1
|
Kuroshima S, Nakao S, Horikoshi Y, Ito K, Ishii A, Shirakawa A, Kondo Y, Irie T, Ishitsuka Y, Nakagata N, Takeo T. Efficient breeding system of infertile Niemann-Pick disease type C model mice by in vitro fertilization and embryo transfer. Lab Anim 2024:236772231194112. [PMID: 39102515 DOI: 10.1177/00236772231194112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Niemann-Pick disease type C (NPC) is a lethal genetic disease with mutations in NPC1 or NPC2 gene. Npc1-deficient (Npc1-/-) mice have been used as a model for NPC pathogenesis to develop novel therapies for NPC. However, Npc1-/- mice are infertile; thus, securing sufficient numbers for translational research is difficult. Hence, we attempted reproductive engineering techniques such as in vitro fertilization (IVF) and sperm cryopreservation. For the first time, we succeeded in producing fertilized oocytes via IVF using male and female Npc1-/- mice. Fertilized oocytes were also obtained via IVF using cryopreserved sperm from Npc1-/- mice. The obtained fertilized oocytes normally developed into live pups via embryo transfer, and they eventually exhibited NPC pathogenesis. These findings are useful for generating an efficient breeding system that overcomes the reproductive challenges of Npc1-/- mice and will contribute to developing novel therapeutic methods using NPC model mice.
Collapse
Affiliation(s)
- Serina Kuroshima
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Japan
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Satohiro Nakao
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Japan
| | - Yuka Horikoshi
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Japan
| | - Kotono Ito
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Japan
| | - Akira Ishii
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Aina Shirakawa
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Tetsumi Irie
- Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, Japan
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Center for Animal Resources and Development, Kumamoto University, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Japan
| |
Collapse
|
2
|
Saito A, Tahara R, Hirose M, Kadota M, Hasegawa A, Kondo S, Kato H, Amano T, Yoshiki A, Ogura A, Kiyosawa H. Inter-subspecies mouse F1 hybrid embryonic stem cell lines newly established for studies of allelic imbalance in gene expression. Exp Anim 2024; 73:310-318. [PMID: 38447983 PMCID: PMC11254486 DOI: 10.1538/expanim.24-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
Allele-specific monoallelic gene expression is a unique phenomenon and a great resource for analyzing gene regulation. To study this phenomenon, we established new embryonic stem (ES) cell lines derived from F1 hybrid blastocysts from crosses between four mouse subspecies (Mus musculus domesticus, C57BL/6; M. musculus molossinus, MSM/Ms; M. musculus musculus, PWK; M. musculus castaneus, HMI/Ms) and analyzed the expression levels of undifferentiated pluripotent stem cell markers and karyotypes of each line. To demonstrate the utility of our cell lines, we analyzed the allele-specific expression pattern of the Inpp5d gene as an example. The allelic expression depended on the parental alleles; this dependence could be a consequence of differences in compatibility between cis- and trans-elements of the Inpp5d gene from different subspecies. The use of parental mice from four subspecies greatly enhanced genetic polymorphism. The F1 hybrid ES cells retained this polymorphism not only in the Inpp5d gene, but also at a genome-wide level. As we demonstrated for the Inpp5d gene, the established cell lines can contribute to the analysis of allelic expression imbalance based on the incompatibility between cis- and trans-elements and of phenotypes related to this incompatibility.
Collapse
Affiliation(s)
- Ayaka Saito
- Laboratory for Genome Science, Department of Life Science, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Ryosuke Tahara
- Laboratory for Genome Science, Department of Life Science, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Michiko Hirose
- Bioresource Engineering Division, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Masayo Kadota
- Experimental Animal Division, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Ayumi Hasegawa
- Bioresource Engineering Division, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Shinji Kondo
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001, Japan
| | - Hidemasa Kato
- Department of Developmental Biology and Functional Genomics, Graduate School of Medicine, Ehime University, 454 Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Takanori Amano
- Next Generation Human Disease Model Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Hidenori Kiyosawa
- Laboratory for Genome Science, Department of Life Science, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
3
|
Arroyo-Salvo C, Río S, Bogetti ME, Plaza J, Miragaya M, Yaneff A, Davio C, Fissore R, Gervasi MG, Gambini A, Perez-Martinez S. Effect of bicarbonate and polyvinyl alcohol on in vitro capacitation and fertilization ability of cryopreserved equine spermatozoa. Andrology 2024. [PMID: 38804843 DOI: 10.1111/andr.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/26/2024] [Accepted: 05/11/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Factors contributing to the limited success of in vitro fertilization in horses remain to be studied. In this work, we elucidated the effect of different essential capacitation media components, bicarbonate, and bovine serum albumin or polyvinyl-alcohol, and the incubation microenvironment on sperm parameters associated with capacitation, acrosome reaction, and their ability to activate oocytes via heterologous intracytoplasmic spermatozoa injection in equine cryopreserved spermatozoa. METHODS Frozen-thawed spermatozoa underwent incubation at different time intervals in either Tyrode's albumin lactate pyruvate medium (non-capacitating; NC) or Tyrode's albumin lactate pyruvate supplemented with bicarbonate, bicarbonate and polyvinyl-alcohol, bicarbonate and bovine serum albumin, polyvinyl-alcohol and bovine serum albumin alone. Protein kinase A-phosphorylated substrates and tyrosine phosphorylation levels, sperm motility, and acrosome reaction percentages were evaluated. After determining the best condition media (capacitating; CAP), heterologous intracytoplasmic spermatozoa injection on pig oocytes was performed and the phospholipase C zeta sperm localization pattern was evaluated. RESULTS Incubation of frozen-thawed equine spermatozoa with bicarbonate and polyvinyl-alcohol in atmospheric air for 45 min induced an increase in protein kinase A-phosphorylated substrates and tyrosine phosphorylation levels compared to NC condition. Sperm incubation in bicarbonate and polyvinyl-alcohol medium showed an increase in total motility and progressive motility with respect to NC (p ≤ 0.05). Interestingly, three parameters associated with sperm hyperactivation were modulated under bicarbonate and polyvinyl-alcohol conditions. The kinematic parameters curvilinear velocity and amplitude of lateral head displacement significantly increased, while straightness significantly diminished (curvilinear velocity: bicarbonate and polyvinyl-alcohol = 120.9 ± 2.9 vs. NC = 76.91 ± 6.9 µm/s) (amplitude of lateral head displacement: bicarbonate and polyvinyl-alcohol = 1.15 ± 0.02 vs. NC = 0.77 ± 0.03 µm) (straightness: bicarbonate and polyvinyl-alcohol = 0.76 ± 0.01 vs. NC = 0.87 ± 0.02) (p ≤ 0.05). Moreover, the spontaneous acrosome reaction significantly increased in spermatozoa incubated in this condition. Finally, bicarbonate and polyvinyl-alcohol medium was established as CAP medium. Although no differences were found in phospholipase C zeta localization pattern in spermatozoa incubated under CAP, equine spermatozoa pre-incubated in CAP condition for 45 min showed higher fertilization rates when injected into matured pig oocytes (NC: 47.6% vs. CAP 76.5%; p ≤ 0.05). CONCLUSION These findings underscore the importance of bicarbonate and polyvinyl-alcohol in supporting critical events associated with in vitro sperm capacitation in the horse, resulting in higher oocyte activation percentages following heterologous intracytoplasmic spermatozoa injection. This protocol could have an impact on reproductive efficiency in the equine breeding industry.
Collapse
Affiliation(s)
- Camila Arroyo-Salvo
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Buenos Aires, Argentina
| | - Sofía Río
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Buenos Aires, Argentina
| | - María Eugenia Bogetti
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Buenos Aires, Argentina
| | - Jessica Plaza
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, INITRA, Buenos Aires, Argentina
| | - Marcelo Miragaya
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, INITRA, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - María Gracia Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Andrés Gambini
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Queensland, Australia
| | - Silvina Perez-Martinez
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Buenos Aires, Argentina
| |
Collapse
|
4
|
Mohanty G, Sanchez-Cardenas C, Paudel B, Tourzani DA, Salicioni AM, Santi CM, Gervasi MG, Pilsner JR, Darszon A, Visconti PE. Differential role of bovine serum albumin and HCO3- in the regulation of GSK3 alpha during mouse sperm capacitation. Mol Hum Reprod 2024; 30:gaae007. [PMID: 38341666 PMCID: PMC10914453 DOI: 10.1093/molehr/gaae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
To become fertile, mammalian sperm are required to undergo capacitation in the female tract or in vitro in defined media containing ions (e.g. HCO3 -, Ca2+, Na+, and Cl-), energy sources (e.g. glucose, pyruvate) and serum albumin (e.g. bovine serum albumin (BSA)). These different molecules initiate sequential and concomitant signaling pathways, leading to capacitation. Physiologically, capacitation induces changes in the sperm motility pattern (e.g. hyperactivation) and prepares sperm for the acrosomal reaction (AR), two events required for fertilization. Molecularly, HCO3 - activates the atypical adenylyl cyclase Adcy10 (aka sAC), increasing cAMP and downstream cAMP-dependent pathways. BSA, on the other hand, induces sperm cholesterol release as well as other signaling pathways. How these signaling events, occurring in different sperm compartments and with different kinetics, coordinate among themselves is not well established. Regarding the AR, recent work has proposed a role for glycogen synthase kinases (GSK3α and GSK3β). GSK3α and GSK3β are inactivated by phosphorylation of residues Ser21 and Ser9, respectively, in their N-terminal domain. Here, we present evidence that GSK3α (but not GSK3β) is present in the anterior head and that it is regulated during capacitation. Interestingly, BSA and HCO3 - regulate GSK3α in opposite directions. While BSA induces a fast GSK3α Ser21 phosphorylation, HCO3 - and cAMP-dependent pathways dephosphorylate this residue. We also show that the HCO3--induced Ser21 dephosphorylation is mediated by hyperpolarization of the sperm plasma membrane potential (Em) and by intracellular pH alkalinization. Previous reports indicate that GSK3 kinases mediate the progesterone-induced AR. Here, we show that GSK3 inhibition also blocks the Ca2+ ionophore ionomycin-induced AR, suggesting a role for GSK3 kinases downstream of the increase in intracellular Ca2+ needed for this exocytotic event. Altogether, our data indicate a temporal and biphasic GSK3α regulation with opposite actions of BSA and HCO3 -. Our results also suggest that this regulation is needed to orchestrate the AR during sperm capacitation.
Collapse
Affiliation(s)
- Gayatri Mohanty
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Claudia Sanchez-Cardenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, México
| | - Bidur Paudel
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Darya A Tourzani
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Ana M Salicioni
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Celia M Santi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA
| | - María G Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - J Richard Pilsner
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
5
|
Moradbeigi P, Hosseini S, Salehi M, Mogheiseh A. Methyl β-Cyclodextrin-sperm-mediated gene editing (MBCD-SMGE): a simple and efficient method for targeted mutant mouse production. Biol Proced Online 2024; 26:3. [PMID: 38279106 PMCID: PMC10811837 DOI: 10.1186/s12575-024-00230-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Generating targeted mutant mice is a crucial technology in biomedical research. This study focuses on optimizing the CRISPR/Cas9 system uptake into sperm cells using the methyl β-cyclodextrin-sperm-mediated gene transfer (MBCD-SMGT) technique to generate targeted mutant blastocysts and mice efficiently. Additionally, the present study elucidates the roles of cholesterol and reactive oxygen species (ROS) in the exogenous DNA uptake by sperm. RESULTS In this study, B6D2F1 mouse sperm were incubated in the c-TYH medium with different concentrations of MBCD (0, 0.75, 1, and 2 mM) in the presence of 20 ng/µl pCAG-eCas9-GFP-U6-gRNA (pgRNA-Cas9) for 30 min. Functional parameters, extracellular ROS, and the copy numbers of internalized plasmid per sperm cell were evaluated. Subsequently, in vitro fertilization (IVF) was performed and fertilization rate, early embryonic development, and transfection rate were assessed. Finally, our study investigated the potential of the MBCD-SMGT technique in combination with the CRISPR-Cas9 system, referred to as MBCD-SMGE (MBCD-sperm-mediated gene editing), for generating targeted mutant blastocysts and mice. Results indicated that cholesterol removal from the sperm membrane using MBCD resulted in a premature acrosomal reaction, an increase in extracellular ROS levels, and a dose-dependent influence on the copy numbers of the internalized plasmids per sperm cell. Moreover, the MBCD-SMGT technique led to a larger population of transfected motile sperm and a higher production rate of GFP-positive blastocysts. Additionally, the current study validated the targeted indel in blastocyst and mouse derived from MBCD-SMGE technique. CONCLUSION Overall, this study highlights the significant potential of the MBCD-SMGE technique for generating targeted mutant mice. It holds enormous promise for modeling human diseases and improving desirable traits in animals.
