1
|
Akhlaghipour I, Moghbeli M. Matrix metalloproteinases as the critical regulators of cisplatin response and tumor cell invasion. Eur J Pharmacol 2024; 982:176966. [PMID: 39216742 DOI: 10.1016/j.ejphar.2024.176966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/10/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Cisplatin (CDDP) as one of the most common first-line chemotherapy drugs plays a vital role in the treatment of a wide range of malignant tumors. Nevertheless, CDDP resistance is observed as a therapeutic challenge in a large number of cancer patients. Considering the CDDP side effects in normal tissues, predicting the CDDP response of cancer patients can significantly help to choose the appropriate therapeutic strategy. In this regard, investigating the molecular mechanisms involved in CDDP resistance can lead to the introduction of prognostic markers in cancer patients. Matrix metalloproteinases (MMPs) have critical roles in tissue remodeling and cell migration through extracellular matrix degradation. Therefore, defects in MMPs functions can be associated with tumor metastasis and chemo resistance. In the present review, we discussed the role of MMPs in CDDP response and tumor cell invasion. PubMed, Scopus, Google Scholar, and Web of Science were searched using "MMP", "cisplatin", and "cancer" keywords for data retrieval that was limited to Apr 20, 2024. It has been reported that MMPs can increase CDDP resistance in tumor cells as the effectors of PI3K/AKT, MAPK, and NF-κB signaling pathways or independently through the regulation of structural proteins, autophagy, and epithelial-to-mesenchymal transition (EMT) process. This review has an effective role in introducing MMPs as the prognostic markers and therapeutic targets in CDDP-resistant cancer patients.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Kitasato L, Yamaoka-Tojo M, Iwaya T, Murayama Y, Ikeda Y, Hashikata T, Oikawa J, Suzuki M, Misawa N, Kawashima R, Ogawa F, Ako J. Rivaroxaban as a Protector of Oxidative Stress-Induced Vascular Endothelial Glycocalyx Damage via the IQGAP1/PAR1-2/PI3K/Akt Pathway. J Vasc Res 2024; 62:22-36. [PMID: 39496251 PMCID: PMC11797952 DOI: 10.1159/000542419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/30/2024] [Indexed: 11/06/2024] Open
Abstract
INTRODUCTION The vascular endothelial glycocalyx, crucial for blood vessel integrity and homeostasis, is vulnerable to oxidative stress, leading to endothelial dysfunction, which strongly correlates with cardiovascular disease (CVD). This study investigates the protective effects of rivaroxaban, a factor X inhibitor, on the glycocalyx under oxidative stress condition. METHODS We examined the impact of rivaroxaban on human umbilical vein endothelial cells exposed to acute and chronic H2O2-induced oxidative stress. RESULTS Rivaroxaban dose-dependently suppressed syndecan-1, a key component of the glycocalyx, shedding from cell surface, and enhanced protease-activated receptor (PAR)1-PAR2/phosphatidylinositol-3-kinase (PI3K)-dependent cell viability after acute induction of H2O2. This protective effect was linked to the translocation of IQGAP1, a scaffold protein that modulates the actin cytoskeleton, to the perinucleus from the cell membrane. Under chronic H2O2 treatments, rivaroxaban improves cell viability accompanied by an increase in hyaluronidase activities, aiding the turnover and remodeling of hyaluronic acid within the glycocalyx. CONCLUSION We identify that rivaroxaban protects against oxidative stress-induced endothelial glycocalyx damage and cell viability through IQGAP1/PAR1-2/PI3K/Akt pathway, offering a potential to be a therapeutic target for CVD prevention. INTRODUCTION The vascular endothelial glycocalyx, crucial for blood vessel integrity and homeostasis, is vulnerable to oxidative stress, leading to endothelial dysfunction, which strongly correlates with cardiovascular disease (CVD). This study investigates the protective effects of rivaroxaban, a factor X inhibitor, on the glycocalyx under oxidative stress condition. METHODS We examined the impact of rivaroxaban on human umbilical vein endothelial cells exposed to acute and chronic H2O2-induced oxidative stress. RESULTS Rivaroxaban dose-dependently suppressed syndecan-1, a key component of the glycocalyx, shedding from cell surface, and enhanced protease-activated receptor (PAR)1-PAR2/phosphatidylinositol-3-kinase (PI3K)-dependent cell viability after acute induction of H2O2. This protective effect was linked to the translocation of IQGAP1, a scaffold protein that modulates the actin cytoskeleton, to the perinucleus from the cell membrane. Under chronic H2O2 treatments, rivaroxaban improves cell viability accompanied by an increase in hyaluronidase activities, aiding the turnover and remodeling of hyaluronic acid within the glycocalyx. CONCLUSION We identify that rivaroxaban protects against oxidative stress-induced endothelial glycocalyx damage and cell viability through IQGAP1/PAR1-2/PI3K/Akt pathway, offering a potential to be a therapeutic target for CVD prevention.
Collapse
Affiliation(s)
- Lisa Kitasato
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Minako Yamaoka-Tojo
- Department of Rehabilitation, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Toshiyuki Iwaya
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
- Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
| | - Yusuke Murayama
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
- Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
| | - Yuki Ikeda
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takehiro Hashikata
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Jun Oikawa
- Department of Kitasato Clinical Research Center, Kitasato University School of Medicine, Sagamihara, Japan
| | - Machika Suzuki
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Nonoka Misawa
- Department of Regulation Biochemistry, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Rei Kawashima
- Department of Regulation Biochemistry, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Fumihiro Ogawa
- Department of Emergency Medicine, School of Medicine, Yokohama City University, Yokohama, Japan
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
3
|
Lee NY, Ture HY, Lee EJ, Jang JA, Kim G, Nam EJ. Syndecan-1 Plays a Role in the Pathogenesis of Sjögren's Disease by Inducing B-Cell Chemotaxis through CXCL13-Heparan Sulfate Interaction. Int J Mol Sci 2024; 25:9375. [PMID: 39273320 PMCID: PMC11394922 DOI: 10.3390/ijms25179375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
In Sjögren's disease (SjD), the salivary glandular epithelial cells can induce the chemotaxis of B cells by secreting B-cell chemokines such as C-X-C motif chemokine ligand 13 (CXCL13). Syndecan-1 (SDC-1) is a major transmembrane heparan sulfate proteoglycan (HSPG) predominantly expressed on epithelial cells that binds to and regulates heparan sulfate (HS)-binding molecules, including chemokines. We aimed to determine whether SDC-1 plays a role in the pathogenesis of SjD by acting on the binding of HS to B-cell chemokines. To assess changes in glandular inflammation and SDC-1 concentrations in the submandibular gland (SMG) and blood, female NOD/ShiLtJ and sex- and age-matched C57BL/10 mice were used. In the SMG of NOD/ShiLtJ mice, inflammatory responses were identified at 8 weeks of age, but increased SDC-1 concentrations in the SMG and blood were observed at 6 weeks of age, when inflammation had not yet started. As the inflammation of the SMG worsened, the SDC-1 concentrations in the SMG and blood increased. The expression of the CXCL13 and its receptor C-X-C chemokine receptor type 5 (CXCR5) began to increase in the SMG at 6 weeks of age and continued until 12 weeks of age. Immunofluorescence staining in SMG tissue and normal murine mammary gland cells confirmed the co-localization of SDC-1 and CXCL13, and SDC-1 formed a complex with CXCL13 in an immunoprecipitation assay. Furthermore, NOD/ShiLtJ mice were treated with 5 mg/kg HS intraperitoneally thrice per week for 6-10 weeks of age, and the therapeutic effects in the SMG were assessed at the end of 10 weeks of age. NOD/ShiLtJ mice treated with HS showed attenuated salivary gland inflammation with reduced B-cell infiltration, germinal center formation and CXCR5 expression. These findings suggest that SDC-1 plays a pivotal role in the pathogenesis of SjD by binding to CXCL13 through the HS chain.
Collapse
Affiliation(s)
- Nan Young Lee
- Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
| | - Hirut Yadeta Ture
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
| | - Eun Ju Lee
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu 41199, Republic of Korea
| | - Ji Ae Jang
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu 41199, Republic of Korea
| | - Gunwoo Kim
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu 41199, Republic of Korea
| | - Eon Jeong Nam
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41405, Republic of Korea
| |
Collapse
|
4
|
Jurjus R, Dosh L, Farhat R, Daccache T, El Masri J, Ghazi M, Hawi J, Leone A, Jurjus A. Lack of Syndecan-1 promotes the pathogenesis of experimental rheumatoid arthritis. Immunogenetics 2024; 76:145-154. [PMID: 38451352 DOI: 10.1007/s00251-024-01337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
Syndecan-1 (Sdc-1), a transmembrane heparan sulfate protein, is implicated in several pathophysiological processes including rheumatoid arthritis (RA). The exact role of Syndican-1 in this autoimmune disease is still undetermined. This study explores the involvement level of Sdc-1 in the development of RA in a collagen II-induced arthritis mice model. RA was induced in two mice strains (wild-type BALB/c group and Sdc-1 knockout) by collagen II. Mice underwent regular clinical observations and scoring. After sacrifice, leg biopsies were taken from mice for histological examination, using a variety of stains. In addition, proteins were extracted, and molecular assessment of TNF-α was performed using the western blot technique. In the Sdc-1 knockout group, clinical scoring results showed a significantly more severe experimental RA; histology showed a significant increase in bone erosion, cartilage destruction, inflammation, and less granulated mast cells than the wild-type. In addition, molecular assessment of TNF-α showed more increase in expression in the Sdc-1 knockout models compared to the wild-type. Data suggest that lack of Sdc-1 enhances the inflammatory characteristics in RA. However, more molecular studies and investigations are needed to determine its exact role and possible mechanisms involved.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Arthritis, Experimental/genetics
- Arthritis, Experimental/pathology
- Arthritis, Experimental/immunology
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/immunology
- Collagen Type II/genetics
- Disease Models, Animal
- Mice, Inbred BALB C
- Mice, Knockout
- Syndecan-1/genetics
- Syndecan-1/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, Beirut, 1107-2020, Lebanon
| | - Laura Dosh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, Beirut, 1107-2020, Lebanon
| | - Rima Farhat
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, Beirut, 1107-2020, Lebanon
| | - Tatiana Daccache
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, Beirut, 1107-2020, Lebanon
| | - Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, Beirut, 1107-2020, Lebanon
| | - Maya Ghazi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, Beirut, 1107-2020, Lebanon
| | - Jihad Hawi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, Beirut, 1107-2020, Lebanon
| | - Angelo Leone
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, 90127, Italy
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, Beirut, 1107-2020, Lebanon.
| |
Collapse
|
5
|
Zhou X, Xiao X, Kortuem KM, Einsele H. Bispecific Antibodies in the Treatment of Multiple Myeloma. Hematol Oncol Clin North Am 2024; 38:361-381. [PMID: 38199897 DOI: 10.1016/j.hoc.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The treatment of multiple myeloma (MM) is evolving rapidly. In recent years, T-cell-based novel immunotherapies emerged as new treatment strategies for patients with relapsed/refractory MM, including highly effective new options like chimeric antigen receptor (CAR)-modified T cells and bispecific antibodies (bsAbs). Currently, B-cell maturation antigen is the most commonly used target antigen for CAR T-cell and bsAb therapies in MM. Results from different clinical trials have demonstrated promising efficacy and acceptable safety profile of bsAb in RRMM.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Xianghui Xiao
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Klaus Martin Kortuem
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
6
|
Ho JW, Dawood ZS, Taylor ME, Liggett MR, Jin G, Jaishankar D, Nadig SN, Bharat A, Alam HB. THE NEUROENDOTHELIAL AXIS IN TRAUMATIC BRAIN INJURY: MECHANISMS OF MULTIORGAN DYSFUNCTION, NOVEL THERAPIES, AND FUTURE DIRECTIONS. Shock 2024; 61:346-359. [PMID: 38517237 DOI: 10.1097/shk.0000000000002307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Severe traumatic brain injury (TBI) often initiates a systemic inflammatory response syndrome, which can potentially culminate into multiorgan dysfunction. A central player in this cascade is endotheliopathy, caused by perturbations in homeostatic mechanisms governed by endothelial cells due to injury-induced coagulopathy, heightened sympathoadrenal response, complement activation, and proinflammatory cytokine release. Unique to TBI is the potential disruption of the blood-brain barrier, which may expose neuronal antigens to the peripheral immune system and permit neuroinflammatory mediators to enter systemic circulation, propagating endotheliopathy systemically. This review aims to provide comprehensive insights into the "neuroendothelial axis" underlying endothelial dysfunction after TBI, identify potential diagnostic and prognostic biomarkers, and explore therapeutic strategies targeting these interactions, with the ultimate goal of improving patient outcomes after severe TBI.
