1
|
Yu S, Liu L, Li M, He S, Hu Y, Sun S, Yan Y, Zhao F, Cheng X, Li J, Gao F, Liu Y, Zhang X. Swimming behavior indicates stress and adaptations to exercise. Front Physiol 2024; 15:1357120. [PMID: 38468702 PMCID: PMC10925659 DOI: 10.3389/fphys.2024.1357120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/02/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction: Behaviors of swimming rodents are not uniform, exhibiting large variations, which may underlie the individual differences in swimming exercise-induced benefits. The study aimed to monitor individualized swimming behavior and evaluate its biological significance. Methods: A swimming tank which can monitor individualized rodent swimming behavior during exercise was established. A total of 45 mice were subjected to swimming training for 1 month (1 h per day) and the swimming behaviors of each mouse were recorded. Results: The swimming behaviors of mice displayed considerable variations in aspects of distance, velocity, and area preference. For example, nearly one-third of mice preferred to swim in central area and most of the mice exhibited an even area distribution. Long-term exercise training improved cardiac systolic function and decreased blood pressure in mice, but hardly changed swimming behaviors. Analyses of the relationship between swimming behavior and cardiovascular adaptations to exercise training revealed that swimming behavior indicated the biological effects of swimming training. Specifically, mice which preferred swimming at the central zone or were trainable in behavior during 1-month training exhibited better outcomes in cardiac function and blood pressure post long-term exercise. Mechanistically, a centralized swimming behavior indicated a smaller stress during exercise, as evidenced by a milder activation of hypothalamic-pituitary-adrenal axis. Discussion: These results suggest that swimming behavior during training indicates individualized adaptations to long-term exercise, and highlight a biological significance of swimming behavior monitoring in animal studies.
Collapse
Affiliation(s)
- Sen Yu
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Lantao Liu
- Department of Medical Electronics, School of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
| | - Min Li
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Siyan He
- Chengdu Techman Software Co., Ltd., Chengdu, China
| | - Yang Hu
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Shichao Sun
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Yizhen Yan
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Fangfang Zhao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | | | - Jia Li
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Yong Liu
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
- Department of Rehabilitation, Air Force Medical Center, Beijing, China
| |
Collapse
|
2
|
Smith JAB, Murach KA, Dyar KA, Zierath JR. Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol 2023; 24:607-632. [PMID: 37225892 PMCID: PMC10527431 DOI: 10.1038/s41580-023-00606-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/26/2023]
Abstract
Viewing metabolism through the lens of exercise biology has proven an accessible and practical strategy to gain new insights into local and systemic metabolic regulation. Recent methodological developments have advanced understanding of the central role of skeletal muscle in many exercise-associated health benefits and have uncovered the molecular underpinnings driving adaptive responses to training regimens. In this Review, we provide a contemporary view of the metabolic flexibility and functional plasticity of skeletal muscle in response to exercise. First, we provide background on the macrostructure and ultrastructure of skeletal muscle fibres, highlighting the current understanding of sarcomeric networks and mitochondrial subpopulations. Next, we discuss acute exercise skeletal muscle metabolism and the signalling, transcriptional and epigenetic regulation of adaptations to exercise training. We address knowledge gaps throughout and propose future directions for the field. This Review contextualizes recent research of skeletal muscle exercise metabolism, framing further advances and translation into practice.
Collapse
Affiliation(s)
- Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kevin A Murach
- Molecular Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kenneth A Dyar
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Valberg SJ, Velez-Irizarry D, Williams ZJ, Pagan JD, Mesquita V, Waldridge B, Maresca-Fichter H. Novel Expression of GLUT3, GLUT6 and GLUT10 in Equine Gluteal Muscle Following Glycogen-Depleting Exercise: Impact of Dietary Starch and Fat. Metabolites 2023; 13:718. [PMID: 37367876 DOI: 10.3390/metabo13060718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Horses have a slow rate of muscle glycogen repletion relative to other species for unknown reasons. Our aim was to determine the expression of glucose transporters (GLUT) and genes impacting GLUT4 expression and translocation in the gluteal muscle. Five fit Thoroughbred horses performed glycogen-depleting exercises on high-starch (HS, 2869 g starch/day) and low-starch, high-fat diets (LS-HF, 358 g starch/d) with gluteal muscle biopsies obtained before and after depletion and during repletion. Muscle glycogen declined by ≈30% on both diets with little increase during repletion on LS-HF. Transcriptomic analysis identified differential expression (DE) of only 2/12 genes impacting GLUT4 translocation (two subunits of AMP protein kinase) and only at depletion on LS-HF. Only 1/13 genes encoding proteins that promote GLUT4 transcription had increased DE (PPARGC1A at depletion LS-HF). GLUT4 comprised ≈30% of total GLUT mRNA expression at rest. Remarkably, by 72 h of repletion expression of GLUT3, GLUT6 and GLUT10 increased to ≈25% of total GLUT mRNA. Expression of GLUT6 and GLUT10 lagged from 24 h of repletion on HS to 72 h on LS-HF. Lacking an increase in GLUT4 gene expression in response to glycogen-depleting exercise, equine muscle increases GLUT3, GLUT6 and GLUT10 expression potentially to enhance glucose transport, resembling responses observed in resistance trained GLUT4-null mice.
Collapse
Affiliation(s)
- Stephanie J Valberg
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson RD, East Lansing, MI 48824, USA
| | - Deborah Velez-Irizarry
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson RD, East Lansing, MI 48824, USA
| | - Zoe J Williams
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson RD, East Lansing, MI 48824, USA
| | - Joe D Pagan
- Kentucky Equine Research, 3910 Delany Ferry Rd., Versailles, KY 40383, USA
| | - Vanesa Mesquita
- Kentucky Equine Research, 3910 Delany Ferry Rd., Versailles, KY 40383, USA
| | - Brian Waldridge
- Kentucky Equine Research, 3910 Delany Ferry Rd., Versailles, KY 40383, USA
| | - Hailey Maresca-Fichter
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson RD, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Identification of the Differentially Expressed Genes in the leg muscles of Zhedong White Geese (Anser cygnoides) reared under different photoperiods. Poult Sci 2022; 101:102193. [PMID: 36257072 PMCID: PMC9579406 DOI: 10.1016/j.psj.2022.102193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Light is a factor affecting muscle development and meat quality in poultry production. However, few studies have reported on the role of light in muscle development and meat quality in geese. In this experiment, 10 healthy 220-day-old Zhedong white geese were reared for 60 d under a long photoperiod (15L:9D, LL) and short photoperiod (9L:15D, SL). The gastrocnemius muscles were collected after slaughter to evaluate muscle fiber characteristics and meat color, and RNA-seq analysis. The results showed that compared to the LL group, the SL group had large muscle fiber diameter and cross-sectional area, few muscle fibers per unit area, high meat color a* value, and low L* value at 24 h postmortem. On comparing the 2 groups, 70 differentially expressed genes (DEGs) were identified. Compared to the SL group, the LL group had 25 upregulated and 45 downregulated genes. Gene Ontology (GO) enrichment analysis showed that these DEGs were mainly involved in cell, cell part, binding, cellular processes, and single-organism processes. Several significantly enriched athways were identified in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, such as the calcium and PI3k-Akt signaling pathways. The expression of five randomly selected DEGs was verified using quantitative real-time PCR, and the results were consistent with the RNA-seq data. This study provides a theoretical basis for studying the molecular mechanisms by which light affects muscle development and meat color in geese.
Collapse
|
5
|
Stocks B, Zierath JR. Post-translational Modifications: The Signals at the Intersection of Exercise, Glucose Uptake, and Insulin Sensitivity. Endocr Rev 2022; 43:654-677. [PMID: 34730177 PMCID: PMC9277643 DOI: 10.1210/endrev/bnab038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 11/19/2022]
Abstract
Diabetes is a global epidemic, of which type 2 diabetes makes up the majority of cases. Nonetheless, for some individuals, type 2 diabetes is eminently preventable and treatable via lifestyle interventions. Glucose uptake into skeletal muscle increases during and in recovery from exercise, with exercise effective at controlling glucose homeostasis in individuals with type 2 diabetes. Furthermore, acute and chronic exercise sensitizes skeletal muscle to insulin. A complex network of signals converge and interact to regulate glucose metabolism and insulin sensitivity in response to exercise. Numerous forms of post-translational modifications (eg, phosphorylation, ubiquitination, acetylation, ribosylation, and more) are regulated by exercise. Here we review the current state of the art of the role of post-translational modifications in transducing exercise-induced signals to modulate glucose uptake and insulin sensitivity within skeletal muscle. Furthermore, we consider emerging evidence for noncanonical signaling in the control of glucose homeostasis and the potential for regulation by exercise. While exercise is clearly an effective intervention to reduce glycemia and improve insulin sensitivity, the insulin- and exercise-sensitive signaling networks orchestrating this biology are not fully clarified. Elucidation of the complex proteome-wide interactions between post-translational modifications and the associated functional implications will identify mechanisms by which exercise regulates glucose homeostasis and insulin sensitivity. In doing so, this knowledge should illuminate novel therapeutic targets to enhance insulin sensitivity for the clinical management of type 2 diabetes.
Collapse
Affiliation(s)
- Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Departments of Molecular Medicine and Surgery and Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Abstract
The Akt isoforms-AS160-GLUT4 axis is the primary axis that governs glucose homeostasis in the body. The first step on the path to insulin resistance is deregulated Akt isoforms. This could be Akt isoform expression, its phosphorylation, or improper isoform-specific redistribution to the plasma membrane in a specific tissue system. The second step is deregulated AS160 expression, its phosphorylation, improper dissociation from glucose transporter storage vesicles (GSVs), or its inability to bind to 14-3-3 proteins, thus not allowing it to execute its function. The final step is improper GLUT4 translocation and aberrant glucose uptake. These processes lead to insulin resistance in a tissue-specific way affecting the whole-body glucose homeostasis, eventually progressing to an overt diabetic phenotype. Thus, the relationship between these three key proteins and their proper regulation comes out as the defining axis of insulin signaling and -resistance. This review summarizes the role of this central axis in insulin resistance and disease in a new light.
Collapse
Affiliation(s)
- Medha Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
7
|
Kido K, Egawa T, Fujiyoshi H, Suzuki H, Kawanaka K, Hayashi T. AMPK is indispensable for overload-induced muscle glucose uptake and glycogenesis but dispensable for inducing hypertrophy in mice. FASEB J 2021; 35:e21459. [PMID: 33710687 DOI: 10.1096/fj.202002164r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/16/2021] [Accepted: 02/04/2021] [Indexed: 02/05/2023]
Abstract
Chronic muscle loading (overload) induces skeletal muscles to undergo hypertrophy and to increase glucose uptake. Although AMP-activated protein kinase (AMPK) reportedly serves as a negative regulator of hypertrophy and a positive regulator of glucose uptake, its role in overload-induced skeletal muscle hypertrophy and glucose uptake is unclear. This study aimed to determine whether AMPK regulates overload-induced hypertrophy and glucose uptake in skeletal muscles. To this end, skeletal muscle overload was induced through unilateral synergist ablations in wild-type (WT) and transgenic mice, expressing the dominant-negative mutation of AMPK (AMPK-DN). After 14 days, parameters, including muscle fiber cross-sectional area (CSA), glycogen level, and in vivo [3 H]-2-deoxy-D-glucose uptake, were assessed. No significant difference was observed in body weight or blood glucose level between the WT and AMPK-DN mice. However, the 14-day muscle overload activated the AMPK pathway in WT mice skeletal muscle, whereas this response was impaired in the AMPK-DN mice. Despite a normal CSA gain in each fiber type, the AMPK-DN mice demonstrated a significant impairment of overload-induced muscle glucose uptake and glycogenesis, compared to WT mice. Moreover, 14-day overload-induced changes in GLUT4 and HKII expression levels were reduced in AMPK-DN mice, compared to WT mice. This study demonstrated that AMPK activation is indispensable for overload-induced muscle glucose uptake and glycogenesis; however, it is dispensable for the induction of hypertrophy in AMPK-DN mice. Furthermore, the AMPK/GLUT4 and HKII axes may regulate overload-induced muscle glucose uptake and glycogenesis.