Collapse
Affiliation(s)
- Parisa Moradbeigi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P. O. Box: 7144169155, Shiraz, Iran
| | - Sara Hosseini
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 193954717, Tehran, Iran
- Hasti Noavaran Gene Royan Co, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 193954717, Tehran, Iran.
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Asghar Mogheiseh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P. O. Box: 7144169155, Shiraz, Iran
| |
Collapse
|
6
|
Sosnicki DM, Cohen R, Asano A, Nelson JL, Mukai C, Comizzoli P, Travis AJ. Segmental differentiation of the murine epididymis: identification of segment-specific, GM1-enriched vesicles and regulation by luminal fluid factors†. Biol Reprod 2023; 109:864-877. [PMID: 37694824 PMCID: PMC10724454 DOI: 10.1093/biolre/ioad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/17/2023] [Accepted: 09/09/2023] [Indexed: 09/12/2023] Open
Abstract
The murine epididymis has 10 distinct segments that provide the opportunity to identify compartmentalized cell physiological mechanisms underlying sperm maturation. However, despite the essential role of the epididymis in reproduction, remarkably little is known about segment-specific functions of this organ. Here, we investigate the dramatic segmental localization of the ganglioside GM1, a glycosphingolipid already known to play key roles in sperm capacitation and acrosome exocytosis. Frozen tissue sections of epididymides from adult mice were treated with the binding subunit of cholera toxin conjugated to AlexaFluor 488 to label GM1. We report that GM1-enriched vesicles were found exclusively in principal and clear cells of segment 2. These vesicles were also restricted to the lumen of segment 2 and did not appear to flow with the sperm into segment 3, within the limits of detection by confocal microscopy. Interestingly, this segment-specific presence was altered in several azoospermic mouse models and in wild-type mice after efferent duct ligation. These findings indicate that a lumicrine factor, itself dependent on spermatogenesis, controls this segmental differentiation. The RNA sequencing results confirmed global de-differentiation of the proximal epididymal segments in response to efferent duct ligation. Additionally, GM1 localization on the surface of the sperm head increased as sperm transit through segment 2 and have contact with the GM1-enriched vesicles. This is the first report of segment-specific vesicles and their role in enriching sperm with GM1, a glycosphingolipid known to be critical for sperm function, providing key insights into the segment-specific physiology and function of the epididymis.
Collapse
Affiliation(s)
- Danielle M Sosnicki
- Cornell University, Baker Institute for Animal Health, Ithaca, NY, USA
- Smithsonian's National Zoo and Conservation Biology Institute, Department of Reproductive Sciences, Washington, DC, USA
| | - Roy Cohen
- Cornell University, Baker Institute for Animal Health, Ithaca, NY, USA
- Cornell University, Department of Public and Ecosystem Health, Ithaca, NY, USA
| | - Atsushi Asano
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | | | - Chinatsu Mukai
- Cornell University, Baker Institute for Animal Health, Ithaca, NY, USA
| | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Department of Reproductive Sciences, Washington, DC, USA
| | - Alexander J Travis
- Cornell University, Baker Institute for Animal Health, Ithaca, NY, USA
- Cornell University, Department of Public and Ecosystem Health, Ithaca, NY, USA
| |
Collapse
|
7
|
Battistella A, Andolfi L, Stebel M, Ciubotaru C, Lazzarino M. Investigation on the change of spermatozoa flagellar beating forces before and after capacitation. BIOMATERIALS ADVANCES 2023; 145:213242. [PMID: 36549152 DOI: 10.1016/j.bioadv.2022.213242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/14/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
The swimming forces exerted by mammalian spermatozoa during the pathway to the ovary and during the interaction with the oocyte are thought to play a fundamental role in the fertilization of the egg. In particular, a process named capacitation is of key relevance for its success. Capacitation enables spermatozoa to undergo the acrosome reaction and to exhibit different motility called hyperactivation with a change in the sperm cell tail motion from symmetric to a more asymmetric beating, characterized by wider flagellar bending at lower frequencies. Despite several studies about the mechanism that underlies capacitation, no quantitative information is available about the forces associated with sperm motility. Sperm cell motility has been widely studied with digital imaging tools and video microscopy, but these methodologies cannot provide information about the forces exerted by spermatozoa during the motion and the contribution of every single frequency of flagellar beating to the sperm cell movement. For this purpose, fluidic force microscopy was used to trap single swimming spermatozoa allowing to evaluate these parameters. We observe significant differences between capacitated and non-capacitated spermatozoa in terms of force exerted and beating frequencies. The description of the dynamics of this process is of great interest in the field of reproductive medicine. Such information could be useful to clarify unknown causes of male infertility or for the development of novel methods to assess the quality of semen samples.
Collapse
Affiliation(s)
- Alice Battistella
- CNR-IOM, SS 14 km 163.5 Area Science Park Basovizza, 34149 Trieste, Italy.
| | - Laura Andolfi
- CNR-IOM, SS 14 km 163.5 Area Science Park Basovizza, 34149 Trieste, Italy.
| | - Marco Stebel
- University of Trieste, P. le Europa 1, 34100 Trieste, Italy.
| | - Catalin Ciubotaru
- CNR-IOM, SS 14 km 163.5 Area Science Park Basovizza, 34149 Trieste, Italy.
| | - Marco Lazzarino
- CNR-IOM, SS 14 km 163.5 Area Science Park Basovizza, 34149 Trieste, Italy.
| |
Collapse
|
8
|
Oral D-Aspartate Treatment Improves Sperm Fertility in Both Young and Adult B6N Mice. Animals (Basel) 2022; 12:ani12111350. [PMID: 35681815 PMCID: PMC9179375 DOI: 10.3390/ani12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Investigations concerning the impact of D-Aspartate on fertility suggest that it has a positive influence on the in vitro fertilization rate in young C57BL/6N mice. Here, we demonstrated that adult C57BL/6N mice that received an oral treatment of D-Aspartate also have a higher fertilizing capability and the quality of their spermatozoa increased after only two weeks of treatment. Hence, this study gives us new insights on the role of D-Aspartate in the regulation of the reproductive activity in both young and adult mice. Abstract D-Aspartate (D-Asp) treatment improved the fertility of young male C57BL/6N mice in vivo revealing a direct role on capacitation, acrosome reaction, and fertility in vitro in young males only. We investigated whether the positive effect of D-Asp on fertility could be extended to adult males and evaluated the efficacy of a 2- or 4-week-treatment in vivo. Therefore, 20 mM sodium D-Asp was supplied in drinking water to males of different ages so that they were 9 or 16 weeks old at the end of the experiments. After sperm freezing, the in vitro fertilization (IVF) rate, the birth rate, hormone levels (luteinizing hormone (LH), epitestosterone, and testosterone), the sperm quality (morphology, abnormalities, motility, and velocity), the capacitation rate, and the acrosome reaction were investigated. Oral D-Asp treatment improves the fertilizing capability in mice regardless of the age of the animals. Importantly, a short D-Asp treatment of 2 weeks in young males elevates sperm parameters to the levels of untreated adult animals. In vivo, D-Asp treatment highly improves sperm quality but not sperm concentration. Therefore, D-Asp plays a beneficial role in mouse male fertility and may be highly relevant for cryorepositories to improve mouse sperm biobanking.
Collapse
|
9
|
Hasegawa A, Mochida K, Nakamura A, Miyagasako R, Ohtsuka M, Hatakeyama M, Ogura A. Use of anti-inhibin monoclonal antibody for increasing the litter size of mouse strains and its application to i-GONAD. Biol Reprod 2022; 107:605-618. [PMID: 35368067 PMCID: PMC9382380 DOI: 10.1093/biolre/ioac068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
The litter size of mouse strains is determined by the number of oocytes naturally ovulated. Many attempts have been made to increase litter sizes by conventional superovulation regimens (e.g., using equine or human gonadotropins, eCG/hCG but had limited success because of unexpected decreases in the numbers of embryos surviving to term. Here, we examined whether rat-derived anti-inhibin monoclonal antibodies (AIMAs) could be used for this purpose. When C57BL/6 female mice were treated with an AIMA and mated, the number of healthy offspring per mouse increased by 1.4-fold (11.9 vs. 8.6 in controls). By contrast, treatment with eCG/hCG or anti-inhibin serum resulted in fewer offspring than in nontreated controls. The overall efficiency of production based on all females treated (including nonpregnant ones) was improved 2.4 times with AIMA compared with nontreated controls. The AIMA treatment was also effective in ICR mice, increasing the litter size from 15.3 to 21.2 pups. We then applied this technique to an in vivo genome-editing method (improved genome-editing via oviductal nucleic acid delivery, i-GONAD) to produce C57BL/6 mice deficient for tyrosinase. The mean litter size following i-GONAD increased from 4.8 to 7.3 after the AIMA treatment and genetic modifications were confirmed in 80/88 (91%) of the offspring. Thus, AIMA treatment is a promising method for increasing the litter size of mice and may be applied for the easy proliferation of mouse colonies as well as in vivo genetic manipulation, especially when the mouse strains are sensitive to handling.
Collapse
Affiliation(s)
- Ayumi Hasegawa
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Keiji Mochida
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Ayaka Nakamura
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Rico Miyagasako
- Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Kanagawa Japan
| | - Masato Ohtsuka
- Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Kanagawa Japan
- The Institute of Medical Sciences, Tokai University, Kanagawa, Japan
| | | | - Atsuo Ogura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| |
Collapse
|
10
|
Wigger M, Tröder SE, Zevnik B. A simple and economic protocol for efficient in vitro fertilization using cryopreserved mouse sperm. PLoS One 2021; 16:e0259202. [PMID: 34710162 PMCID: PMC8553151 DOI: 10.1371/journal.pone.0259202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/14/2021] [Indexed: 11/18/2022] Open
Abstract
The advent of genome editing tools like CRISPR/Cas has substantially increased the number of genetically engineered mouse models in recent years. In support of refinement and reduction, sperm cryopreservation is advantageous compared to embryo freezing for archiving and distribution of such mouse models. The in vitro fertilization using cryopreserved sperm from the most widely used C57BL/6 strain has become highly efficient in recent years due to several improvements of the procedure. However, purchase of the necessary media for routine application of the current protocol poses a constant burden on budgetary constraints. In-house media preparation, instead, is complex and requires quality control of each batch. Here, we describe a cost-effective and easily adaptable approach for in vitro fertilization using cryopreserved C57BL/6 sperm. This is mainly achieved by modification of an affordable commercial fertilization medium and a step-by-step description of all other necessary reagents. Large-scale comparison of fertilization rates from independent lines of genetically engineered C57BL/6 mice upon cryopreservation and in vitro fertilization with our approach demonstrated equal or significantly superior fertilization rates to current protocols. Our novel SEcuRe (Simple Economical set-up for Rederivation) method provides an affordable, easily adaptable and harmonized protocol for highly efficient rederivation using cryopreserved C57BL/6 sperm for a broad application of colony management in the sense of the 3Rs.
Collapse
Affiliation(s)
- Magdalena Wigger
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- in vivo Research Facility, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simon E. Tröder
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- in vivo Research Facility, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- * E-mail: (BZ); (SET)
| | - Branko Zevnik
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- in vivo Research Facility, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- * E-mail: (BZ); (SET)
| |
Collapse
|
11
|
Mochida K, Hasegawa A, Shikata D, Itami N, Hada M, Watanabe N, Tomishima T, Ogura A. Easy and quick (EQ) sperm freezing method for urgent preservation of mouse strains. Sci Rep 2021; 11:14149. [PMID: 34239008 PMCID: PMC8266870 DOI: 10.1038/s41598-021-93604-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/28/2021] [Indexed: 11/08/2022] Open
Abstract
Cryopreservation of mouse spermatozoa is widely used for the efficient preservation and safe transport of valuable mouse strains. However, the current cryopreservation method requires special containers (plastic straws), undefined chemicals (e.g., skim milk), liquid nitrogen, and expertise when handling sperm suspensions. Here, we report an easy and quick (EQ) sperm freezing method. The main procedure consists of only one step: dissecting a single cauda epididymis in a microtube containing 20% raffinose solution, which is then stored in a -80 °C freezer. The frozen-thawed spermatozoa retain practical fertilization rates after 1 (51%) or even 3 months (25%) with the C57BL/6 J strain, the most sensitive strain for sperm freezing. More than half of the embryos thus obtained developed into offspring after embryo transfer. Importantly, spermatozoa stored at -80 °C can be transferred into liquid nitrogen for indefinite storage. As far as we know, our EQ method is the easiest and quickest method for mouse sperm freezing and should be applicable in all laboratories without expertise in sperm cryopreservation. This technique can help avoid the loss of irreplaceable strains because of closure of animal rooms in emergency situations such as unexpected microbiological contamination or social emergencies such as the COVID-19 threat.