Collapse
Affiliation(s)
- Jessie W Ho
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Zaiba Shafik Dawood
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Meredith E Taylor
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Marjorie R Liggett
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Guang Jin
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dinesh Jaishankar
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Satish N Nadig
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Ankit Bharat
- Department of Surgery, Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hasan B Alam
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
7
|
Kunnathattil M, Rahul P, Skaria T. Soluble vascular endothelial glycocalyx proteoglycans as potential therapeutic targets in inflammatory diseases. Immunol Cell Biol 2024; 102:97-116. [PMID: 37982607 DOI: 10.1111/imcb.12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
Reducing the activity of cytokines and leukocyte extravasation is an emerging therapeutic strategy to limit tissue-damaging inflammatory responses and restore immune homeostasis in inflammatory diseases. Proteoglycans embedded in the vascular endothelial glycocalyx, which regulate the activity of cytokines to restrict the inflammatory response in physiological conditions, are proteolytically cleaved in inflammatory diseases. Here we critically review the potential of proteolytically shed, soluble vascular endothelial glycocalyx proteoglycans to modulate pathological inflammatory responses. Soluble forms of the proteoglycans syndecan-1, syndecan-3 and biglycan exert beneficial anti-inflammatory effects by the removal of chemokines, suppression of proinflammatory cytokine expression and leukocyte migration, and induction of autophagy of proinflammatory M1 macrophages. By contrast, soluble versikine and decorin enhance proinflammatory responses by increasing inflammatory cytokine synthesis and leukocyte migration. Endogenous syndecan-2 and mimecan exert proinflammatory effects, syndecan-4 and perlecan mediate beneficial anti-inflammatory effects and glypican regulates Hh and Wnt signaling pathways involved in systemic inflammatory responses. Taken together, targeting the vascular endothelial glycocalyx-derived, soluble syndecan-1, syndecan-2, syndecan-3, syndecan-4, biglycan, versikine, mimecan, perlecan, glypican and decorin might be a potential therapeutic strategy to suppress overstimulated cytokine and leukocyte responses in inflammatory diseases.
Collapse
Affiliation(s)
- Maneesha Kunnathattil
- Department of Zoology, Government College Madappally, University of Calicut, Calicut, Kerala, India
| | - Pedapudi Rahul
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
8
|
Tanino Y. Roles of extracellular matrix in lung diseases. Fukushima J Med Sci 2024; 70:1-9. [PMID: 38267030 PMCID: PMC10867433 DOI: 10.5387/fms.2023-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/20/2023] [Indexed: 01/26/2024] Open
Abstract
Extracellular matrix (ECM) is a non-cellular constituent found in all tissues and organs. Although ECM was previously recognized as a mere "molecular glue" that supports the tissue structure of organs such as the lungs, it has recently been reported that ECM has important biological activities for tissue morphogenesis, inflammation, wound healing, and tumor progression. Proteoglycans are the main constituent of ECM, with growing evidence that proteoglycans and their associated glycosaminoglycans play important roles in the pathogenesis of several diseases. However, their roles in the lungs are incompletely understood. Leukocyte migration into the lung is one of the main aspects involved in the pathogenesis of several lung diseases. Glycosaminoglycans bind to chemokines and their interaction fine-tunes leukocyte migration into the affected organs. This review focuses on the role chemokine and glycosaminoglycan interactions in neutrophil migration into the lung. Furthermore, this review presents the role of proteoglycans such as syndecan, versican, and hyaluronan in inflammatory and fibrotic lung diseases.
Collapse
Affiliation(s)
- Yoshinori Tanino
- Department of Pulmonary Medicine, Fukushima Medical University School of Medicine
| |
Collapse
|
9
|
Ostrowska-Lesko M, Rajtak A, Moreno-Bueno G, Bobinski M. Scientific and clinical relevance of non-cellular tumor microenvironment components in ovarian cancer chemotherapy resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189036. [PMID: 38042260 DOI: 10.1016/j.bbcan.2023.189036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
The tumor microenvironment (TME) components play a crucial role in cancer cells' resistance to chemotherapeutic agents. This phenomenon is exceptionally fundamental in patients with ovarian cancer (OvCa), whose outcome depends mainly on their response to chemotherapy. Until now, most reports have focused on the role of cellular components of the TME, while less attention has been paid to the stroma and other non-cellular elements of the TME, which may play an essential role in the therapy resistance. Inhibiting these components could help define new therapeutic targets and potentially restore chemosensitivity. The aim of the present article is both to summarize the knowledge about non-cellular components of the TME in the development of OvCa chemoresistance and to suggest targeting of non-cellular elements of the TME as a valuable strategy to overcome chemoresistance and to develop new therapeutic strategies in OvCA patients.
Collapse
Affiliation(s)
- Marta Ostrowska-Lesko
- Chair and Department of Toxicology, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland.
| | - Alicja Rajtak
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland
| | - Gema Moreno-Bueno
- Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Sols-Morreale' (IIBm-CISC), Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Spain; Fundación MD Anderson Internacional (FMDA), Spain.
| | - Marcin Bobinski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland.
| |
Collapse
|
10
|
Zouhri A, Bouddine T, Menyiy NE, Kachkoul R, El-Mernissi Y, Siddique F, Moubachir R, Khallouki F, Salamatullah AM, Wondmie GF, Bourhia M, Hajji L. Ionomic analysis, polyphenols characterization, analgesic, antiinflammatory and antioxidant capacities of Cistus laurifolius leaves: in vitro, in vivo, and in silico investigations. Sci Rep 2023; 13:22890. [PMID: 38129637 PMCID: PMC10739726 DOI: 10.1038/s41598-023-50031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
This study aims to investigate the chemical and mineral composition, antioxidant, analgesic, and anti-inflammatory effects of the aqueous extract of Cistus laurifolius var. atlanticus Pit. (Cistaceae). Additionally, molecular docking interactions of various ligands with antioxidant protein target urate oxidase (1R4U) and anti-inflammatory protein target cyclooxygenase-2 (3LN1), revealing potential dual activities and highlighting specific residue interactions. The chemical characterization focused at first glance on the mineral composition which showed that C. laurifolius extract is a mineral-rich source of potassium (K), magnesium (Mg), manganese (Mn), sodium (Na), phosphorus (P), and zinc (Zn). We next performed, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis, the latter showed various polyphenols in C. laurifolius extract including Gallic acid as the predominant polyphenol. Isoquercetin, Taxifolin and Astragalin were also among the major flavonoids detected. The antioxidant capacity of C. laurifolius leaves was tested using 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1- picrylhydrazyl (DPPH) and reducing power (RP) assays. In vitro analysis of the anti-inflammatory property of C. laurifolius leaves was conducted by the albumin denaturation test and the in vivo was assessed in the sequel by carrageenan-induced paw edema test. The analgesic activity was evaluated in vivo using tail flick, acetic acid-induced contortion, and plantar tests. The findings showed that the leave extract had a powerful antioxidant activity with an IC50 values of 2.92 ± 0.03 µg/mL (DPPH) and 2.59 ± 0.09 µg/mL (in RP test). The studied extract strongly abolished the induced inflammation (82%). Albumin denaturation test recorded an IC50 value of 210 µg/mL. Importantly, the oral administration of C. laurifolius extract considerably reduced the nociceptive effect of acetic acid in rats, showing a significant analgesic effect in a dose-related manner. Altogether, our results showed that C. laurifolius can be a promising source of phytochemicals for drug development potential.
Collapse
Affiliation(s)
- Aziz Zouhri
- Bioactives and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University, B.P. 11201, Meknes, Morocco.
- Laboratory of Pharmacology, National Agency for Medicinal and Aromatic Plants, 34025, Taounate, Morocco.
| | - Toufik Bouddine
- Bioactives and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University, B.P. 11201, Meknes, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency for Medicinal and Aromatic Plants, 34025, Taounate, Morocco
| | - Rabie Kachkoul
- Laboratory of Biochemistry, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Km 22, Road of Sidi Harazem, BP 1893, Fez, Morocco
| | - Yahya El-Mernissi
- Research Unit in Applied Chemistry, Faculty of Science and Techniques, Abdelmalek Essaadi University, 32003, Al Hoceima, Morocco
| | - Farhan Siddique
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174, Norrköping, Sweden
| | - Rania Moubachir
- Bioactives and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University, B.P. 11201, Meknes, Morocco
| | - Farid Khallouki
- Ethnopharmacology and pharmacognosy Team, Department of Biology Moulay Ismail University of Meknes, BP. 52000, Errachidia, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | | | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, 70000, Laayoune, Morocco.
| | - Lhoussain Hajji
- Bioactives and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University, B.P. 11201, Meknes, Morocco
| |
Collapse
|
11
|
Saravi B, Goebel U, Hassenzahl LO, Jung C, David S, Feldheiser A, Stopfkuchen-Evans M, Wollborn J. Capillary leak and endothelial permeability in critically ill patients: a current overview. Intensive Care Med Exp 2023; 11:96. [PMID: 38117435 PMCID: PMC10733291 DOI: 10.1186/s40635-023-00582-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Capillary leak syndrome (CLS) represents a phenotype of increased fluid extravasation, resulting in intravascular hypovolemia, extravascular edema formation and ultimately hypoperfusion. While endothelial permeability is an evolutionary preserved physiological process needed to sustain life, excessive fluid leak-often caused by systemic inflammation-can have detrimental effects on patients' outcomes. This article delves into the current understanding of CLS pathophysiology, diagnosis and potential treatments. Systemic inflammation leading to a compromise of endothelial cell interactions through various signaling cues (e.g., the angiopoietin-Tie2 pathway), and shedding of the glycocalyx collectively contribute to the manifestation of CLS. Capillary permeability subsequently leads to the seepage of protein-rich fluid into the interstitial space. Recent insights into the importance of the sub-glycocalyx space and preserving lymphatic flow are highlighted for an in-depth understanding. While no established diagnostic criteria exist and CLS is frequently diagnosed by clinical characteristics only, we highlight more objective serological and (non)-invasive measurements that hint towards a CLS phenotype. While currently available treatment options are limited, we further review understanding of fluid resuscitation and experimental approaches to target endothelial permeability. Despite the improved understanding of CLS pathophysiology, efforts are needed to develop uniform diagnostic criteria, associate clinical consequences to these criteria, and delineate treatment options.
Collapse
Affiliation(s)
- Babak Saravi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center, University of Freiburg, University of Freiburg, Freiburg, Germany.
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care, St. Franziskus-Hospital, Muenster, Germany
| | - Lars O Hassenzahl
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Christian Jung
- Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University, Duesseldorf, Germany
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Aarne Feldheiser
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Evang. Kliniken Essen-Mitte, Huyssens-Stiftung/Knappschaft, University of Essen, Essen, Germany
| | - Matthias Stopfkuchen-Evans
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Jakob Wollborn
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| |
Collapse
|
12
|
Sági B, Kun S, Jakabfi-Csepregi RK, Sulyok E, Csiky B. Acute Vascular Response to Hemodialysis as Measured by Serum Syndecan-1 and Endothelin-1 Levels as Well as Vascular Stiffness. J Clin Med 2023; 12:7384. [PMID: 38068435 PMCID: PMC10707344 DOI: 10.3390/jcm12237384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 10/08/2024] Open
Abstract
Background: Chronic hemodialysis (HD) patients have a very high cardiovascular risk. Acute vascular changes during dialysis mediated by factors of the endothelium may have a crucial role in this. The aim of this article is to study the acute vascular changes during HD. Methods: In 29 consecutive chronic HD patients (age: 65.6 ± 10.4 years), their pre-, mid-, and post-HD plasma syndecan-1 (SDC-1) and endothelin-1 (ET-1) levels were measured. Applanation tonometry was performed before HD. Results: Their SDC-1 levels increased during HD (p = 0.004). Males had higher ET-1 levels. The patients were divided into two groups based on their pre-HD pulse wave velocity (PWV): PWV ≥ 12 m/s and PWV < 12 m/s. The pre-HD and mid-HD SDC-1 levels were higher in the group with a PWV ≥ 12 m/s (10.174 ± 2.568 vs. 7.928 ± 1.794 ng/mL, p = 0.013, and 10.319 ± 3.482 vs. 8.248 ± 1.793 ng/mL, p = 0.044, respectively). The post-HD ET-1 levels were higher in the patient group with a PWV ≥ 12 m/s (10.88 ± 3.00 vs. 8.05 ± 3.48 pg/l, p = 0.027). Patients with a PWV ≥ 12 m/s had higher pre-HD peripheral and aortic systolic blood pressures (p < 0.05). The total cholesterol correlated with the SDC-1 decrease during HD (r = 0.539; p = 0.008). The pre-, mid-, and post-HD SDC-1 correlated with ultrafiltration (r = 0.432, p = 0.019; r = 0.377, p = 0.044; and r = 0.401, p = 0.012, respectively). Conclusion: SDC-1 and ET-1 contribute to the vascular changes observed during HD, and they have correlations with some cardiovascular risk factors.
Collapse
Affiliation(s)
- Balázs Sági
- 2nd Department of Internal Medicine and Nephrology, Diabetes Center, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.S.)
- Fresenius Medical Care Dialysis Centers, 7624 Pécs, Hungary
| | - Szilárd Kun
- 2nd Department of Internal Medicine and Nephrology, Diabetes Center, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.S.)
| | | | - Endre Sulyok
- Doctoral School of Health Sciences, University of Pécs, 7624 Pécs, Hungary;
| | - Botond Csiky
- 2nd Department of Internal Medicine and Nephrology, Diabetes Center, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.S.)
- Fresenius Medical Care Dialysis Centers, 7624 Pécs, Hungary
| |
Collapse
|
13
|
Sajman J, Yakovian O, Unger Deshet N, Almog S, Horn G, Waks T, Globerson Levin A, Sherman E. Nanoscale CAR Organization at the Immune Synapse Correlates with CAR-T Effector Functions. Cells 2023; 12:2261. [PMID: 37759484 PMCID: PMC10527520 DOI: 10.3390/cells12182261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
T cells expressing chimeric antigen receptors (CARs) are at the forefront of clinical treatment of cancers. Still, the nanoscale organization of CARs at the interface of CAR-Ts with target cells, which is essential for TCR-mediated T cell activation, remains poorly understood. Here, we studied the nanoscale organization of CARs targeting CD138 proteoglycans in such fixed and live interfaces, generated optimally for single-molecule localization microscopy. CARs showed significant self-association in nanoclusters that was enhanced in interfaces with on-target cells (SKOV-3, CAG, FaDu) relative to negative cells (OVCAR-3). CARs also segregated more efficiently from the abundant membrane phosphatase CD45 in CAR-T cells forming such interfaces. CAR clustering and segregation from CD45 correlated with the effector functions of Ca++ influx and target cell killing. Our results shed new light on the nanoscale organization of CARs on the surfaces of CAR-Ts engaging on- and off-target cells, and its potential significance for CAR-Ts' efficacy and safety.
Collapse
Affiliation(s)
- Julia Sajman
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
- Jerusalem College of Technology, Jerusalem 91160, Israel
| | - Oren Yakovian
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | - Naamit Unger Deshet
- Immunology and Advanced CAR-T Cell Therapy Laboratory, Research & Development Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Shaked Almog
- Immunology and Advanced CAR-T Cell Therapy Laboratory, Research & Development Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Galit Horn
- Immunology and Advanced CAR-T Cell Therapy Laboratory, Research & Development Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Tova Waks
- Immunology and Advanced CAR-T Cell Therapy Laboratory, Research & Development Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Anat Globerson Levin
- Immunology and Advanced CAR-T Cell Therapy Laboratory, Research & Development Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Dotan Center for Advanced Therapies, Tel-Aviv Sourasky Medical Center and Tel Aviv University, Tel Aviv 6423906, Israel
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
14
|
Li JC, Wang LJ, Feng F, Chen TT, Shi WG, Liu LP. Role of heparanase in sepsis‑related acute kidney injury (Review). Exp Ther Med 2023; 26:379. [PMID: 37456170 PMCID: PMC10347300 DOI: 10.3892/etm.2023.12078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Sepsis-related acute kidney injury (S-AKI) is a common and significant complication of sepsis in critically ill patients, which can often only be treated with antibiotics and medications that reduce S-AKI symptoms. The precise mechanism underlying the onset of S-AKI is still unclear, thus hindering the development of new strategies for its treatment. Therefore, it is necessary to explore the pathogenesis of S-AKI to identify biomarkers and therapeutic targets for its early diagnosis and treatment. Heparanase (HPA), the only known enzyme that cleaves the side chain of heparan sulfate, has been widely studied in relation to tumor metabolism, procoagulant activity, angiogenesis, inflammation and sepsis. It has been reported that HPA plays an important role in the progression of S-AKI. The aim of the present review was to provide an overview of the function of HPA in S-AKI and to summarize its underlying molecular mechanisms, including mediating inflammatory response, immune response, autophagy and exosome biogenesis. It is anticipated that emerging discoveries about HPA in S-AKI will support HPA as a potential biomarker and therapeutic target to combat S-AKI.
Collapse
Affiliation(s)
- Jian-Chun Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lin-Jun Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Fei Feng
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ting-Ting Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wen-Gui Shi
- Cuiying Biomedical Research Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Li-Ping Liu
- Department of Emergency, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
15
|
Hou Z, Zhang X, Gao Y, Geng J, Jiang Y, Dai H, Wang C. Serum Osteopontin, KL-6, and Syndecan-4 as Potential Biomarkers in the Diagnosis of Coal Workers' Pneumoconiosis: A Case-Control Study. Pharmgenomics Pers Med 2023; 16:537-549. [PMID: 37284491 PMCID: PMC10241210 DOI: 10.2147/pgpm.s409644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
Background Coal worker's pneumoconiosis (CWP) is a chronic occupational disease mainly caused by coal dust inhalation in miners. This study aimed to investigate the clinical value of Osteopontin (OPN), KL-6, Syndecan-4 and Gremlin-1 as serum biomarkers in CWP. Patients and Methods We integrated reported lung tissues transcriptome data in pneumoconiosis patients with silica-exposed alveolar macrophage microarray data to identify four CWP-associated serum biomarkers. The serum concentrations of Osteopontin, Krebs von den Lungen-6 (KL-6), Syndecan-4 and Gremlin-1 were measured in 100 healthy controls (HCs), 100 dust-exposed workers (DEWs) and 200 patients of CWP. Receiver operating characteristic (ROC) curve analysis was used to determine the sensitivity, specificity, cut-off value and area under the curve (AUC) value of biomarkers. Results The pulmonary function parameters decreased sequentially, and the serum OPN, KL-6, Syndecan-4 and Gremlin-1 concentrations were increased sequentially among the HC, DEW and CWP groups. Among all participants, multivariable analysis revealed that these four biomarkers were negatively correlated with the pulmonary function parameters (all p<0.05). Compared with HCs, patients with higher OPN, KL-6, Syndecan-4 and Gremlin-1 had higher risk for CWP. The combination of OPN, KL-6, and Syndecan-4 can improve the diagnostic sensitivity and specificity of CWP patients differentiated from HCs or DEWs. Conclusion OPN, KL-6 and Syndecan-4 are novel biomarkers that can be used for CWP auxiliary diagnosis. The combination of three biomarkers can improve the diagnostic values of CWP.
Collapse
Affiliation(s)
- Zhifei Hou
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xinran Zhang
- Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yong Gao
- Department of Pulmonary and Critical Care Medicine, Sinopharm Tongmei General Hospital, Datong, Shanxi Province, People’s Republic of China
| | - Jing Geng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yu Jiang
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Huaping Dai
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Chen Wang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
16
|
Yu H, Song YY, Li XH. Early diabetic kidney disease: Focus on the glycocalyx. World J Diabetes 2023; 14:460-480. [PMID: 37273258 PMCID: PMC10236994 DOI: 10.4239/wjd.v14.i5.460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
The incidence of diabetic kidney disease (DKD) is sharply increasing worldwide. Microalbuminuria is the primary clinical marker used to identify DKD, and its initiating step in diabetes is glomerular endothelial cell dysfunction, particularly glycocalyx impairment. The glycocalyx found on the surface of glomerular endothelial cells, is a dynamic hydrated layer structure composed of pro-teoglycans, glycoproteins, and some adsorbed soluble components. It reinforces the negative charge barrier, transduces the shear stress, and mediates the interaction of blood corpuscles and podocytes with endothelial cells. In the high-glucose environment of diabetes, excessive reactive oxygen species and proinflammatory cytokines can damage the endothelial glycocalyx (EG) both directly and indirectly, which induces the production of microalbuminuria. Further research is required to elucidate the role of the podocyte glycocalyx, which may, together with endothelial cells, form a line of defense against albumin filtration. Interestingly, recent research has confirmed that the negative charge barrier function of the glycocalyx found in the glomerular basement membrane and its repulsion effect on albumin is limited. Therefore, to improve the early diagnosis and treatment of DKD, the potential mechanisms of EG degradation must be analyzed and more responsive and controllable targets must be explored. The content of this review will provide insights for future research.
Collapse
Affiliation(s)
- Hui Yu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Yun Song
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Xian-Hua Li
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
17
|
Krishnan SR, Bebawy M. Circulating biosignatures in multiple myeloma and their role in multidrug resistance. Mol Cancer 2023; 22:79. [PMID: 37120508 PMCID: PMC10148481 DOI: 10.1186/s12943-022-01683-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/14/2022] [Indexed: 05/01/2023] Open
Abstract
A major obstacle to chemotherapeutic success in cancer treatment is the development of drug resistance. This occurs when a tumour fails to reduce in size after treatment or when there is clinical relapse after an initial positive response to treatment. A unique and serious type of resistance is multidrug resistance (MDR). MDR causes the simultaneous cross resistance to unrelated drugs used in chemotherapy. MDR can be acquired through genetic alterations following drug exposure, or as discovered by us, through alternative pathways mediated by the transfer of functional MDR proteins and nucleic acids by extracellular vesicles (M Bebawy V Combes E Lee R Jaiswal J Gong A Bonhoure GE Grau, 23 9 1643 1649, 2009).Multiple myeloma is an incurable cancer of bone marrow plasma cells. Treatment involves high dose combination chemotherapy and patient response is unpredictable and variable due to the presence of multisite clonal tumour infiltrates. This clonal heterogeneity can contribute to the development of MDR. There is currently no approved clinical test for the minimally invasive testing of MDR in myeloma.Extracellular vesicles comprise a group of heterogeneous cell-derived membranous structures which include; exosomes, microparticles (microvesicles), migrasomes and apoptotic bodies. Extracellular vesicles serve an important role in cellular communication through the intercellular transfer of cellular protein, nucleic acid and lipid cargo. Of these, microparticles (MPs) originate from the cell plasma membrane and vary in size from 0.1-1um. We have previously shown that MPs confer MDR through the transfer of resistance proteins and nucleic acids. A test for the early detection of MDR would benefit clinical decision making, improve survival and support rational drug use. This review focuses on microparticles as novel clinical biomarkers for the detection of MDR in Myeloma and discusses their role in the therapeutic management of the disease.
Collapse
|
18
|
de Araújo ÉMR, Meneses GC, Carioca AAF, Martins AMC, Daher EDF, da Silva GB. Use of probiotics in patients with chronic kidney disease on hemodialysis: a randomized clinical trial. J Bras Nefrol 2023; 45:152-161. [PMID: 36112723 PMCID: PMC10627128 DOI: 10.1590/2175-8239-jbn-2022-0021en] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Supplementation with probiotics for patients with chronic kidney disease (CKD) may be associated with decreased systemic inflammation. OBJECTIVE To assess the impact of oral supplementation with probiotics for patients with CKD on hemodialysis. METHOD This double-blind randomized clinical trial included 70 patients on hemodialysis; 32 were given oral supplementation with probiotics and 38 were in the placebo group. Blood samples were collected at the start of the study and patients were given oral supplementation with probiotics or placebo for three months. The probiotic supplement comprised four strains of encapsulated Gram-positive bacteria: Lactobacillus Plantarum A87, Lactobacillus rhamnosus, Bifidobacterium bifidum A218 and Bifidobacterium longum A101. Patients were given one capsule per day for 3 months. Blood samples were taken throughout the study to check for inflammatory biomarkers. Non-traditional biomarkers Syndecan-1, IFN-y, NGAL, and cystatin C were measured using an ELISA kit, along with biochemical parameters CRP, calcium, phosphorus, potassium, PTH, GPT, hematocrit, hemoglobin, glucose, and urea. RESULTS Patients given supplementation with probiotics had significant decreases in serum levels of syndecan-1 (239 ± 113 to 184 ± 106 ng/mL, p = 0.005); blood glucose levels also decreased significantly (162 ± 112 to 146 ± 74 mg/dL, p = 0.02). CONCLUSION Administration of probiotics to patients with advanced CKD was associated with decreases in syndecan-1 and blood glucose levels, indicating potential improvements in metabolism and decreased systemic inflammation.
Collapse
Affiliation(s)
| | | | | | - Alice Maria Costa Martins
- Universidade Federal do Ceará, Programas de Pós-Graduação em
Farmacologia e Ciências Farmacêuticas, Fortaleza, CE, Brazil
| | - Elizabeth De Francesco Daher
- Universidade Federal do Ceará, Faculdade de Medicina, Programa de
Pós-graduação em Ciências Médicas, Departamento de Medicina Clínica, Fortaleza, CE,
Brazil
| | - Geraldo Bezerra da Silva
- Universidade de Fortaleza, Programa de Pós-Graduação em Ciências
Médicas, Fortaleza, CE, Brazil
- Universidade Federal do Ceará, Faculdade de Medicina, Programa de
Pós-graduação em Ciências Médicas, Departamento de Medicina Clínica, Fortaleza, CE,
Brazil
| |
Collapse
|
19
|
Liang D, Zeng X, Yao M, Li F, Lin J, Zhang L, Liu J, Huang L. Dynamic changes in the glycocalyx and clinical outcomes in patients undergoing endovascular treatments for large vessel occlusion. Front Neurol 2023; 14:1046915. [PMID: 36779062 PMCID: PMC9909103 DOI: 10.3389/fneur.2023.1046915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Purpose We aimed to verify the prognostic value of the glycocalyx as a marker of blood-brain barrier damage in patients with acute ischemic stroke undergoing endovascular therapy. Methods We recruited patients with large vessel occlusion who were undergoing recanalization and tested their glycocalyx at multiple time points. On the basis of the 90-day follow-up data, the patients were divided into a survivor group and a nonsurvivor group. In addition, neurological function was tracked, and patients were divided into a neurological deterioration group and a group without neurological deterioration. Associations between outcomes and dynamic changes in the glycocalyx were determined using a linear mixed model, and significant factors were used as covariates. Results Nonsurvivors and patients with neurological deterioration had significantly higher syndecan-1 concentrations than survivors and patients without neurological deterioration, and syndecan-1 tended to decline after endovascular therapy (p < 0.05). The increased level of syndecan-1 at 36 h after endovascular treatment was positively correlated with the National Institute of Health Stroke Scale score for neurological deterioration (r = 0.702, p = 0.005). However, there was no significant difference in the level of hyaluronic acid or heparan sulfate in the plasma of patients with different clinical outcomes. Conclusion Pre-reperfusion syndecan-1 levels in patients with large vessel occlusion stroke are associated with 90-day mortality and the re-degradation of syndecan-1 is positively associated with neurological deterioration.
Collapse
Affiliation(s)
- Dan Liang
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China,Department of Neurology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Xiuli Zeng
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Mingzheng Yao
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Fei Li
- Department of Neurology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Jiaxing Lin
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liang Zhang
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jialin Liu
- Department of Neurology, Meizhou People's Hospital, Meizhou, China
| | - Li'an Huang
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China,*Correspondence: Li'an Huang ✉
| |
Collapse
|
20
|
Matsuzaki Y, Wang X, Tanino Y, Ikeda K. Insufficient Syndecan-4 is associated with chronic lung disease development in preterm infants. Pediatr Int 2023; 65:e15413. [PMID: 36334036 DOI: 10.1111/ped.15413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/04/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yohei Matsuzaki
- Department of Pediatrics, School of Medicine, Keio University, Tokyo, Japan
- Department of Pediatrics, Yokohama Municipal Citizen's Hospital, Yokohama, Kanagawa, Japan
| | - Xintao Wang
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yoshinori Tanino
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kazushige Ikeda
- Department of Pediatrics, School of Medicine, Keio University, Tokyo, Japan
- Division of Neonatology, Department of Pediatrics, Saitama City hospital, Saitama, Japan
| |
Collapse
|
21
|
Cusack R, Leone M, Rodriguez AH, Martin-Loeches I. Endothelial Damage and the Microcirculation in Critical Illness. Biomedicines 2022; 10:biomedicines10123150. [PMID: 36551905 PMCID: PMC9776078 DOI: 10.3390/biomedicines10123150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial integrity maintains microcirculatory flow and tissue oxygen delivery. The endothelial glycocalyx is involved in cell signalling, coagulation and inflammation. Our ability to treat critically ill and septic patients effectively is determined by understanding the underpinning biological mechanisms. Many mechanisms govern the development of sepsis and many large trials for new treatments have failed to show a benefit. Endothelial dysfunction is possibly one of these biological mechanisms. Glycocalyx damage is measured biochemically. Novel microscopy techniques now mean the glycocalyx can be indirectly visualised, using sidestream dark field imaging. How the clinical visualisation of microcirculation changes relate to biochemical laboratory measurements of glycocalyx damage is not clear. This article reviews the evidence for a relationship between clinically evaluable microcirculation and biological signal of glycocalyx disruption in various diseases in ICU. Microcirculation changes relate to biochemical evidence of glycocalyx damage in some disease states, but results are highly variable. Better understanding and larger studies of this relationship could improve phenotyping and personalised medicine in the future. Damage to the glycocalyx could underpin many critical illness pathologies and having real-time information on the glycocalyx and microcirculation in the future could improve patient stratification, diagnosis and treatment.
Collapse
Affiliation(s)
- Rachael Cusack
- Department of Intensive Care Medicine, St. James’s Hospital, James’s Street, D08 NHY1 Dublin, Ireland
- School of Medicine, Trinity College Dublin, College Green, D02 R590 Dublin, Ireland
| | - Marc Leone
- Department of Anaesthesiology and Intensive Care Unit, Hospital Nord, Assistance Publique Hôpitaux de Marseille, Aix Marseille University, 13015 Marseille, France
| | - Alejandro H. Rodriguez
- Intensive Care Unit, Hospital Universitario Joan XXIII, 43005 Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgil, 43007 Tarragona, Spain
- Departament Medicina I Cirurgia, Universitat Rovira i Virgili, 43003 Tarragona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, St. James’s Hospital, James’s Street, D08 NHY1 Dublin, Ireland
- School of Medicine, Trinity College Dublin, College Green, D02 R590 Dublin, Ireland
- Correspondence:
| |
Collapse
|
22
|
Yuan Z, Li Y, Shi M, Yang F, Gao J, Yao J, Zhang MQ. SOTIP is a versatile method for microenvironment modeling with spatial omics data. Nat Commun 2022; 13:7330. [PMID: 36443314 PMCID: PMC9705407 DOI: 10.1038/s41467-022-34867-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
The rapidly developing spatial omics generated datasets with diverse scales and modalities. However, most existing methods focus on modeling dynamics of single cells while ignore microenvironments (MEs). Here we present SOTIP (Spatial Omics mulTIPle-task analysis), a versatile method incorporating MEs and their interrelationships into a unified graph. Based on this graph, spatial heterogeneity quantification, spatial domain identification, differential microenvironment analysis, and other downstream tasks can be performed. We validate each module's accuracy, robustness, scalability and interpretability on various spatial omics datasets. In two independent mouse cerebral cortex spatial transcriptomics datasets, we reveal a gradient spatial heterogeneity pattern strongly correlated with the cortical depth. In human triple-negative breast cancer spatial proteomics datasets, we identify molecular polarizations and MEs associated with different patient survivals. Overall, by modeling biologically explainable MEs, SOTIP outperforms state-of-art methods and provides some perspectives for spatial omics data exploration and interpretation.
Collapse
Affiliation(s)
- Zhiyuan Yuan
- Institute of Science and Technology for Brain-Inspired Intelligence; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
- Tencent AI Lab, Shenzhen, China.
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Yisi Li
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Minglei Shi
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, School of Medicine, Tsinghua University, Beijing, 100084, China
| | | | - Juntao Gao
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing, 100084, China
| | | | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing, 100084, China.
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, School of Medicine, Tsinghua University, Beijing, 100084, China.
- Department of Biological Sciences, Center for Systems Biology, The University of Texas, Richardson, TX, 75080-3021, USA.
| |
Collapse
|
23
|
Heparanase: A Novel Therapeutic Target for the Treatment of Atherosclerosis. Cells 2022; 11:cells11203198. [PMID: 36291066 PMCID: PMC9599978 DOI: 10.3390/cells11203198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and its management places a huge burden on healthcare systems through hospitalisation and treatment. Atherosclerosis is a chronic inflammatory disease of the arterial wall resulting in the formation of lipid-rich, fibrotic plaques under the subendothelium and is a key contributor to the development of CVD. As such, a detailed understanding of the mechanisms involved in the development of atherosclerosis is urgently required for more effective disease treatment and prevention strategies. Heparanase is the only mammalian enzyme known to cleave heparan sulfate of heparan sulfate proteoglycans, which is a key component of the extracellular matrix and basement membrane. By cleaving heparan sulfate, heparanase contributes to the regulation of numerous physiological and pathological processes such as wound healing, inflammation, tumour angiogenesis, and cell migration. Recent evidence suggests a multifactorial role for heparanase in atherosclerosis by promoting underlying inflammatory processes giving rise to plaque formation, as well as regulating lesion stability. This review provides an up-to-date overview of the role of heparanase in physiological and pathological processes with a focus on the emerging role of the enzyme in atherosclerosis.
Collapse
|
24
|
Sharma P, Kapoor D, Shukla D. Role of Heparanase and Syndecan-1 in HSV-1 Release from Infected Cells. Viruses 2022; 14:2156. [PMID: 36298711 PMCID: PMC9612286 DOI: 10.3390/v14102156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Herpes Simplex Virus 1 (HSV-1) is a neurotropic human virus that belongs to the Alphaherpesvirinae subfamily of Herpesviridae. Establishment of its productive infection and progression of disease pathologies depend largely on successful release of virions from the virus-producing cells. HSV-1 is known to exploit many host factors for its release. Recent studies have shown that heparanase (HPSE) is one such host enzyme that is recruited for this purpose. It is an endoglycosidase that cleaves heparan sulfate (HS) from the surface of infected cells. HS is a virus attachment coreceptor that is commonly found on cell surfaces as HS proteoglycans e.g., syndecan-1 (SDC-1). The current model suggests that HSV-1 during the late stage of infection upregulates HPSE, which in turn enhances viral release by removing the virus-trapping HS moieties. In addition to its role in directly enabling viral release, HPSE accelerates the shedding of HS-containing ectodomains of SDC-1, which enhances HSV-1 release via a similar mechanism by upregulating CREB3 and COPII proteins. This review outlines the role of HPSE and SDC-1 as newly assigned host factors that facilitate HSV-1 release during a lytic infection cycle.
Collapse
Affiliation(s)
- Pankaj Sharma
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Divya Kapoor
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
25
|
de Araújo ÉMR, Meneses GC, Carioca AAF, Martins AMC, Daher EDF, da Silva Junior GB. Uso de probióticos em pacientes com doença renal crônica em hemodiálise: um ensaio clínico randomizado. J Bras Nefrol 2022. [DOI: 10.1590/2175-8239-jbn-2022-0021pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo Introdução: A suplementação com probióticos na doença renal crônica (DRC) pode estar associada à redução do processo inflamatório sistêmico. Objetivo: Avaliar a suplementação oral com probióticos em pacientes com DRC em hemodiálise. Método: Ensaio clínico, duplo cego, randomizado com 70 pacientes em hemodiálise, sendo 32 do grupo que recebeu o suplemento de probióticos e 38 do grupo placebo. Inicialmente ocorreu a coleta de sangue e suplementação oral com probióticos ou placebo durante três meses. O suplemento probiótico foi composto pela combinação de 4 cepas de bactérias Gram-positivas encapsuladas: Lactobacillus Plantarum A87, Lactobacillus rhamnosus, Bifidobacterium bifidum A218 e Bifidobacterium longum A101, sendo 1 cápsula do suplemento ao dia, durante 3 meses. Após esse período foram feitas novas coletas de sangue para dosagem dos biomarcadores inflamatórios. Foram analisados os biomarcadores não tradicionais: Syndecan-1, IFN-y, NGAL e cistatina C pelo método ELISA, e os seguintes parâmetros bioquímicos: PCR, cálcio, fósforo, potássio, PTH, TGP, hematócrito, hemoglobina, glicose e ureia. Resultados: Os pacientes que receberam suplemento tiveram diminuição significativa dos níveis séricos de syndecan-1 (de 239 ± 113 para 184 ± 106 ng/mL, p = 0,005). Outro parâmetro que diminuiu significativamente nos pacientes que receberam suplemento foi a glicemia (de 162 ± 112 para 146 ± 74 mg/dL, p = 0,02). Conclusão: O uso de probióticos na DRC avançada esteve associado à redução dos níveis de syndecan-1 e glicemia, sinalizando possível melhora no metabolismo e redução do processo inflamatório sistêmico.
Collapse
|
26
|
Histopathological, Immunohistochemical and Biochemical Studies of Murine Hepatosplenic Tissues Affected by Chronic Toxoplasmosis. J Parasitol Res 2022; 2022:2165205. [PMID: 35755604 PMCID: PMC9225867 DOI: 10.1155/2022/2165205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Toxoplasmosis is a serious health problem in humans and animals resulting from obligatory intracellular invasion of reticuloendothelial tissue by Toxoplasma gondii. The profound pathologic effect of toxoplasmosis is confined to nervous tissue, but many other organs, including the liver and spleen, are insulted. Many molecules like caspase-3, CD3, and CD138 are implicated in the tissue immune response in a trial to alleviate hazardous toxoplasmosis impact. This study aimed to investigate the effect of chronic toxoplasmosis on the liver and spleen tissues of mice using biochemical and histopathological techniques and to detect the activity and level of expression of caspase-3, CD3, and CD138 in these tissues using immunohistochemical labeling. Compared with normal control, altered normal histological features accompanied by inflammatory reaction were recorded in hepatosplenic reticuloendothelial tissues in chronically infected mice. The biochemical profile of the liver has been changed in the form of increased liver enzymes, and oxidative stress has been evidenced by elevated nitric oxide (NO) concentration in liver homogenate. The levels of caspase3, CD3, and CD138 were markedly expressed in the liver and spleen of infected mice. Our findings revealed the persistent effect of latent toxoplasmosis on the host's histological architecture, metabolic, and immunological profile, creating a continued challenging host-parasite relationship.
Collapse
|
27
|
Loka RS, Song Z, Sletten ET, Kayal Y, Vlodavsky I, Zhang K, Nguyen HM. Heparan Sulfate Mimicking Glycopolymer Prevents Pancreatic β Cell Destruction and Suppresses Inflammatory Cytokine Expression in Islets under the Challenge of Upregulated Heparanase. ACS Chem Biol 2022; 17:1387-1400. [PMID: 35658404 PMCID: PMC9251817 DOI: 10.1021/acschembio.1c00908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diabetes is a chronic disease in which the levels of blood glucose are too high because the body does not effectively produce insulin to meet its needs or is resistant to insulin. β Cells in human pancreatic islets produce insulin, which signals glucogen production by the liver and causes muscles and fat to uptake glucose. Progressive loss of insulin-producing β cells is the main cause of both type 1 and type 2 diabetes. Heparan sulfate (HS) is a ubiquitous polysaccharide found at the cell surface and in the extracellular matrix (ECM) of a variety of tissues. HS binds to and assembles proteins in ECM, thus playing important roles in the integrity of ECM (particularly basement membrane), barrier function, and ECM-cell interactions. Islet HS is highly expressed by the pancreatic β cells and critical for the survival of β cells. Heparanase is an endoglycosidase and cleaves islet HS in the pancreas, resulting in β-cell death and oxidative stress. Heparanase could also accelerate β-cell death by promoting cytokine release from ECM and secretion by activated inflammatory and endothelial cells. We demonstrate that HS-mimicking glycopolymer, a potent heparanase inhibitor, improves the survival of cultured mouse pancreatic β cells and protects HS contents under the challenge of heparanase in human pancreatic islets. Moreover, this HS-mimicking glycopolymer reduces the expression levels of cytokines (IL8, IL1β, and TNFα) and the gene encoding Toll-like Receptor 2 (TLR2) in human pancreatic islets.
Collapse
Affiliation(s)
- Ravi S Loka
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Eric T Sletten
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Yasmin Kayal
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
28
|
Rodríguez-Garzotto A, Iglesias-Docampo L, Díaz-García CV, Ruppen I, Ximénez-Embún P, Gómez C, Rodríguez-Peralto JL, de Frutos JO, Lopez-Martin JA, Grávalos C, Cortés-Funes H, Agulló-Ortuño MT. Topical heparin as an effective and safe treatment for patients with capecitabine-induced hand-foot syndrome: results of a phase IIA trial supported by proteomic profiling of skin biopsies. Ther Adv Med Oncol 2022; 14:17588359221086911. [PMID: 35356259 PMCID: PMC8958526 DOI: 10.1177/17588359221086911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Hand-foot syndrome (HFS) is a common adverse reaction associated with capecitabine chemotherapy that significantly affects the quality of life of patients. This study evaluates the safety and effectiveness of a topical heparin (TH) treatment on the clinical manifestations and anatomopathological alterations of capecitabine-induced HFS. In addition, we performed proteome profiling of skin biopsies obtained from patients with HFS at baseline and after heparin treatment. Methods: Patients with grade ⩽ 2 HFS associated with capecitabine were included in this study. The primary end point was the effectiveness of TH in reducing HFS of any grade. Clinical improvement was evaluated by clinicians, and an improvement was perceived by patients who performed a weekly visual analog scale questionnaire. Secondary end points included a comparative histological analysis and protein expression in skin biopsies at baseline and after 3 weeks of HT treatment. Proteomic profiling was carried out using quantitative isobaric labelling and subsequently validated by a T-array. Results: Twenty-one patients were included in the study. The median TH treatment time was 7.6 weeks (range = 3.6–41.6 weeks), and the median response time was 3.01 weeks (95% CI = 2.15–3.97). At the end of treatment, 19 of 21 patients (90.48%) responded to treatment with a decrease in one or more grades of HFS. None of the patients experienced adverse effects related to TH usage, nor did they suspend chemotherapy treatment. The main findings observed in skin biopsies after treatment were a decrease in hyperkeratosis and lymphocytic infiltrates. The proteomic analysis showed altered expression of 34 proteins that were mainly related to wound healing, cell growth, and the immune response. Conclusion: Based on our results, topical heparin is an effective and safe treatment for clinical manifestations of HFS, probably due to the restauration of skin homeostasis after heparin treatment, as supported by our proteomics-derived data. Trial registration: EudraCT 2009-018171-13
Collapse
Affiliation(s)
- Analia Rodríguez-Garzotto
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Laboratory of Thoracic and Clinical-Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Madrid, Spain
- Roche Farma España, Madrid, Spain
| | - Lara Iglesias-Docampo
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Laboratory of Thoracic and Clinical-Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Madrid, Spain
- Lung Cancer Group, Clinical Research Program, CNIO- H12O, Madrid, Spain
| | - C. Vanesa Díaz-García
- Laboratory of Thoracic and Clinical-Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Isabel Ruppen
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Carlos Gómez
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | - Jose A. Lopez-Martin
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Laboratory of Thoracic and Clinical-Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Cristina Grávalos
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Hernán Cortés-Funes
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - M. Teresa Agulló-Ortuño
- Laboratory of Thoracic and Clinical-Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Avda de Córdoba, s/n, 28041 Madrid, Spain
- Lung Cancer Group, Clinical Research Program, CNIO- H12O, Madrid, Spain
- Biomedical Research Networking Centre: Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Nursing, Physiotherapy and Occupational Therapy, Facultad de Fisioterapia y Enfermería, Universidad de Castilla-La Mancha (UCLM), Toledo, Spain
| |
Collapse
|
29
|
Santos Nascimento IJD, de Aquino TM, da Silva Júnior EF. Computer-Aided Drug Design of Anti-inflammatory Agents Targeting Microsomal Prostaglandin E2 Synthase-1 (mPGES-1). Curr Med Chem 2022; 29:5397-5419. [PMID: 35301943 DOI: 10.2174/0929867329666220317122948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
Inflammation is a natural process in response to external stimuli associated with organism protection. However, this reaction could be exaggerated, leading to severe damages related to physiopathological processes, such as rheumatoid arthritis, cancer, diabetes, allergies, infections, among others. Inflammation is mainly characterized by pain, increased temperature, flushing, and edema, which can be controlled using anti-inflammatory drugs. In this context, prostaglandin E2 (PGE2) inhibition has been targeted for designing new compounds with anti-inflammatory properties. It is a bioactive lipid overproduced during an inflammatory process, in which its increased production is carried out mainly by COX-1, COX-2, and microsomal prostaglandin E2 synthase-1 (mPGES-1). Recently, studies have demonstrated that mPGES-1 inhibition is a safe strategy to develop anti-inflammatory agents, which could protect against pain, acute inflammation, arthritis, autoimmune diseases, and different types of cancers. To decrease production costs and increase the probability of discovering active substances, computer-aided drug design (CADD) approaches have been increasingly used for designing new inhibitors. Thus, this review will cover all aspects involving high-throughput virtual screening, molecular docking, dynamics, fragment-based drug design, quantitative structure-activity relationship in seeking new promising mPGES-1 inhibitors.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Department of Pharmacy, Estácio of Alagoas College, Maceió, Brazil
| | - Thiago Mendonça de Aquino
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | - Edeildo Ferreira da Silva Júnior
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
30
|
Arora G, Sajid A, Chuang YM, Dong Y, Gupta A, Gambardella K, DePonte K, Almeras L, Dimopolous G, Fikrig E. Immunomodulation by Mosquito Salivary Protein AgSAP Contributes to Early Host Infection by Plasmodium. mBio 2021; 12:e0309121. [PMID: 34903042 PMCID: PMC8669493 DOI: 10.1128/mbio.03091-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
Malaria is caused when Plasmodium sporozoites are injected along with saliva by an anopheline mosquito into the dermis of a vertebrate host. Arthropod saliva has pleiotropic effects that can influence local host responses, pathogen transmission, and exacerbation of the disease. A mass spectrometry screen identified mosquito salivary proteins that are associated with Plasmodium sporozoites during saliva secretions. In this study, we demonstrate that one of these salivary antigens, Anopheles gambiae sporozoite-associated protein (AgSAP), interacts directly with Plasmodium falciparum and Plasmodium berghei sporozoites. AgSAP binds to heparan sulfate and inhibits local inflammatory responses in the skin. The silencing of AgSAP in mosquitoes reduces their ability to effectively transmit sporozoites to mice. Moreover, immunization with AgSAP decreases the Plasmodium burden in mice that are bitten by Plasmodium-infected mosquitoes. These data suggest that AgSAP facilitates early Plasmodium infection in the vertebrate host and serves as a target for the prevention of malaria. IMPORTANCE Malaria is a vector-borne disease caused by Plasmodium sporozoites. When an anopheline mosquito bites its host, it releases Plasmodium sporozoites as well as saliva components. Mosquito proteins have the potential to serve as antigens to prevent or influence malaria without directly targeting the pathogen. This may help set a new paradigm for vaccine development. In this study, we have elucidated the role of a novel salivary antigen, named Anopheles gambiae sporozoite-associated protein (AgSAP). The results presented here show that AgSAP interacts with Plasmodium falciparum and Plasmodium berghei sporozoites and modulates local inflammatory responses in the skin. Furthermore, our results show that AgSAP is a novel mosquito salivary antigen that influences the early stages of Plasmodium infection in the vertebrate host. Individuals living in countries where malaria is endemic generate antibodies against AgSAP, which indicates that AgSAP can serve as a biomarker for disease prevalence and epidemiological analysis.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yuemei Dong
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Akash Gupta
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kristen Gambardella
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kathleen DePonte
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lionel Almeras
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), IHU-Méditerranée Infection, Marseille, France
| | - George Dimopolous
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
31
|
Hong H, Song HK, Jang B, Park E, Han DS, Kim SE, Oh ES. Colocalization with MMP-7 in the Distal Colon is Crucial for Syndecan-2 Shedding in Dextran Sulfate Sodium-Induced Colitis Mice. J Inflamm Res 2021; 14:4987-5000. [PMID: 34616168 PMCID: PMC8488046 DOI: 10.2147/jir.s329234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction Syndecan-2 expression is elevated during chronic inflammation and cancer development, and its shedding is observed in cancer patients. However, it remained unknown whether inflammation triggers syndecan-2 shedding. Methods The colitis model was produced in C57BL/6 mice by oral administration of 2–3% dextran sulfate sodium (DSS) in the drinking water. Syndecan-2 and MMP-7 expression levels in tissues and cells were detected by real-time PCR, Western blotting, and immunohistochemistry. Shed syndecan-2 levels were detected by slot blotting. For tissue culture, colon tissues were divided into proximal, transverse, and distal parts, and incubated in culture media. Results In C57BL/6 mice with DSS-induced colitis, syndecan-2 shedding began to increase after week 12 of chronic inflammation and continued to increase at week 15. The level of shed syndecan-2 correlated with the colocalization of syndecan-2 and MMP-7 in distal colon tissues. The mRNA expression of IL-6 was increased specifically in trans-distal colon tissues from weeks 9 to 15. IL-6 induced syndecan-2 expression and shedding and MMP-7 expression in ex vivo-cultured distal colon tissues and adenoma cell lines derived from the distal colon. IL-6 treatment induced STAT3 phosphorylation and MMP-7 expression in DLD-1 cells. The application of MMP-7 to ex vivo-cultured colon tissues increased the shedding of syndecan-2 to the culture medium. Conclusion Our findings suggest that chronic inflammation induces syndecan-2 shedding via the site-specific colocalization of syndecan-2 with MMP-7 in the distal colon.
