1
|
Han N, Yu N, Yu L. Aberrant expression of TRIM44, transcriptionally regulated by KLF9, contributes to the process of diabetic retinopathy. J Transl Med 2025; 23:433. [PMID: 40217303 PMCID: PMC11992793 DOI: 10.1186/s12967-025-06436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is the common cause of diabetic vascular complications and it causes blindness. Until now, there are still some patients with DR who lack effective treatment. Tripartite motif containing 44 (TRIM44) has been shown to play a significant role in endothelial cells. However, the role of TRIM44 in DR remains unknown. METHODS Diabetes was induced in rats through the administration of an intraperitoneal injection of 65 mg/kg of streptozotocin (STZ). Rat retinal microvascular endothelial cells (RMECs) were subjected to stimulation under high glucose (HG) conditions. A thorough proteomic investigation and bioinformatic analysis were performed to identify the differentially expressed proteins (DEPs) in rat RMECs after blocking TRIM44. A dual luciferase reporter assay was employed to assess the luciferase activity of TRIM44. RESULTS TRIM44 was highly expressed in the retinal tissues of rats with diabetes and HG-induced RMECs. In vivo assays suggested that TRIM44 silencing improved the pathological alterations of DR rats as demonstrated by the downregulated expression of isolectin-B4 and VEGFA, along with a decrease in acellular capillaries within the retinal tissues. Knockdown of TRIM44 markedly reduced cell viability, proliferation, migration, invasion, and angiogenesis in HG-evoked RMECs. Mechanistically, TRIM44 was demonstrated to be activated transcriptionally by KLF transcription factor 9 (KLF9), a known facilitator of angiogenesis in DR. In HG-induced cells, the loss of TRIM44 resulted in the reverse of the endothelial cell function caused by KLF9 overexpression. After the comprehensive analysis, 64 upregulated and 38 downregulated DEPs were screened out for a series of functional enrichment analyses. CONCLUSIONS Collectively, this study demonstrates that TRIM44 knockdown suppressed diabetes-induced retinal vascular dysfunction in DR.
Collapse
Affiliation(s)
- Ning Han
- Department of Ophthalmology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, Jilin, China
| | - Na Yu
- Department of Blood Transfusion, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Li Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, Jilin, China.
| |
Collapse
|
2
|
Chen Y, Meng Y, Tan M, Ma J, Zhu J, Ji M, Guan H. Changes in expression of inflammatory cytokines and ocular indicators in pre-diabetic patients with cataract. BMC Ophthalmol 2025; 25:119. [PMID: 40065310 PMCID: PMC11892156 DOI: 10.1186/s12886-025-03892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/30/2025] [Indexed: 03/14/2025] Open
Abstract
Pre-diabetes is the preceding condition of diabetes, and in some cases, fundus changes have been seen in pre-diabetes. The inflammatory response is widely recognized as being involved in the pathophysiologic process of diabetic eye disease. Therefore, we aimed to acquire understanding of the role of early altered blood glucose levels in the development and etiology of diabetic ocular disorders from the perspective of inflammation. In this study, serum, tear, aqueous humor and vitreous fluid samples were collected from patients undergoing cataract surgery. VEGF, IL-6, TNF-a, MCP-1, APOA-1, ICAM-1, VCAM-1, PEDF, TSP-1 were measured by ELISA. The quantity of hyperreflective retinal spots (HRS) was counted by optical coherence tomography OCT images. We found that the levels of inflammatory cytokines are already altered in pre-diabetes. Levels of pro-inflammatory cytokine expression and quantity of HRS can reflect the disease process to some extent.
Collapse
Affiliation(s)
- Yixun Chen
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Yan Meng
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Mengjia Tan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Jun Ma
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Jian Zhu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China.
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
3
|
Li YC, Huang KH, Yang Y, Gau SY, Tsai TH, Lee CY. Dose-Dependent Relationship Between Long-Term Metformin Use and the Risk of Diabetic Retinopathy: A Population-Based Cohort Study. Clin Drug Investig 2025; 45:125-136. [PMID: 39939507 DOI: 10.1007/s40261-025-01421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND AND OBJECTIVE Recent research has raised concerns about the association between metformin treatment in patients with diabetes mellitus (DM) and an increased risk of diabetic retinopathy. We sought to investigate this relationship, specifically examining if metformin use affects diabetic retinopathy risk in a dose-dependent manner. METHODS This study was a secondary data analysis based on a nationwide population database in Taiwan. Patients with new-onset DM, an age of 20 years or older, and a diagnosis of type 2 DM received at any time during 2002-2013 were included in the study. Patients diagnosed with new-onset type 2 DM between 2002 and 2013 were enrolled as the study population. We divided them into two groups: those treated with metformin and those treated with sulfonylureas. A Cox proportional hazards model was employed to estimate the risk of diabetic retinopathy after 5 years of follow-up, including cumulative defined daily dose and intensity of metformin treatment. RESULTS A total of 241,231 patients received treatment with metformin, while 152,617 patients were treated with sulfonylureas. Compared with patients treated with sulfonylureas, patients who received metformin treatment, at a cumulative defined daily dose < 30, had a lower risk of diabetic retinopathy (adjusted hazard ratio = 0.77; 95% confidence interval 0.60-0.98). However, those with varying defined daily doses, especially at a higher metformin treatment level (> 25 defined daily dose), had a 2.43 times higher risk of diabetic retinopathy (95% confidence interval 1.37-4.30) compared with patients treated with sulfonylureas. CONCLUSIONS Patients with DM treated with a lower cumulative dosage of metformin showed beneficial effects that were associated with a lower risk of diabetic retinopathy. In contrast, a higher intensity of metformin use had a greater risk of diabetic retinopathy.
Collapse
Affiliation(s)
- Yu-Ching Li
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
- Department of Public Health, China Medical University, Taichung, Taiwan
- Division of Family Medicine, Yuan Rung Hospital, Changhua, Taiwan
| | - Kuang-Hua Huang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Yih Yang
- Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Shuo-Yan Gau
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tung-Han Tsai
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Chien-Ying Lee
- Department of Pharmacology, Chung Shan Medical University, 110 Jian-Guo North Road, Section 1, Taichung, 40242, Taiwan.
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
4
|
Yin K, Ding L, Li X, Zhang Y, Song S, Cao L, Deng R, Li M, Li Z, Xia Q, Zhao D, Li X, Wang Z. Causal role of plasma liposome in diabetic retinopathy: mendelian randomization (MR) study. Diabetol Metab Syndr 2025; 17:47. [PMID: 39920782 PMCID: PMC11803952 DOI: 10.1186/s13098-025-01612-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Research indicates that there may be an association between plasma lipidome levels and the incidence of diabetic retinopathy (DR) in patients. However, the potential causality of this relationship is yet to be determined. To investigate this matter further, we employed a two-sample Mendelian randomization (MR) analysis to comprehensively assess the causality between lipidome levels and DR. METHODS Summary statistics for lipid levels and DR were obtained from the Genome-Wide Association Studies (GWAS) Catalog database and the FinnGen Consortium, respectively. We conducted a two-sample MR analysis, and statistical analysis were performed using the inverse variance weighted (IVW) with the addition of the MR-Egger, weighted median (WM), constrained maximum likelihood and model averaging (cML-MA) to test for causal associations between lipid levels and DR. Heterogeneity was checked using Cochran's Q statistic. The MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) global test and the MR-Egger regression were used to detect horizontal pleiotropy. The robustness of our findings was assessed using leave-one-out and funnel plots. To further assess the reliability of the results, linkage disequilibrium score regressions, colocalization analysis and reverse MR analysis were also performed. RESULTS Analysis of the pooled MR results and after correction for the false discovery rate (FDR) revealed that five lipid levels were associated with DR risk. Phosphatidylcholine (16:0_16:0) levels [OR = 0.869 (0.810 to 0.933), Pfdr = 0.006], phosphatidylcholine (16:0_20:2) levels [OR = 0.893 (0.834 to 0.956), Pfdr = 0.043] and phosphatidylethanolamine (18:0_20:4) levels [OR = 0.906 (0.863 to 0.951), Pfdr = 0.006] were protective against DR, whereas sphingomyelin (d36:1) levels [OR = 1.120 (1.061 to 1.183), Pfdr = 0.006], and sphingomyelin (d40:1) levels [OR = 1.081 (1.031 to 1.134), Pfdr = 0.043] were associated with a greater risk of DR. Further sensitivity analysis did not reveal heterogeneity or horizontal pleiotropy. CONCLUSION In summary, genetic evidence suggests a causal relationship between the levels of specific lipid levels and DR. These findings may provide valuable insights into the causal relationships between lipid levels and DR, potentially informing future prevention and treatment strategies.
Collapse
Affiliation(s)
- Kai Yin
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Lu Ding
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Xueyan Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Yuqi Zhang
- Third Clinical Hospital, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Siyu Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Liyuan Cao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Ruixue Deng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Zirui Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Qinjing Xia
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Zeyu Wang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China.
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| |
Collapse
|
5
|
Andonian BJ, Hippensteel JA, Abuabara K, Boyle EM, Colbert JF, Devinney MJ, Faye AS, Kochar B, Lee J, Litke R, Nair D, Sattui SE, Sheshadri A, Sherman AN, Singh N, Zhang Y, LaHue SC. Inflammation and aging-related disease: A transdisciplinary inflammaging framework. GeroScience 2025; 47:515-542. [PMID: 39352664 PMCID: PMC11872841 DOI: 10.1007/s11357-024-01364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Inflammaging, a state of chronic, progressive low-grade inflammation during aging, is associated with several adverse clinical outcomes, including frailty, disability, and death. Chronic inflammation is a hallmark of aging and is linked to the pathogenesis of many aging-related diseases. Anti-inflammatory therapies are also increasingly being studied as potential anti-aging treatments, and clinical trials have shown benefits in selected aging-related diseases. Despite promising advances, significant gaps remain in defining, measuring, treating, and integrating inflammaging into clinical geroscience research. The Clin-STAR Inflammation Research Interest Group was formed by a group of transdisciplinary clinician-scientists with the goal of advancing inflammaging-related clinical research and improving patient-centered care for older adults. Here, we integrate insights from nine medical subspecialties to illustrate the widespread impact of inflammaging on diseases linked to aging, highlighting the extensive opportunities for targeted interventions. We then propose a transdisciplinary approach to enhance understanding and treatment of inflammaging that aims to improve comprehensive care for our aging patients.
Collapse
Affiliation(s)
- Brian J Andonian
- Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC, USA.
| | - Joseph A Hippensteel
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katrina Abuabara
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Eileen M Boyle
- Department of Haematology, University College London Cancer Institute, London, UK
| | - James F Colbert
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael J Devinney
- Division of Critical Care, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Adam S Faye
- Division of Gastroenterology, Department of Population Health, NYU Langone Medical Center, New York, NY, USA
| | - Bharati Kochar
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Jiha Lee
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Litke
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Devika Nair
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sebastian E Sattui
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anoop Sheshadri
- Division of Nephrology, Department of Medicine, University of California, San Francisco, Nephrology Section, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | | | - Namrata Singh
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Yinan Zhang
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sara C LaHue
- Department of Neurology, School of Medicine, and the UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Liu M, Luo T, Li R, Yin W, Yang F, Ge D, Liu N. Ent-pimarane and ent-kaurane diterpenoids from Siegesbeckiapubescens and their anti-endothelial damage effect in diabetic retinopathy. Chin J Nat Med 2025; 23:234-244. [PMID: 39986699 DOI: 10.1016/s1875-5364(25)60827-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/28/2024] [Accepted: 06/17/2024] [Indexed: 02/24/2025]
Abstract
Diabetic retinopathy, a prevalent and vision-threatening microvascular complication of diabetes mellitus, is the leading cause of blindness among middle-aged and elderly individuals. Natural diterpenoids isolated from Siegesbeckia pubescens demonstrate potent anti-inflammatory properties. This study aimed to identify novel bioactive diterpenoids from S. pubescens and investigate their effects on oxidative stress and inflammatory responses in diabetic retinopathy, both in vitro and in vivo. Three new ent-pimarane-type diterpenoids (1-3) and six known compounds (4-9) were isolated from the aerial parts of S. pubescens. Their structures were elucidated through spectroscopic data interpretation, and absolute configurations were determined by comparing calculated and experimental electronic circular dichroism (ECD) spectra. Among these compounds, 14β,16-epoxy-ent-3β,15α,19-trihydroxypimar-7-ene (5) exhibited the most potent protective effect against high glucose and interleukin-1β (IL-1β)-stimulated human retinal endothelial cells. Mechanistically, compound 5 promoted endothelial cell survival while ameliorating oxidative stress and inflammatory response in diabetic retinopathy, both in vivo and in vitro. These findings not only suggest that diterpenoids such as compound 5 are important anti-inflammatory constituents in S. pubescens, but also indicate that compound 5 may serve as a lead compound for preventing or treating vascular complications associated with diabetic retinopathy.
Collapse
Affiliation(s)
- Mengjia Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Tingting Luo
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Rongxian Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Wenying Yin
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Fengying Yang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Di Ge
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Na Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
7
|
Karpagavalli M, Sindal MD, Arunachalam JP, Chidambaram S. miRNAs, piRNAs, and lncRNAs: A triad of non-coding RNAs regulating the neurovascular unit in diabetic retinopathy and their therapeutic potentials. Exp Eye Res 2025; 251:110236. [PMID: 39800284 DOI: 10.1016/j.exer.2025.110236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Diabetic Retinopathy (DR), a leading complication of diabetes mellitus, has long been considered as a microvascular disease of the retina. However, recent evidence suggests that DR is a neurovascular disease, characterized by the degeneration of retinal neural tissue and microvascular abnormalities encompassing ischemia, neovascularization, and blood-retinal barrier breakdown, ultimately leading to blindness. The intricate relationship between the retina and vascular cells constitutes a neurovascular unit, a multi-cellular framework of retinal neurons, glial cells, immune cells, and vascular cells, which facilitates neurovascular coupling, linking neuronal activity to blood flow. These interconnections between the neurovascular components get compromised due to hyperglycemia and are further associated with the progression of DR early on in the disease. As a result, therapeutic approaches are needed to avert the advancement of DR by acting at its initial stage to delay or prevent the pathogenesis. Non-coding RNAs (ncRNAs) such as microRNAs, piwi-interacting RNAs, and long non-coding RNAs regulate various cellular components in the neurovascular unit. These ncRNAs are key regulators of neurodegeneration, apoptosis, inflammation, and oxidative stress in DR. In this review, research related to alterations in the expression of ncRNAs and, correspondingly, their effect on the disintegration of the neurovascular coupling will be discussed briefly to understand the potential of ncRNAs as therapeutic targets for treating this debilitating disease.
Collapse
Affiliation(s)
| | | | - Jayamuruga Pandian Arunachalam
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India
| | - Subbulakshmi Chidambaram
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India.
| |
Collapse
|
8
|
Meier DT, de Paula Souza J, Donath MY. Targeting the NLRP3 inflammasome-IL-1β pathway in type 2 diabetes and obesity. Diabetologia 2025; 68:3-16. [PMID: 39496966 DOI: 10.1007/s00125-024-06306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 11/06/2024]
Abstract
Increased activity of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome-IL-1β pathway is observed in obesity and contributes to the development of type 2 diabetes and its complications. In this review, we describe the pathological activation of IL-1β by metabolic stress, ageing and the microbiome and present data on the role of IL-1β in metabolism. We explore the physiological role of the IL-1β pathway in insulin secretion and the relationship between circulating levels of IL-1β and the development of diabetes and associated diseases. We highlight the paradoxical nature of IL-1β as both a friend and a foe in glucose regulation and provide details on clinical translation, including the glucose-lowering effects of IL-1 antagonism and its impact on disease modification. We also discuss the potential role of IL-1β in obesity, Alzheimer's disease, fatigue, gonadal dysfunction and related disorders such as rheumatoid arthritis and gout. Finally, we address the safety of NLRP3 inhibition and IL-1 antagonists and the prospect of using this therapeutic approach for the treatment of type 2 diabetes and its comorbidities.
Collapse
Affiliation(s)
- Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Joyce de Paula Souza
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
9
|
Bacherini D, Maggi L, Faraldi F, Sodi A, Vannozzi L, Mazzoni A, Capone M, Virgili G, Vicini G, Falsini B, Cosmi L, Viggiano P, Rizzo S, Annunziato F, Giansanti F, Liotta F. CD3+CD4-CD8- Double-Negative Lymphocytes Are Increased in the Aqueous Humor of Patients with Retinitis Pigmentosa: Their Possible Role in Mediating Inflammation. Int J Mol Sci 2024; 25:13163. [PMID: 39684872 DOI: 10.3390/ijms252313163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Recently, evidence has supported a significant role for immune and oxidative-mediated damage underlying the pathogenesis of different types of retinal diseases, including retinitis pigmentosa (RP). Our study aimed to evaluate the presence of immune cells and mediators in patients with RP using flow cytometric analysis of peripheral blood (PB) and aqueous humor (AH) samples. We recruited 12 patients with RP and nine controls undergoing cataract surgery. Flow cytometric analysis of PB and AH samples provided a membrane staining that targeted surface molecules (CD14, CD16, CD19, CD3, CD4, CD8, and CD161) identifying monocytes, natural killer (NK) cells, B cells, T cells, and T subpopulations, respectively. Moreover, lymphocytes were polyclonally stimulated to evaluate cytokine (CK) production at single-cell level. The circulating immune cell distribution was comparable between patients with RP and controls. Conversely, in the AH of controls we could detect no cells, while in the RP AH samples we found infiltrating leukocytes, consisting of T (CD3+), B (CD19+), NK (CD16+CD3-) cells, and monocytes (CD14+). In patients with RP, the frequency of most infiltrating immune cell populations was similar between the AH and PB. However, among T cell subpopulations, the frequency of CD3+CD4+ T cells was significantly lower in the RP AH compared to RP PB, whereas CD3+CD4-CD8- double-negative (DN) T cells were significantly higher in the RP AH compared to RP PB. Cytokine production analysis revealed a trend toward an increased frequency of CD3+CD8-CD161+IFN-ɣ-producing cells and a decreased frequency of CD3+CD8+IL-4-producing cells in the RP AH compared to RP PB. The detection of immune cells, particularly DN T cells, and a Th1-skewed phenotype in RP AH suggests immune-mediated and inflammatory mechanisms in the disease.
Collapse
Affiliation(s)
- Daniela Bacherini
- Department of Neurosciences, Psychology, Drug Research and Child Health Eye Clinic, University of Florence, AOU Careggi, 50139 Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Francesco Faraldi
- Ophthalmology Unit, Surgical Department, A.O. Ordine Mauriziano, 10128 Turin, Italy
| | - Andrea Sodi
- Department of Neurosciences, Psychology, Drug Research and Child Health Eye Clinic, University of Florence, AOU Careggi, 50139 Florence, Italy
| | - Lorenzo Vannozzi
- Department of Neurosciences, Psychology, Drug Research and Child Health Eye Clinic, University of Florence, AOU Careggi, 50139 Florence, Italy
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Gianni Virgili
- Department of Neurosciences, Psychology, Drug Research and Child Health Eye Clinic, University of Florence, AOU Careggi, 50139 Florence, Italy
| | - Giulio Vicini
- Department of Neurosciences, Psychology, Drug Research and Child Health Eye Clinic, University of Florence, AOU Careggi, 50139 Florence, Italy
| | - Benedetto Falsini
- UOC Oculistica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Head and Neck and Sensory Organs, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Pasquale Viggiano
- Department of Translational Biomedicine Neuroscience, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Stanislao Rizzo
- UOC Oculistica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Head and Neck and Sensory Organs, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, 56124 Pisa, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Fabrizio Giansanti
- Department of Neurosciences, Psychology, Drug Research and Child Health Eye Clinic, University of Florence, AOU Careggi, 50139 Florence, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
10
|
Chew S, Tran T, Sanfilippo P, Lim LL, Sandhu SS, Wickremasinghe S. Elevated aqueous TNF-α levels are associated with more severe functional and anatomic findings in eyes with diabetic macular oedema. Clin Exp Ophthalmol 2024; 52:981-990. [PMID: 39072984 PMCID: PMC11620847 DOI: 10.1111/ceo.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Intravitreal ranibizumab for diabetic macular oedema (DMO) has been recently shown to modulate levels of aqueous cytokines. This study investigates the associations between changes in aqueous cytokine levels following intravitreal ranibizumab therapy and the corresponding anatomical and functional changes in the eye. METHODS Twenty-five patients comprising 30 eyes diagnosed with DMO were prospectively recruited. All eyes received three loading dose ranibizumab injections at baseline, week 4 and week 8, followed by pro re nata treatment based on best-corrected visual acuity (BCVA) and central macular thickness (CMT) up to week 48. Prior to ranibizumab administration, aqueous samples were collected from all eyes, and subsequent sampling was performed at week 8. Levels of 32 cytokines were assessed at baseline and at week 8. RESULTS At baseline, higher aqueous TNF-α levels were associated with poorer BCVA (p = 0.033), greater macular volume (p = 0.017) and worse diabetic retinopathy (p = 0.047). Higher levels of IL-7 were associated with poorer BCVA and greater macular volume (MV). Following treatment with ranibizumab there was a significant correlation with reduction of aqueous TNF-α and improvements in BCVA and MV, both at 6 months (BCVA [r = -0.558, p = 0.001], MV [r = 0.410, p = 0.024]) and 12-months (BCVA [r = -0.413, p = 0.023], MV [r = 0.482, p = 0.008]). The change in VEGF concentration following ranibizumab treatment did not correlate with either BCVA or MV improvements (p > 0.05). CONCLUSIONS Higher levels of aqueous TNF-α and IL-7 correlated with worse DMO, both anatomically and functionally. Reductions in levels of aqueous TNF-α, but not VEGF, post ranibizumab treatment were associated with improvement in BCVA and MV.
Collapse
Affiliation(s)
- Sky Chew
- Centre for Eye Research AustraliaUniversity of MelbourneEast MelbourneVictoriaAustralia
- The Royal Victorian Eye and Ear HospitalEast MelbourneVictoriaAustralia
| | - Tuan Tran
- Centre for Eye Research AustraliaUniversity of MelbourneEast MelbourneVictoriaAustralia
- The Royal Victorian Eye and Ear HospitalEast MelbourneVictoriaAustralia
| | - Paul Sanfilippo
- Centre for Eye Research AustraliaUniversity of MelbourneEast MelbourneVictoriaAustralia
| | - Lyndell L. Lim
- Centre for Eye Research AustraliaUniversity of MelbourneEast MelbourneVictoriaAustralia
- The Royal Victorian Eye and Ear HospitalEast MelbourneVictoriaAustralia
| | - Sukhpal S. Sandhu
- Centre for Eye Research AustraliaUniversity of MelbourneEast MelbourneVictoriaAustralia
- The Royal Victorian Eye and Ear HospitalEast MelbourneVictoriaAustralia
| | - Sanjeewa Wickremasinghe
- Centre for Eye Research AustraliaUniversity of MelbourneEast MelbourneVictoriaAustralia
- The Royal Victorian Eye and Ear HospitalEast MelbourneVictoriaAustralia
| |
Collapse
|
11
|
Boneva SK, Wolf J, Jung M, Prinz G, Chui TYP, Jauch J, Drougard A, Pospisilik JA, Schlecht A, Bucher F, Rosen RB, Agostini H, Schlunck G, Lange CAK. The multifaceted role of vitreous hyalocytes: Orchestrating inflammation, angiomodulation and erythrophagocytosis in proliferative diabetic retinopathy. J Neuroinflammation 2024; 21:297. [PMID: 39543723 PMCID: PMC11566480 DOI: 10.1186/s12974-024-03291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Despite great advances in proliferative diabetic retinopathy (PDR) therapy over the last decades, one third of treated patients continue to lose vision. While resident vitreous macrophages called hyalocytes have been implicated in the pathophysiology of vitreoretinal proliferative disease previously, little is known about their exact role in PDR. In this study, we address molecular and cellular alterations in the vitreous of PDR patients as a means towards assessing the potential contribution of hyalocytes to disease pathogenesis. RESULTS A total of 55 patients were included in this study encompassing RNA-Sequencing analysis of hyalocytes isolated from the vitreous of PDR and control patients, multiplex immunoassay and ELISA analyses of vitreous samples from PDR and control patients, as well as isolation and immunohistochemical staining of cultured porcine hyalocytes. Transcriptional analysis revealed an enhanced inflammatory response of hyalocytes contributing to the cytokine pool within the vitreous of PDR patients by expressing interleukin-6, among others. Further, increased angiopoietin-2 expression indicated that hyalocytes from PDR patients undergo a proangiogenic shift and may thus mediate the formation of retinal neovascularizations, the hallmark of PDR. Finally, RNA-Sequencing revealed an upregulation of factors known from hemoglobin catabolism in hyalocytes from PDR patients. By immunohistochemistry, cultured porcine hyalocytes exposed to red blood cells were shown to engulf and phagocytose these, which reveals hyalocytes' potential to dispose of erythrocytes. Thus, our data suggest a potential role for vitreous macrophages in erythrophagocytosis and, thereby, clearance of vitreous hemorrhage, a severe complication of PDR. CONCLUSION Our results strongly indicate a critical role for vitreous hyalocytes in key pathophysiological processes of proliferative diabetic retinopathy: inflammation, angiomodulation and erythrophagocytosis. Immunomodulation of hyalocytes may thus prove an essential novel therapeutic approach in diabetic vitreoretinal disease.
Collapse
Affiliation(s)
- Stefaniya K Boneva
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.
| | - Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Malte Jung
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Gabriele Prinz
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Toco Y P Chui
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacqueline Jauch
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anne Drougard
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - J Andrew Pospisilik
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Anja Schlecht
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Institute for Anatomy and Cell Biology, Julius Maximilians University Würzburg, Würzburg, Germany
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felicitas Bucher
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Richard B Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Clemens A K Lange
- Eye Center, Medical Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.
- Department of Ophthalmology, St. Franziskus Hospital, Münster, