Z, Jalili C, Gholami M. Overview of biological effects of melatonin on testis: A review. Andrologia 2022; 54:e14597. [PMID: 36168927 DOI: 10.1111/and.14597] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Infertility is a major global health issue and male factors account for half of all infertility cases. One of the causes of male infertility is the loss of spermatogonial stem cells, which may occur because of chemotherapy, radiotherapy or genetic defects. In numerous animal species, the evidence suggests the pineal gland and melatonin secretion in their reproductive activities are involved. Recently, considerable attention has pointed to the usage of melatonin in the treatment of diseases. Melatonin is associated with the regulation of circadian and seasonal rhythmic functions, immune system functions, retinal physiology, spermatogenesis and inhibition of tumour growth in different species. Several studies demonstrated that melatonin acts as an anti-apoptotic, anti-inflammatory, anticancer and antioxidant agent. Melatonin can also protect testicles and spermatogonia against oxidative damage, chemotherapy drugs, environmental radiation, toxic substances, hyperthermia, ischemia/reperfusion, diabetes-induced testicular damage, metal-induced testicular toxicity, improve sperm quality and it affects the testosterone secretion pathway by affecting Leydig cells. Therefore, the objective of this study is to investigate the biological effects of melatonin as a natural antioxidant on testicles and their disorders.
Collapse
Affiliation(s)
- Somayeh Heidarizadi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Rashidi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadreza Gholami
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
35
|
Jeremy M, Gurusubramanian G, Kharwar RK, Roy VK. Evaluation of a single dose of intra-testicular insulin treatment in heat-stressed mice model. Andrologia 2022; 54:e14603. [PMID: 36156807 DOI: 10.1111/and.14603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/25/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Insulin plays important role in testicular functions such as germ cell proliferation and steroidogenesis, despite its conventional role as a hypoglycaemic agent. It is also well known that testicular activity is severely get affected by heat stress and heat stress induces testicular pathogenesis. The effect of insulin on heat-induced testicular impairment has not been investigated. Thus, it is hypothesized that insulin might modulate testicular activity in a heat-stressed model. Experimental mice were separated into 4 groups; the first group was the normal control (CN), and the second group was subjected to heat stress (HS) by submerging the lower body part in a thermostatically controlled water bath maintained at 43°C for 15 min. The third and fourth groups were treated with a single dose of intra-testicular insulin (0.6 IU/mice) before and after heat stress. Animal tissue samples were collected after 14 days of heat treatment. Insulin treatment did not improve the sperm parameters; however, both insulin pre and post-treatment improved the markers of spermatogenesis such as Johnsen score, germinal epithelium height and the number of stages VII/VIII. The histoarchitecture of testis also showed amelioration from heat-induced pathogenesis in the insulin-treated groups. Insulin treatment has also increased the proliferation of germ cells (increased PCNA and GCN), survival (Bcl2), and decreased apoptosis (active caspase-3). Furthermore, insulin treatment decreased MDA levels, without pronounced effects on the activities of antioxidant enzymes. Heat stress also decreased the circulating testosterone and oestrogen levels, and insulin treatment significantly increased oestrogen levels only. Although testosterone showed an increasing trend, it was insignificant. The expression of aromatase, AR, ER-α, and ER-β was down regulated by heat-stress and insulin treatment up regulated these markers. In conclusion, our results showed the amelioration of heat-induced testicular impairment by pre and post-intra-testicular insulin treatments. Insulin-associated improvements in the pre-and post-treatment groups suggested a preventive mechanism of insulin against heat stress in the testis.