Collapse
Affiliation(s)
- Keiji Mochida
- RIKEN BioResouce Research Center, Tsukuba, Ibaraki, 305-0074, Japan.
| | - Ayumi Hasegawa
- RIKEN BioResouce Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Daiki Shikata
- RIKEN BioResouce Research Center, Tsukuba, Ibaraki, 305-0074, Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, 305- 8572, Japan
| | - Nobuhiko Itami
- RIKEN BioResouce Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Masashi Hada
- RIKEN BioResouce Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Naomi Watanabe
- RIKEN BioResouce Research Center, Tsukuba, Ibaraki, 305-0074, Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, 305- 8572, Japan
| | | | - Atsuo Ogura
- RIKEN BioResouce Research Center, Tsukuba, Ibaraki, 305-0074, Japan.
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, 305- 8572, Japan.
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- RIKEN Cluster for Pioneering Research, Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
12
|
Kato Y, Kumar S, Lessard C, Bailey JL. ACRBP (Sp32) is involved in priming sperm for the acrosome reaction and the binding of sperm to the zona pellucida in a porcine model. PLoS One 2021; 16:e0251973. [PMID: 34086710 PMCID: PMC8177411 DOI: 10.1371/journal.pone.0251973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
In boar sperm, we have previously shown that capacitation is associated with the appearance of the p32 tyrosine phosphoprotein complex. The principal tyrosine phosphoprotein involved in this complex is the acrosin-binding protein (ACRBP), which regulates the autoconversion of proacrosin to intermediate forms of acrosin in both boar and mouse sperm. However, the complete biological role of ACRBP has not yet been elucidated. In this study, we tested the hypothesis that tyrosine phophorylation and the presence of the ACRBP in the sperm head are largely necessary to induce capacitation, the acrosome reaction (AR) and sperm-zona pellucida (ZP) binding, all of which are necessary steps for fertilization. In vitro fertilization (IVF) was performed using matured porcine oocytes and pre-capacitated boar sperm cultured with anti-phosphotyrosine antibodies or antibodies against ACRBP. Anti-ACRBP antibodies reduced capacitation and spontaneous AR (P<0.05). Sperm-ZP binding declined in the presence of anti-phosphotyrosine or anti-ACRBP antibodies. The localisation of anti-ACRBP antibodies on the sperm head, reduced the ability of the sperm to undergo the AR in response to solubilized ZP or by inhibiting the sarco/endoplasmic reticulum Ca2+-ATPase. These results support our hypothesis that tyrosine phosphorylated proteins and ACRBP are present upon the sperm surface in order to participate in sperm-ZP binding, and that ACRBP upon the surface of the sperm head facilitates capacitation and the AR in the porcine.
Collapse
Affiliation(s)
- Yoku Kato
- Département des sciences animales, Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, Canada
| | - Satheesh Kumar
- Département des sciences animales, Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, Canada
| | - Christian Lessard
- Département des sciences animales, Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, Canada
| | - Janice L Bailey
- Département des sciences animales, Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, Canada
| |
Collapse
|
13
|
Rahimi M, Rahimi S, Sharafi M, Shahverdi A, Grimes JL. The effect of methyl-beta-cyclodextrin on DNA absorption and quality of posttransfected sperm. Poult Sci 2021; 100:101058. [PMID: 33743498 PMCID: PMC8010517 DOI: 10.1016/j.psj.2021.101058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/18/2021] [Accepted: 02/06/2021] [Indexed: 11/25/2022] Open
Abstract
Sperm can be selected as a natural vector for the production of transgenic animals. Methyl-beta-cyclodextrin (MBCD) removes cholesterol from the phospholipid membrane of sperm and improves the efficiency of DNA uptake by sperm. In experiment 1, fresh sperm was treated with various concentrations of MBCD. The direct effects of MBCD on sperm parameters were monitored. In experiment 2, different concentrations of MBCD (0, 1, 2, and 4 mmol) were assessed for the transfection of genetically exogenous construction to rooster sperm. Washed semen was divided into 5 equal groups for the incubation and transfection with a pcDNA3.1+/hG-CSF vector (exogenous DNA) as follows; Treatment I-Control (washed semen without DNA); Treatment II-Control (washed semen with DNA); Treatment III-(washed semen incubated with DNA and 1 mmol MBCD); Treatment IV-(washed semen incubated with DNA and 2 mmol MBCD); and Treatment V-(washed semen incubated with DNA and 4 mmol MBCD). We demonstrated that rooster spermatozoa spontaneously can uptake exogenous DNA; this was assessed using exogenous DNA amplification (sperm genomic DNA used as a template for PCR reaction) after DNase I treatment. In addition, total motility (TM), progressive motility (PM), velocity parameters [curvilinear velocity (VCL), straight linear velocity (VSL), sperm track straightness (STR), linearity (LIN)], membrane integrity (MI), and membrane functionality were posttransfectionally evaluated. The concentrations of 1 and 2 mmol MBCD significantly (P < 0.05) improved the motion characteristics and membrane integrity of fresh sperm. The presence of hG-CSF in rooster sperm was detected by PCR and based on sperm analyses MBCD (1 mmol) improved the percentage of motility (98.9 ± 0.81), membrane functionality (64 ± 1.64), and MI (76.2 ± 1.65) after transfection when compared with the other groups (P < 0.05). For the production of transgenic chicken, hens were inseminated (AI) by transfected sperm treated with 1 and 0 mmol MBCD. A PCR analysis of the blood samples and dead embryo tissues of chicks did not reveal the transgene integration.
Collapse
Affiliation(s)
- Mahin Rahimi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran 1411713116
| | - Shaban Rahimi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran 1411713116
| | - Mohsen Sharafi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran 1411713116
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran 16635-148, Iran
| | - J L Grimes
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, 27695-7608 USA.
| |
Collapse
|
14
|
Nasri-Hasani Y, Barati F, Eghbalsaied S. Establishment of a Cyclodextrin-Based Medium for Cryopreservation of Camel Sperm ( Camelus dromedaries). Biopreserv Biobank 2021; 19:241-243. [PMID: 33567215 DOI: 10.1089/bio.2020.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yasamin Nasri-Hasani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Chamran University of Ahvaz, Ahvaz, Iran
| | - Farid Barati
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Chamran University of Ahvaz, Ahvaz, Iran.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Shahin Eghbalsaied
- Transgenesis Center of Excellence, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
15
|
Hasegawa A, Mochida K, Matoba S, Inoue K, Hama D, Kadota M, Hiraiwa N, Yoshiki A, Ogura A. Development of assisted reproductive technologies for Mus spretus†. Biol Reprod 2020; 104:234-243. [PMID: 32990726 DOI: 10.1093/biolre/ioaa177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 02/04/2023] Open
Abstract
The genus Mus consists of many species with high genetic diversity. However, only one species, Mus musculus (the laboratory mouse), is common in biomedical research. The unavailability of assisted reproductive technologies (ARTs) for other Mus species might be a major reason for their limited use in laboratories. Here, we devised ARTs for Mus spretus (the Algerian mouse), a commonly used wild-derived Mus species. We found that in vitro production of M. spretus embryos was difficult because of low efficacies of superovulation with equine chorionic gonadotropin or anti-inhibin serum (AIS) (5-8 oocytes per female) and a low fertilization rate following in vitro fertilization (IVF; 15.2%). The primary cause of this was the hardening of the zona pellucida but not the sperm's fertilizing ability, as revealed by reciprocal IVF with laboratory mice. The largest number of embryos (16 per female) were obtained when females were injected with AIS followed by human chorionic gonadotropin and estradiol injections 24 h later, and then by natural mating. These in vivo-derived 2-cell embryos could be vitrified/warmed with a high survival rate (94%) using an ethylene glycol-based solution. Importantly, more than 60% of such embryos developed into healthy offspring following interspecific embryo transfer into (C57BL/6 × C3H) F1 female mice. Thus, we have devised practical ARTs for Mus spretus mice, enabling efficient production of embryos and animals, with safe laboratory preservation of their strains. In addition, we have demonstrated that interspecific embryo transfer is possible in murine rodents.
Collapse
Affiliation(s)
| | | | - Shogo Matoba
- RIKEN BioResouce Research Center, Tsukuba, Japan
| | - Kimiko Inoue
- RIKEN BioResouce Research Center, Tsukuba, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Japan
| | - Daiki Hama
- RIKEN BioResouce Research Center, Tsukuba, Japan
| | | | | | | | - Atsuo Ogura
- RIKEN BioResouce Research Center, Tsukuba, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Japan.,Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan.,RIKEN Cluster for Pioneering Research, Saitama, Japan
| |
Collapse
|
16
|
Tatour Y, Bar-Joseph H, Shalgi R, Ben-Yosef T. Male sterility and reduced female fertility in SCAPER-deficient mice. Hum Mol Genet 2020; 29:2240-2249. [PMID: 32510560 DOI: 10.1093/hmg/ddaa113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 11/12/2022] Open
Abstract
Mutations in S-phase cyclin A-associated protein in the endoplasmic reticulum (SCAPER) cause a recessively inherited multisystemic disorder whose main features are retinal degeneration and intellectual disability. SCAPER, originally identified as a cell cycle regulator, was also suggested to be a ciliary protein. Because Scaper mutant males are sterile, we set up to characterize their phenotype. The testes of Scaper mutant mice are significantly smaller than those of WT mice. Histology revealed no signs of spermatogenesis, and seminiferous tubules contained mainly Sertoli cells with a few spermatogonia/spermatogonial stem cells (SSCs). In WT testes, SCAPER is expressed by SSCs and in the various stages of spermatogenesis, as well as in Sertoli cells. In WT spermatozoa SCAPER is not expressed in the flagellum but rather in the head compartment, where it is found both in the nucleus and in the perinuclear region. Scaper mutant females present reduced fertility, manifested by a significantly smaller litter size compared to WT females. Mutant ovaries are similar in size but comprised of significantly less primordial and antral follicles, compared to WT ovaries, while the number of atretic follicles is significantly higher. In WT ovarian follicles SCAPER is expressed in the somatic granulosa cells as well as in the oocyte. In conclusion, our data demonstrate that SCAPER is a crucial component in both male and female reproductive systems. We hypothesize that the reproductive phenotype observed in Scaper mutant mice is rooted in SCAPER's interaction with cyclin A/Cdk2, which play an important role, however different, in male and female gonads.
Collapse
Affiliation(s)
- Yasmin Tatour
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Hadas Bar-Joseph
- The TMCR unit, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ruth Shalgi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamar Ben-Yosef
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
17
|
Bernabò N, Valbonetti L, Raspa M, Fontana A, Palestini P, Botto L, Paoletti R, Fray M, Allen S, Machado-Simoes J, Ramal-Sanchez M, Pilato S, Scavizzi F, Barboni B. Graphene Oxide Improves in vitro Fertilization in Mice With No Impact on Embryo Development and Preserves the Membrane Microdomains Architecture. Front Bioeng Biotechnol 2020; 8:629. [PMID: 32612987 PMCID: PMC7308453 DOI: 10.3389/fbioe.2020.00629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/22/2020] [Indexed: 12/04/2022] Open
Abstract
During the latest years, human infertility worsened all over the world and is nowadays reputed as a global public health issue. As a consequence, the adoption of Assisted Reproductive Technologies (ARTs) such as In Vitro Fertilization (IVF) is undergoing an impressive increase. In this context, one of the most promising strategies is the innovative adoption of extra-physiological materials for advanced sperm preparation methods. Here, by using a murine model, the addition of Graphene Oxide (GO) at a specific concentration has demonstrated to increase the spermatozoa fertilizing ability in an IVF assay, finding that 0.5 μg/ml GO addition to sperm suspensions before IVF is able to increase both the number of fertilized oocytes and embryos created with a healthy offspring given by Embryo Transplantation (ET). In addition, GO treatment has been found more effective than that carried out with methyl-β-cyclodextrin, which represents the gold standard in promoting in vitro fertility of mice spermatozoa. Subsequent biochemical characterization of its interaction with male gametes has been additionally performed. As a result, it was found that GO exerts its positive effect by extracting cholesterol from membranes, without affecting the integrity of microdomains and thus preserving the sperm functions. In conclusion, GO improves IVF outcomes in vitro and in vivo, defining new perspectives for innovative strategies in the treatment of human infertility.