Collapse
Affiliation(s)
- Kohei Kido
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan.,Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
| | - Tatsuro Egawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Haruna Fujiyoshi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Hikari Suzuki
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Kentaro Kawanaka
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan.,Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Ruan D, Deng H, Xu X. Carbohydrate and Protein Supplements, an Effective Means for Maintaining Exercise-Induced Glucose Metabolism Homeostasis. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to verify the effects of an independently developed carbohydrate and protein (CHO+P) beverage (7.2% oligosaccharide and 1.6% soy-polypeptide) supplement on exerciseinduced glucose metabolism and associated gene expression. Mice received 1 mL/100 g body weight of normal
saline (group C; n = 36) or CHO+P (group E; n = 36) at 30 min before an immediately after exercise. Mice without exercise and supplementation served as normal controls (group NC; n = 9). The expression levels related to glucose metabolism were measured at 0, 4, 12, and
24 h after exercise (n = 9 per group). The blood glucose, insulin, and liver glycogen contents in groups C and E were dramatically lower than group NC immediately after exercise. Those in group E were significantly higher than group C, with few differences between the two. Muscle glycogen
was restored more quickly when the CHO+P beverage was consumed compared to normal saline. Furthermore, exercise-induced increase in glucose transporter-4 (GLUT-4) mRNA could be depressed by CHO+P supplementation but enhanced in GLUT-4 protein. Interleukin-6 (IL-6) showed a double peak curve
in the recovery period, but IL-6 increased again in group E earlier than group C. These findings confirmed that the beverage has significantly improved time in maintaining blood glucose stability, reducing glycogen consumption, accelerating glycogen resynthesis, and repairing injury in rats.
This study suggests the future application of this beverage in humans with experimental support and provides a scientific direction for promoting glycogen synthesis and recovery through nutrition.
Collapse
Affiliation(s)
- Dingguo Ruan
- School of Physical Education, South China Normal University, Guangzhou 510006, Guangdong, PR China
| | - Hong Deng
- Department of Physical Education, Guangzhou Polytechnic of Sports, Guangzhou 510650, Guangdong, PR China
| | - Xiaoyang Xu
- School of Physical Education, South China Normal University, Guangzhou 510006, Guangdong, PR China
| |
Collapse
|
9
|
Abstract
Exercise in humans increases muscle glucose uptake up to 100-fold compared with rest. The magnitude of increase depends on exercise intensity and duration. Although knockout of glucose transporter type 4 (GLUT4) convincingly has shown that GLUT4 is necessary for exercise to increase muscle glucose uptake, studies only show an approximate twofold increase in GLUT4 translocation to the muscle cell membrane when transitioning from rest to exercise. Therefore, there is a big discrepancy between the increase in glucose uptake and GLUT4 translocation. It is suggested that either the methods for measurements of GLUT4 translocation in muscle grossly underestimate the real translocation of GLUT4 or, alternatively, GLUT4 intrinsic activity increases in muscle during exercise, perhaps due to increased muscle temperature and/or mechanical effects during contraction/relaxation cycles.
Collapse
Affiliation(s)
- Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| |
Collapse
|
10
|
Acute Effects of Resistance Exercise With Blood Flow Restriction in Elderly Women: A Pilot Study. J Aging Phys Act 2020; 29:361-371. [PMID: 33373977 DOI: 10.1123/japa.2020-0137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 11/18/2022]
Abstract
AIM To compare the acute effects of two resistance exercise sessions with different partial blood flow restrictions (BFR) on hemodynamic parameters and cardiac autonomic modulation in older women with metabolic syndrome. METHODS Thirty-nine older women (64.4 ± 4.5 years) were allocated into three groups: BFR0 = resistance exercise (20%, 1 maximum repetition [MR]) + 0% BFR; BFR60 = 20% 1 MR resistance exercise + 60% BFR; and BFR80 = 20% 1MR resistance exercise + 80% BFR. RESULTS A reduction of 14 mmHg (BFR60 group) and 13 mmHg (BRF80 group) was observed 48 hr after the first exercise session, while vagal modulation was increased in the BRF60 group after 24 and 48 hr. CONCLUSION A low-intensity resistance exercise session with 60% and 80% of BFR resulted in blood pressure (systolic, diastolic, and mean) reduction and positive changes on heart rate variability after 24 h of a RE session.
Collapse
|
11
|
Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch 2020; 472:1273-1298. [PMID: 32591906 PMCID: PMC7462924 DOI: 10.1007/s00424-020-02417-x] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
A family of facilitative glucose transporters (GLUTs) is involved in regulating tissue-specific glucose uptake and metabolism in the liver, skeletal muscle, and adipose tissue to ensure homeostatic control of blood glucose levels. Reduced glucose transport activity results in aberrant use of energy substrates and is associated with insulin resistance and type 2 diabetes. It is well established that GLUT2, the main regulator of hepatic hexose flux, and GLUT4, the workhorse in insulin- and contraction-stimulated glucose uptake in skeletal muscle, are critical contributors in the control of whole-body glycemia. However, the molecular mechanism how insulin controls glucose transport across membranes and its relation to impaired glycemic control in type 2 diabetes remains not sufficiently understood. An array of circulating metabolites and hormone-like molecules and potential supplementary glucose transporters play roles in fine-tuning glucose flux between the different organs in response to an altered energy demand.
Collapse
|
12
|
Poole DC, Copp SW, Colburn TD, Craig JC, Allen DL, Sturek M, O'Leary DS, Zucker IH, Musch TI. Guidelines for animal exercise and training protocols for cardiovascular studies. Am J Physiol Heart Circ Physiol 2020; 318:H1100-H1138. [PMID: 32196357 DOI: 10.1152/ajpheart.00697.2019] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Whole body exercise tolerance is the consummate example of integrative physiological function among the metabolic, neuromuscular, cardiovascular, and respiratory systems. Depending on the animal selected, the energetic demands and flux through the oxygen transport system can increase two orders of magnitude from rest to maximal exercise. Thus, animal models in health and disease present the scientist with flexible, powerful, and, in some instances, purpose-built tools to explore the mechanistic bases for physiological function and help unveil the causes for pathological or age-related exercise intolerance. Elegant experimental designs and analyses of kinetic parameters and steady-state responses permit acute and chronic exercise paradigms to identify therapeutic targets for drug development in disease and also present the opportunity to test the efficacy of pharmacological and behavioral countermeasures during aging, for example. However, for this promise to be fully realized, the correct or optimal animal model must be selected in conjunction with reproducible tests of physiological function (e.g., exercise capacity and maximal oxygen uptake) that can be compared equitably across laboratories, clinics, and other proving grounds. Rigorously controlled animal exercise and training studies constitute the foundation of translational research. This review presents the most commonly selected animal models with guidelines for their use and obtaining reproducible results and, crucially, translates state-of-the-art techniques and procedures developed on humans to those animal models.
Collapse
Affiliation(s)
- David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Jesse C Craig
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - David L Allen
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Michael Sturek
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, Indiana
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
13
|
Manio MC, Matsumura S, Inoue K. Low-fat diet, and medium-fat diets containing coconut oil and soybean oil exert different metabolic effects in untrained and treadmill-trained mice. J Int Soc Sports Nutr 2018; 15:29. [PMID: 29914522 PMCID: PMC6006686 DOI: 10.1186/s12970-018-0234-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 06/07/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Diets containing fats of different proportions and types have been demonstrated to influence metabolism. These fats differ in long chain fatty acids (LCFAs) or medium chain fatty acids (MCFAs) content. In our laboratory using swimming as the training modality, MCFAs increased endurance attributed to increased activities of oxidative enzymes. How it affects whole-body metabolism remains unexplored. The present study investigated the metabolic, biochemical and genetic adaptations with treadmill running as the training modality. METHODS C57BL/6N mice were divided into untrained and trained groups and provided with low-fat (10% kcal from soybean oil), coconut oil (10% kcal from soybean oil, 20% kcal from coconut oil) or soybean oil (30% kcal from soybean oil) diet. Training was performed on a treadmill for 30 days. After recovery, whole-body metabolism at rest and during exercise, endurance, substrate metabolism, mitochondrial enzyme activities, and gene expression of training-adaptive genes in the muscle and liver were measured. RESULTS At rest, medium-fat diets decreased respiratory exchange ratio (RER) (p < 0.05). Training increased RER in all diet groups without affecting oxygen consumption (p < 0.05). During exercise, diets had no overt effects on metabolism while training decreased oxygen consumption indicating decreased energy expenditure (p < 0.05). Coconut oil without training improved endurance based on work (p < 0.05). Training improved all endurance parameters without overt effects of diet (p < 0.05). Moreover, training increased the activities of mitochondrial enzymes likely related to the increased expression of estrogen related receptor (ERR) α and ERRβ (p < 0.05). Coconut oil inhibited peroxisome proliferator-activated receptor (PPAR) β/δ activation and glycogen accumulation in the muscle but activated PPARα in the liver in the trained state (p < 0.05). Substrate utilization data suggested that coconut oil and/or resulting ketone bodies spared glycogen utilization in the trained muscle during exercise thereby preserving endurance. CONCLUSION Our data demonstrated the various roles of diet and fat types in training adaptation. Diets exerted different roles in PPAR activation and substrate handling in the context of endurance exercise training. However, the role of fat types in training adaptations is limited as training overwhelms and normalizes the effects of diet in the untrained state particularly on endurance performance, mitochondrial biogenesis, and ERR expression.