Collapse
|
36
|
Arya D, Balasinor N, Singh D. Varicocele associated male infertility: cellular and molecular perspectives of pathophysiology. Andrology 2022; 10:1463-1483. [PMID: 36040837 DOI: 10.1111/andr.13278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Varicocele is a common risk factor associated with reduced male fertility potential. The current understanding of varicocele pathophysiology does not completely explain the clinical manifestation of infertility. The present treatment options such as antioxidant supplementation and varicocelectomy only helps ∼35% of men to achieve spontaneous pregnancy. OBJECTIVE This review aims to summarize the available knowledge on cellular and molecular alterations implicated to varicocele associated male infertility and also highlights the new knowledge generated by 'Omics' technologies. MATERIALS AND METHODS PubMed, MEDLINE, Cochrane and Google Scholar databases are searched using different combinations of keywords (varicocele, infertile/fertile men with varicocele, cellular changes, molecular mechanisms, proteome, epigenome, transcriptome and metabolome). A total of 229 relevant human and animal studies published till 2021 were included in this review. RESULTS Current understanding advocates oxidative stress (OS) as a major contributory factor to the varicocele associated male infertility. Excessive OS causes alteration in testicular microenvironment and sperm DNA fragmentation which further contributes to infertility. Molecular and omics studies have identified several promising biomarkers such as AAMP, SPINT1, MKI67 (genetic markers), sperm quality and function related protein markers, global sperm DNA methylation level (epigenetic marker), Hspa2, Protamine, Gadd7, Dynlt1 and Beclin1 (mRNA markers), PRDX2, HSPA, APOA2, YKL40 (seminal protein markers), total choline and PHGDH (metabolic markers). DISCUSSION Mature spermatozoa harbours a plethora of molecular information in form of proteome, epigenome and transcriptome; which could provide very important clues regarding pathophysiology of varicocele associated infertility. Recent molecular and omics studies in infertile men with varicocele have identified several promising biomarkers. Upon further validation with larger and well-defined studies, some of these biomarkers could aid in varicocele management. CONCLUSION The present evidences suggest inclusion of OS and sperm DNA fragmentation tests could be useful to the diagnostic workup for men with varicocele. Furthermore, including precise molecular markers may assist in diagnostics and prognostics of varicocele associated male infertility. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Deepshikha Arya
- Department of Neuroendocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Nafisa Balasinor
- Department of Neuroendocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Dipty Singh
- Department of Neuroendocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| |
Collapse
|
37
|
Abad Paskeh MD, Babaei N, Entezari M, Hashemi M, Doosti A. Protective Effects of Coenzyme Q10 Along with Fe 2O 3 Nanoparticles On Sperm Parameters in Rats with Scrotal Hyperthermia: Effects of CoQ 10 and Fe 2O 3 Nanoparticles On Sperm Parameters. Galen Med J 2022; 11:1-7. [PMID: 36408487 PMCID: PMC9651174 DOI: 10.31661/gmj.v11i.2046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 09/08/2024] Open
Abstract
Background: One of the most important factors in reducing the birth rate is male infertility, and one of the main reasons for male infertility is scrotal hyperthermia (SH). Therefore, this study aimed to investigate the protective effect of coenzyme Q10 (CoQ10) along with Fe2O3 nanoparticles on semen parameters in rats with SH. Materials and Methods: Forty-eight adult male Wistar rats were divided into eight groups: healthy control, control group receiving Fe2O3 nanoparticles, control group receiving CoQ10, control group receiving Fe2O3 nanoparticles plus CoQ10, SH group, SH group receiving CoQ10, SH group receiving Fe2O3 nanoparticle, and SH group receiving Fe2O3 nanoparticles plus CoQ10. After killing rats, semen was collected from epididymal tissue, and parameters such as sperm viability, motility, concentration, and morphology were studied. Results: SH significantly reduced sperm concentration, motility, and viability, as well as altering sperm morphology in rats. Nevertheless, CoQ10 strongly improved sperm parameters in SH rats. Fe2O3 nanoparticles led to a sharp decrease in sperm parameters; however, during the simultaneous administration of Fe2O3 nanoparticles with CoQ10, improvement in sperm parameters was seen in the SH rats. Conclusion: Our findings suggest that CoQ10, along with Fe2O3 nanoparticles, has a protective effect against spermatogenic cell death induced by SH. Thus, green synthesis of nanoparticles with the administration of antioxidants, including CoQ10 is recommended for the treatment of SH.
Collapse
Affiliation(s)
| | - Nahid Babaei
- Department of Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Maliheh Entezari
- Department of Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
38
|
Exogenous gonadotropin-releasing hormone counteracts the adverse effect of scrotal insulation on testicular functions in bucks. Sci Rep 2022; 12:7869. [PMID: 35551262 PMCID: PMC9098548 DOI: 10.1038/s41598-022-11884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/29/2022] [Indexed: 11/08/2022] Open
Abstract
This study determined the effects of scrotal insulation on testicular functions in bucks and evaluated the impact of exogenous gonadotropin-releasing hormone (GnRH) administration before scrotal insulation on sperm production and testicular vascular dynamics. Twelve bucks were randomly divided into three groups: scrotal-insulated animals without GnRH treatment (INS), scrotal-insulated animals treated previously with GnRH (GnRH + INS), and animals without insulation as controls (CON). Doppler ultrasonography was used to evaluate testicular vascular changes, and semen samples were collected to assess seminal parameters. Testicular samples were collected from slaughtered bucks at the end of the experiment for histological investigations and immunohistochemical analysis for caspase 3 (apoptotic marker), and a vascular endothelial growth factor (VEGF; hypoxic marker) evaluation. Sperm motility drastically decreased (33%) in the INS group on day 8 compared with those in the GnRH + INS and CON groups (58% and 85%, respectively). Testicular blood flow significantly decreased for 3 and 2 weeks in the INS and GnRH + INS groups, respectively. The pulsatility index (PI) reached pretreatment values at 5 and 4 weeks after insulation in the INS and GnRH + INS groups, respectively. The resistance index (RI) values increased in both insulated groups for the first 2 weeks and decreased to control values 4 weeks after insulation. However, the maximum velocity (VP) started to increase reaching pretreatment values by the 5th and 3rd weeks after insulation in the INS and GnRH + INS groups, respectively. Histological investigations showed a marked reduction in lipid inclusions in Sertoli cells in the GnRH + INS group compared with those in the INS group. The distributions of both caspase 3 and VEGF decreased in the GnRH + INS group compared with those in the INS group. This study showed that the administration of a single dose of GnRH delayed the negative effects of scrotal insulation on different seminal traits and revealed the pivotal role of GnRH in compensating testicular insulation in bucks.
Collapse
|
39
|
Anbara H, Shahrooz R, Razi M, Malekinejad H, Najafi G, Shalizar-Jalali A. Repro-protective role of royal jelly in phenylhydrazine-induced hemolytic anemia in male mice: Histopathological, embryological, and biochemical evidence. ENVIRONMENTAL TOXICOLOGY 2022; 37:1124-1135. [PMID: 35099105 DOI: 10.1002/tox.23470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 12/12/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
To estimate the repro-protective effect of royal jelly (RJ) on phenylhydrazine (PHZ)-induced anemia's detrimental effects, 24 mature mice were divided into control group (0.10 mL normal saline; intra-peritoneally), RJ group (100 mg/kg/day; orally), experimental anemia (EA) group that received only PHZ (6 mg/100 g/48 h; intra-peritoneally), and RJ + EA (according to the previous prescription) group. After 35 days, testicular histoarchitecture, RNA damage in germinal cells, sperm characteristics, testicular total anti-oxidant capacity and malondialdehyde as well as serum testosterone levels, pre-implantation embryo development and cyclin D1 and c-myc mRNA levels at two-cell, morula and blastocyst stages were analyzed. Spermatogenesis indices were ameliorated following RJ co-administration. Moreover, RJ co-treatment reduced germinal cells RNA damage, improved sperm characteristics, boosted pre-implantation embryo development and restored androgenesis, and oxidant/anti-oxidant status. Co-administration of RJ also decreased mRNA levels of cyclin D1 and up-regulated those of c-myc in two-cell embryos, morulas and blastocysts. The findings suggest that RJ can play a repro-protective role in PHZ-induced anemia in mice through anti-oxidant defense system reinforcement and androgenesis restoration as well as cyclin D1 and c-myc expressions regulation.
Collapse
Affiliation(s)
- Hojat Anbara
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Rasoul Shahrooz
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mazdak Razi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Gholamreza Najafi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ali Shalizar-Jalali
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
40
|
Impact of Heat Stress on Bovine Sperm Quality and Competence. Animals (Basel) 2022; 12:ani12080975. [PMID: 35454222 PMCID: PMC9027525 DOI: 10.3390/ani12080975] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Global warming has negatively influenced animal production performance, in addition to animal well-being and welfare, consequently impairing the economic sustainability of the livestock industry. Heat stress impact on male fertility is complex and multifactorial, with the fertilizing ability of spermatozoa affected by several pathways. Among the most significative changes are the increase in and accumulation of reactive oxygen species (ROS) causing lipid peroxidation and motility impairment. The exposure of DNA during the cell division of spermatogenesis makes it vulnerable to both ROS and apoptotic enzymes, while the subsequent post-meiotic DNA condensation makes restoration impossible, harming later embryonic development. Mitochondria are also susceptible to the loss of membrane potential and electron leakage during oxidative phosphorylation, lowering their energy production capacity under heat stress. Although cells are equipped with defense mechanisms against heat stress, heat insults that are too intense lead to cell death. Heat shock proteins (HSP) belong to a thermostable and stress-induced protein family, which eliminate protein clusters and are essential to proteostasis under heat stress. This review focuses on effects of heat stress on sperm quality and on the mechanisms leading to defective sperm under heat stress.
Collapse
|
41
|
Fraczek M, Lewandowska A, Budzinska M, Kamieniczna M, Wojnar L, Gill K, Piasecka M, Kups M, Havrylyuk A, Chopyak V, Nakonechnyy J, Nakonechnyy A, Kurpisz M. The Role of Seminal Oxidative Stress Scavenging System in the Pathogenesis of Sperm DNA Damage in Men Exposed and Not Exposed to Genital Heat Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052713. [PMID: 35270405 PMCID: PMC8910598 DOI: 10.3390/ijerph19052713] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
Responding to the need for the verification of some experimental animal studies showing the involvement of oxidative stress in germ cell damage in the heat-induced testis, we investigated the possibility of a direct relationship between seminal oxidative stress markers (total antioxidant capacity, catalase activity, superoxide dismutase activity, and malondialdehyde concentration) and ejaculated sperm chromatin/DNA integrity (DNA fragmentation and chromatin condensation abnormalities) in distinct groups of men exposed and not exposed to prolonged scrotal hyperthermia. A statistical increase in the proportion of sperm with DNA fragmentation was observed in all the studied subgroups compared to the fertile men. In turn, the groups subjected to heat stress as professional drivers or infertile men with varicocele presented greater disturbances in the oxidative stress scavenging system than men not exposed to genital heat stress. Based on the comparative analysis of the studied parameters, we can conclude that alterations in the seminal oxidative stress scavenging system are directly engaged in the pathogenesis of ejaculated sperm DNA damage regardless of the intensity of the impact of thermal insult. To the best of our knowledge, this study, for the first time, revealed the co-existence of oxidative stress and sperm DNA damage in the semen of professional drivers.
Collapse
Affiliation(s)
- Monika Fraczek
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.L.); (M.B.); (M.K.)
- Correspondence: (M.F.); (M.K.)
| | - Angelika Lewandowska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.L.); (M.B.); (M.K.)
| | - Marta Budzinska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.L.); (M.B.); (M.K.)
| | - Marzena Kamieniczna
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.L.); (M.B.); (M.K.)
| | - Lukasz Wojnar
- Clinic of Urology and Oncological Urology, Poznan University of Medical Sciences, 61-285 Poznan, Poland;
| | - Kamil Gill
- Department of Histology and Developmental Biology, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland; (K.G.); (M.P.)
| | - Malgorzata Piasecka
- Department of Histology and Developmental Biology, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland; (K.G.); (M.P.)
| | - Michal Kups
- Department and Clinic Urology and Oncological Urology, Regional Specialist Hospital in Szczecin, 71-455 Szczecin, Poland;
- The Fertility Partnership Vitrolive in Szczecin, 70-483 Szczecin, Poland
| | - Anna Havrylyuk
- Department of Clinical Immunology and Allergology, Danylo Halytskyy Lviv National Medical University, 79008 Lviv, Ukraine; (A.H.); (V.C.)
| | - Valentina Chopyak
- Department of Clinical Immunology and Allergology, Danylo Halytskyy Lviv National Medical University, 79008 Lviv, Ukraine; (A.H.); (V.C.)
| | - Jozef Nakonechnyy
- Department of Urology, Danylo Halytskyy Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Andrij Nakonechnyy
- Department of Paediatric Surgery, Danylo Halytskyy Lviv National Medical University, 79059 Lviv, Ukraine;
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (A.L.); (M.B.); (M.K.)
- Correspondence: (M.F.); (M.K.)
| |
Collapse
|
42
|
Sperm Redox System Equilibrium: Implications for Fertilization and Male Fertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:345-367. [DOI: 10.1007/978-3-030-89340-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Ferrer MS, Palomares RA, Hurley DJ, Norton N, Bullington AC, Hoyos-Jaramillo A, Bittar JHJ. Changes in serum testosterone and anti-Müllerian hormone concentration in bulls undergoing scrotal insulation. Domest Anim Endocrinol 2022; 78:106685. [PMID: 34634727 DOI: 10.1016/j.domaniend.2021.106685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/03/2022]
Abstract
While changes in semen quality after heat stress are well characterized in the bull, changes in endocrine function have not been critically evaluated. It was hypothesized here that scrotal insulation results in alterations in Sertoli cell and Leydig cell function, as measured by changes in serum testosterone and anti-Müllerian hormone (AMH) concentration. Scrotal insulation bags were placed in 10 bulls for 8 d. Blood was collected on days -22 and -2, and weekly from days 5 to 96 (day 0 = first day of scrotal insulation) for measurement of serum concentration of AMH and testosterone using ELISA. The concentration of AMH decreased on day 5, followed by an increase on day 54 (P = 0.014). When AMH concentration was normalized to pre-insulation values, the percent increase in serum concentration of AMH was significant between days 26 and 54, with another peak at 75 d (P = 0.031). The serum concentration of testosterone (P = 0.0001) and the percentage of change in testosterone concentration (P < 0.0001) increased on day 5, followed by a decrease from days 33 to 96. Scrotal insulation was associated with Sertoli and Leydig cell dysfunction, as measured by serum testosterone and AMH concentration. The persistently low concentration of testosterone at the end of the study suggests a long term effect of scrotal insulation on Leydig cell function.