Collapse
Affiliation(s)
- Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- National Research Council – Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- National Research Council – Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Marcello Raspa
- National Research Council – Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Antonella Fontana
- Department of Pharmacy, D’Annunzio University of Chieti–Pescara, Chieti, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | | | | | - Juliana Machado-Simoes
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Marina Ramal-Sanchez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Pilato
- Department of Pharmacy, D’Annunzio University of Chieti–Pescara, Chieti, Italy
| | - Ferdinando Scavizzi
- National Research Council – Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
18
|
Mochida K. Development of assisted reproductive technologies in small animal species for their efficient preservation and production. J Reprod Dev 2020; 66:299-306. [PMID: 32307339 PMCID: PMC7470897 DOI: 10.1262/jrd.2020-033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Assisted reproductive technologies (ARTs) are widely used in the animal industry, human clinics, and for basic research. In small laboratory animal species such as mice, ARTs are essential for the production of animals for experiments, the preservation of genetic resources, and for the generation of new strains of genetically modified animals. The RIKEN BioResource Research Center (BRC) is one of the largest repositories of such animal bioresources, and maintains approximately 9,500 strains of mice with a variety of genetic backgrounds. We have sought to devise ARTs specific to the reproductive and physiological characteristics of each strain. Such ARTs include superovulation, in vitro fertilization (IVF), the cryopreservation of embryos and spermatozoa, transportation of cryopreserved materials and embryo transfer (ET). Of these, superovulation likely has the most influence on animal production because it determines the quantity of starting material for other ARTs. Superovulation using anti-inhibin serum combined with estrous synchronization has resulted in approximately a three-fold increase in production efficiency with IVF-ET in the C57BL/6J strain. Wild-derived strains are important as genetically diverse resources for murine rodents (Genus Mus), and many are unique to the BRC. We have also successfully developed ARTs for more than 50 wild-derived strains, which have been cryopreserved for future use. Our work to improve and develop ARTs for mice and other small laboratory species will contribute to the cost-effectiveness of routine operations at repository centers, and to the provision of high quality animals for research use.
Collapse
Affiliation(s)
- Keiji Mochida
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
19
|
d-aspartate treatment in vitro improves mouse sperm fertility in young B6N mice. Theriogenology 2020; 148:60-67. [PMID: 32142981 DOI: 10.1016/j.theriogenology.2020.02.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/27/2020] [Accepted: 02/19/2020] [Indexed: 11/22/2022]
Abstract
We previously reported that the administration of d-aspartate (D-Asp) in drinking water over a 2-4-week period to 7-week-old mice resulted in higher sperm quality and increased in vitro fertilisation (IVF) rates associated with a systemic increase of luteinizing hormone and testosterone levels in the serum. The goal of this study was to investigate the effects of in vitro treatment with D-Asp on the IVF rate, embryo transfer, and sperm parameters of cryopreserved-thawed C57BL/6NTacCnrm (B6N) spermatozoa derived from young and adult mice. In this study, cryopreserved-thawed B6N spermatozoa from males aging 9, 11, 13, and 16 weeks were treated for 1 h with 4 mM D-Asp during capacitation. Thereafter, the in vitro fertilisation ability and the embryo transfer efficiency were analysed. Also, the kinetic activity of the treated spermatozoa and the acrosome reaction were measured after 1 h, 2 h, and 5 h of incubation. The capacitation rate of spermatozoa was determined after 1 h of pre-incubation. Spermatozoa from 9- and 11-week-old mice, which were treated with D-Asp, led to significantly increased IVF rates. However, spermatozoa derived from 13- and 16-week-old mice did not lead to a significant improvement in the fertilisation rate. At all ages examined, no differences were observed in the birth rate and sperm kinetic parameters. After 1 h incubation under the same conditions as the IVF was performed, the capacitation rate and the acrosome reaction were significantly higher with the D-Asp-treated spermatozoa from 9-week-old (67.5% vs. 41% and 14.5% vs. 10.5%, respectively) and 11-week-old mice (78.5% vs. 41.1% and 21.0% vs. 3.8%, respectively), corresponding to the improved IVF results. Therefore, the present results demonstrate, for the first time, a direct role of D-Asp in the capacitation process and acrosome reaction.
Collapse
|
20
|
Anzar M, Rajapaksha K, Boswall L. Egg yolk-free cryopreservation of bull semen. PLoS One 2019; 14:e0223977. [PMID: 31613900 PMCID: PMC6793947 DOI: 10.1371/journal.pone.0223977] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/02/2019] [Indexed: 11/18/2022] Open
Abstract
Egg yolk is a common ingredient of mammalian semen extender to protect sperm against initial cold shock. However, egg yolk has biosecurity risks. Our main objectives were to cryopreserve bull semen without egg yolk using exogenous cholesterol and to study the protective role of glycerol in egg yolk-free semen extender. Other objectives were to compare protein profiles and in vitro fertilization potential of bull sperm frozen with and without egg yolk. In first experiment, semen was either diluted in conventional tris-egg yolk glycerol (TEYG control) extender or first treated with cholesterol-cyclodextrin complex (CC, 2 mg/ml semen) followed by dilution in egg yolk-free tris-glycerol (TG) extender (collectively called as "CC+TG") at 22°C or 4°C, and frozen. Post-thaw sperm motion characteristics were similar between CC+TG and TEYG control extenders, and temperature of glycerol addition. In second experiment, semen was frozen in CC+TG extender varying in glycerol concentration (7 to 0%; v/v). Post-thaw sperm quality decreased with the decline in glycerol concentration in TG extender, even higher concentration of CC complex (3 or 4 mg/ml semen) could not protect sperm in the absence of glycerol in TG extender. In third experiment, SDS electrophoresis of proteins from fresh sperm and sperm frozen in CC+TG, and TEYG control extenders was conducted. Protein profiles in fresh sperm and CC+TG frozen sperm were almost similar. Egg yolk proteins bound tightly with sperm plasma membrane. In fourth experiment, in vitro fertilization potentials of sperm frozen in TEYG control and CC+TG extenders were tested. Cleavage and blastocyst rates of semen frozen in CC+TG and TEYG control extenders were similar. In conclusion, cholesterol-cyclodextrin replaced egg yolk from the semen extender; glycerol remained essential for egg yolk-free sperm cryopreservation; and CC+TG extender did not modify sperm plasma membrane CC+TG whereas egg yolk extender changed the plasma membrane composition of bull sperm.
Collapse
Affiliation(s)
- Muhammad Anzar
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Center, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail: ,
| | - Kosala Rajapaksha
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Center, Saskatoon, Saskatchewan, Canada
| | - Lyle Boswall
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Center, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
21
|
Liu B, Maekawa T, Yoshida K, Ly NH, Inoue K, Hasegawa A, Chatton B, Ogura A, Ishii S. Telomere shortening by transgenerational transmission of TNF-α-induced TERRA via ATF7. Nucleic Acids Res 2019; 47:283-298. [PMID: 30407559 PMCID: PMC6326783 DOI: 10.1093/nar/gky1149] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022] Open
Abstract
Various stresses increase disease susceptibility and accelerate aging, and increasing evidence suggests that these effects can be transmitted over generation. Epidemiological studies suggest that stressors experienced by parents affect the longevity of their offspring, possibly by regulating telomere dynamics. Telomeres are elongated by telomerase and shortened by certain stresses as well as telomere repeat-containing RNA (TERRA), a telomere transcript. However, the mechanism underlying the transgenerational effects is poorly understood. Here, we show that TNF-α, which is induced by various psychological stresses, induces the p38-dependent phosphorylation of ATF7, a stress-responsive chromatin regulator, in mouse testicular germ cells. This caused a release of ATF7 from the TERRA gene promoter in the subtelomeric region, which disrupted heterochromatin and induced TERRA. TERRA was transgenerationally transmitted to zygotes via sperm and caused telomere shortening. These results suggest that ATF7 and TERRA play key roles in paternal stress-induced telomere shortening in the offspring.
Collapse
Affiliation(s)
- Binbin Liu
- RIKEN Cluster for Pioneering Research, Tsukuba, Ibaraki 305-0074, Japan
| | - Toshio Maekawa
- RIKEN Cluster for Pioneering Research, Tsukuba, Ibaraki 305-0074, Japan
| | - Keisuke Yoshida
- RIKEN Cluster for Pioneering Research, Tsukuba, Ibaraki 305-0074, Japan
| | - Nhung Hong Ly
- RIKEN Cluster for Pioneering Research, Tsukuba, Ibaraki 305-0074, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kimiko Inoue
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ayumi Hasegawa
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Bruno Chatton
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Atsuo Ogura
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Shunsuke Ishii
- RIKEN Cluster for Pioneering Research, Tsukuba, Ibaraki 305-0074, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
22
|
Mochida K, Hasegawa A, Ogonuki N, Inoue K, Ogura A. Early production of offspring by in vitro fertilization using first-wave spermatozoa from prepubertal male mice. J Reprod Dev 2019; 65:467-473. [PMID: 31447476 PMCID: PMC6815745 DOI: 10.1262/jrd.2019-042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mature male mice (aged 10–12 weeks or older) are conventionally used for in vitro fertilization (IVF) in order to achieve high fertilization rates (e.g., > 70%). Here,
we sought to determine the earliest age at which male mice (C57BL/6J strain) can be used efficiently for producing offspring via IVF. Because we noted that the addition of reduced
glutathione (GSH) to the IVF medium significantly increased the fertilizing ability of spermatozoa from prepubertal males, we used this IVF protocol for all experiments. Spermatozoa first
reached the caudal region of the epididymides at day 35; however, they were unable to fertilize oocytes. Caudal epididymal spermatozoa first became competent for oocyte fertilization at day
37, albeit at a low rate (2.9%). A high fertilization rate (72.0%) was obtained at day 40, and 52.4% of the embryos thus obtained developed into offspring after embryo transfer. Moreover, we
found that corpus epididymal spermatozoa in prepubertal mice could fertilize oocytes; however, the fertilization rates were always < 50%, regardless of the age of the males. Caput
epididymal spermatozoa failed to fertilize oocytes irrespective of the age of the males. Therefore, we propose that caudal epididymal spermatozoa from male mice aged 40 days can be
efficiently used for IVF, to obtain offspring in the shortest attainable time. This protocol will reduce the turnover time required for the generation of mice by ~1 month compared with that
of the conventional IVF protocol.
Collapse
Affiliation(s)
- Keiji Mochida
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ayumi Hasegawa
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Narumi Ogonuki
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Kimiko Inoue
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Atsuo Ogura
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan.,RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| |
Collapse
|
23
|
Okabe M. Sperm-egg interaction and fertilization: past, present, and future. Biol Reprod 2019; 99:134-146. [PMID: 29462236 DOI: 10.1093/biolre/ioy028] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/03/2018] [Indexed: 01/21/2023] Open
Abstract
Fifty years have passed since the findings of capacitation and acrosome reaction. These discoveries and the extensive effort of researchers led to the success of in vitro fertilization, which has become a top choice for patients at infertility clinics today. The effort to understand the mechanism of fertilization is ongoing, but the small number of eggs and similarly small quantity of spermatozoa continue to hinder biochemical experiments. The emergence of transgenic animals and gene disruption techniques has had a significant effect on fertilization research. Factors considered important in the early years were shown not to be essential and were replaced by newly found proteins. However, there is much about sperm-egg interaction which remains to be learned before we can outline the mechanism of fertilization. In fact, our understanding of sperm-egg interaction is entering a new stage. Progress in transgenic spermatozoa helped us to observe the behavior of spermatozoa in vivo and/or at the moment of sperm-egg fusion. These advancements are discussed together with the paradigm-shifting research in related fields to help us picture the direction which fertilization research may take in the future.