Collapse
Affiliation(s)
- Mark Christian Manio
- Department of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shigenobu Matsumura
- Department of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuo Inoue
- Department of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
MORAIS GP, DA ROCHA A, PINTO AP, DA C. OLIVEIRA L, DE VICENTE LG, FERREIRA GN, DE FREITAS EC, DA SILVA ASR. Uphill Running Excessive Training Increases Gastrocnemius Glycogen Content in C57BL/6 Mice. Physiol Res 2018; 67:107-115. [PMID: 29137482 DOI: 10.33549/physiolres.933614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The main aim of the present investigation was to verify the effects of three overtraining (OT) protocols performed in downhill (OTR/down), uphill (OTR/up) and without inclination (OTR) on the protein levels of Akt (Ser473), AMPKα (Thr172), PGC-1α, plasma membrane GLUT-1 and GLUT-4 as well as on the glycogen contents in mice gastrocnemius. A trained (TR) protocol was used as positive control. Rodents were divided into naïve (N, sedentary mice), control (CT, sedentary mice submitted to the performance evaluations), TR, OTR/down, OTR/up and OTR groups. At the end of the experimental protocols, gastrocnemius samples were removed and used for immunoblotting analysis as well as for glycogen measurements. There was no significant difference between the experimental groups for the protein levels of pAkt (Ser473), pAMPKα (Thr172), PGC-1α, plasma membrane GLUT-1 and GLUT-4. However, the OTR/up protocol exhibited higher contents of glycogen compared to the CT and TR groups. In summary, the OTR/up group increased the gastrocnemius glycogen content without significant changes of pAkt (Ser473), pAMPKα (Thr172), PGC-1α, plasma membrane GLUT-1 and GLUT-4.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - A. S. R. DA SILVA
- Postgraduate Program in Physical Education and Sport, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
15
|
Davis RAH, Halbrooks JE, Watkins EE, Fisher G, Hunter GR, Nagy TR, Plaisance EP. High-intensity interval training and calorie restriction promote remodeling of glucose and lipid metabolism in diet-induced obesity. Am J Physiol Endocrinol Metab 2017; 313:E243-E256. [PMID: 28588097 PMCID: PMC5582888 DOI: 10.1152/ajpendo.00445.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 01/03/2023]
Abstract
Calorie restriction (CR) decreases adiposity, but the magnitude and defense of weight loss is less than predicted due to reductions in total daily energy expenditure (TEE). The purpose of the current investigation was to determine whether high-intensity interval training (HIIT) would increase markers of sympathetic activation in white adipose tissue (WAT) and rescue CR-mediated reductions in EE to a greater extent than moderate-intensity aerobic exercise training (MIT). Thirty-two 5-wk-old male C57BL/6J mice were placed on ad libitum HFD for 11 wk, followed by randomization to one of four groups (n = 8/group) for an additional 15 wk: 1) CON (remain on HFD), 2) CR (25% lower energy intake), 3) CR + HIIT (25% energy deficit created by 12.5% CR and 12.5% EE through HIIT), and 4) CR + MIT (25% energy deficit created by 12.5% CR and 12.5% EE through MIT). Markers of adipose thermogenesis (Ucp1, Prdm16, Dio2, and Fgf21) were unchanged in either exercise group in inguinal or epididymal WAT, whereas CR + HIIT decreased Ucp1 expression in retroperitoneal WAT and brown adipose tissue. HIIT rescued CR-mediated reductions in lean body mass (LBM) and resting energy expenditure (REE), and both were associated with improvements in glucose/insulin tolerance. Improvements in glucose metabolism in the CR + HIIT group appear to be linked to a molecular signature that enhances glucose and lipid storage in skeletal muscle. Exercise performed at either moderate or high intensity does not increase markers of adipose thermogenesis when performed in the presence of CR but remodels skeletal muscle metabolic and thermogenic capacity.
Collapse
Affiliation(s)
- Rachel A H Davis
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jacob E Halbrooks
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama
| | - Emily E Watkins
- Department of Biomedical Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gordon Fisher
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Gary R Hunter
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Tim R Nagy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Eric P Plaisance
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama;
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
16
|
Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Sci Rep 2017; 7:204. [PMID: 28303003 PMCID: PMC5427962 DOI: 10.1038/s41598-017-00276-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/15/2017] [Indexed: 12/22/2022] Open
Abstract
Physical activity is known as an effective strategy for prevention and treatment of Type 2 Diabetes. The aim of this work was to compare the effects of a traditional Moderate Intensity Continuous Training (MICT) with a High Intensity Interval Training (HIIT) on glucose metabolism and mitochondrial function in diabetic mice. Diabetic db/db male mice (N = 25) aged 6 weeks were subdivided into MICT, HIIT or control (CON) group. Animals in the training groups ran on a treadmill 5 days/week during 10 weeks. MICT group ran for 80 min (0° slope) at 50-60% of maximal speed (Vmax) reached during an incremental test. HIIT group ran thirteen times 4 minutes (20° slope) at 85-90% of Vmax separated by 2-min-rest periods. HIIT lowered fasting glycaemia and HbA1c compared with CON group (p < 0.05). In all mitochondrial function markers assessed, no differences were noted between the three groups except for total amount of electron transport chain proteins, slightly increased in the HIIT group vs CON. Western blot analysis revealed a significant increase of muscle Glut4 content (about 2 fold) and higher insulin-stimulated Akt phosphorylation ratios in HIIT group. HIIT seems to improve glucose metabolism more efficiently than MICT in diabetic mice by mechanisms independent of mitochondrial adaptations.
Collapse
|
17
|
Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake - regulation and implications for glycaemic control. Nat Rev Endocrinol 2017; 13:133-148. [PMID: 27739515 DOI: 10.1038/nrendo.2016.162] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Skeletal muscle extracts glucose from the blood to maintain demand for carbohydrates as an energy source during exercise. Such uptake involves complex molecular signalling processes that are distinct from those activated by insulin. Exercise-stimulated glucose uptake is preserved in insulin-resistant muscle, emphasizing exercise as a therapeutic cornerstone among patients with metabolic diseases such as diabetes mellitus. Exercise increases uptake of glucose by up to 50-fold through the simultaneous stimulation of three key steps: delivery, transport across the muscle membrane and intracellular flux through metabolic processes (glycolysis and glucose oxidation). The available data suggest that no single signal transduction pathway can fully account for the regulation of any of these key steps, owing to redundancy in the signalling pathways that mediate glucose uptake to ensure maintenance of muscle energy supply during physical activity. Here, we review the molecular mechanisms that regulate the movement of glucose from the capillary bed into the muscle cell and discuss what is known about their integrated regulation during exercise. Novel developments within the field of mass spectrometry-based proteomics indicate that the known regulators of glucose uptake are only the tip of the iceberg. Consequently, many exciting discoveries clearly lie ahead.
Collapse
Affiliation(s)
- Lykke Sylow
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Erik A Richter
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Pereira BC, da Rocha AL, Pinto AP, Pauli JR, de Moura LP, Mekary RA, de Freitas EC, da Silva ASR. Excessive training impairs the insulin signal transduction in mice skeletal muscles. J Endocrinol 2016; 230:93-104. [PMID: 27189188 DOI: 10.1530/joe-16-0063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
The main aim of this investigation was to verify the effects of overtraining (OT) on the insulin and inflammatory signaling pathways in mice skeletal muscles. Rodents were divided into control (CT), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up), and overtrained by running without inclination (OTR) groups. Rotarod, incremental load, exhaustive, and grip force tests were used to evaluate performance. Thirty-six hours after the grip force test, the extensor digitorum longus (EDL) and soleus were extracted for subsequent protein analyses. The three OT protocols led to similar responses of all performance evaluation tests. The phosphorylation of insulin receptor beta (pIRβ; Tyr), protein kinase B (pAkt; Ser473), and the protein levels of plasma membrane glucose transporter-4 (GLUT4) were lower in the EDL and soleus after the OTR/down protocol and in the soleus after the OTR/up and OTR protocols. While the pIRβ was lower after the OTR/up and OTR protocols, the pAkt was higher after the OTR/up in the EDL. The phosphorylation of IκB kinase alpha and beta (pIKKα/β; Ser180/181), stress-activated protein kinases/Jun amino-terminal kinases (pSAPK-JNK; Thr183/Tyr185), factor nuclear kappa B (pNFκB p65; Ser536), and insulin receptor substrate 1 (pIRS1; Ser307) were higher after the OTR/down protocol, but were not altered after the two other OT protocols. In summary, these data suggest that OT may lead to skeletal muscle insulin signaling pathway impairment, regardless of the predominance of eccentric contractions, although the insulin signal pathway impairment induced in OTR/up and OTR appeared to be muscle fiber-type specific.
Collapse
Affiliation(s)
- Bruno C Pereira
- Postgraduate Program in Rehabilitation and Functional PerformanceRibeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil
| | - Alisson L da Rocha
- Postgraduate Program in Rehabilitation and Functional PerformanceRibeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil
| | - Ana P Pinto
- Postgraduate Program in Rehabilitation and Functional PerformanceRibeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil
| | - José R Pauli
- Sport Sciences CourseFaculty of Applied Sciences, State University of Campinas, Limeira, São Paulo, Brazil
| | - Leandro P de Moura
- Sport Sciences CourseFaculty of Applied Sciences, State University of Campinas, Limeira, São Paulo, Brazil
| | - Rania A Mekary
- Department of NutritionHarvard School of Public Health, Boston, Massachusetts, USA Department of Social and Administrative SciencesMCPHS University, Boston, Massachusetts, USA
| | - Ellen C de Freitas
- School of Physical Education and Sport of Ribeirão PretoUniversity of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional PerformanceRibeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil School of Physical Education and Sport of Ribeirão PretoUniversity of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
19
|
Olson AL. Insulin resistance: cross-talk between adipose tissue and skeletal muscle, through free fatty acids, liver X receptor, and peroxisome proliferator-activated receptor-α signaling. Horm Mol Biol Clin Investig 2015; 15:115-21. [PMID: 25436738 DOI: 10.1515/hmbci-2013-0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/18/2013] [Indexed: 11/15/2022]
Abstract
Skeletal muscle and adipose tissue play a major role in the regulation of whole-body glucose homeostasis. Much of the coordinated regulation of whole-body glucose homeostasis results from the regulation of lipid storage and release by adipose tissue and efficient switching between glucose oxidation and fatty acid oxidation in skeletal muscle. A control point for these biochemical actions center around the regulation of the insulin responsive glucose transporter, GLUT4. This review examines the regulation of GLUT4 in adipose tissue and skeletal muscle, in the context of the steroid nuclear hormone receptor signaling.
Collapse
Affiliation(s)
- Ann Louise Olson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, P. O. Box 26901, BMSB 964, Oklahoma City, OK 73190, USA.
| |
Collapse
|
20
|
Fusser M, Kernstock S, Aileni VK, Egge-Jacobsen W, Falnes PØ, Klungland A. Lysine Methylation of the Valosin-Containing Protein (VCP) Is Dispensable for Development and Survival of Mice. PLoS One 2015; 10:e0141472. [PMID: 26544960 PMCID: PMC4636187 DOI: 10.1371/journal.pone.0141472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 10/08/2015] [Indexed: 01/02/2023] Open
Abstract
Valosin-containing protein (VCP) is a homohexameric ATPase involved in a multitude cellular processes and it was recently shown that VCP is trimethylated at lysine 315 by the VCP lysine methyltransferase (VCPKMT). Here, we generated and validated a constitutive knockout mouse by targeting exon 1-4 of the Vcpkmt gene. We show that Vcpkmt is ubiquitously expressed in all tissues examined and confirm the sub-cellular localization to the cytoplasm. We show by (I) mass spectrometric analysis, (II) VCPKMT-mediated in vitro methylation of VCP in cell extracts and (III) immunostaining with a methylation specific antibody, that in Vcpkmt-/- mice the methylation of lysine 315 in VCP is completely abolished. In contrast, VCP is almost exclusively trimethylated in wild-type mice. Furthermore, we investigated the specificity of VCPKMT with in vitro methylation assays using as source of substrate protein extracts from Vcpkmt-/- mouse organs or three human Vcpkmt-/- cell lines. The results show that VCPKMT is a highly specific enzyme, and suggest that VCP is its sole substrate. The Vcpkmt-/- mice were viable, fertile and had no obvious pathological phenotype. Their body weight, life span and acute endurance capacity were comparable to wild-type controls. Overall the results show that VCPKMT is an enzyme required for methylation of K315 of VCP in vivo, but VCPKMT is not essential for development or survival under unstressed conditions.