Collapse
Affiliation(s)
- M S Ferrer
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30605.
| | - R A Palomares
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30605
| | - D J Hurley
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30605
| | - N Norton
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30605
| | - A C Bullington
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30605
| | - A Hoyos-Jaramillo
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30605
| | - J H J Bittar
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30605
| |
Collapse
|
44
|
Antioxidant effect of Lonicera Caerulea on heat stress-treated male mice. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.4.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
45
|
Mahdavinezhad F, Farmani AR, Pakniat H, Taghavi S, Gharaei R, Valipour J, Amidi F. COVID-19 and varicocele: the possible overlap factors and the common therapeutic approaches. Am J Reprod Immunol 2021; 87:e13518. [PMID: 34967487 DOI: 10.1111/aji.13518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Varicocele is recognized as one of the main attributable causes of male infertility which can affect spermatogenesis by various pathophysiological mechanisms. Recent studies have identified oxidative stress and reduction in antioxidant, hyperthermia, hypoxia, hormonal dysfunction, and inflammatory conditions as major factors in the pathophysiology of varicocele, all of which have known direct associations with the coronavirus disease 2019 (COVID-19) and can significantly increase the risk of detrimental COVID-19-related outcomes. Emerging data have shown an association between COVID-19 and inflammation, overproduction of cytokine, and other pathophysiological processes. The present review, summarizes the current understanding of the pathophysiology of varicocele and investigates the potential correlation between the severity of COVID-19 and the varicocele disease. In addition, various possible treatments which can be effective in both diseases were examined. Despite numerous challenges associated with the prevalence of COVID-19 in healthcare systems in infected countries, special attention should be given to maintaining a high level of care for complex patients with a pre-existing disease such as varicocele and providing appropriate practical advice for optimal control of the COVID-19 disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Forough Mahdavinezhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Farmani
- Department of Tissue Engineering, Faculty of Advanced Technologies, Tehran University of Medical Sciences, Tehran, Iran.,Tissue Engineering Department, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamideh Pakniat
- Department of Obstetrics and Gynecology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Saeed Taghavi
- Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Roghaye Gharaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamal Valipour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Tsartsianidou V, Sánchez-Molano E, Kapsona VV, Basdagianni Z, Chatziplis D, Arsenos G, Triantafyllidis A, Banos G. A comprehensive genome-wide scan detects genomic regions related to local adaptation and climate resilience in Mediterranean domestic sheep. Genet Sel Evol 2021; 53:90. [PMID: 34856922 PMCID: PMC8641236 DOI: 10.1186/s12711-021-00682-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Background The management of farm animal genetic resources and the adaptation of animals to climate change will probably have major effects on the long-term sustainability of the livestock sector. Genomic data harbour useful relevant information that needs to be harnessed for effectively managing genetic resources. In this paper, we report the genome characterization of the highly productive Mediterranean Chios dairy sheep and focus on genetic diversity measures related with local adaptation and selection and the genetic architecture of animal resilience to weather fluctuations as a novel adaptative trait linked to climate change. Results We detected runs of homozygosity (ROH) and heterozygosity (ROHet) that revealed multiple highly homozygous and heterozygous hotspots across the Chios sheep genome. A particularly highly homozygous region was identified on chromosome 13 as a candidate of directional genetic selection associated with milk traits, which includes annotated genes that were previously shown to be linked to local adaptation to harsh environmental conditions. Favourable heterozygosity related with a potentially protective role against livestock diseases and enhanced overall fitness was revealed in heterozygous-rich regions on sheep chromosomes 3, 10, 13 and 19. Furthermore, genomic analyses were conducted on sheep resilience phenotypes that display changes in milk production in response to weather variation. Sheep resilience to heat stress was a significantly heritable trait (h2 = 0.26) and genetically antagonistic to milk production. Genome-wide association and regional heritability mapping analyses revealed novel genomic markers and regions on chromosome 5 that were significantly associated with sheep resilience to climate change. Subsequently, an annotation analysis detected a set of genes on chromosome 5 that were associated with olfactory receptor complexes that could participate in heat stress mitigation through changes in respiration rate and respiratory evaporation. Other genes were grouped in previously reported biological processes relevant to livestock heat dissipation, including stress and immune response. Conclusions Our results may contribute to the optimal management of sheep genetic resources and inform modern selective breeding programmes that aim at mitigating future environmental challenges towards sustainable farming, while better balancing animal adaptation and productivity. Our results are directly relevant to the studied breed and the respective environmental conditions; however, the methodology may be extended to other livestock species of interest. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00682-7.
Collapse
Affiliation(s)
- Valentina Tsartsianidou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Enrique Sánchez-Molano
- Division of Genetics and Genomics, School of Veterinary Studies, The Roslin Institute and Royal (Dick), University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Vanessa Varvara Kapsona
- Department of Animal and Veterinary Sciences, Scotland's Rural College, Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG, UK
| | - Zoitsa Basdagianni
- Department of Animal Production, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Dimitrios Chatziplis
- Laboratory of Agrobiotechnology and Inspection of Agricultural Products, Department of Agriculture, International Hellenic University, Alexander Campus, 57400, Sindos, Greece
| | - Georgios Arsenos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Alexandros Triantafyllidis
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Georgios Banos
- Department of Animal and Veterinary Sciences, Scotland's Rural College, Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG, UK.,Laboratory of Animal Husbandry, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
47
|
Jeremy M, Gurusubramanian G, Roy VK, Kharwar RK. Co-treatment of testosterone and estrogen mitigates heat-induced testicular dysfunctions in a rat model. J Steroid Biochem Mol Biol 2021; 214:106011. [PMID: 34688845 DOI: 10.1016/j.jsbmb.2021.106011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 12/17/2022]
Abstract
The two gonadal steroid hormones, testosterone and estrogen, regulate spermatogenesis by proliferation, differentiation, and apoptosis of testicular cells. It has been reported that heat stress or increased scrotal temperature impairs spermatogenesis in many mammals. Moreover, testicular heat stress has also been shown to suppress testosterone and estrogen biosynthesis. Furthermore, it is well known that testosterone and estrogen are important for testicular activity. Therefore, we hypothesised that exogenous testosterone and estrogen, alone or in combination, might alleviate the testicular activity in a heat-stressed rat model. To the best of our knowledge, this will be the first report of the exogenous treatment of both testosterone and estrogen in the heat-stressed rat. Our results showed that a combined testosterone and estrogen treatment significantly increased sperm concentration. The histopathological analysis also exhibited a normal histoarchitecture in the combined treatment group along with decreased oxidative stress. The improved spermatogenesis in the combined treatment group was also supported by the increase in PCNA, GCNA, tubule diameter, germinal epithelium height, and Johnsen score in the combined treatment group. Furthermore, the combined treatment also increased the expression of Bcl2, pStat3, and active caspase-3 and decreased expression of Bax. Thus, increased proliferation, apoptotic and anti-apoptotic markers, along with improved histology in the combined treatment group suggest that estrogen and testosterone synergistically act to stimulate spermatogenesis by increasing proliferation and differentiation of germ cells and may also remove the heat-induced damaged germ cells by apoptosis. Overall, the final mechanism of testosterone- and estrogen-mediated improvement of testicular activity could be attributed to amelioration of oxidative stress.
Collapse
Affiliation(s)
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Rajesh Kumar Kharwar
- Department of Zoology, Kutir Post Graduate College, Chakkey, Jaunpur, 222 146, India.