Collapse
Affiliation(s)
- Masaru Okabe
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
24
|
Takeo T, Sztein J, Nakagata N. The CARD Method for Mouse Sperm Cryopreservation and In Vitro Fertilization Using Frozen-Thawed Sperm. Methods Mol Biol 2019; 1874:243-256. [PMID: 30353518 DOI: 10.1007/978-1-4939-8831-0_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the last few years sperm cryopreservation was rapidly established as the technique to efficiently manage production, preservation, and transportation of genetically engineered mice. However, occasionally, the reduced fertility of the frozen-thawed mouse sperm can make it difficult to revitalize the mouse by in vitro fertilization (IVF). In particular, the frozen-thawed sperm of C57BL/6 mice, widely used as the background of choice for genetically engineered strains, show very low fertility after freezing and thawing. To overcome this problem, we have developed a new protocol for sperm cryopreservation and IVF with frozen-thawed C57BL/6 sperm as well as other mouse strains. This protocol has the following three modifications: (1) addition of L-glutamine to the sperm cryoprotectant, (2) addition of methyl-β-cyclodextrin to the sperm preincubation medium, and (3) addition of reduced glutathione to the fertilization medium. These modifications greatly enhanced the fertility of frozen-thawed C57BL/6 sperm, resulting in a stable fertilization rate >80% in IVF. Our results indicate that this robust protocol for sperm cryopreservation may improve the archiving and distributing system for genetically engineered mice.
Collapse
Affiliation(s)
- Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan.
| | - Jorge Sztein
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
25
|
Watanabe H. Risk of chromosomal aberration in spermatozoa during intracytoplasmic sperm injection. J Reprod Dev 2018; 64:371-376. [PMID: 29984741 PMCID: PMC6189574 DOI: 10.1262/jrd.2018-040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/11/2018] [Indexed: 11/20/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI) has become critical for the treatment of severe male infertility. The principal feature of ICSI is the direct injection of spermatozoon into an oocyte, which facilitates the production of fertilized embryos regardless of semen characteristics, such as sperm concentration and motility. However, the chromosomal integrity of ICSI zygotes is degraded compared to that of zygotes obtained via in vitro fertilization. This chromosomal damage may occur due to the injection of non-capacitated, acrosome-intact spermatozoa, which never enter the oocytes under natural fertilization. Furthermore, it is possible that the in vitro incubation and pre-treatment of spermatozoa during ICSI results in DNA damage. Chromosomal aberrations in embryos induce early pregnancy losses. However, these issues may be overcome by embryo production using gametes with guaranteed chromosomal integrity. Because conventional chromosome analysis requires fixing cells to obtain the chromosome spreads, embryos cannot be produced using the nucleus that has been analyzed. On the other hand, genome cloning using androgenic or gynogenic embryos provides an additional nucleus for chromosome analysis following embryo production. Thus, this review aims to highlight the hazardous nature of chromosomal aberrations in sperm during ICSI and to introduce a method for the prezygotic examination for chromosomal aberrations.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Biological Sciences, Asahikawa Medical University, Hokkaido 078-8510, Japan
| |
Collapse
|
26
|
Umehara T, Kawai T, Goto M, Richards JS, Shimada M. Creatine enhances the duration of sperm capacitation: a novel factor for improving in vitro fertilization with small numbers of sperm. Hum Reprod 2018; 33:1117-1129. [PMID: 29635630 PMCID: PMC5972610 DOI: 10.1093/humrep/dey081] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/05/2018] [Accepted: 03/16/2018] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Why are many sperm required for successful fertilization of oocytes in vitro, even though fertilization occurs in vivo when only a few sperm reach the oocyte? SUMMARY ANSWER Creatine produced in the ovary promotes efficient fertilization in vivo; however, in vitro, creatine is not contained in the in vitro fertilization (IVF) medium. WHAT IS KNOWN ALREADY The IVF medium enables capacitation of sperm. However, the IVF medium does not fully mimic the in vivo environment during fertilization. Consequently, fertilization in vitro is more inefficient than in the oviduct. STUDY DESIGN, SIZE, DURATION Follicular and oviductal fluids were collected and then analyzed for creatine and glucose levels. To determine the physiological functions of creatine, the creatine antagonist 3-guanidinopropionic acid (GPA) was injected into hormonally primed mice. Using conventional IVF protocols, sperm were pre-incubated in IVF medium with creatine and then co-cultured with 10 ovulated cumulus-oocyte complexes (1-1000 per oocyte) in 50 μl medium droplets. PARTICIPANTS/MATERIALS, SETTING, METHODS Glucose and creatine levels were measured using commercial enzymatic assay kits. The effect of creatine in vivo was assessed by mating experiments using mice treated with or without GPA just before ovulation. To assess the functions of sperm incubated in IVF medium containing creatine, we analyzed (1) the motility of sperm using computer-assisted sperm assay, (2) the capacitation level of sperm by western blot analyses, and (3) the condition of sperm acrosomes by peanut agglutinin lectin-FITC staining. MAIN RESULTS AND THE ROLE OF CHANCE Oviductal creatine levels were significantly increased following ovulation. Injecting mice with GPA just before ovulation significantly reduced the number of fertilized oocytes. The addition of creatine to IVF medium enhanced sperm capacitation by increasing ATP levels. Successful fertilization was achieved with as few as five sperm/oocyte in the creatine group, and the number of fertilized oocytes was significantly higher than in the control without creatine (P < 0.01). LIMITATIONS, REASONS FOR CAUTION In the present study, a pharmacological approach, creatine antagonist (GPA) treatment, but not a knockout mouse model, was used to understand the role of creatine in vivo. The role of creatine in fertilization processes can only be shown in a mouse model. WIDER IMPLICATIONS OF THE FINDINGS A modified IVF technique using creatine-containing medium was developed and shown to markedly improve fertilization with small numbers of sperm. This approach has the potential to be highly beneficial for human assisted reproductive technologies, especially for patients with a limited number of good quality sperm. STUDY FUNDING/COMPETING INTEREST(S) This work was supported in part by JSPS KAKENHI Grant numbers JP24688028, JP16H05017 (to M.S.), and JP15J05331 (to T.U.), the Japan Agency for Medical Research and Development (AMED) (16gk0110015h0001 to M.S.), and National Institutes of Health (NIH-HD-076980 to J.S.R). The authors have nothing to disclose.
Collapse
Affiliation(s)
- Takashi Umehara
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tomoko Kawai
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Masaaki Goto
- From the Livestock Research Institute, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Bungoono, Oita, Japan
| | - JoAnne S Richards
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Masayuki Shimada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
27
|
Li SH, Hwu YM, Lu CH, Lin MH, Yeh LY, Lee RKK. Serine Protease Inhibitor SERPINE2 Reversibly Modulates Murine Sperm Capacitation. Int J Mol Sci 2018; 19:ijms19051520. [PMID: 29783741 PMCID: PMC5983788 DOI: 10.3390/ijms19051520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 12/16/2022] Open
Abstract
SERPINE2 (serpin peptidase inhibitor, clade E, member 2), predominantly expressed in the seminal vesicle, can inhibit murine sperm capacitation, suggesting its role as a sperm decapacitation factor (DF). A characteristic of DF is its ability to reverse the capacitation process. Here, we investigated whether SERPINE2 can reversibly modulate sperm capacitation. Immunocytochemical staining revealed that SERPINE2 was bound onto both capacitated and uncapacitated sperm. It reversed the increase in BSA-induced sperm protein tyrosine phosphorylation levels. The effective dose and incubation time were found to be >0.1 mg/mL and >60 min, respectively. Calcium ion levels in the capacitated sperm were reduced to a level similar to that in uncapacitated sperm after 90 min of incubation with SERPINE2. In addition, the acrosome reaction of capacitated sperm was inhibited after 90 min of incubation with SERPINE2. Oviductal sperm was readily induced to undergo the acrosome reaction using the A23187 ionophore; however, the acrosome reaction was significantly reduced after incubation with SERPINE2 for 60 and 120 min. These findings suggested that SERPINE2 prevented as well as reversed sperm capacitation in vitro. It also prevented the acrosome reaction in in vivo-capacitated sperm isolated from the oviduct. Thus, SERPINE2 could reversibly modulate murine sperm capacitation.
Collapse
Affiliation(s)
- Sheng-Hsiang Li
- Department of Medical Research, Mackay Memorial Hospital, Tamsui District, New Taipei City 251, Taiwan.
- Mackay Junior College of Medicine, Nursing, and Management, Beitou District, Taipei City 112, Taiwan.
| | - Yuh-Ming Hwu
- Department of Medical Research, Mackay Memorial Hospital, Tamsui District, New Taipei City 251, Taiwan.
- Mackay Junior College of Medicine, Nursing, and Management, Beitou District, Taipei City 112, Taiwan.
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City 104, Taiwan.
- Mackay Medical College, Sanzhi District, New Taipei City 252, Taiwan.
| | - Chung-Hao Lu
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City 104, Taiwan.
| | - Ming-Huei Lin
- Mackay Junior College of Medicine, Nursing, and Management, Beitou District, Taipei City 112, Taiwan.
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City 104, Taiwan.
| | - Ling-Yu Yeh
- Department of Medical Research, Mackay Memorial Hospital, Tamsui District, New Taipei City 251, Taiwan.
| | - Robert Kuo-Kuang Lee
- Department of Medical Research, Mackay Memorial Hospital, Tamsui District, New Taipei City 251, Taiwan.
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City 104, Taiwan.
- Department of Obstetrics and Gynecology, Taipei Medical University, Taipei City 110, Taiwan.
| |
Collapse
|
28
|
Jin SK, Yang WX. Factors and pathways involved in capacitation: how are they regulated? Oncotarget 2018; 8:3600-3627. [PMID: 27690295 PMCID: PMC5356907 DOI: 10.18632/oncotarget.12274] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/23/2016] [Indexed: 01/07/2023] Open
Abstract
In mammals, fertilization occurs via a comprehensive progression of events. Freshly ejaculated sperm have yet to acquire progressive motility or fertilization ability. They must first undergo a series of biochemical and physiological changes, collectively known as capacitation. Capacitation is a significant prerequisite to fertilization. During the process of capacitation, changes in membrane properties, intracellular ion concentration and the activities of enzymes, together with other protein modifications, induce multiple signaling events and pathways in defined media in vitro or in the female reproductive tract in vivo. These, in turn, stimulate the acrosome reaction and prepare spermatozoa for penetration of the egg zona pellucida prior to fertilization. In the present review, we conclude all mainstream factors and pathways regulate capacitation and highlight their crosstalk. We also summarize the relationship between capacitation and assisted reproductive technology or human disease. In the end, we sum up the open questions and future avenues in this field.
Collapse
Affiliation(s)
- Shi-Kai Jin
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Liu J, Mochida K, Hasegawa A, Inoue K, Ogura A. Identification of quantitative trait loci associated with the susceptibility of mouse spermatozoa to cryopreservation. J Reprod Dev 2017; 64:117-127. [PMID: 29269609 PMCID: PMC5902899 DOI: 10.1262/jrd.2017-148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although it is known that the susceptibility of mouse spermatozoa to freezing-thawing varies greatly with genetic background, the underlying mechanisms remain to be elucidated. In this study, to map genetic regions responsible for the susceptibility of spermatozoa to freezing-thawing, we performed in vitro fertilization using spermatozoa from recombinant inbred mice derived from the C57BL/6J and DBA/2J strains, whose spermatozoa showed distinct fertilization abilities after freezing. Genome-wide interval mapping identified two suggestive quantitative trait loci (QTL) associated with fertilization on chromosomes 1 and 11. The strongest QTL on chromosome 11 included 70 genes at 59.237260-61.324742 Mb and another QTL on chromosome 1 included 43 genes at 153.969506-158.217850 Mb. These regions included at least 15 genes involved with testicular expression and possibly with capacitation or sperm motility. Specifically, the Abl2 gene on chromosome 1, which may affect subcellular actin distribution, had polymorphisms between C57BL/6J and DBA/2J that caused at least three amino acid substitutions. A correlation analysis using recombinant inbred strains revealed that the fertilization rate was strongly correlated with the capacitation rate of frozen-thawed spermatozoa after preincubation. This result is consistent with the fact that C57BL/6J frozen-thawed spermatozoa recover their fertilization capacity following treatment with methyl-β-cyclodextrin to enhance sperm capacitation. Thus, our data provide important clues to the molecular mechanisms underlying cryodamage to mouse spermatozoa.