Collapse
Affiliation(s)
- Markus Fusser
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Stefan Kernstock
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Vinay Kumar Aileni
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Wolfgang Egge-Jacobsen
- Glyconor Mass Spectrometry, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Pål Ø. Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Arne Klungland
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
21
|
Bradley H, Shaw CS, Bendtsen C, Worthington PL, Wilson OJ, Strauss JA, Wallis GA, Turner AM, Wagenmakers AJM. Visualization and quantitation of GLUT4 translocation in human skeletal muscle following glucose ingestion and exercise. Physiol Rep 2015; 3:3/5/e12375. [PMID: 25969463 PMCID: PMC4463815 DOI: 10.14814/phy2.12375] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Insulin- and contraction-stimulated increases in glucose uptake into skeletal muscle occur in part as a result of the translocation of glucose transporter 4 (GLUT4) from intracellular stores to the plasma membrane (PM). This study aimed to use immunofluorescence microscopy in human skeletal muscle to quantify GLUT4 redistribution from intracellular stores to the PM in response to glucose feeding and exercise. Percutaneous muscle biopsy samples were taken from the m. vastus lateralis of ten insulin-sensitive men in the basal state and following 30 min of cycling exercise (65% VO2 max). Muscle biopsy samples were also taken from a second cohort of ten age-, BMI- and VO2 max-matched insulin-sensitive men in the basal state and 30 and 60 min following glucose feeding (75 g glucose). GLUT4 and dystrophin colocalization, measured using the Pearson's correlation coefficient, was increased following 30 min of cycling exercise (baseline r = 0.47 ± 0.01; post exercise r = 0.58 ± 0.02; P < 0.001) and 30 min after glucose ingestion (baseline r = 0.42 ± 0.02; 30 min r = 0.46 ± 0.02; P < 0.05). Large and small GLUT4 clusters were partially depleted following 30 min cycling exercise, but not 30 min after glucose feeding. This study has, for the first time, used immunofluorescence microscopy in human skeletal muscle to quantify increases in GLUT4 and dystrophin colocalization and depletion of GLUT4 from large and smaller clusters as evidence of net GLUT4 translocation to the PM.
Collapse
Affiliation(s)
- Helen Bradley
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Christopher S Shaw
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Vic., Australia
| | - Claus Bendtsen
- Computational Biology, Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | - Philip L Worthington
- Computational Biology, Discovery Sciences, AstraZeneca R&D, Alderley Park Macclesfield, UK
| | - Oliver J Wilson
- Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK
| | - Juliette A Strauss
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Gareth A Wallis
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Alice M Turner
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK Heart of England NHS Foundation Trust, Bordesley Green East Birmingham, UK
| | - Anton J M Wagenmakers
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
22
|
Abstract
Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT4 translocation and the molecular signaling that sets this in motion during muscle contractions. Contraction-induced molecular signaling is complex and involves a variety of signaling molecules including AMPK, Ca(2+), and NOS in the proximal part of the signaling cascade as well as GTPases, Rab, and SNARE proteins and cytoskeletal components in the distal part. While acute regulation of muscle glucose uptake relies on GLUT4 translocation, glucose uptake also depends on muscle GLUT4 expression which is increased following exercise. AMPK and CaMKII are key signaling kinases that appear to regulate GLUT4 expression via the HDAC4/5-MEF2 axis and MEF2-GEF interactions resulting in nuclear export of HDAC4/5 in turn leading to histone hyperacetylation on the GLUT4 promoter and increased GLUT4 transcription. Exercise training is the most potent stimulus to increase skeletal muscle GLUT4 expression, an effect that may partly contribute to improved insulin action and glucose disposal and enhanced muscle glycogen storage following exercise training in health and disease.
Collapse
Affiliation(s)
- Erik A Richter
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
23
|
Howlett KF, Andrikopoulos S, Proietto J, Hargreaves M. Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion. Physiol Rep 2013; 1:e00065. [PMID: 24303141 PMCID: PMC3835018 DOI: 10.1002/phy2.65] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 01/13/2023] Open
Abstract
To investigate the importance of the glucose transporter GLUT-4 for muscle glucose uptake during exercise, transgenic mice with skeletal muscle GLUT-4 expression approximately 30–60% of normal (CON) and approximately 5–10% of normal (KO) were generated using the Cre/Lox system and compared with wild-type (WT) mice during approximately 40 min of treadmill running (KO: 37.7 ± 1.3 min; WT: 40 min; CON: 40 min, P = 0.18). In WT and CON animals, exercise resulted in an overall increase in muscle glucose uptake. More specifically, glucose uptake was increased in red gastrocnemius of WT mice and in the soleus and red gastrocnemius of CON mice. In contrast, the exercise-induced increase in muscle glucose uptake in all muscles was completely abolished in KO mice. Muscle glucose uptake increased during exercise in both red and white quadriceps of WT mice, while the small increases in CON mice were not statistically significant. In KO mice, there was no change at all in quadriceps muscle glucose uptake. No differences in muscle glycogen use during exercise were observed between any of the groups. However, there was a significant increase in plasma glucose levels after exercise in KO mice. The results of this study demonstrated that a reduction in skeletal muscle GLUT-4 expression to approximately 10% of normal levels completely abolished the exercise-induced increase in muscle glucose uptake.
Collapse
Affiliation(s)
- Kirsten F Howlett
- School of Exercise and Nutrition Sciences, Deakin University Geelong, Victoria, Australia
| | | | | | | |
Collapse
|
24
|
Riquelme MA, Cea LA, Vega JL, Boric MP, Monyer H, Bennett MVL, Frank M, Willecke K, Sáez JC. The ATP required for potentiation of skeletal muscle contraction is released via pannexin hemichannels. Neuropharmacology 2013; 75:594-603. [PMID: 23583931 DOI: 10.1016/j.neuropharm.2013.03.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
Abstract
During repetitive stimulation of skeletal muscle, extracellular ATP levels raise, activating purinergic receptors, increasing Ca2+ influx, and enhancing contractile force, a response called potentiation. We found that ATP appears to be released through pannexin1 hemichannels (Panx1 HCs). Immunocytochemical analyses and function were consistent with pannexin1 localization to T-tubules intercalated with dihydropyridine and ryanodine receptors in slow (soleus) and fast (extensor digitorum longus, EDL) muscles. Isolated myofibers took up ethidium (Etd+) and released small molecules (as ATP) during electrical stimulation. Consistent with two glucose uptake pathways, induced uptake of 2-NBDG, a fluorescent glucose derivative, was decreased by inhibition of HCs or glucose transporter (GLUT4), and blocked by dual blockade. Adult skeletal muscles apparently do not express connexins, making it unlikely that connexin hemichannels contribute to the uptake and release of small molecules. ATP release, Etd+ uptake, and potentiation induced by repetitive electrical stimulation were blocked by HC blockers and did not occur in muscles of pannexin1 knockout mice. MRS2179, a P2Y1R blocker, prevented potentiation in EDL, but not soleus muscles, suggesting that in fast muscles ATP activates P2Y1 but not P2X receptors. Phosphorylation on Ser and Thr residues of pannexin1 was increased during potentiation, possibly mediating HC opening. Opening of Panx1 HCs during repetitive activation allows efflux of ATP, influx of glucose and possibly Ca2+ too, which are required for potentiation of contraction. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.
Collapse
Affiliation(s)
- Manuel A Riquelme
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 8, Chile
| | - Luis A Cea
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 8, Chile; Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile
| | - José L Vega
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 8, Chile; Laboratorio de Fisiología Experimental (EPhyL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile; Department of Clinical Neurobioloy, University of Heidelberg, 6012 Heidelberg, Germany
| | - Mauricio P Boric
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 8, Chile
| | - Hannah Monyer
- Laboratorio de Fisiología Experimental (EPhyL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile; Department of Clinical Neurobioloy, University of Heidelberg, 6012 Heidelberg, Germany
| | - Michael V L Bennett
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marina Frank
- Life and Medical Sciences Institute, Molecular Genetics, University of Bonn, 53115 Bonn, Germany
| | - Klaus Willecke
- Life and Medical Sciences Institute, Molecular Genetics, University of Bonn, 53115 Bonn, Germany
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 8, Chile; Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
25
|
Olson AL. Regulation of GLUT4 and Insulin-Dependent Glucose Flux. ISRN MOLECULAR BIOLOGY 2012; 2012:856987. [PMID: 27335671 PMCID: PMC4890881 DOI: 10.5402/2012/856987] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 09/24/2012] [Indexed: 12/21/2022]
Abstract
GLUT4 has long been known to be an insulin responsive glucose transporter. Regulation of GLUT4 has been a major focus of research on the cause and prevention of type 2 diabetes. Understanding how insulin signaling alters the intracellular trafficking of GLUT4 as well as understanding the fate of glucose transported into the cell by GLUT4 will be critically important for seeking solutions to the current rise in diabetes and metabolic disease.
Collapse
Affiliation(s)
- Ann Louise Olson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, P.O. Box 26901, BMSB 964, Oklahoma City, OK 73190, USA
| |
Collapse
|
26
|
Fam BC, Rose LJ, Sgambellone R, Ruan Z, Proietto J, Andrikopoulos S. Normal muscle glucose uptake in mice deficient in muscle GLUT4. J Endocrinol 2012; 214:313-27. [PMID: 22736482 DOI: 10.1530/joe-12-0032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Skeletal muscle insulin resistance is a major characteristic underpinning type 2 diabetes. Impairments in the insulin responsiveness of the glucose transporter, Glut4 (Slc2a4), have been suggested to be a contributing factor to this disturbance. We have produced muscle-specific Glut4 knockout (KO) mice using Cre/LoxP technology on a C57BL6/J background and shown undetectable levels of GLUT4 in both skeletal muscle and heart. Our aim was to determine whether complete deletion of muscle GLUT4 does in fact lead to perturbations in glucose homoeostasis. Glucose tolerance, glucose turnover and 2-deoxyglucose uptake into muscle and fat under basal and insulin-stimulated conditions were assessed in 12-week-old KO and control mice using the oral glucose tolerance test (OGTT) and hyperinsulinaemic/euglycaemic clamp respectively. KO mice weighed ~17% less and had significantly heavier hearts compared with control mice. Basally, plasma glucose and plasma insulin were significantly lower in the KO compared with control mice, which conferred normal glucose tolerance. Despite the lack of GLUT4 in the KO mouse muscle, glucose uptake was not impaired in skeletal muscle but was reduced in heart under insulin-stimulated conditions. Neither GLUT1 nor GLUT12 protein levels were altered in the skeletal muscle or heart tissue of our KO mice. High-fat feeding did not alter glucose tolerance in the KO mice but led to elevated plasma insulin levels during the glucose tolerance test. Our study demonstrates that deletion of muscle GLUT4 does not adversely affect glucose disposal and glucose tolerance and that compensation from other transporters may contribute to this unaltered homoeostasis of glucose.