| |
Collapse
|
48
|
Tekin K, İnanç ME, Özen D, Cil B, Olğaç KT, Yılmaz B, Taşdemir U, Tuncer PB, Büyükleblebici S, Daşkın A, Uysal O, Stelletta C. Use of Infrared Thermography during Ejaculation Process and Its Link with Semen Quality and Freezability in Dogs. Animals (Basel) 2021; 11:ani11113023. [PMID: 34827755 PMCID: PMC8614508 DOI: 10.3390/ani11113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Scientific attention to infrared technology has grown over the last decade. Remote and non-invasive monitoring techniques are of great importance in discovering ejaculation response and future trends because of their role in vascular flux regulation. However, detailed information about its use in andrology has yet to be fully explained. Therefore, we aimed to reveal information about the amount of sperm to be obtained by observing stress levels with non-invasive eye temperature measurement, and the relationship between various reproductive temperature patterns and parameters of the animal’s various physiological conditions such as age, body condition, total ejaculation time and testicular volume. Abstract This study aimed to describe the thermal variation of external reproductive tracts during ejaculation in relation to sperm quality in dogs. Forty-six adult fertile dogs were monitored using a thermal camera before, during and after the semen collection, taking into account penile and scrotal temperatures as reproductive thermal patterns while eye and perianal temperatures were recorded as complementary thermal patterns of behavioral response. The parameters were classified depending on age (≤4 years and >4 years), body weight (BW) (≤75 kg and >75 kg), sperm concentration (CON) (≤300 million and >300 million), total testicular volume (TTV) (≤600 cm3 and >600 cm3) and total ejaculation time (TET) (≤800 s and >800 s) of the animals from which semen was collected successfully. Heavier males (p < 0.05) that have more consistent testicles (p < 0.01) as well as quicker ejaculate responders (p < 0.001) and lower scrotal temperature had better semen (Δ motility) freezability. The lower eye temperature prior to the ejaculation (p < 0.01), lower scrotal temperature following ejaculation (p < 0.01), and conversely, higher penile temperature during the ejaculation (p < 0.001) had a higher sperm concentration. Furthermore, the sperm freezability was negatively correlated with total ejaculation time (r = −0.39, p < 0.05) and sperm abnormalities were lower in the ejaculate of dogs having a higher temperature of the scrotum, bulbus and penis. In conclusion, infrared monitoring throughout semen collection in dogs can provide information on behavioral reactions during human manipulation, as well as semen quality and testicular functionality.
Collapse
Affiliation(s)
- Koray Tekin
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ankara University, Ankara 68100, Turkey; (K.T.); (B.C.); (K.T.O.); (B.Y.); (A.D.); (O.U.)
| | - Muhammed Enes İnanç
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur 15030, Turkey;
| | - Doğukan Özen
- Department of Biostatistics, Faculty of Veterinary Medicine, Ankara University, Ankara 06560, Turkey;
| | - Beste Cil
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ankara University, Ankara 68100, Turkey; (K.T.); (B.C.); (K.T.O.); (B.Y.); (A.D.); (O.U.)
| | - Kemal Tuna Olğaç
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ankara University, Ankara 68100, Turkey; (K.T.); (B.C.); (K.T.O.); (B.Y.); (A.D.); (O.U.)
| | - Burak Yılmaz
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ankara University, Ankara 68100, Turkey; (K.T.); (B.C.); (K.T.O.); (B.Y.); (A.D.); (O.U.)
| | - Umut Taşdemir
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Aksaray University, Aksaray 68100, Turkey;
| | - Pürhan Barbaros Tuncer
- Technical Sciences Vocational School, Mersin University, Mersin 33110, Turkey; (P.B.T.); (S.B.)
| | - Serhat Büyükleblebici
- Technical Sciences Vocational School, Mersin University, Mersin 33110, Turkey; (P.B.T.); (S.B.)
| | - Ali Daşkın
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ankara University, Ankara 68100, Turkey; (K.T.); (B.C.); (K.T.O.); (B.Y.); (A.D.); (O.U.)
| | - Ongun Uysal
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ankara University, Ankara 68100, Turkey; (K.T.); (B.C.); (K.T.O.); (B.Y.); (A.D.); (O.U.)
| | - Calogero Stelletta
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ankara University, Ankara 68100, Turkey; (K.T.); (B.C.); (K.T.O.); (B.Y.); (A.D.); (O.U.)
- Department of Animal Medicine, Production and Health, University of Padova, 35122 Padova, Italy
- Correspondence:
| |
Collapse
|
49
|
Hu SQ, Liu DL, Li CR, Xu YH, Hu K, Cui LD, Guo J. Wuzi-Yanzong prescription alleviates spermatogenesis disorder induced by heat stress dependent on Akt, NF-κB signaling pathway. Sci Rep 2021; 11:18824. [PMID: 34552120 PMCID: PMC8458393 DOI: 10.1038/s41598-021-98036-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Akt and nuclear factor kappa B (NF-κB) signaling pathways are involved in germ cell apoptosis and inflammation after testicular heat stress (THS). We observed that after THS induced by the exposure of rat testes to 43 °C for 20 min, their weight decreased, the fraction of apoptotic testicular germ cells significantly increased, and the proliferation of germ cells was inhibited. In addition, THS lowered serum testosterone (T) level, whereas the levels of follicle stimulating hormone and luteinizing hormone were not significantly changed. The ultrastructure of the seminiferous tubules became abnormal after THS, the structure of the blood-testis barrier (BTB) became loose, and the Sertoli cells showed a trend of differentiation. The level of phosphorylated Akt was reduced, whereas the amount of phosphorylated NF-κB p65 was augmented by THS. Wuzi-Yanzong (WZYZ), a classic Chinese medicine prescription for the treatment of male reproductive dysfunctions, alleviated the changes induced by THS. In order to determine the mechanism of action of WZYZ, we investigated how this preparation modulated the levels of T, androgen receptor (AR), erythropoietin (EPO), EPO receptor, and Tyro-3, Axl, and Mer (TAM) family of tyrosine kinase receptors. We found that WZYZ activated the Akt pathway, inhibited the Toll-like receptor/MyD88/NF-κB pathway, and repaired the structure of BTB by regulating the levels of T, AR, TAM receptors, and EPO. In conclusion, these results suggest that WZYZ activates the Akt pathway and inhibits the NF-κB pathway by acting on the upstream regulators, thereby improving spermatogenesis deficit induced by THS.
Collapse
Affiliation(s)
- Su-Qin Hu
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Dian-Long Liu
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Chun-Rui Li
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Ya-Hui Xu
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Ke Hu
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Li-Dan Cui
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Jian Guo
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| |
Collapse
|
50
|
Butzge AJ, Yoshinaga TT, Acosta ODM, Fernandino JI, Sanches EA, Tabata YA, de Oliveira C, Takahashi NS, Hattori RS. Early warming stress on rainbow trout juveniles impairs male reproduction but contrastingly elicits intergenerational thermotolerance. Sci Rep 2021; 11:17053. [PMID: 34426625 PMCID: PMC8382822 DOI: 10.1038/s41598-021-96514-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/11/2021] [Indexed: 01/10/2023] Open
Abstract
The exposure of adult fish to warm or high temperatures is known to impair reproduction, yet the long-term reproductive impacts for treatments at early life are not well clarified. This study aimed to evaluate the effects of warm temperature (WT) during juvenile stage on gonad maturation, gamete quality, and offspring thermotolerance in rainbow trout. While the comparison of basic reproductive parameters in WT females did not reveal any kind of impairment, many WT males showed an atrophied, undeveloped gonad, or a smaller testis with lower milt volume; sperm quality parameters in WT males and deformity rates in the respective progeny were also highly affected. However, despite of such negative effects, many of the remaining progeny presented better rates of survival and growth when exposed to the same conditions as those of parental fish (WT), suggesting that thermal stress in parr stage males elicited intergenerational thermotolerance after a single generation. The present results support that prolonged warming stress during early life stages can adversely affect key reproductive aspects, but contrastingly increase offspring performance at upper thermal ranges. These findings have implications on the capacity of fish to adapt and to cope with global warming.
Collapse
Affiliation(s)
- Arno Juliano Butzge
- Department of Structural and Functional Biology, Institute of Biosciences, Botucatu São Paulo State University (UNESP), Botucatu, 18618-689, Brazil
| | - Tulio Teruo Yoshinaga
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, Brazil
| | - Omar David Moreno Acosta
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Nacional de San Martín (CONICET/UNSAM), 7130, Chascomús, Argentina
| | - Juan Ignacio Fernandino
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Nacional de San Martín (CONICET/UNSAM), 7130, Chascomús, Argentina
| | - Eduardo Antônio Sanches
- Fishery Engineering Course and Aquaculture Centre (CAUNESP), São Paulo State University, Registro, 11900-000, Brazil
| | - Yara Aiko Tabata
- Salmonid Experimental Station At Campos Do Jordão, UPD-CJ (APTA/SAA), Campos do Jordão, 12460-000, Brazil
| | - Claudio de Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, Botucatu São Paulo State University (UNESP), Botucatu, 18618-689, Brazil
| | - Neuza Sumico Takahashi
- Centro de Pesquisa de Aquicultura, Sao Paulo Fisheries Institute (APTA/SAA), São Paulo, 05001-900, Brazil
| | - Ricardo Shohei Hattori
- Salmonid Experimental Station At Campos Do Jordão, UPD-CJ (APTA/SAA), Campos do Jordão, 12460-000, Brazil.
| |
Collapse
|