Collapse
Affiliation(s)
- Heejeong Hong
- Department of Life Sciences, Ewha Womans University, Seoul, South Korea
| | - Hyun-Kuk Song
- Department of Life Sciences, Ewha Womans University, Seoul, South Korea
| | - Bohee Jang
- Department of Life Sciences, Ewha Womans University, Seoul, South Korea
| | - Eunhye Park
- Department of Life Sciences, Ewha Womans University, Seoul, South Korea
| | - Dong Soo Han
- Department of Internal Medicine, Hanyang University College of Medicine, Guri, South Korea
| | - Seong-Eun Kim
- Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Institute, Seoul, South Korea
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
32
|
McMahon M, Ye S, Pedrina J, Dlugolenski D, Stambas J. Extracellular Matrix Enzymes and Immune Cell Biology. Front Mol Biosci 2021; 8:703868. [PMID: 34527702 PMCID: PMC8436118 DOI: 10.3389/fmolb.2021.703868] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Remodelling of the extracellular matrix (ECM) by ECM metalloproteinases is increasingly being associated with regulation of immune cell function. ECM metalloproteinases, including Matrix Metalloproteinases (MMPs), A Disintegrin and Metalloproteinases (ADAMs) and ADAMs with Thombospondin-1 motifs (ADAMTS) play a vital role in pathogen defence and have been shown to influence migration of immune cells. This review provides a current summary of the role of ECM enzymes in immune cell migration and function and discusses opportunities and limitations for development of diagnostic and therapeutic strategies targeting metalloproteinase expression and activity in the context of infectious disease.
Collapse
Affiliation(s)
- Meagan McMahon
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Siying Ye
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Jess Pedrina
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Daniel Dlugolenski
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - John Stambas
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
33
|
Herman K, Zemła J, Ptak A, Lekka M. Single-molecule force spectroscopy reveals structural differences of heparan sulfate chains during binding to vitronectin. Phys Rev E 2021; 104:024409. [PMID: 34525582 DOI: 10.1103/physreve.104.024409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022]
Abstract
The syndecans represent an ongoing research field focused on their regulatory roles in normal and pathological conditions. The role of syndecans in cancer progression is well documented, implicating their importance in diagnosis and even proposing various potential cancer treatments. Thus, the characterization of the unbinding properties at the single-molecule level will appeal to their use as targets for therapeutics. In our study, syndecan-1 and syndecan-4 were measured during the interaction with the vitronectin HEP II binding site. Our findings show that syndecans are calcium ion dependent molecules that reveal distinct, unbinding properties indicating the alterations in the structure of heparan sulfate (HS) chains, possibly in the chain sequence or sulfation pattern. In this way, we suppose that HS chain affinity to extracellular matrix proteins may govern cancer invasion by altering the syndecans' ability to interact with cancer-related receptors present in the tumor microenvironment, thereby promoting the activation of various signaling cascades regulating tumor cell behavior.
Collapse
Affiliation(s)
- Katarzyna Herman
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, PL-60965 Poznań, Poland
| | - Joanna Zemła
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, PL-60965 Poznań, Poland
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| |
Collapse
|
34
|
Hulde N, Rogenhofer N, Brettner F, Eckert NC, Fetz I, Buchheim JI, Kammerer T, Dendorfer A, Choukèr A, Hofmann-Kiefer KF, Rehm M, Thaler C. Effects of controlled ovarian stimulation on vascular barrier and endothelial glycocalyx: a pilot study. J Assist Reprod Genet 2021; 38:2273-2282. [PMID: 34286421 PMCID: PMC8490540 DOI: 10.1007/s10815-021-02233-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose Controlled ovarian stimulation significantly amplifies the number of maturing and ovulated follicles as well as ovarian steroid production. The ovarian hyperstimulation syndrome (OHSS) increases capillary permeability and fluid extravasation. Vascular integrity intensely is regulated by an endothelial glycocalyx (EGX) and we have shown that ovulatory cycles are associated with shedding of EGX components. This study investigates if controlled ovarian stimulation impacts on the integrity of the endothelial glycocalyx as this might explain key pathomechanisms of the OHSS. Methods Serum levels of endothelial glycocalyx components of infertility patients (n=18) undergoing controlled ovarian stimulation were compared to a control group of healthy women with regular ovulatory cycles (n=17). Results Patients during luteal phases of controlled ovarian stimulation cycles as compared to normal ovulatory cycles showed significantly increased Syndecan-1 serum concentrations (12.6 ng/ml 6.1125th–19.1375th to 13.9 ng/ml 9.625th–28.975th; p=0.026), indicating shedding and degradation of the EGX. Conclusion A shedding of EGX components during ovarian stimulation has not yet been described. Our study suggests that ovarian stimulation may affect the integrity of the endothelial surface layer and increasing vascular permeability. This could explain key features of the OHSS and provide new ways of prevention of this serious condition of assisted reproduction.
Collapse
Affiliation(s)
- Nikolai Hulde
- Department of Anesthesiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum, Georgstr 11, 32545, Bad Oeynhausen, Germany.
| | - N Rogenhofer
- Division of Gynecological Endocrinology and Reproductive Medicine, Department of Gynecology and Obstetrics, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - F Brettner
- Department of Anesthesiology, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - N C Eckert
- Department of Anesthesiology, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - I Fetz
- Department of Anesthesiology, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - J-I Buchheim
- Department of Anesthesiology, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - T Kammerer
- Department of Anesthesiology, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - A Dendorfer
- Walter-Brendel-Centre of Experimental Medicine, Hospital of the University Munich, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - A Choukèr
- Department of Anesthesiology, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - K F Hofmann-Kiefer
- Department of Anesthesiology, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - M Rehm
- Department of Anesthesiology, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - C Thaler
- Division of Gynecological Endocrinology and Reproductive Medicine, Department of Gynecology and Obstetrics, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
35
|
Howell S, Song W, Pastuszak A, Khera M. Differential Gene Expression in Post-Finasteride Syndrome Patients. J Sex Med 2021; 18:1479-1490. [PMID: 37057444 DOI: 10.1016/j.jsxm.2021.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/28/2021] [Accepted: 05/14/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND An organic etiology underpinning post-finasteride syndrome, a constellation of persistent sexual, neuropsychiatric, and somatic symptoms reported by men exposed to 5-alpha-reductase inhibitors (5ARIs), is debated. Persistent changes in neurosteroid levels or androgen receptor expression have been implicated. AIM To determine whether differences in gene expression, especially in relevant biologic pathways, exist between patients reporting post-finasteride syndrome symptoms and healthy controls. METHODS This was a single center, prospective case-control study taking place between March 2013 and September 2018. Men 18 years and older being evaluated for sexual dysfunction (study) or circumcision (control) were eligible for inclusion. Twenty-six men with a history of 5ARI use reporting symptoms consistent with post-finasteride syndrome were included in the patient group. Twenty-six men consented to inclusion in the control group. OUTCOMES The primary outcome measure is gene expression data for genes affecting neurosteroid levels and androgen receptor activity from penile skin cells. RESULTS Gene expression of cells from penile skin samples from twenty-six men of median age 38 years (IQR, 33-42) in the study group was compared with that from twenty-six men of median age 41 years (IQR, 35-62) in the control group (P = .13), with 1,446 genes significantly over-expressed and 2,318 genes significantly under-expressed in study patients. Androgen receptor expression was significantly higher in study patients compared to controls (9.961 vs 9.494, adjusted P value = .01). Serum levels of androgen receptor activity markers 5α-androstanediol (0.950 ng/mL [0.749-1.587] vs 0.949 [0.817-1.337], P = .34) or 3α-androstanedione (3.1 ng/mL [1.925-5.475] vs 6.7 [3.375-11.4], P = .31) revealed no significant differences. No significant differences were found between the number of trinucleotide repeats (21.5 [20-23.75], 22 [19-25], P = .94). CLINICAL IMPLICATIONS In this study we present evidence of gene expression correlating with observed biologic differences in patients with post-finasteride syndrome; providers who prescribe 5ARIs should be aware and advise their patients accordingly. STRENGTHS & LIMITATIONS Strengths of this study include the evaluation of multiple proposed etiologies for post-finasteride syndrome. The study is also strengthened by the fact that not all data matched the initial hypotheses, qualifying the argument for the existence of PFS. Limitations include potential selection bias arising from more severe phenotypes seeking care; lack of gene expression data prior to 5ARI exposure; lack of non-penile tissue samples supposedly involved; and a lack of mechanistic data to imply causality. CONCLUSION This study is the first to consider and demonstrate gene expression differences in patients with PFS as a potential etiology of sexual dysfunction. Howell S, Song W, Pastuszak A, et al. Differential Gene Expression in Post-Finasteride Syndrome Patients. J Sex Med 2021;18:1479-1490.
Collapse
Affiliation(s)
- Skyler Howell
- Division of Urology, Department of Surgery, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Weitao Song
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA
| | - Alexander Pastuszak
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mohit Khera
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
36
|
Lee NY, Kim NR, Kang JW, Kim G, Han MS, Jang JA, Ahn D, Jeong JH, Han MH, Nam EJ. Increased salivary syndecan-1 level is associated with salivary gland function and inflammation in patients with Sjögren's syndrome. Scand J Rheumatol 2021; 51:220-229. [PMID: 34212822 DOI: 10.1080/03009742.2021.1923162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objectives: Syndecan-1 (SDC-1), a transmembrane heparin sulphate proteoglycan predominantly expressed on epithelial cells, also exists in a soluble form through ectodomain shedding. SDC-1 expression and shedding may be modulated in the inflammatory milieu of primary Sjögren's syndrome (SS). We investigated SDC-1 expression in minor salivary glands (MSGs) and analysed the association between salivary or plasma levels of SDC-1 and clinical parameters in SS.Method: We measured salivary and plasma SDC-1 levels via an enzyme-linked immunosorbent assay and assessed the salivary flow rates (SFRs) in 70 patients with SS and 35 healthy subjects. Disease activity indices, serological markers, salivary gland scintigraphy, and MSG biopsy were evaluated in patients with SS.Results: SDC-1 expression was upregulated on ductal epithelial cells in inflamed salivary glands. Salivary SDC-1 levels in patients significantly exceeded those in healthy subjects [median (interquartile range) 49.0 (20.7-79.1) vs 3.7 (1.7-6.3) ng/mL, p < 0.001] and inversely correlated with SFRs (r = -0.358, p = 0.032) and ejection fractions of the parotid (r = -0.363, p = 0.027) and submandibular (r = -0.485, p = 0.002) glands in salivary gland scintigraphy. Plasma SDC-1 levels were significantly correlated with the EULAR Sjögren's Syndrome Disease Activity Index (r = 0.507, p < 0.001) and EULAR Sjögren's Syndrome Patient Reported Index (r = 0.267, p = 0.033). Focus scores were correlated with salivary SDC-1 levels (r = 0.551, p = 0.004).Conclusion: Salivary and plasma SDC-1 levels may constitute potential biomarkers for salivary gland function and disease activity, respectively, in SS.
Collapse
Affiliation(s)
- N Y Lee
- Department of Laboratory Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Daegu, Republic of Korea
| | - N R Kim
- Division of Rheumatology, Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Daegu, Republic of Korea
| | - J W Kang
- Division of Rheumatology, Department of Internal Medicine, Daegu Fatima Hospital, Daegu, Republic of Korea
| | - G Kim
- Division of Rheumatology, Department of Internal Medicine, Daegu Fatima Hospital, Daegu, Republic of Korea.,Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu, Republic of Korea
| | - M-S Han
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu, Republic of Korea
| | - J A Jang
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu, Republic of Korea
| | - D Ahn
- Department of Otolaryngology-Head and Neck Surgery, Kyungpook National University Hospital, School of Medicine, Daegu, Republic of Korea
| | - J H Jeong
- Department of Nuclear Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Daegu, Republic of Korea
| | - M-H Han
- Department of Pathology, Kyungpook National University Hospital, School of Medicine, Daegu, Republic of Korea
| | - E J Nam
- Division of Rheumatology, Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
37
|
Yang Y, Lu Y, Zeng K, Heinze T, Groth T, Zhang K. Recent Progress on Cellulose-Based Ionic Compounds for Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000717. [PMID: 32270900 PMCID: PMC11469321 DOI: 10.1002/adma.202000717] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 05/06/2023]
Abstract
Glycans play important roles in all major kingdoms of organisms, such as archea, bacteria, fungi, plants, and animals. Cellulose, the most abundant polysaccharide on the Earth, plays a predominant role for mechanical stability in plants, and finds a plethora of applications by humans. Beyond traditional use, biomedical application of cellulose becomes feasible with advances of soluble cellulose derivatives with diverse functional moieties along the backbone and modified nanocellulose with versatile functional groups on the surface due to the native features of cellulose as both cellulose chains and supramolecular ordered domains as extractable nanocellulose. With the focus on ionic cellulose-based compounds involving both these groups primarily for biomedical applications, a brief introduction about glycoscience and especially native biologically active glycosaminoglycans with specific biomedical application areas on humans is given, which inspires further development of bioactive compounds from glycans. Then, both polymeric cellulose derivatives and nanocellulose-based compounds synthesized as versatile biomaterials for a large variety of biomedical applications, such as for wound dressings, controlled release, encapsulation of cells and enzymes, and tissue engineering, are separately described, regarding the diverse routes of synthesis and the established and suggested applications for these highly interesting materials.