Collapse
Affiliation(s)
- Barbara C Fam
- Department of Medicine (Austin Health), Austin Hospital, University of Melbourne, Heidelberg, Victoria 3084, Australia.
| | | | | | | | | | | |
Collapse
|
27
|
Lukaszuk B, Bialuk I, Górski J, Zajączkiewicz M, Winnicka MM, Chabowski A. A single bout of exercise increases the expression of glucose but not fatty acid transporters in skeletal muscle of IL-6 KO mice. Lipids 2012; 47:763-72. [PMID: 22623023 PMCID: PMC3404280 DOI: 10.1007/s11745-012-3678-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/02/2012] [Indexed: 01/17/2023]
Abstract
IL-6 is a biologically active cytokine released during exercise by contracting skeletal muscles. It appears to be highly involved in the regulation of muscles energy substrate utilization. Whether an ablation of IL-6 (IL-6 KO) in mice subjected to a single bout of exercise affects lipid and/or glucose metabolism is currently unknown. In the present study we examined fatty acid (FAT/CD36, FABPpm, FATP-1, FATP-4) as well as glucose (GLUT-1, GLUT-4) transporters expression in IL-6 KO mice. In addition, intramuscular glycogen and lipid content was also evaluated. The expression of all fatty acid transporters (FAT/CD36: +25 %; FATP-1: +31 %; FABPpm: +12.7 %; FATP-4: +7.2 %) was increased in muscles from IL-6 KO mice compared to wild type (WT) mice. Accordingly intramuscular lipid content was also increased in these muscles (FFA: +38 %; DAG: +36 % and TAG: +160 %). Interestingly, IL-6 deficiency had only minor effect on glucose transporters expression (GLUT-1: -4 %, and GLUT-4: -5.1 %), with no apparent difference in muscular glycogen content. A single bout of exercise increased the glucose transporters (GLUT-1: +8 %; GLUT-4: +15 %) as well as FA transporters (FAT/CD36: +13 %; FABPpm: +4.5 %; FATP: +2.5 %, FATP-4: +10 %) expression but only in WT skeletal muscles. In muscles from IL-6 KO mice exercise induced changes only in glucose (GLUT-1: +20 %; GLUT-4: +35 %) but not in the content of FA transporters. Concomitantly, IL-6 KO mice displayed shorter time toward exhaustion with more pronounced reductions in intramuscular lipid and glycogen content. We may speculate, that IL-6 deficiency provokes more pronounced glucose utilization over lipid oxidation during a single bout of exhausting exercise.
Collapse
Affiliation(s)
- B Lukaszuk
- Department of Physiology, Medical University of Bialystok, ul. Mickiewicza 2C, Bialystok, Poland
| | | | | | | | | | | |
Collapse
|
28
|
Maarbjerg SJ, Sylow L, Richter EA. Current understanding of increased insulin sensitivity after exercise - emerging candidates. Acta Physiol (Oxf) 2011; 202:323-35. [PMID: 21352505 DOI: 10.1111/j.1748-1716.2011.02267.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exercise counteracts insulin resistance and improves glucose homeostasis in many ways. Apart from increasing muscle glucose uptake quickly, exercise also clearly increases muscle insulin sensitivity in the post-exercise period. This review will focus on the mechanisms responsible for this increased insulin sensitivity. It is believed that increased sarcolemmal content of the glucose transporter GLUT4 can explain the phenomenon to some extent. Surprisingly no improvement in the proximal insulin signalling pathway is observed at the level of the insulin receptor, IRS1, PI3K or Akt. Recently more distal signalling component in the insulin signalling pathway such as aPKC, Rac1, TBC1D4 and TBC1D1 have been described. These are all affected by both insulin and exercise which means that they are likely converging points in promoting GLUT4 translocation and therefore possible candidates for regulating insulin sensitivity after exercise. Whereas TBC1D1 does not appear to regulate insulin sensitivity after exercise, correlative evidence in contrast suggests TBC1D4 to be a relevant candidate. Little is known about aPKC and Rac1 in relation to insulin sensitivity after exercise. Besides mechanisms involved in signalling to GLUT4 translocation, factors influencing the trans-sarcolemmal glucose concentration gradient might also be important. With regard to the interstitial glucose concentration microvascular perfusion is particular relevant as correlative evidence supports a connection between insulin sensitivity and microvascular perfusion. Thus, there are new candidates at several levels which collectively might explain the phenomenon.
Collapse
Affiliation(s)
- S J Maarbjerg
- Molecular Physiology Group, Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
29
|
Canada SE, Weaver SA, Sharpe SN, Pederson BA. Brain glycogen supercompensation in the mouse after recovery from insulin-induced hypoglycemia. J Neurosci Res 2011; 89:585-91. [PMID: 21259334 DOI: 10.1002/jnr.22579] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 11/11/2010] [Accepted: 11/16/2010] [Indexed: 11/07/2022]
Abstract
Brain glycogen is proposed to function under both physiological and pathological conditions. Pharmacological elevation of this glucose polymer in brain is hypothesized to protect neurons against hypoglycemia-induced cell death. Elevation of brain glycogen levels due to prior hypoglycemia is postulated to contribute to the development of hypoglycemia-associated autonomic failure (HAAF) in insulin-treated diabetic patients. This latter mode of elevating glycogen levels is termed "supercompensation." We tested whether brain glycogen supercompensation occurs in healthy, conscious mice after recovery from insulin-induced acute or recurrent hypoglycemia. Blood glucose levels were lowered to less than 2.2 mmol/liter for 90 min by administration of insulin. Brain glucose levels decreased at least 80% and brain glycogen levels decreased approximately 50% after episodes of either acute or recurrent hypoglycemia. After these hypoglycemic episodes, mice were allowed access to food for 6 or 27 hr. After 6 hr, blood and brain glucose levels were restored but brain glycogen levels were elevated by 25% in mice that had been subjected to either acute or recurrent hypoglycemia compared with saline-treated controls. After a 27-hr recovery period, the concentration of brain glycogen had returned to baseline levels in mice previously subjected to either acute or recurrent hypoglycemia. We conclude that brain glycogen supercompensation occurs in healthy mice, but its functional significance remains to be established.
Collapse
Affiliation(s)
- Sarah E Canada
- Indiana University School of Medicine, Muncie and Ball State University, Muncie, Indiana 47306, USA
| | | | | | | |
Collapse
|
30
|
Liu L, Yu S, Khan RS, Ables GP, Bharadwaj KG, Hu Y, Huggins LA, Eriksson JW, Buckett LK, Turnbull AV, Ginsberg HN, Blaner WS, Huang LS, Goldberg IJ. DGAT1 deficiency decreases PPAR expression and does not lead to lipotoxicity in cardiac and skeletal muscle. J Lipid Res 2011; 52:732-44. [PMID: 21205704 DOI: 10.1194/jlr.m011395] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Diacylglycerol (DAG) acyl transferase 1 (Dgat1) knockout ((-/-)) mice are resistant to high-fat-induced obesity and insulin resistance, but the reasons are unclear. Dgat1(-/-) mice had reduced mRNA levels of all three Ppar genes and genes involved in fatty acid oxidation in the myocardium of Dgat1(-/-) mice. Although DGAT1 converts DAG to triglyceride (TG), tissue levels of DAG were not increased in Dgat1(-/-) mice. Hearts of chow-diet Dgat1(-/-) mice were larger than those of wild-type (WT) mice, but cardiac function was normal. Skeletal muscles from Dgat1(-/-) mice were also larger. Muscle hypertrophy factors phospho-AKT and phospho-mTOR were increased in Dgat1(-/-) cardiac and skeletal muscle. In contrast to muscle, liver from Dgat1(-/-) mice had no reduction in mRNA levels of genes mediating fatty acid oxidation. Glucose uptake was increased in cardiac and skeletal muscle in Dgat1(-/-) mice. Treatment with an inhibitor specific for DGAT1 led to similarly striking reductions in mRNA levels of genes mediating fatty acid oxidation in cardiac and skeletal muscle. These changes were reproduced in cultured myocytes with the DGAT1 inhibitor, which also blocked the increase in mRNA levels of Ppar genes and their targets induced by palmitic acid. Thus, loss of DGAT1 activity in muscles decreases mRNA levels of genes involved in lipid uptake and oxidation.
Collapse
Affiliation(s)
- Li Liu
- Division of Preventive Medicine and Nutrition, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Eisert R. Hypercarnivory and the brain: protein requirements of cats reconsidered. J Comp Physiol B 2010; 181:1-17. [PMID: 21088842 DOI: 10.1007/s00360-010-0528-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/19/2010] [Accepted: 10/25/2010] [Indexed: 01/12/2023]
Abstract
The domestic hypercarnivores cat and mink have a higher protein requirement than other domestic mammals. This has been attributed to adaptation to a hypercarnivorous diet and subsequent loss of the ability to downregulate amino acid catabolism. A quantitative analysis of brain glucose requirements reveals that in cats on their natural diet, a significant proportion of protein must be diverted into gluconeogenesis to supply the brain. According to the model presented here, the high protein requirement of the domestic cat is the result of routing of amino acids into gluconeogenesis to supply the needs of the brain and other glucose-requiring tissues, resulting in oxidation of amino acid in excess of the rate predicted for a non-hypercarnivorous mammal of the same size. Thus, cats and other small hypercarnivores do not have a high protein requirement per se, but a high endogenous glucose demand that is met by obligatory amino acid-based gluconeogenesis. It is predicted that for hypercarnivorous mammals with the same degree of encephalisation, endogenous nitrogen losses increase with decreasing metabolic mass as a result of the allometric relationships of brain mass and brain metabolic rate with body mass, possibly imposing a lower limit for body mass in hypercarnivorous mammals.
Collapse
Affiliation(s)
- Regina Eisert
- Smithsonian Environmental Research Center, Edgewater, USA.
| |
Collapse
|
32
|
Geor RJ, Larsen L, Waterfall HL, Stewart-Hunt L, McCutcheon LJ. Route of carbohydrate administration affects early post exercise muscle glycogen storage in horses. Equine Vet J 2010:590-5. [PMID: 17402489 DOI: 10.1111/j.2042-3306.2006.tb05610.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
REASONS FOR PERFORMING STUDY No studies in horses have examined the effect of route of carbohydrate (glucose) administration on the rate of muscle glycogen storage following glycogen-depleting exercise. HYPOTHESIS Glucose delivery from the gastrointestinal tract limits the rate of muscle glycogen storage following glycogen-depleting exercise. METHODS In a crossover design, 7 fit horses completed treadmill exercise (EX) on 3 occasions to deplete muscle glycogen by approximately 50%. After EX horses received: 1) i.v. glucose infusion (IV; 0.5 g/kg bwt/h for 6 h), 2) oral glucose boluses (OR; 1 g/kg bwt at 0, 2 and 4 h post EX) or 3) no glucose supplementation (CON). Blood samples for measurement of glucose and insulin concentrations were collected before EX and during the 6 h treatment period. Muscle biopsies for measurement of muscle glycogen content (GLY) and glycogen synthase (GS) activity were taken before and after exercise and at 3 and 6 h. RESULTS Mean plasma glucose concentrations were significantly higher in IV and OR than in CON throughout treatment. The average serum insulin responses in IV and OR treatments were also significantly greater than in CON. After EX, GLY was not different among the 3 treatments. However, glycogen storage rates were significantly higher in IV than in CON and OR during the first 3 h and second 3 h of recovery, and GLY was significantly higher in IV than in OR and CON at 6 h of recovery. GS activity was significantly higher in IV than in OR and CON at 3 h of recovery. CONCLUSIONS Muscle glycogen storage in horses during a 6 h period after exercise was enhanced by i.v. glucose administration (3 g/kg) but not by an equivalent glucose dose administered per os. While oral administration of glucose achieved a level of hyperglycaemia and hyperinsulinaemia that markedly accelerates glycogen storage in other species, the rate of glycogen storage following oral supplementation was not different to control conditions. POTENTIAL RELEVANCE Glucose supplementation via the i.v. route should be considered when rapid replenishment of muscle glycogen stores is desired.