Collapse
Affiliation(s)
- Jinsha Liu
- RIKEN BioResource Center, Ibaraki 305-0074, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan
| | | | | | - Kimiko Inoue
- RIKEN BioResource Center, Ibaraki 305-0074, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Atsuo Ogura
- RIKEN BioResource Center, Ibaraki 305-0074, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan.,The Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
30
|
Rahman MS, Kwon WS, Ryu DY, Khatun A, Karmakar PC, Ryu BY, Pang MG. Functional and Proteomic Alterations of F1 Capacitated Spermatozoa of Adult Mice Following Gestational Exposure to Bisphenol A. J Proteome Res 2017; 17:524-535. [PMID: 29198108 DOI: 10.1021/acs.jproteome.7b00668] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Studies regarding bisphenol A (BPA) exposure and male (in)fertility have conventionally focused on modifications in ejaculated spermatozoa function from exposed individuals. However, mammalian spermatozoa are incapable of fertilization prior to achieving capacitation, the penultimate step in maturation. Therefore, it is necessary to investigate BPA-induced changes in capacitated spermatozoa and assess the consequences on subsequent fertilization. Here, we demonstrate the effect of gestational BPA exposure (50 μg/kg bw/day, 5 mg/kg bw/day, and 50 mg/kg bw/day) on the functions, biochemical properties, and proteomic profiles of F1 capacitated spermatozoa from adult mice. The data showed that high concentrations of BPA inhibited motility, motion kinematics, and capacitation of spermatozoa, perhaps because of increased lipid peroxidation and protein tyrosine nitration, and decreased intracellular ATP levels and protein kinase-A activity in spermatozoa. We also found that BPA compromised the rates of fertilization and early embryonic development. Differentially expressed proteins identified between BPA-exposed and control groups play a critical role in energy metabolism, stress responses, and fertility. Protein function abnormalities were responsible for the development of several diseases according to bioinformatics analysis. On the basis of these results, gestational exposure to BPA may alter capacitated spermatozoa function and the proteomic profile, ultimately affecting their fertility potential.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Amena Khatun
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Polash Chandra Karmakar
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| |
Collapse
|
31
|
Hasegawa A, Mochida K, Ogonuki N, Hirose M, Tomishima T, Inoue K, Ogura A. Efficient and scheduled production of pseudopregnant female mice for embryo transfer by estrous cycle synchronization. J Reprod Dev 2017; 63:539-545. [PMID: 28824024 PMCID: PMC5735264 DOI: 10.1262/jrd.2017-068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In embryo transfer experiments in mice, pseudopregnant females as recipients are prepared by sterile mating with vasectomized males. Because only females at the proestrus stage accept males, such females are selected from a
stock of animals based on the appearance of their external genital tract. Therefore, the efficiency of preparing pseudopregnant females largely depends on the size of female colonies and the skill of the operators who select
females for sterile mating. In this study, we examined whether the efficiency of preparing pseudopregnant females could be improved by applying an estrous cycle synchronization method by progesterone (P4) pretreatment, which
significantly enhances the superovulation outcome in mice. We confirmed that after two daily injections of P4 (designated Days 1 and 2) in randomly selected females, the estrous cycles of most females (about 85%) were synchronized
at metestrus on Day 3. When P4-treated females were paired with vasectomized males for 4 days (Days 4–8), a vaginal plug was found in 63% (20/32) of the females on Day 7. After the transfer of vitrified-warmed embryos into their
oviducts, 52% (73/140) of the embryos successfully developed into offspring, the rate being comparable to that of the conventional embryo transfer procedure. Similarly, 77% (24/31) of females became pregnant by fertile mating with
intact males for 3 days, which allowed the scheduled preparation of foster mothers. Thus, our estrous cycle synchronization method may omit the conventional experience-based process of visually observing the vagina to choose
females for embryo transfer. Furthermore, it is expected that the size of female stocks for recipients can be reduced to less than 20%, which could be a great advantage for facilities/laboratories undertaking mouse-assisted
reproductive technology.
Collapse
Affiliation(s)
| | | | | | | | | | - Kimiko Inoue
- RIKEN BioResource Center, Ibaraki 305-0074, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Atsuo Ogura
- RIKEN BioResource Center, Ibaraki 305-0074, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan.,The Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
32
|
Águila L, Zambrano F, Arias ME, Felmer R. Sperm capacitation pretreatment positively impacts bovine intracytoplasmic sperm injection. Mol Reprod Dev 2017; 84:649-659. [PMID: 28513911 DOI: 10.1002/mrd.22834] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 05/02/2017] [Accepted: 05/11/2017] [Indexed: 11/08/2022]
Abstract
The efficiency of intracytoplasmic sperm injection (ICSI) in bovines is low compared to other species due in part to inadequate egg activation and sperm nucleus decondensation after injection. We hypothesized that this low efficiency is due to the lack of complete sperm capacitation, so we evaluated the effects of isobutylmethylxanthine (IBMX) and methyl-β-cyclodextrin (MβCD) on bovine sperm capacitation and on the preimplantation developmental potential of bovine embryos generated by ICSI. Treatment with IBMX and MβCD decreased sperm viability (between 13-30%); nevertheless, 0.4 mM IBMX and 1 mM MβCD increased (p < 0.05) capacitation metrics-that is, acrosome exocytosis, intracellular calcium level, plasma membrane fluidity, and tyrosine phosphorylation-compared to the control. After ICSI, embryos injected with IBMX- and MβCD-treated sperm showed similar cleavage to the untreated group (range 82-88%). Pronucleus formation rate was higher with MβCD-pretreatment (54%) compared to the control group (25%), and blastocyst rate was significantly improved with MβCD-pretreatment (24%) compared to the IBMX (18%) and control (17%) groups. Importantly, embryo quality-as assessed by the total number of cells, cell allocation, and apoptotic cell index-was not affected by the sperm treatments. In conclusion, MβCD pretreatment of sperm improved the efficiency of blastocyst production in bovine ICSI.
Collapse
Affiliation(s)
- Luis Águila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Fabiola Zambrano
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Maria E Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Faculty of Agriculture and Forestry Sciences, Department of Agricultural Sciences and Natural Resources, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Faculty of Agriculture and Forestry Sciences, Department of Agricultural Sciences and Natural Resources, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
33
|
Yoshimoto H, Takeo T, Irie T, Nakagata N. Fertility of cold-stored mouse sperm is recovered by promoting acrosome reaction and hyperactivation after cholesterol efflux by methyl-beta-cyclodextrin. Biol Reprod 2017; 96:446-455. [DOI: 10.1095/biolreprod.116.142901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 12/17/2022] Open
|
34
|
Wojtusik J, Pennington P, Songsasen N, Padilla LR, Citino SB, Pukazhenthi BS. Pretreatment of Addra gazelle (Nanger dama ruficollis) spermatozoa with cholesterol-loaded cyclodextrins improves cryosurvival. Cryobiology 2016; 73:388-395. [DOI: 10.1016/j.cryobiol.2016.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 11/30/2022]
|
35
|
Takeo T, Nakagata N. Immunotherapy using inhibin antiserum enhanced the efficacy of equine chorionic gonadotropin on superovulation in major inbred and outbred mice strains. Theriogenology 2016; 86:1341-6. [PMID: 27242176 DOI: 10.1016/j.theriogenology.2016.04.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 11/29/2022]
Abstract
Improvement of the superovulation technique will help to enhance the efficiency of embryo and animal production. Blocking inhibin using inhibin antiserum (IAS) is known to promote follicular development by increasing the level of FSH. Previously, we reported that coadministration of IAS and eCG produced more than 100 oocytes from a single female C57BL/6 mouse at 4 weeks old. The oocytes derived from the IAS + eCG (IASe) treatment were able to fertilize and develop normally into offspring. In this study, we examined the effect of IASe treatment on the numbers of ovulated oocytes in major inbred (A/J, BALB/cByJ, C3HeJ, DBA/2J, and FVB/NJ) and outbred (CD1) mice strains at 4 weeks old. We confirmed the fertilization and developmental ability of the IASe-derived oocytes. IASe treatment ovulated 1.5 to 3.2 times higher numbers of oocytes than eCG treatment alone. The fertilization rate of IASe-derived oocytes was similar to that of eCG-derived oocytes. In vitro and in vivo developmental rates of the embryos derived from IASe were similar to the rates of embryos derived from eCG. We have shown that superovulation by IASe is very effective in obtaining high numbers of ovulated oocytes from small numbers of oocyte donor in a number of mice strains. The superovulation technique will contribute to the archiving of cryopreserved embryos of genetically engineered mice using small numbers of donors and has the potential to produce more live animals for rederivation of the archived mouse lines in mouse repositories.
Collapse
Affiliation(s)
- Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
36
|
Li MW, Glass OC, Zarrabi J, Baker LN, Lloyd KCK. Cryorecovery of Mouse Sperm by Different IVF Methods Using MBCD and GSH. ACTA ACUST UNITED AC 2016; 4. [PMID: 27413624 PMCID: PMC4940049 DOI: 10.4172/2375-4508.1000175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Different protocols incorporating methyl-β-cyclodextrin (MBCD) and reduced glutathione (GSH) have been reported to improve IVF recovery of cryopreserved mouse sperm on a C57BL/6 (J and N) genetic background. However, it is not clear which IVF protocol is most appropriate when using the various methods to cryorecover sperm with different sperm quality and sample volumes. Therefore, in the present study we correlated sperm motility with fertilization rate and compared the efficiency of different IVF methods using various sperm samples so as to establish general guidelines for mouse sperm cryorecovery by IVF. High linear correlation between sperm fertilization rate and progressive motility was found, R2 was 0.9623 and 0.9993 for pre-freezing and post-thaw progressive motility, respectively. High amounts of cryoprotective agent (CPA) were observed to impair both sperm capacitation and fertilization. Moreover, the presence of a large number of immotile sperm in the sperm-oocyte co-incubation drop was found to reduce IVF success which could be partially reversed by supplementation using monothioglycerol (MTG) during centrifugation. It was concluded that the efficiency of IVF using cryorecovered mouse sperm in media containing MBCD and GSH can be predicted from sperm progressive motility. High concentrations of CPA and immotile sperm should be mitigated prior to IVF. The optimum IVF method should be selected based on sperm sample volume and sperm parameters.
Collapse
Affiliation(s)
- Ming-Wen Li
- Mouse Biology Program, University of California, Davis, CA 95618, United States
| | - Olivia C Glass
- Mouse Biology Program, University of California, Davis, CA 95618, United States
| | - Jasmin Zarrabi
- Mouse Biology Program, University of California, Davis, CA 95618, United States
| | - Lisa N Baker
- Mouse Biology Program, University of California, Davis, CA 95618, United States
| | - K C Kent Lloyd
- Mouse Biology Program, University of California, Davis, CA 95618, United States
| |
Collapse
|
37
|
Salmon VM, Leclerc P, Bailey JL. Cholesterol-Loaded Cyclodextrin Increases the Cholesterol Content of Goat Sperm to Improve Cold and Osmotic Resistance and Maintain Sperm Function after Cryopreservation. Biol Reprod 2016; 94:85. [PMID: 26888968 DOI: 10.1095/biolreprod.115.128553] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 01/28/2016] [Indexed: 11/01/2022] Open
Abstract
The success of semen cryopreservation depends on sperm membrane integrity and function after thawing. Cholesterol-loaded cyclodextrin (CLC) is used for in vitro incorporation of cholesterol to protect cells against cold temperatures. We hypothesized that CLC treatment also enhances sperm cholesterol content to increase tolerance to osmotic shock and cryoresistance, thereby improving fertility. We confirmed the fact that treatment of goat semen with 3 mg/ml CLC increases sperm cholesterol content using both the Liebermann-Burchard approach and filipin III labeling of membrane cholesterol. Sperm were then treated with or without CLC and cryopreserved. After thawing, sperm cholesterol dramatically fell, even in the presence of CLC, which explains the mechanism of cryocapacitation. CLC treatment, however, maintained a normal prefreeze cholesterol level in sperm after cryopreservation. Furthermore, fresh sperm treated with CLC and subjected to either cold shock or incubated in hypo-, iso-, and hyperosmotic media, designed to mimic stresses associated with freezing/thawing, displayed increased temperature and osmotic tolerance. CLC treatment also improved sperm viability, motility, and acrosome integrity after thawing. Furthermore, CLC treatment did not affect the sperm's ability to undergo in vitro capacitation according to chlortetracycline fluorescence and protein tyrosine phosphorylation. A pilot field trial demonstrated that artificial insemination with sperm that underwent increased cholesterol levels following CLC treatment yielded higher fertility ( ITALIC! P< 0.1) and proliferation ( ITALIC! P< 0.05) rates in vivo than untreated semen from the same ejaculate samples. These observations suggest that CLC treatment could be used to improve cryoprotection during the freezing and thawing of goat sperm.
Collapse
Affiliation(s)
- Vianney M Salmon
- Centre de Recherche en Biologie de la Reproduction Département des Sciences Animales, Université Laval, Québec, Québec, Canada
| | - Pierre Leclerc
- Département d'Obstétrique et de Gynécologie, Centre de recherche en biologie de la reproduction, Université Laval, Axe reproduction, santé périnatale et santé de l'enfant, Centre de recherche du CHUQ-CHUL, Québec, Québec, Canada
| | - Janice L Bailey
- Centre de Recherche en Biologie de la Reproduction Département des Sciences Animales, Université Laval, Québec, Québec, Canada
| |
Collapse
|
38
|
Guevara MA, Bauer LL, Garleb KA, Fahey GC, de Godoy MRC. Serum lipid profiles, total tract nutrient digestibility, and gastrointestinal tolerance by dogs of α-cyclodextrin. J Anim Sci 2016; 93:2201-7. [PMID: 26020316 DOI: 10.2527/jas.2014-8442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objectives were to quantify gastrointestinal tolerance, total tract nutrient digestibility, and serum lipid profiles of dogs as affected by α-cyclodextrin (ACD) supplementation and to validate the accuracy of fat analyses techniques using novel ACD-fat complexes. The ACD was hydrolyzed and free sugars and hydrolyzed monosaccharides were quantified using high performance liquid chromatography. Known amount of fats were complexed with ACD, and fat content of complexes were determined using the ether extraction and acid-hydrolyzed fat methods. Nine mixed-breed hounds were used in a crossover design with 3 periods of 10 d each, including 6 d for diet adaptation and 4 d for fecal collection. Dogs were fed twice daily a diet with poultry byproduct meal and brewer's rice as the main ingredients, and chromic oxide (0.2%) was included as a digestion marker. Dogs were supplemented with either 0, 3, or 6 g of ACD diluted in 15 mL of water twice per day for a total of 0, 6, and 12 g ACD per day. The ACD had a very low free sugar concentration and, once hydrolyzed, released only glucose, as expected. Average daily food intake, fecal output (DM basis), and fecal scores were not significantly different among treatments. Body weight and condition score and serum triglycerides and cholesterol concentrations remained unaltered throughout the duration of the experiment. Dry matter, OM, and fat digestibility coefficients were lower (P < 0.05) for both treatment groups compared to the control. The acid-hydrolyzed fat method was valid to measure fat that was bound to ACD. Intake of ACD lowered fat digestibility somewhat but not to the extent previously reported, without affecting serum lipid concentrations or outcomes related to tolerance. Therefore, ACD supplementation resulted in a small decrease in fat digestibility, but ACD supplementation might have potential in modifying serum lipid profiles.
Collapse
|
39
|
Hasegawa A, Mochida K, Inoue H, Noda Y, Endo T, Watanabe G, Ogura A. High-Yield Superovulation in Adult Mice by Anti-Inhibin Serum Treatment Combined with Estrous Cycle Synchronization. Biol Reprod 2015; 94:21. [PMID: 26632610 DOI: 10.1095/biolreprod.115.134023] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/25/2015] [Indexed: 11/01/2022] Open
Abstract
Producing many mature oocytes is of great importance for assisted reproductive technologies. In mice, superovulation by consecutive injections of equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG) has been the gold standard for oocyte collection. However, the yield of mature oocytes by this regimen can fluctuate according to the stage of the estrous cycle, strain, and age. Therefore, our objective was to develop a high-yield superovulation protocol to collect higher numbers of oocytes from adult female mice of different strains and ages. First, we aimed to synchronize the estrous cycle using C57BL/6 (B6) female mice. Most (93%) were synchronized to metestrus after two daily injections of progesterone. Second, we found that with the injection of anti-inhibin serum (AIS) instead of eCG, the mean number of ovulated oocytes almost doubled (21 vs. 41 per mouse). Third, by combining estrous cycle synchronization with two AIS injections, we obtained 62 oocytes per mouse, about three times that with the eCG-hCG protocol. Importantly, this approach increased the proportion of mice that ovulated >25 oocytes from about 40% (eCG-hCG) to 90%. The same protocol was also effective in other inbred (BALB/cA), outbred (ICR), and hybrid (B6D2F1) strains. In addition, B6 female mice aged over 1 yr ovulated 1.8-fold more oocytes by this protocol. Thus, estrous cycle synchronization followed by AIS-hCG yielded a broadly applicable, highly efficient superovulation. This protocol should promote the effective use of invaluable female mouse strains and decrease the numbers of animals euthanized.
Collapse
Affiliation(s)
| | | | - Hiroki Inoue
- RIKEN BioResource Center, Tsukuba, Ibaraki, Japan Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Yoshihiro Noda
- Animal Facility, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tamao Endo
- Animal Facility, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Atsuo Ogura
- RIKEN BioResource Center, Tsukuba, Ibaraki, Japan Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki, Japan The Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
40
|
Effect of different media additives on capacitation of frozen–thawed ram spermatozoa as a potential replacement for estrous sheep serum. Theriogenology 2015; 84:948-55. [DOI: 10.1016/j.theriogenology.2015.05.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 05/22/2015] [Accepted: 05/29/2015] [Indexed: 11/21/2022]
|
41
|
Águila L, Arias ME, Vargas T, Zambrano F, Felmer R. Methyl-β-Cyclodextrin Improves Sperm Capacitation Status Assessed by Flow Cytometry Analysis and Zona Pellucida-Binding Ability of Frozen/Thawed Bovine Spermatozoa. Reprod Domest Anim 2015; 50:931-8. [DOI: 10.1111/rda.12611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/20/2015] [Indexed: 11/28/2022]
Affiliation(s)
- L Águila
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
| | - ME Arias
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
| | - T Vargas
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
| | - F Zambrano
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
| | - R Felmer
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
- Department of Agricultural Sciences and Natural Resources; Faculty of Agriculture and Forestry; Universidad de La Frontera; Temuco Chile
| |
Collapse
|
42
|
Arima H, Hayashi Y, Higashi T, Motoyama K. Recent advances in cyclodextrin delivery techniques. Expert Opin Drug Deliv 2015; 12:1425-41. [DOI: 10.1517/17425247.2015.1026893] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
43
|
Lee YS, Lee S, Lee SH, Yang BK, Park CK. Effect of cholesterol-loaded-cyclodextrin on sperm viability and acrosome reaction in boar semen cryopreservation. Anim Reprod Sci 2015; 159:124-30. [PMID: 26091957 DOI: 10.1016/j.anireprosci.2015.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
This study was undertaken to examine the effect of cholesterol-loaded-cyclodextrin (CLC) on boar sperm viability and spermatozoa cryosurvival during boar semen cryopreservation, and methyl-β-cyclodextrin (MBCD) was treated for comparing with CLC. Boar semen treated with CLC and MBCD before freezing process to monitor the effect on survival and capacitation status by flow cytometry with appropriate fluorescent probes. Sperm viability was higher in 1.5mg CLC-treated sperm (76.9±1.01%, P<0.05) than un-treated and MBCD-treated sperm before cryopreservation (58.7±1.31% and 60.3±0.31%, respectively). For CTC patterns, F-pattern was higher in CLC treated sperm than MBCD-treated sperm, for B-pattern was higher in CLC-treated sperm than fresh sperm (P<0.05). For AR pattern (an acrosome-reacted sperm) was lower in CLC-treated sperm than MBCD-treated sperm (P<0.05). Moreover, we examined in vitro development of porcine oocytes after in vitro fertilization using CLC-treated frozen-thawed semen, in which CLC treatment prior to freezing and thawing increased the development of oocytes to blastocyst stage in vitro. In conclusion, CLC could protect the viability of spermatozoa from cryodamage prior to cryopreservation in boar semen.
Collapse
Affiliation(s)
- Yong-Seung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea; Institute of Animal Resources, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Sang-Hee Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Boo-Keun Yang
- College of Animal Life Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Choon-Keun Park
- College of Animal Life Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
44
|
Devising assisted reproductive technologies for wild-derived strains of mice: 37 strains from five subspecies of Mus musculus. PLoS One 2014; 9:e114305. [PMID: 25470728 PMCID: PMC4254977 DOI: 10.1371/journal.pone.0114305] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/06/2014] [Indexed: 12/13/2022] Open
Abstract
Wild-derived mice have long offered invaluable experimental models for mouse genetics because of their high evolutionary divergence from laboratory mice. A number of wild-derived strains are available from the RIKEN BioResource Center (BRC), but they have been maintained as living stocks because of the unavailability of assisted reproductive technology (ART). In this study, we sought to devise ART for 37 wild-derived strains from five subspecies of Mus musculus maintained at the BRC. Superovulation of females was effective (more than 15 oocytes per female) for 34 out of 37 strains by treatment with either equine chorionic gonadotropin or anti-inhibin serum, depending on their genetic background (subspecies). The collected oocytes could be fertilized in vitro at mean rates of 79.0% and 54.6% by the optimized protocol using fresh or frozen-thawed spermatozoa, respectively. They were cryopreserved at the 2-cell stage by vitrification with an ethylene glycol-based solution. In total, 94.6% of cryopreserved embryos survived the vitrification procedure and restored their normal morphology after warming. A conventional embryo transfer protocol could be applied to 25 out of the 35 strains tested. In the remaining 10 strains, live offspring could be obtained by a modified embryo transfer protocol using cyclosporin A treatment and co-transfer of ICR (laboratory mouse strain) embryos. Thus, ART for 37 wild-derived strains was devised successfully and is now routinely used for their preservation and transportation. The information provided here might facilitate broader use and wider distribution of wild-derived mice for biomedical research.
Collapse
|
45
|
Araki N, Trencsényi G, Krasznai ZT, Nizsalóczki E, Sakamoto A, Kawano N, Miyado K, Yoshida K, Yoshida M. Seminal vesicle secretion 2 acts as a protectant of sperm sterols and prevents ectopic sperm capacitation in mice. Biol Reprod 2014; 92:8. [PMID: 25395676 DOI: 10.1095/biolreprod.114.120642] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Seminal vesicle secretion 2 (SVS2) is a protein secreted by the mouse seminal vesicle. We previously demonstrated that SVS2 regulates fertilization in mice; SVS2 is attached to a ganglioside GM1 on the plasma membrane of the sperm head and inhibits sperm capacitation in in vitro fertilization as a decapacitation factor. Furthermore, male mice lacking SVS2 display prominently reduced fertility in vivo, which indicates that SVS2 protects spermatozoa from some spermicidal attack in the uterus. In this study, we tried to investigate the mechanisms by which SVS2 controls in vivo sperm capacitation. SVS2-deficient males that mated with wild-type partners resulted in decreased cholesterol levels on ejaculated sperm in the uterine cavity. SVS2 prevented cholesterol efflux from the sperm plasma membrane and incorporated liberated cholesterol in the sperm plasma membrane, thereby reversibly preventing the induction of sperm capacitation by bovine serum albumin and methyl-beta-cyclodextrin in vitro. SVS2 enters the uterus and the uterotubal junction, arresting sperm capacitation in this area. Therefore, our results show that SVS2 keeps sterols on the sperm plasma membrane and plays a key role in unlocking sperm capacitation in vivo.
Collapse
Affiliation(s)
- Naoya Araki
- Misaki Marine Biological Station, School of Science, University of Tokyo, Miura, Japan
| | - György Trencsényi
- Department of Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoárd T Krasznai
- Department of Obstetrics and Gynecology, University of Debrecen, Debrecen, Hungary
| | - Enikő Nizsalóczki
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | - Ayako Sakamoto
- Misaki Marine Biological Station, School of Science, University of Tokyo, Miura, Japan
| | - Natsuko Kawano
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Kaoru Yoshida
- Biomedical Engineering Center, Toin University of Yokohama, Yokohama, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, School of Science, University of Tokyo, Miura, Japan Center for Marine Biology, University of Tokyo, Miura, Japan
| |
Collapse
|
46
|
Macías-García B, González-Fernández L, Loux SC, Rocha AM, Guimarães T, Peña FJ, Varner DD, Hinrichs K. Effect of calcium, bicarbonate, and albumin on capacitation-related events in equine sperm. Reproduction 2014; 149:87-99. [PMID: 25349439 DOI: 10.1530/rep-14-0457] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Repeatable methods for IVF have not been established in the horse, reflecting the failure of standard capacitating media to induce changes required for fertilization capacity in equine sperm. One important step in capacitation is membrane cholesterol efflux, which in other species is triggered by cholesterol oxidation and is typically enhanced using albumin as a sterol acceptor. We incubated equine sperm in the presence of calcium, BSA, and bicarbonate, alone or in combination. Bicarbonate induced an increase in reactive oxygen species (ROS) that was abolished by the addition of calcium or BSA. Bicarbonate induced protein tyrosine phosphorylation (PY), even in the presence of calcium or BSA. Incubation at high pH enhanced PY but did not increase ROS production. Notably, no combination of these factors was associated with significant cholesterol efflux, as assessed by fluorescent quantitative cholesterol assay and confirmed by filipin staining. By contrast, sperm treated with methyl-β-cyclodextrin showed a significant reduction in cholesterol levels, but no significant increase in PY or ROS. Presence of BSA increased sperm binding to bovine zonae pellucidae in all three stallions. These results show that presence of serum albumin is not associated with a reduction in membrane cholesterol levels in equine sperm, highlighting the failure of equine sperm to exhibit core capacitation-related changes in a standard capacitating medium. These data indicate an atypical relationship among cholesterol efflux, ROS production, and PY in equine sperm. Our findings may help to elucidate factors affecting failure of equine IVF under standard conditions.
Collapse
Affiliation(s)
- B Macías-García
- CECA/ICETA - Animal Sciences CentreICBAS-University of Porto, Campus Agrario de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, PortugalDepartments of Veterinary Physiology and PharmacologyLarge Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, Texas, USALaboratory of Equine ReproductionFaculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain CECA/ICETA - Animal Sciences CentreICBAS-University of Porto, Campus Agrario de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, PortugalDepartments of Veterinary Physiology and PharmacologyLarge Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, Texas, USALaboratory of Equine ReproductionFaculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - L González-Fernández
- CECA/ICETA - Animal Sciences CentreICBAS-University of Porto, Campus Agrario de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, PortugalDepartments of Veterinary Physiology and PharmacologyLarge Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, Texas, USALaboratory of Equine ReproductionFaculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain CECA/ICETA - Animal Sciences CentreICBAS-University of Porto, Campus Agrario de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, PortugalDepartments of Veterinary Physiology and PharmacologyLarge Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, Texas, USALaboratory of Equine ReproductionFaculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - S C Loux
- CECA/ICETA - Animal Sciences CentreICBAS-University of Porto, Campus Agrario de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, PortugalDepartments of Veterinary Physiology and PharmacologyLarge Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, Texas, USALaboratory of Equine ReproductionFaculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - A M Rocha
- CECA/ICETA - Animal Sciences CentreICBAS-University of Porto, Campus Agrario de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, PortugalDepartments of Veterinary Physiology and PharmacologyLarge Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, Texas, USALaboratory of Equine ReproductionFaculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - T Guimarães
- CECA/ICETA - Animal Sciences CentreICBAS-University of Porto, Campus Agrario de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, PortugalDepartments of Veterinary Physiology and PharmacologyLarge Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, Texas, USALaboratory of Equine ReproductionFaculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - F J Peña
- CECA/ICETA - Animal Sciences CentreICBAS-University of Porto, Campus Agrario de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, PortugalDepartments of Veterinary Physiology and PharmacologyLarge Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, Texas, USALaboratory of Equine ReproductionFaculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - D D Varner
- CECA/ICETA - Animal Sciences CentreICBAS-University of Porto, Campus Agrario de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, PortugalDepartments of Veterinary Physiology and PharmacologyLarge Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, Texas, USALaboratory of Equine ReproductionFaculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - K Hinrichs
- CECA/ICETA - Animal Sciences CentreICBAS-University of Porto, Campus Agrario de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, PortugalDepartments of Veterinary Physiology and PharmacologyLarge Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, Texas, USALaboratory of Equine ReproductionFaculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain CECA/ICETA - Animal Sciences CentreICBAS-University of Porto, Campus Agrario de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, PortugalDepartments of Veterinary Physiology and PharmacologyLarge Animal Clinical SciencesCollege of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, Texas, USALaboratory of Equine ReproductionFaculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
47
|
Effects of cationic antimicrobial peptides on liquid-preserved boar spermatozoa. PLoS One 2014; 9:e100490. [PMID: 24940997 PMCID: PMC4062521 DOI: 10.1371/journal.pone.0100490] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/23/2014] [Indexed: 12/14/2022] Open
Abstract
Antibiotics are mandatory additives in semen extenders to control bacterial contamination. The worldwide increase in resistance to conventional antibiotics requires the search for alternatives not only for animal artificial insemination industries, but also for veterinary and human medicine. Cationic antimicrobial peptides are of interest as a novel class of antimicrobial additives for boar semen preservation. The present study investigated effects of two synthetic cyclic hexapeptides (c-WFW, c-WWW) and a synthetic helical magainin II amide derivative (MK5E) on boar sperm during semen storage at 16°C for 4 days. The standard extender, Beltsville Thawing Solution (BTS) containing 250 µg/mL gentamicin (standard), was compared to combinations of BTS with each of the peptides in a split-sample procedure. Examination revealed peptide- and concentration-dependent effects on sperm integrity and motility. Negative effects were more pronounced for MK5E than in hexapeptide-supplemented samples. The cyclic hexapeptides were partly able to stimulate a linear progressive sperm movement. When using low concentrations of cyclic hexapeptides (4 µM c-WFW, 2 µM c-WWW) sperm quality was comparable to the standard extender over the course of preservation. C-WFW-supplemented boar semen resulted in normal fertility rates after AI. In order to investigate the interaction of peptides with the membrane, electron spin resonance spectroscopic measurements were performed using spin-labeled lipids. C-WWW and c-WFW reversibly immobilized an analog of phosphatidylcholine (PC), whereas MK5E caused an irreversible increase of PC mobility. These results suggest testing the antimicrobial efficiency of non-toxic concentrations of selected cyclic hexapeptides as potential candidates to supplement/replace common antibiotics in semen preservation.
Collapse
|
48
|
Andrisani A, Donà G, Ambrosini G, Bonanni G, Bragadin M, Cosmi E, Clari G, Armanini D, Bordin L. Effect of various commercial buffers on sperm viability and capacitation. Syst Biol Reprod Med 2014; 60:239-44. [PMID: 24673547 DOI: 10.3109/19396368.2014.904952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A wide variety of sperm preparation protocols are currently available for assisted conception. They include density gradient separation and washing methods. Both aim at isolating and capacitating as much motile sperm as possible for subsequent oocyte fertilization. The aim of this study was to examine the effects of four commercial sperm washing buffers on sperm viability and capacitation. Semen samples from 48 healthy donors (normal values of sperm count, motility, morphology, and volume) were analyzed. After separation (density gradient 40/80%), sperm were incubated in various buffers then analysed for reactive oxygen species (ROS) production, viability, tyrosine phosphorylation (Tyr-P), cholera toxin B subunit (CTB) labeling, and the acrosome reaction (AR). The buffers affected ROS generation in various ways resulting either in rapid cell degeneration (when the amount of ROS was too high for cell survival) or the inability of the cells to maintain correct functioning (when ROS were too few). Only when the correct ROS generation curve was maintained, suitable membrane reorganization, evidenced by CTB labeling was achieved, leading to the highest percentages of both Tyr-P- and acrosome-reacted-cells. Distinguishing each particular pathological state of the sperm sample would be helpful to select the preferred buffer treatment since both ROS production and membrane reorganization can be significantly altered by commercial buffers.
Collapse
|
49
|
Takeo T, Fukumoto K, Kondo T, Haruguchi Y, Takeshita Y, Nakamuta Y, Tsuchiyama S, Yoshimoto H, Shimizu N, Li MW, Kinchen K, Vallelunga J, Lloyd KCK, Nakagata N. Investigations of motility and fertilization potential in thawed cryopreserved mouse sperm from cold-stored epididymides. Cryobiology 2013; 68:12-7. [PMID: 24201107 DOI: 10.1016/j.cryobiol.2013.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 11/26/2022]
Abstract
Cold transport of epididymides from genetically modified mice is an efficient alternative to the shipment of live animals between research facilities. Mouse sperm from epididymides cold-stored for short periods can maintain viability. We previously reported that cold storage of mouse epididymides in Lifor® perfusion medium prolonged sperm motility and fertilization potential and that the sperm efficiently fertilized oocytes when reduced glutathione was added to the fertilization medium. Cryopreservation usually results in decreased sperm viability; an optimized protocol for cold storage of epididymides plus sperm cryopreservation has yet to be established. Here, we examined the motility and fertilization potential of cryopreserved, thawed (frozen-thawed) sperm from previously cold-stored mouse epididymides. We also examined the protective effect of sphingosine-1-phosphate (S1P) on sperm viability when S1P was added to the preservation medium during cold storage. We assessed viability of frozen-thawed sperm from mouse epididymides that had been cold-transported domestically or internationally and investigated whether embryos fertilized in vitro with these sperm developed normally when implanted in pseudo-pregnant mice. Our results indicate that frozen-thawed sperm from epididymides cold-stored for up to 48 h maintained high fertilization potential. Fertilization potential was reduced after cold storage for 72 h, but not if S1P was included in the cold storage medium. Live pups were born normally to recipients after in vitro fertilization using frozen-thawed sperm from cold-transported epididymides. In summary, we demonstrate an improved protocol for cold-storage of epididymides that can facilitate transport of genetically engineered-mice and preserve sperm viability after cryopreservation.
Collapse
Affiliation(s)
- Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Kiyoko Fukumoto
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Tomoko Kondo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Yukie Haruguchi
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Yumi Takeshita
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Yuko Nakamuta
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Shuuji Tsuchiyama
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Hidetaka Yoshimoto
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Norihiko Shimizu
- Animal Laboratory for Medical Research, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Ming-Wen Li
- Mouse Biology Program, University of California, Davis, CA 95618, USA
| | - Kristy Kinchen
- Mouse Biology Program, University of California, Davis, CA 95618, USA
| | - Jadine Vallelunga
- Mouse Biology Program, University of California, Davis, CA 95618, USA
| | - K C Kent Lloyd
- Mouse Biology Program, University of California, Davis, CA 95618, USA
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan.
| |
Collapse
|
50
|
Tseng HC, Lee RKK, Hwu YM, Lu CH, Lin MH, Li SH. Mechanisms underlying the inhibition of murine sperm capacitation by the seminal protein, SPINKL. J Cell Biochem 2013; 114:888-98. [PMID: 23097296 DOI: 10.1002/jcb.24428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 10/15/2012] [Indexed: 11/05/2022]
Abstract
SPINKL, a serine protease inhibitor kazal-type-like protein initially found in mouse seminal vesicle secretions, possesses structurally conserved six-cysteine residues of the kazal-type serine protease inhibitor family. However, it has no inhibitory activity against serine proteases. Previously, it was found to have the ability to suppress murine sperm capacitation in vitro. Herein, we investigated the mechanisms underlying the suppressive effect of SPINKL on sperm capacitation. Three in vitro capacitation-enhancing agents, including bovine serum albumin (BSA), methyl-beta-cyclodextrin (MBCD), and dibutyryl cyclic AMP (dbcAMP), coupled with 3-isobutyl-1-methylxanthine (IBMX), were used to evaluate the influence of SPINKL on capacitation signaling. Preincubation of sperm with SPINKL suppressed BSA- and MBCD-induced sperm capacitation by blocking three upstream signals of capacitation that is the cholesterol efflux from sperm plasma membranes, extracellular calcium ion influx into sperm, and increases in intracellular cAMP. Moreover, SPINKL also inhibited downstream signal transduction of capacitation since it suppressed dbcAMP/IBMX and N(6) -phenyl cAMP (6-Phe-cAMP)-activated cAMP-dependent protein kinase-associated protein tyrosine phosphorylation. Such inhibition is probably mediated by attenuation of SRC tyrosine kinase activity. Furthermore, SPINKL could not reverse capacitation once sperm had been capacitated by capacitation-enhancing agents or capacitated in vivo in the oviduct. SPINKL bound to sperm existed in the uterus but had disappeared from sperm in the oviduct during the sperm's transit through the female reproductive tract. Therefore, SPINKL may serve as an uncapacitation factor in the uterus to prevent sperm from precocious capacitation and the subsequent acrosome reaction and thus preserve the fertilization ability of sperm.
Collapse
Affiliation(s)
- Huan-Chin Tseng
- Department of Medical Research, Mackay Memorial Hospital, Tamshui, New Taipei City, Taiwan
| | | | | | | | | | | |
Collapse
|