Collapse
Affiliation(s)
- Yang Yang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Road 381Guangzhou510640P. R. China
| | - Yi‐Tung Lu
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
| | - Kui Zeng
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| | - Thomas Heinze
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of JenaCentre of Excellence for Polysaccharide ResearchHumboldt Straße 10JenaD‐07743Germany
| | - Thomas Groth
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
- Interdisciplinary Center of Materials ScienceMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
- Laboratory of Biomedical NanotechnologiesInstitute of Bionic Technologies and EngineeringI. M. Sechenov First Moscow State UniversityTrubetskaya Street 8119991MoscowRussian Federation
| | - Kai Zhang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| |
Collapse
|
38
|
Caravà E, Moretto P, Caon I, Parnigoni A, Passi A, Karousou E, Vigetti D, Canino J, Canobbio I, Viola M. HA and HS Changes in Endothelial Inflammatory Activation. Biomolecules 2021; 11:biom11060809. [PMID: 34072476 PMCID: PMC8229641 DOI: 10.3390/biom11060809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular diseases are a group of disorders caused by the presence of a combination of risk factors, such as tobacco use, unhealthy diet and obesity, physical inactivity, etc., which cause the modification of the composition of the vessel’s matrix and lead to the alteration of blood flow, matched with an inflammation condition. Nevertheless, it is not clear if the inflammation is a permissive condition or a consequent one. In order to investigate the effect of inflammation on the onset of vascular disease, we treated endothelial cells with the cytokine TNF-α that is increased in obese patients and is reported to induce cardiometabolic diseases. The inflammation induced a large change in the extracellular matrix, increasing the pericellular hyaluronan and altering the heparan sulfate Syndecans sets, which seems to be related to layer permeability but does not influence cell proliferation or migration nor induce blood cell recruitment or activation.
Collapse
Affiliation(s)
- Elena Caravà
- Quantix Italia S.r.l., 20121 Milano, Italy;
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Paola Moretto
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Jessica Canino
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (J.C.); (I.C.)
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (J.C.); (I.C.)
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
- Correspondence: ; Tel.: +39-0332-397143
| |
Collapse
|
39
|
Li Z, Bratlie KM. The Influence of Polysaccharides-Based Material on Macrophage Phenotypes. Macromol Biosci 2021; 21:e2100031. [PMID: 33969643 DOI: 10.1002/mabi.202100031] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 02/03/2023]
Abstract
Macrophage polarization is a key factor in determining the success of implanted tissue engineering scaffolds. Polysaccharides (derived from plants, animals, and microorganisms) are known to modulate macrophage phenotypes by recognizing cell membrane receptors. Numerous studies have developed polysaccharide-based materials into functional biomaterial substrates for tissue regeneration and pharmaceutical application due to their immunostimulatory activities and anti-inflammatory response. They are used as hydrogel substrates, surface coatings, and drug delivery carriers. In addition to their innate immunological functions, the newly endowed physical and chemical properties, including substrate modulus, pore size/porosity, surface binding chemistry, and the mole ratio of polysaccharides in hybrid materials may regulate macrophage phenotypes more precisely. Growing evidence indicates that the sulfation pattern of glycosaminoglycans and proteoglycans expressed on polarized macrophages leads to the changes in protein binding, which may alter macrophage phenotype and influence the immune response. A comprehensive understanding of how different types of polysaccharide-based materials alter macrophage phenotypic changes can be beneficial to predict transplantation/implantation outcomes. This review focuses on recent advances in promoting wound healing and balancing macrophage phenotypes using polysaccharide-based substrates/coatings and new directions to address the limitations in the current understanding of macrophage responses to polysaccharides.
Collapse
Affiliation(s)
- Zhuqing Li
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA.,Department of Chemical & Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
40
|
Vlodavsky I, Barash U, Nguyen HM, Yang SM, Ilan N. Biology of the Heparanase-Heparan Sulfate Axis and Its Role in Disease Pathogenesis. Semin Thromb Hemost 2021; 47:240-253. [PMID: 33794549 DOI: 10.1055/s-0041-1725066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell surface proteoglycans are important constituents of the glycocalyx and participate in cell-cell and cell-extracellular matrix (ECM) interactions, enzyme activation and inhibition, and multiple signaling routes, thereby regulating cell proliferation, survival, adhesion, migration, and differentiation. Heparanase, the sole mammalian heparan sulfate degrading endoglycosidase, acts as an "activator" of HS proteoglycans, thus regulating tissue hemostasis. Heparanase is a multifaceted enzyme that together with heparan sulfate, primarily syndecan-1, drives signal transduction, immune cell activation, exosome formation, autophagy, and gene transcription via enzymatic and nonenzymatic activities. An important feature is the ability of heparanase to stimulate syndecan-1 shedding, thereby impacting cell behavior both locally and distally from its cell of origin. Heparanase releases a myriad of HS-bound growth factors, cytokines, and chemokines that are sequestered by heparan sulfate in the glycocalyx and ECM. Collectively, the heparan sulfate-heparanase axis plays pivotal roles in creating a permissive environment for cell proliferation, differentiation, and function, often resulting in the pathogenesis of diseases such as cancer, inflammation, endotheliitis, kidney dysfunction, tissue fibrosis, and viral infection.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Uri Barash
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
41
|
Gerlza T, Nagele M, Mihalic Z, Trojacher C, Kungl A. Glycosaminoglycans located on neutrophils and monocytes impact on CXCL8- and CCL2-induced cell migration. Cytokine 2021; 142:155503. [PMID: 33781652 DOI: 10.1016/j.cyto.2021.155503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/27/2023]
Abstract
The role of glycosaminoglycans on the surface of immune cells has so far been less studied compared to their participation in inflammatory responses as members of the endothelium and the extracellular matrix. In this study we have therefore investigated if glycosaminoglycans on immune cells act in concert with GPC receptors (i.e. both being cis-located on leukocytes) in chemokine-induced leukocyte mobilisation. For this purpose, freshly-prepared human neutrophils and monocytes were treated with heparinase III or chondroitinase ABC to digest heparan sulfate -chains or chondroitin sulfate-chains, respectively, from the leukocyte surfaces. Subsequent analysis of CXCL8- and CCL2-induced chemotaxis revealed that leukocyte migration was strongly reduced after eliminating heparan sulfate from the surface of neutrophils and monocytes. In the case of monocytes, an additional dependence of CCL2-induced chemotaxis on chondroitin sulfate was observed. We compared these results with the effect on chemotaxis of a heparan sulfate masking antibody and obtained similarly reduced migration. Following our findings, we postulate that glycosaminoglycans located on target leukocytes act synergistically with GPC receptors on immune cell migration, which is further influenced by glycosaminoglycans located on the inflamed tissue (i.e. trans with respect to the immune cell/GPC receptor). Both glycosaminoglycan localization sites seem to be important during inflammatory processes and could potentially be tackled in chemokine-related diseases.
Collapse
Affiliation(s)
- Tanja Gerlza
- Karl-Franzens-University Graz, Institute of Pharmaceutical Sciences, Universitätsplatz 1, A-8010 Graz, Austria
| | - Margareta Nagele
- Karl-Franzens-University Graz, Institute of Pharmaceutical Sciences, Universitätsplatz 1, A-8010 Graz, Austria
| | - Zala Mihalic
- Karl-Franzens-University Graz, Institute of Pharmaceutical Sciences, Universitätsplatz 1, A-8010 Graz, Austria
| | - Christina Trojacher
- Karl-Franzens-University Graz, Institute of Pharmaceutical Sciences, Universitätsplatz 1, A-8010 Graz, Austria
| | - Andreas Kungl
- Karl-Franzens-University Graz, Institute of Pharmaceutical Sciences, Universitätsplatz 1, A-8010 Graz, Austria; Antagonis Biotherapeutics GmbH, Strasserhofweg 77a, A-8045 Graz, Austria.
| |
Collapse
|
42
|
Åkerud A, Axelsson J, Yadav M, Erjefält J, Ekman-Ordeberg G, Malmström A, Fischer H. Heparin fragments induce cervical inflammation by recruiting immune cells through Toll-like receptor 4 in nonpregnant mice. Mol Hum Reprod 2021; 27:gaab004. [PMID: 33508081 DOI: 10.1093/molehr/gaab004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Inflammation is a hallmark in the human cervix remodelling. A possible candidate inducing the inflammatory driven ripening of the cervix is the matrix component heparan sulphate, which has been shown to be elevated in late pregnancy in the cervix and uterus. Heparin and a glycol-split low molecular weight heparin (gsHep) with low anticoagulant potency has been shown to enhance myometrial contraction and interleukin (IL)-8 production by cervical fibroblasts. The aim of this study was to investigate the mechanism by which heparin promotes cervical inflammation. Wild-type, Toll-like receptor 4 (TLR4), Myeloid differentiation primary response gene 88 (MyD88) and Interferon regulatory factor 3 (IRF3)-deficient mice were treated by deposition of gsHep into the vaginas of nonpregnant mice. To identify which cells that responded to the heparin fragments, a rhodamine fluorescent construct of gsHep was used, which initially did bind to the epithelial cells and were at later time points located in the sub-mucosa. The heparin fragments induced a strong local inflammatory response in wild-type mice shown by a rapid infiltration of neutrophils and to a lesser extent macrophages into the epithelium and the underlying extracellular matrix of the cervix. Further, a marked migration into the cervical and vaginal lumen was seen by both neutrophils and macrophages. The induced mucosal inflammation was strongly reduced in TLR4- and IRF3-deficient mice. In conclusion, our findings suggest that a TLR4/IRF3-mediated innate immune response in the cervical mucosa is induced by gsHep. This low anticoagulant heparin version, a novel TLR4 agonist, could contribute to human cervical ripening during the initiation of labour.
Collapse
Affiliation(s)
- Anna Åkerud
- Division of Matrixbiology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Jakob Axelsson
- Division of Surgery, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Manisha Yadav
- Division of Microbiology, Immunology and Glycobiology (MIG), Department of Laboratory Medicine, Lund Universitye, Lund, Sweden
| | - Jonas Erjefält
- Division of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Gunvor Ekman-Ordeberg
- Division of Obstetrics and Gynaecology, Department of Women and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Anders Malmström
- Division of Matrixbiology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Hans Fischer
- Division of Microbiology, Immunology and Glycobiology (MIG), Department of Laboratory Medicine, Lund Universitye, Lund, Sweden
| |
Collapse
|
43
|
Betriu N, Bertran-Mas J, Andreeva A, Semino CE. Syndecans and Pancreatic Ductal Adenocarcinoma. Biomolecules 2021; 11:biom11030349. [PMID: 33669066 PMCID: PMC7996579 DOI: 10.3390/biom11030349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a fatal disease with poor prognosis because patients rarely express symptoms in initial stages, which prevents early detection and diagnosis. Syndecans, a subfamily of proteoglycans, are involved in many physiological processes including cell proliferation, adhesion, and migration. Syndecans are physiologically found in many cell types and their interactions with other macromolecules enhance many pathways. In particular, extracellular matrix components, growth factors, and integrins collect the majority of syndecans associations acting as biochemical, physical, and mechanical transducers. Syndecans are transmembrane glycoproteins, but occasionally their extracellular domain can be released from the cell surface by the action of matrix metalloproteinases, converting them into soluble molecules that are capable of binding distant molecules such as extracellular matrix (ECM) components, growth factor receptors, and integrins from other cells. In this review, we explore the role of syndecans in tumorigenesis as well as their potential as therapeutic targets. Finally, this work reviews the contribution of syndecan-1 and syndecan-2 in PDAC progression and illustrates its potential to be targeted in future treatments for this devastating disease.
Collapse
|
44
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
45
|
Korakas E, Ikonomidis I, Markakis K, Raptis A, Dimitriadis G, Lambadiari V. The Endothelial Glycocalyx as a Key Mediator of Albumin Handling and the Development of Diabetic Nephropathy. Curr Vasc Pharmacol 2020; 18:619-631. [PMID: 31889495 DOI: 10.2174/1570161118666191224120242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
The endothelial glycocalyx is a complex mesh of proteoglycans, glycoproteins and other soluble components, which cover the vascular endothelium. It plays an important role in many physiological processes including vascular permeability, transduction of shear stress and interaction of blood cells and other molecules with the vascular wall. Its complex structure makes its precise assessment challenging, and many different visualization techniques have been used with varying results. Diabetes, one of the main disease models where disorders of the glycocalyx are present, causes degradation of the glycocalyx through a variety of molecular pathways and especially through oxidative stress due to the action of reactive oxygen species. As the glycocalyx has been primarily studied in the glomerular endothelium, more evidence points towards a vital role in albumin handling and, consequently, in diabetic nephropathy. Therefore, the maintenance or restoration of the integrity of the glycocalyx seems a promising therapeutic target. In this review, we consider the structural and functional capacities of the endothelial glycocalyx, the available methods for its evaluation, the mechanisms through which diabetes leads to glycocalyx degradation and albuminuria, and possible treatment options targeting the glycocalyx.
Collapse
Affiliation(s)
- Emmanouil Korakas
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ignatios Ikonomidis
- Second Cardiology Department, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Markakis
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Raptis
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Dimitriadis
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vaia Lambadiari
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
46
|
McQuitty CE, Williams R, Chokshi S, Urbani L. Immunomodulatory Role of the Extracellular Matrix Within the Liver Disease Microenvironment. Front Immunol 2020; 11:574276. [PMID: 33262757 PMCID: PMC7686550 DOI: 10.3389/fimmu.2020.574276] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease when accompanied by underlying fibrosis, is characterized by an accumulation of extracellular matrix (ECM) proteins and chronic inflammation. Although traditionally considered as a passive and largely architectural structure, the ECM is now being recognized as a source of potent damage-associated molecular pattern (DAMP)s with immune-active peptides and domains. In parallel, the ECM anchors a range of cytokines, chemokines and growth factors, all of which are capable of modulating immune responses. A growing body of evidence shows that ECM proteins themselves are capable of modulating immunity either directly via ligation with immune cell receptors including integrins and TLRs, or indirectly through release of immunoactive molecules such as cytokines which are stored within the ECM structure. Notably, ECM deposition and remodeling during injury and fibrosis can result in release or formation of ECM-DAMPs within the tissue, which can promote local inflammatory immune response and chemotactic immune cell recruitment and inflammation. It is well described that the ECM and immune response are interlinked and mutually participate in driving fibrosis, although their precise interactions in the context of chronic liver disease are poorly understood. This review aims to describe the known pro-/anti-inflammatory and fibrogenic properties of ECM proteins and DAMPs, with particular reference to the immunomodulatory properties of the ECM in the context of chronic liver disease. Finally, we discuss the importance of developing novel biotechnological platforms based on decellularized ECM-scaffolds, which provide opportunities to directly explore liver ECM-immune cell interactions in greater detail.
Collapse
Affiliation(s)
- Claire E. McQuitty
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Roger Williams
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Luca Urbani
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
47
|
Hassan N, Greve B, Espinoza-Sánchez NA, Götte M. Cell-surface heparan sulfate proteoglycans as multifunctional integrators of signaling in cancer. Cell Signal 2020; 77:109822. [PMID: 33152440 DOI: 10.1016/j.cellsig.2020.109822] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs) represent a large proportion of the components that constitute the extracellular matrix (ECM). They are a diverse group of glycoproteins characterized by a covalent link to a specific glycosaminoglycan type. As part of the ECM, heparan sulfate (HS)PGs participate in both physiological and pathological processes including cell recruitment during inflammation and the promotion of cell proliferation, adhesion and motility during development, angiogenesis, wound repair and tumor progression. A key function of HSPGs is their ability to modulate the expression and function of cytokines, chemokines, growth factors, morphogens, and adhesion molecules. This is due to their capacity to act as ligands or co-receptors for various signal-transducing receptors, affecting pathways such as FGF, VEGF, chemokines, integrins, Wnt, notch, IL-6/JAK-STAT3, and NF-κB. The activation of those pathways has been implicated in the induction, progression, and malignancy of a tumor. For many years, the study of signaling has allowed for designing specific drugs targeting these pathways for cancer treatment, with very positive results. Likewise, HSPGs have become the subject of cancer research and are increasingly recognized as important therapeutic targets. Although they have been studied in a variety of preclinical and experimental models, their mechanism of action in malignancy still needs to be more clearly defined. In this review, we discuss the role of cell-surface HSPGs as pleiotropic modulators of signaling in cancer and identify them as promising markers and targets for cancer treatment.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Biotechnology Program, Department of Chemistry, Faculty of Science, Cairo University, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany.
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
48
|
Rajan A, Robertson MJ, Carter HE, Poole NM, Clark JR, Green SI, Criss ZK, Zhao B, Karandikar U, Xing Y, Margalef-Català M, Jain N, Wilson RL, Bai F, Hyser JM, Petrosino J, Shroyer NF, Blutt SE, Coarfa C, Song X, Prasad BVV, Amieva MR, Grande-Allen J, Estes MK, Okhuysen PC, Maresso AW. Enteroaggregative E. coli Adherence to Human Heparan Sulfate Proteoglycans Drives Segment and Host Specific Responses to Infection. PLoS Pathog 2020; 16:e1008851. [PMID: 32986782 PMCID: PMC7553275 DOI: 10.1371/journal.ppat.1008851] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/13/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is a significant cause of acute and chronic diarrhea, foodborne outbreaks, infections of the immunocompromised, and growth stunting in children in developing nations. There is no vaccine and resistance to antibiotics is rising. Unlike related E. coli pathotypes that are often associated with acute bouts of infection, EAEC is associated with persistent diarrhea and subclinical long-term colonization. Several secreted virulence factors have been associated with EAEC pathogenesis and linked to disease in humans, less certain are the molecular drivers of adherence to the intestinal mucosa. We previously established human intestinal enteroids (HIEs) as a model system to study host-EAEC interactions and aggregative adherence fimbriae A (AafA) as a major driver of EAEC adherence to HIEs. Here, we report a large-scale assessment of the host response to EAEC adherence from all four segments of the intestine across at least three donor lines for five E. coli pathotypes. The data demonstrate that the host response in the duodenum is driven largely by the infecting pathotype, whereas the response in the colon diverges in a patient-specific manner. Major pathways altered in gene expression in each of the four enteroid segments differed dramatically, with responses observed for inflammation, apoptosis and an overwhelming response to different mucin genes. In particular, EAEC both associated with large mucus droplets and specific mucins at the epithelial surface, binding that was ameliorated when mucins were removed, a process dependent on AafA. Pan-screening for glycans for binding to purified AafA identified the human ligand as heparan sulfate proteoglycans (HSPGs). Removal of HSPG abrogated EAEC association with HIEs. These results may mean that the human intestine responds remarkably different to distinct pathobionts that is dependent on the both the individual and intestinal segment in question, and uncover a major role for surface heparan sulfate proteoglycans as tropism-driving factor in adherence and/or colonization.
Collapse
Affiliation(s)
- Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Matthew J. Robertson
- Molecular and Cell Biology-Mol. Regulation, Baylor College of Medicine, Houston, TX, United States of America
| | - Hannah E. Carter
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Nina M. Poole
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Sabrina I. Green
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Zachary K. Criss
- Department of Medicine Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Boyang Zhao
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Umesh Karandikar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Yikun Xing
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Mar Margalef-Català
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, CA, United States of America
| | - Nikhil Jain
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Reid L. Wilson
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Fan Bai
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Noah F. Shroyer
- Department of Medicine Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Cristian Coarfa
- Molecular and Cell Biology-Mol. Regulation, Baylor College of Medicine, Houston, TX, United States of America
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States of America
| | - BV Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Manuel R. Amieva
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, CA, United States of America
| | - Jane Grande-Allen
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Pablo C. Okhuysen
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
49
|
Cleavage of proteoglycans, plasma proteins and the platelet-derived growth factor receptor in the hemorrhagic process induced by snake venom metalloproteinases. Sci Rep 2020; 10:12912. [PMID: 32737331 PMCID: PMC7395112 DOI: 10.1038/s41598-020-69396-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Envenoming by viperid snakes results in a complex pattern of tissue damage, including hemorrhage, which in severe cases may lead to permanent sequelae. Snake venom metalloproteinases (SVMPs) are main players in this pathogenesis, acting synergistically upon different mammalian proteomes. Hemorrhagic Factor 3 (HF3), a P-III class SVMP from Bothrops jararaca, induces severe local hemorrhage at pmol doses in a murine model. Our hypothesis is that in a complex scenario of tissue damage, HF3 triggers proteolytic cascades by acting on a partially known substrate repertoire. Here, we focused on the hypothesis that different proteoglycans, plasma proteins, and the platelet derived growth factor receptor (PDGFR) could be involved in the HF3-induced hemorrhagic process. In surface plasmon resonance assays, various proteoglycans were demonstrated to interact with HF3, and their incubation with HF3 showed degradation or limited proteolysis. Likewise, Western blot analysis showed in vivo degradation of biglycan, decorin, glypican, lumican and syndecan in the HF3-induced hemorrhagic process. Moreover, antithrombin III, complement components C3 and C4, factor II and plasminogen were cleaved in vitro by HF3. Notably, HF3 cleaved PDGFR (alpha and beta) and PDGF in vitro, while both receptor forms were detected as cleaved in vivo in the hemorrhagic process induced by HF3. These findings outline the multifactorial character of SVMP-induced tissue damage, including the transient activation of tissue proteinases, and underscore for the first time that endothelial glycocalyx proteoglycans and PDGFR are targets of SVMPs in the disruption of microvasculature integrity and generation of hemorrhage.
Collapse
|
50
|
Kouwenberg M, Rops A, Bakker-van Bebber M, Diepeveen L, Götte M, Hilbrands L, van der Vlag J. Role of syndecan-1 in the interaction between dendritic cells and T cells. PLoS One 2020; 15:e0230835. [PMID: 32701966 PMCID: PMC7377417 DOI: 10.1371/journal.pone.0230835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/01/2020] [Indexed: 01/19/2023] Open
Abstract
Syndecan-1 (Sdc-1) is a heparan sulfate proteoglycan that can bind cytokines and chemokines via its heparan sulfate side chains, and has immunomodulatory properties in experimental models. Sdc-1 expression has been reported on dendritic cells (DC) and T cells. The potential role of Sdc-1 in DC-T cell interaction has not been investigated yet. We postulate that Sdc-1 is involved in DC-T cell interaction and may influence graft survival in an allogeneic transplant model. Sdc-1 expression on bone marrow-derived DC and T cells was analyzed by flow cytometry. Unstimulated and LPS stimulated Sdc-1 deficient DC were evaluated in vitro for phenotype and stimulatory capacity in mixed lymphocyte reaction. Sdc-1 deficient T cells were evaluated for proliferative capacity and differentiation in a mixed lymphocyte reaction and a proliferation assay. Allograft survival was evaluated in a fully MHC mismatched heterotopic heart transplant model, with either Sdc-1 deficient donors or recipients. Sdc-1 was expressed on the cell surface of unstimulated and LPS matured DC. Sdc-1 deficiency had no effect on expression of co-stimulatory molecules, cytokine production or T cell stimulatory capacity as compared to WT DC. Sdc-1 expression was not detectable on WT T cells, although intracellular Sdc-1 expression could be demonstrated after ConA activation. Sdc-1 deficient T cells showed reduced proliferation upon DC or ConA stimulation and reduced IL-17 production upon ConA stimulation, compared to WT T cells. Sdc-1 deficiency of either allograft or recipient did not prolong allograft survival. In conclusion, Sdc-1 is expressed on the cell surface of DC, where its absence does not affect DC phenotype or T cell stimulatory capacity. Sdc-1 is intracellularly expressed in ConA activated T cells. Sdc-1 deficiency in T cells results in a reduced proliferative response in vitro, as induced by DC and ConA. Sdc-1 deficiency in donor or recipient does not affect allograft survival.
Collapse
Affiliation(s)
- M. Kouwenberg
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A. Rops
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M. Bakker-van Bebber
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L. Diepeveen
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M. Götte
- Department of Gynecology and Obstetrics, University of Münster, Münster, Germany
| | - L. Hilbrands
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J. van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|