Collapse
Affiliation(s)
- R J Geor
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
33
|
De Souza CT, Frederico MJS, da Luz G, Cintra DE, Ropelle ER, Pauli JR, Velloso LA. Acute exercise reduces hepatic glucose production through inhibition of the Foxo1/HNF-4alpha pathway in insulin resistant mice. J Physiol 2010; 588:2239-53. [PMID: 20421289 DOI: 10.1113/jphysiol.2009.183996] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein hepatocyte nuclear factor 4alpha (HNF-4alpha) is atypically activated in the liver of diabetic rodents and contributes to hepatic glucose production. HNF-4alpha and Foxo1 can physically interact with each other and represent an important signal transduction pathway that regulates the synthesis of glucose in the liver. Foxo1 and HNF-4alpha interact with their own binding sites in the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) promoters, and this binding is required for their effects on those promoters. However, the effect of physical activity on the HNF-4alpha/Foxo1 pathway is currently unknown. Here, we investigate the protein levels of HNF-4alpha and the HNF-4alpha/Foxo1 pathway in the liver of leptin-deficient (ob/ob) and diet-induced obese Swiss (DIO) mice after acute exercise. The ob/ob and DIO mice swam for four 30 min periods, with 5 min rest intervals for a total swimming time of 2h. Eight hours after the acute exercise protocol, the mice were submitted to an insulin tolerance test (ITT) and determination of biochemical and molecular parameters. Acute exercise improved insulin signalling, increasing insulin-stimulated Akt and Foxo1 phosphorylation and decreasing HNF-4alpha protein levels in the liver of DIO and ob/ob mice under fasting conditions. These phenomena were accompanied by a reduction in the expression of gluconeogenesis genes, such as PEPCK and G6Pase. Importantly, the PI3K inhibitor LY292004 reversed the acute effect of exercise on fasting hyperglycaemia, confirming the involvement of the PI3K pathway. The present study shows that exercise acutely improves the action of insulin in the liver of animal models of obesity and diabetes, resulting in increased phosphorylation and nuclear exclusion of Foxo1, and a reduction in the Foxo1/HNF-4alpha pathway. Since nuclear localization and the association of these proteins is involved in the activation of PEPCK and G6Pase, we believe that the regulation of Foxo1 and HNF-4alpha activities are important mechanisms involved in exercise-induced improvement of glucose homeostasis in insulin resistant states.
Collapse
Affiliation(s)
- Cláudio T De Souza
- Exercise Biochemistry and Physiology Laboratory, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina - Criciăúma, SC, Brazil.
| | | | | | | | | | | | | |
Collapse
|
34
|
Matos A, Ropelle ER, Pauli JR, Frederico MJS, de Pinho RA, Velloso LA, De Souza CT. Acute exercise reverses TRB3 expression in the skeletal muscle and ameliorates whole body insulin sensitivity in diabetic mice. Acta Physiol (Oxf) 2010; 198:61-9. [PMID: 19681769 DOI: 10.1111/j.1748-1716.2009.02031.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM TRB3 became of major interest in diabetes research when it was shown to interact with and inhibit the activity of Akt. Conversely, physical exercise has been linked to improved glucose homeostasis. Thus, the current study was designed to investigate the effects of acute exercise on TRB3 expression and whole body insulin sensitivity in obese diabetic mice. METHODS Male leptin-deficient (ob/ob) mice swam for two 3-h-long bouts, separated by a 45-min rest period. After the second bout of exercise, food was withdrawn 6 h before antibody analysis. Eight hours after the exercise protocol, the mice were submitted to an insulin tolerance test (ITT). Gastrocnemius muscle samples were evaluated for insulin receptor (IR) and IRS-1 tyrosine phosphorylation, Akt serine phosphorylation, TRB3/Akt association and membrane GLUT4 expression. RESULTS Western blot analysis showed that TRB3 expression was reduced in the gastrocnemius of leptin-deficient (ob/ob) mice submitted to exercise when compared with respective ob/ob mice at rest. In parallel, there was an increase in the insulin-signalling pathway in skeletal muscle from leptin-deficient mice after exercise. Furthermore, the GLUT4 membrane expression was increased in the muscle after the exercise protocol. Finally, a single session of exercise improved the glucose disappearance (K(ITT)) rate in ob/ob mice. CONCLUSION Our results demonstrate that acute exercise reverses TRB3 expression and insulin signalling restoration in muscle. Thus, these results provide new insights into the mechanism by which physical activity ameliorates whole body insulin sensitivity in type 2 diabetes.
Collapse
Affiliation(s)
- A Matos
- Universidade Cruzeiro do Sul, Unicsul, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Liu L, Shi X, Bharadwaj KG, Ikeda S, Yamashita H, Yagyu H, Schaffer JE, Yu YH, Goldberg IJ. DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity. J Biol Chem 2009; 284:36312-36323. [PMID: 19778901 DOI: 10.1074/jbc.m109.049817] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intracellular lipid accumulation in the heart is associated with cardiomyopathy, yet the precise role of triglyceride (TG) remains unclear. With exercise, wild type hearts develop physiologic hypertrophy. This was associated with greater TG stores and a marked induction of the TG-synthesizing enzyme diacylglycerol (DAG) acyltransferase 1 (DGAT1). Transgenic overexpression of DGAT1 in the heart using the cardiomyocyte- specific alpha-myosin heavy chain (MHC) promoter led to approximately a doubling of DGAT activity and TG content and reductions of approximately 35% in cardiac ceramide, 26% in DAG, and 20% in free fatty acid levels. Cardiac function assessed by echocardiography and cardiac catheterization was unaffected. These mice were then crossed with animals expressing long-chain acyl-CoA synthetase via the MHC promoter (MHC-ACS), which develop lipotoxic cardiomyopathy. MHC-DGAT1XMHC-ACS double transgenic male mice had improved heart function; fractional shortening increased by 74%, and diastolic function improved compared with MHC-ACS mice. The improvement of heart function correlated with a reduction in cardiac DAG and ceramide and reduced cardiomyocyte apoptosis but increased fatty acid oxidation. In addition, the survival of the mice was improved. Our study indicates that TG is not likely to be a toxic lipid species directly, but rather it is a feature of physiologic hypertrophy and may serve a cytoprotective role in lipid overload states. Moreover, induction of DGAT1 could be beneficial in the setting of excess heart accumulation of toxic lipids.
Collapse
Affiliation(s)
- Li Liu
- Department of Medicine, Division of Preventive Medicine and Metabolism, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - XiaoJing Shi
- Department of Medicine, Division of Preventive Medicine and Metabolism, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Kalyani G Bharadwaj
- Department of Medicine, Division of Preventive Medicine and Metabolism, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Shota Ikeda
- Department of Medicine, Division of Preventive Medicine and Metabolism, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Haruyo Yamashita
- Department of Medicine, Division of Preventive Medicine and Metabolism, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Hiroaki Yagyu
- Department of Medicine, Division of Preventive Medicine and Metabolism, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Jean E Schaffer
- Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Yi-Hao Yu
- Department of Medicine, Division of Preventive Medicine and Metabolism, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Ira J Goldberg
- Department of Medicine, Division of Preventive Medicine and Metabolism, Columbia University College of Physicians and Surgeons, New York, New York 10032.
| |
Collapse
|
36
|
Lima AF, Ropelle ER, Pauli JR, Cintra DE, Frederico MJS, Pinho RA, Velloso LA, De Souza CT. Acute exercise reduces insulin resistance-induced TRB3 expression and amelioration of the hepatic production of glucose in the liver of diabetic mice. J Cell Physiol 2009; 221:92-7. [PMID: 19492410 DOI: 10.1002/jcp.21833] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
TRB3 (a mammalian homolog of Drosophila) is emerging as an important player in the regulation of insulin signaling. TRB3 can directly bind to Ser/Thr protein kinase Akt, the major downstream kinase of insulin signaling. Conversely, physical exercise has been linked to improved glucose homeostasis and enhanced insulin sensitivity; however, the molecular mechanisms by which exercise improves glucose homeostasis, particularly in the hepatic tissue, are only partially known. Here, we demonstrate that acute exercise reduces fasting glucose in two models diabetic mice. Western blot analysis showed that 8 h after a swimming protocol, TRB3 expression was reduced in the hepatic tissue from diet-induced obesity (Swiss) and leptin-deficient (ob/ob) mice, when compared with respective control groups at rest. In parallel, there was an increase in insulin responsiveness in the canonical insulin-signaling pathway in hepatic tissue from DIO and ob/ob mice after exercise. In addition, the PEPCK expression was reduced in the liver after the exercise protocol, suggesting that acute exercise diminished hepatic glucose production through insulin-signaling restoration. Thus, these results provide new insights into the mechanism by which physical activity improves glucose homeostasis in type 2 diabetes.
Collapse
Affiliation(s)
- Athos F Lima
- Universidade Cruzeiro do Sul, Unicsul, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Fueger PT, Li CY, Ayala JE, Shearer J, Bracy DP, Charron MJ, Rottman JN, Wasserman DH. Glucose kinetics and exercise tolerance in mice lacking the GLUT4 glucose transporter. J Physiol 2007; 582:801-12. [PMID: 17495042 PMCID: PMC2075340 DOI: 10.1113/jphysiol.2007.132902] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The absence of GLUT4 severely impairs basal glucose uptake in vivo, but does not alter glucose homeostasis or circulating insulin. Glucose uptake in isolated contracting skeletal muscle (MGU) is also impaired by the absence of GLUT4, and onset of muscle fatigue is hastened. Whether the body can compensate and preserve glucose homeostasis during exercise, as it does in the basal state, is unknown. One aim was to test the effectiveness of glucoregulatory compensation for the absence of GLUT4 in vivo. The absence of GLUT4 was also used to further define the role of hexokinase (HK) II, which catalyses glucose phosphorylation after it is transported in the cell. HK II increases MGU during exercise, as well as exercise endurance. In the absence of GLUT4, HK II expression will not affect MGU. A second aim was to test whether, in the absence of GLUT4, HK II retains its ability to increase exercise endurance. Wild-type (WT), GLUT4 null (GLUT4(-/-)), and GLUT4 null overexpressing HK II (GLUT4(-/-)HK(Tg)) mice were studied using a catheterized mouse model that allows blood sampling and isotope infusions during treadmill exercise. The impaired capacity of working muscle to take up glucose in GLUT4(-/-) is partially offset by an exaggerated increase in the glucagon: insulin ratio, increased liver glucose production, hyperglycaemia, and a greater capillary density in order to increase the delivery of glucose to the exercising muscle of GLUT4(-/-). Hearts of GLUT4(-/-) also exhibited a compensatory increase in HK II expression and a paradoxical increase in glucose uptake. Exercise tolerance was reduced in GLUT4(-/-) compared to WT. As expected, MGU in GLUT4(-/-)HK(Tg) was the same as in GLUT4(-/-). However, HK II overexpression retained its ability to increase exercise endurance. In conclusion, unlike the basal state where glucose homeostasis is preserved, hyperglycaemia results during exercise in GLUT4(-/-) due to a robust stimulation of liver glucose release in the face of severe impairments in MGU. Finally, studies in GLUT4(-/-)HK(Tg) show that HK II improves exercise tolerance, independent of its effects on MGU.
Collapse
Affiliation(s)
- Patrick T Fueger
- Department of Molecular Physiology and Biophysics,Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sparling DP, Griesel BA, Olson AL. Hyperphosphorylation of MEF2A in primary adipocytes correlates with downregulation of human GLUT4 gene promoter activity. Am J Physiol Endocrinol Metab 2007; 292:E1149-56. [PMID: 17164432 DOI: 10.1152/ajpendo.00521.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GLUT4 promoter activity is regulated by hormonal, metabolic, and tissue-specific controls. This complicates the study of GLUT4 gene transcription, as no cell culture model adequately recapitulates these extracellular regulators. While investigating cultured primary adipocytes as a model system for GLUT4 transcription, we observed that GLUT4 mRNA was specifically and rapidly downregulated upon tissue dispersal. Downregulation of GLUT4 mRNA was mediated in part by loss of regulatory control by the trans-acting factors that control GLUT4 transcriptional activity [the myocyte enhancer factor 2 (MEF2) transcription factor family and the GLUT4 enhancer factor] and their cognate DNA binding sites in transgenic mice. The differences in GLUT4 transcription when whole adipose tissue and cell culture model systems are compared can be correlated to a posttranslational phosphorylation of the transcription factor MEF2A. The difference in the MEF2A phosphorylation state in whole tissue vs. isolated cells may provide a further basis for the development of an in vitro system that could recapitulate fully regulated GLUT4 promoter activity. Development of an in vitro system to reconstitute GLUT4 transcriptional regulation will further efforts to discern the molecular mechanisms that underlie GLUT4 expression.
Collapse
Affiliation(s)
- David P Sparling
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, PO Box 26901, Rm. 853-BMSB, Oklahoma City, OK 73190, USA
| | | | | |
Collapse
|
39
|
Kim J, Arias EB, Cartee GD. Effects of gender and prior swim exercise on glucose uptake in isolated skeletal muscles from mice. J Physiol Sci 2006; 56:305-12. [PMID: 16934174 DOI: 10.2170/physiolsci.rp009406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 08/25/2006] [Indexed: 11/05/2022]
Abstract
The purpose of this study was to characterize the effects of prior swim exercise on glucose uptake in isolated skeletal muscles of mice. Male and female mice (C57BL/6) performing 180 min of swimming had significantly decreased glycogen concentration compared to resting controls in soleus, extensor digitorum longus (EDL), and epitrochlearis muscles, regardless of gender. Glucose uptake by isolated muscles was measured using [(3)H]-2-deoxyglucose without insulin or with 180 pmol/l insulin (20, 75, or 200 min post-exercise and sedentary) or 12,000 pmol/l (20 or 200 min post-exercise and sedentary) in the soleus and EDL and without insulin or with 12,000 pmol/l insulin (20 or 200 min post-exercise and sedentary) in the epitrochlearis. Glucose uptake was higher (P < or = 0.01) for female versus male mice at each insulin concentration in the soleus and EDL, but not the epitrochlearis. Although prolonged (180 min) swim exercise did not alter subsequent glucose uptake, a shorter duration exercise protocol (60 min) tested in male mice (20 min post-exercise) led to a 1.5-fold increase in insulin-independent glucose uptake in EDL muscles. However, insulin-stimulated (180 pmol/l) glucose uptake was not altered by 60 min exercise in EDL or soleus. In light of these results, swim exercise is not recommended to evaluate the exercise-induced improvement in insulin-stimulated glucose uptake of muscles of C57BL/6 mice.
Collapse
Affiliation(s)
- Junghoon Kim
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
40
|
Barnes BR, Long YC, Steiler TL, Leng Y, Galuska D, Wojtaszewski JFP, Andersson L, Zierath JR. Changes in exercise-induced gene expression in 5'-AMP-activated protein kinase gamma3-null and gamma3 R225Q transgenic mice. Diabetes 2005; 54:3484-9. [PMID: 16306365 DOI: 10.2337/diabetes.54.12.3484] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
5'-AMP-activated protein kinase (AMPK) is important for metabolic sensing. We used AMPKgamma3 mutant-overexpressing Tg-Prkag3(225Q) and AMPKgamma3-knockout Prkag3-/- mice to determine the role of the AMPKgamma3 isoform in exercise-induced metabolic and gene regulatory responses in skeletal muscle. Mice were studied after 2 h swimming or 2.5 h recovery. Exercise increased basal and insulin-stimulated glucose transport, with similar responses among genotypes. In Tg-Prkag3(225Q) mice, acetyl-CoA carboxylase (ACC) phosphorylation was increased and triglyceride content was reduced after exercise, suggesting that this mutation promotes greater reliance on lipid oxidation. In contrast, ACC phosphorylation and triglyceride content was similar between wild-type and Prkag3-/- mice. Expression of genes involved in lipid and glucose metabolism was altered by genetic modification of AMPKgamma3. Expression of lipoprotein lipase 1, carnitine palmitoyl transferase 1b, and 3-hydroxyacyl-CoA dehydrogenase was increased in Tg-Prkag3(225Q) mice, with opposing effects in Prkag3-/- mice after exercise. GLUT4, hexokinase II (HKII), and glycogen synthase mRNA expression was increased in Tg-Prkag3(225Q) mice after exercise. GLUT4 and HKII mRNA expression was increased in wild-type mice and blunted in Prkag3-/- mice after recovery. In conclusion, the Prkag3(225Q) mutation, rather than presence of a functional AMPKgamma3 isoform, directly promotes metabolic and gene regulatory responses along lipid oxidative pathways in skeletal muscle after endurance exercise.
Collapse
Affiliation(s)
- Brian R Barnes
- Department of Physiology and Pharmacology, Karolinska Institutet, von Eulers väg 4, 4th Floor, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Civitarese AE, Hesselink MKC, Russell AP, Ravussin E, Schrauwen P. Glucose ingestion during exercise blunts exercise-induced gene expression of skeletal muscle fat oxidative genes. Am J Physiol Endocrinol Metab 2005; 289:E1023-9. [PMID: 16030063 DOI: 10.1152/ajpendo.00193.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ingestion of carbohydrate during exercise may blunt the stimulation of fat oxidative pathways by raising plasma insulin and glucose concentrations and lowering plasma free fatty acid (FFA) levels, thereby causing a marked shift in substrate oxidation. We investigated the effects of a single 2-h bout of moderate-intensity exercise on the expression of key genes involved in fat and carbohydrate metabolism with or without glucose ingestion in seven healthy untrained men (22.7 +/- 0.6 yr; body mass index: 23.8 +/- 1.0 kg/m(2); maximal O(2) consumption: 3.85 +/- 0.21 l/min). Plasma FFA concentration increased during exercise (P < 0.01) in the fasted state but remained unchanged after glucose ingestion, whereas fat oxidation (indirect calorimetry) was higher in the fasted state vs. glucose feeding (P < 0.05). Except for a significant decrease in the expression of pyruvate dehydrogenase kinase-4 (P < 0.05), glucose ingestion during exercise produced minimal effects on the expression of genes involved in carbohydrate utilization. However, glucose ingestion resulted in a decrease in the expression of genes involved in fatty acid transport and oxidation (CD36, carnitine palmitoyltransferase-1, uncoupling protein 3, and 5'-AMP-activated protein kinase-alpha(2); P < 0.05). In conclusion, glucose ingestion during exercise decreases the expression of genes involved in lipid metabolism rather than increasing genes involved in carbohydrate metabolism.
Collapse
Affiliation(s)
- Anthony E Civitarese
- Dept. of Human Physiology, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | | | |
Collapse
|
42
|
Rose AJ, Richter EA. Skeletal muscle glucose uptake during exercise: how is it regulated? Physiology (Bethesda) 2005; 20:260-70. [PMID: 16024514 DOI: 10.1152/physiol.00012.2005] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The increase in skeletal muscle glucose uptake during exercise results from a coordinated increase in rates of glucose delivery (higher capillary perfusion), surface membrane glucose transport, and intracellular substrate flux through glycolysis. The mechanism behind the movement of GLUT4 to surface membranes and the subsequent increase in transport by muscle contractions is largely unresolved, but it is likely to occur through intracellular signaling involving Ca(2+)-calmodulin-dependent protein kinase, 5'-AMP-activated protein kinase, and possibly protein kinase C.
Collapse
Affiliation(s)
- Adam J Rose
- Department of Human Physiology, Institute of Exercise and Sport Sciences, Copenhagen Muscle Research Centre, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
43
|
Wasserman DH, Ayala JE. Interaction of physiological mechanisms in control of muscle glucose uptake. Clin Exp Pharmacol Physiol 2005; 32:319-23. [PMID: 15810999 DOI: 10.1111/j.1440-1681.2005.04191.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1. Control of glucose uptake is distributed between three steps. These are the rate that glucose is delivered to cells, the rate of transport into cells, and the rate that glucose is phosphorylated within these same cells. The functional limitations to each one of these individual steps has been difficult to assess because they are so closely coupled to each other. Studies have been performed in recent years using complex isotopic techniques or transgenic mouse models to shed new light on the role that each step plays in overall control of muscle glucose uptake. 2. Membrane glucose transport is a major barrier and glucose delivery and glucose phosphorylation are minor barriers to muscle glucose uptake in the fasted, sedentary state. GLUT-4 is translocated to the muscle membrane during exercise and insulin-stimulation. The result of this is that it can become so permeable to glucose that it is only a minor barrier to glucose uptake. 3. In addition to increasing glucose transport, exercise and insulin-stimulation also increase muscle blood flow and capillary recruitment. This effectively increases muscle glucose delivery and by doing so, works to enhance muscle glucose uptake. 4. There is a growing body of data that suggests that insulin resistance to muscle glucose uptake can be because of impairments in any one or more of the three steps that comprise the process.
Collapse
Affiliation(s)
- David H Wasserman
- Department of Molecular Physiological and Biophysics, Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|
44
|
Charron MJ, Gorovits N, Laidlaw JS, Ranalletta M, Katz EB. Use of GLUT-4 null mice to study skeletal muscle glucose uptake. Clin Exp Pharmacol Physiol 2005; 32:308-13. [PMID: 15810997 DOI: 10.1111/j.1440-1681.2005.04189.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1. The present review focuses on the effects of varying levels of GLUT-4, the insulin-sensitive glucose transporter, on insulin sensitivity and whole body glucose homeostasis. 2. Three mouse models are discussed including myosin light chain (MLC)-GLUT-4 mice which overexpress GLUT-4 specifically in skeletal muscle, GLUT-4 null mice which express no GLUT-4 and the MLC-GLUT-4 null mice which express GLUT-4 only in skeletal muscle. Overexpressing GLUT-4 specifically in the skeletal muscle results in increased insulin sensitivity in the MLC-GLUT-4 mice. In contrast, the GLUT-4 null mice exhibit insulin intolerance accompanied by abnormalities in glucose and lipid metabolism. Restoring GLUT-4 expression in skeletal muscle in the MLC-GLUT-4 null mice results in normal glucose metabolism but continued abnormal lipid metabolism. 3. The results of experiments using these mouse models demonstrates that modifying the expression of GLUT-4 profoundly affects whole body insulin action and consequently glucose and lipid metabolism.
Collapse
Affiliation(s)
- Maureen J Charron
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
45
|
Ranalletta M, Jiang H, Li J, Tsao TS, Stenbit AE, Yokoyama M, Katz EB, Charron MJ. Altered hepatic and muscle substrate utilization provoked by GLUT4 ablation. Diabetes 2005; 54:935-43. [PMID: 15793230 DOI: 10.2337/diabetes.54.4.935] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Studies were conducted to explore altered substrate utilization and metabolism in GLUT4 null mice. Liver fatty acid synthase mRNA and fatty acid synthesis rates were dramatically increased in GLUT4 null mice compared with control mice and were supported by increased rates of the pentose phosphate pathway oxidative phase and sterol regulatory binding protein mRNA expression. Increased GLUT2 protein content, glucokinase mRNA, and glucose-6-phosphate in GLUT4 null mice may provide substrate for the enhanced fatty acid synthesis. Increased fatty acid synthesis, however, did not lead to hepatic triglyceride accumulation in GLUT4 null mice because of increased hepatic triglyceride secretion rates. GLUT4 null mice rapidly cleared orally administered olive oil, had reduced serum triglyceride concentrations in the fed and the fasted state, and increased skeletal muscle lipoprotein lipase when compared with controls. Oleate oxidation rates were increased in GLUT4 null skeletal muscle in association with mitochondrial hyperplasia/hypertrophy. This study demonstrated that GLUT4 null mice had increased hepatic glucose uptake and conversion into triglyceride for subsequent use by muscle. The ability of GLUT4 null mice to alter hepatic carbohydrate and lipid metabolism to provide proper nutrients for peripheral tissues may explain (in part) their ability to resist diabetes when fed a normal diet.
Collapse
Affiliation(s)
- Mollie Ranalletta
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10462, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Barnes BR, Marklund S, Steiler TL, Walter M, Hjälm G, Amarger V, Mahlapuu M, Leng Y, Johansson C, Galuska D, Lindgren K, Abrink M, Stapleton D, Zierath JR, Andersson L. The 5'-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J Biol Chem 2004; 279:38441-7. [PMID: 15247217 DOI: 10.1074/jbc.m405533200] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
5'-AMP-activated protein kinase (AMPK) is a metabolic stress sensor present in all eukaryotes. A dominant missense mutation (R225Q) in pig PRKAG3, encoding the muscle-specific gamma3 isoform, causes a marked increase in glycogen content. To determine the functional role of the AMPK gamma3 isoform, we generated transgenic mice with skeletal muscle-specific expression of wild type or mutant (225Q) mouse gamma3 as well as Prkag3 knockout mice. Glycogen resynthesis after exercise was impaired in AMPK gamma3 knock-out mice and markedly enhanced in transgenic mutant mice. An AMPK activator failed to increase skeletal muscle glucose uptake in AMPK gamma3 knock-out mice, whereas contraction effects were preserved. When placed on a high fat diet, transgenic mutant mice but not knock-out mice were protected against excessive triglyceride accumulation and insulin resistance in skeletal muscle. Transfection experiments reveal the R225Q mutation is associated with higher basal AMPK activity and diminished AMP dependence. Our results validate the muscle-specific AMPK gamma3 isoform as a therapeutic target for prevention and treatment of insulin resistance.
Collapse
Affiliation(s)
- Brian R Barnes
- Department of Surgical Sciences and the Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sandström ME, Abbate F, Andersson DC, Zhang SJ, Westerblad H, Katz A. Insulin-independent glycogen supercompensation in isolated mouse skeletal muscle: role of phosphorylase inactivation. Pflugers Arch 2004; 448:533-8. [PMID: 15085341 DOI: 10.1007/s00424-004-1280-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 03/16/2004] [Indexed: 11/24/2022]
Abstract
Glycogen supercompensation (increase in muscle glycogen content above basal) is an established phenomenon induced by unknown mechanisms. It consists of both insulin-dependent and -independent components. Here, we investigate insulin-independent glycogen supercompensation in isolated, intact extensor digitorum longus muscles from mice. Muscles were stimulated electrically, incubated in vitro with 5.5 mM glucose for up to 16 h and then analysed for glycogen, glucose uptake and enzyme activities. Basal glycogen was 84+/-6 micro mol glucosyl units/g dry muscle and was depleted by 80% after 10 min contraction. Glycogen increased after contraction, reaching a peak value of 113+/-9 micro mol glucosyl units/g dry muscle ( P<0.05 vs. basal) by 6 h, and returned to basal values by 16 h (84+/-8). Maximal activities of glycogen synthase, phosphorylase and alpha-glucosidase were not significantly altered by contraction or during the 6-h recovery period. Glycogen synthase fractional activity (0.17/7.2 mM glucose-6-P; inversely related to phosphorylation state of the enzyme) was increased about twofold early after contraction but then decreased and was slightly lower than baseline during the period of supercompensation (4-6 h). Phosphorylase fractional activity (+/-adenosine monophosphate; directly related to phosphorylation state of the enzyme) decreased to 60% of basal after contraction and decreased further during the initial 4 h of recovery to 40% of basal ( P<0.01 vs. basal). After 4 h recovery, glucose uptake was slightly (50%) higher in the stimulated than in the non-stimulated muscle ( P<0.01). Thus, insulin-independent glycogen supercompensation involves inactivation of phosphorylase and hence an inhibition of glycogen breakdown.
Collapse
Affiliation(s)
- Marie E Sandström
- Department of Physiology and Pharmacology, Karolinska Institutet, Von Eulers väg 8, 17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Nout YS, Hinchcliff KW, Jose-Cunilleras E, Dearth LR, Sivko GS, DeWille JW. Effect of moderate exercise immediately followed by induced hyperglycemia on gene expression and content of the glucose transporter-4 protein in skeletal muscles of horses. Am J Vet Res 2003; 64:1401-8. [PMID: 14620777 DOI: 10.2460/ajvr.2003.64.1401] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the effect of a single bout of exercise and increased substrate availability after exercise on gene expression and content of the glucose transporter-4 (GLUT-4) protein in equine skeletal muscle. ANIMALS 6 healthy adult Thoroughbreds. PROCEDURES The study was designed in a balanced, randomized, 3-way crossover fashion. During 2 trials, horses were exercised at 45% of their maximal rate of oxygen consumption for 60 minutes after which 1 group received water (10 mL/kg), and the other group received glucose (2 g/kg, 20% solution) by nasogastric intubation. During 1 trial, horses stood on the treadmill (sham exercise) and then received water (10 mL/kg) by nasogastric intubation. Muscle glycogen concentration and muscle GLUT-4 protein and mRNA content were determined before exercise and at 5 minutes and 4, 8, and 24 hours after exercise. RESULTS Although exercise resulted in a 30% reduction in muscle glycogen concentration, no significant difference was detected in muscle GLUT-4 protein or mRNA content before and after exercise. Glycogen replenishment was similar in both exercised groups and was not complete at 24 hours after exercise. Horses that received glucose had significantly higher plasma glucose and insulin concentrations for 3 hours after exercise, but no effect of hyperglycemia was detected on muscle GLUT-4 protein or mRNA content. CONCLUSION Under the conditions of this study, neither exercise nor the combination of exercise followed by hyperglycemia induced translation or transcription of the GLUT-4 protein in horses.
Collapse
Affiliation(s)
- Yvette S Nout
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
The pattern of muscle glycogen synthesis following glycogen-depleting exercise occurs in two phases. Initially, there is a period of rapid synthesis of muscle glycogen that does not require the presence of insulin and lasts about 30-60 minutes. This rapid phase of muscle glycogen synthesis is characterised by an exercise-induced translocation of glucose transporter carrier protein-4 to the cell surface, leading to an increased permeability of the muscle membrane to glucose. Following this rapid phase of glycogen synthesis, muscle glycogen synthesis occurs at a much slower rate and this phase can last for several hours. Both muscle contraction and insulin have been shown to increase the activity of glycogen synthase, the rate-limiting enzyme in glycogen synthesis. Furthermore, it has been shown that muscle glycogen concentration is a potent regulator of glycogen synthase. Low muscle glycogen concentrations following exercise are associated with an increased rate of glucose transport and an increased capacity to convert glucose into glycogen. The highest muscle glycogen synthesis rates have been reported when large amounts of carbohydrate (1.0-1.85 g/kg/h) are consumed immediately post-exercise and at 15-60 minute intervals thereafter, for up to 5 hours post-exercise. When carbohydrate ingestion is delayed by several hours, this may lead to ~50% lower rates of muscle glycogen synthesis. The addition of certain amino acids and/or proteins to a carbohydrate supplement can increase muscle glycogen synthesis rates, most probably because of an enhanced insulin response. However, when carbohydrate intake is high (> or =1.2 g/kg/h) and provided at regular intervals, a further increase in insulin concentrations by additional supplementation of protein and/or amino acids does not further increase the rate of muscle glycogen synthesis. Thus, when carbohydrate intake is insufficient (<1.2 g/kg/h), the addition of certain amino acids and/or proteins may be beneficial for muscle glycogen synthesis. Furthermore, ingestion of insulinotropic protein and/or amino acid mixtures might stimulate post-exercise net muscle protein anabolism. Suggestions have been made that carbohydrate availability is the main limiting factor for glycogen synthesis. A large part of the ingested glucose that enters the bloodstream appears to be extracted by tissues other than the exercise muscle (i.e. liver, other muscle groups or fat tissue) and may therefore limit the amount of glucose available to maximise muscle glycogen synthesis rates. Furthermore, intestinal glucose absorption may also be a rate-limiting factor for muscle glycogen synthesis when large quantities (>1 g/min) of glucose are ingested following exercise.
Collapse
Affiliation(s)
- Roy Jentjens
- Human Performance Laboratory, School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | |
Collapse
|
50
|
Rudich A, Konrad D, Török D, Ben-Romano R, Huang C, Niu W, Garg RR, Wijesekara N, Germinario RJ, Bilan PJ, Klip A. Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues. Diabetologia 2003; 46:649-58. [PMID: 12712244 DOI: 10.1007/s00125-003-1080-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2002] [Revised: 01/20/2003] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Insulin-dependent glucose influx in skeletal muscle and adipocytes is believed to rely largely on GLUT4, but this has not been confirmed directly. We assessed the relative functional contribution of GLUT4 in experimental models of skeletal muscle and adipocytes using the HIV-1 protease inhibitor indinavir. METHODS Indinavir (up to 100 micro mol/l) was added to the glucose transport solution after insulin stimulation of wild-type L6 muscle cells, L6 cells over-expressing either GLUT4myc or GLUT1myc, 3T3-L1 adipocytes, isolated mouse brown or white adipocytes, and isolated mouse muscle preparations. RESULTS 100 micro mol/l indinavir inhibited 80% of both basal and insulin-stimulated 2-deoxyglucose uptake in L6GLUT4myc myotubes and myoblasts, but only 25% in L6GLUT1myc cells. Cell-surface density of glucose transporters was not affected. In isolated soleus and extensor digitorum longus muscles, primary white and brown adipocytes, insulin-stimulated glucose uptake was inhibited 70 to 80% by indinavir. The effect of indinavir on glucose uptake was variable in 3T3-L1 adipocytes, averaging 45% and 67% inhibition of basal and maximally insulin-stimulated glucose uptake, respectively. In this cell, fractional inhibition of glucose uptake by indinavir correlated positively with the fold-stimulation of glucose uptake by insulin, and was higher with sub-maximal insulin concentrations. The latter finding coincided with an increase only in GLUT4, but not GLUT1, in plasma membrane lawns. CONCLUSION/INTERPRETATION Indinavir is a useful tool to assess different functional contributions of GLUT4 to glucose uptake in common models of skeletal muscle and adipocytes.
Collapse
Affiliation(s)
- A Rudich
- Programme in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|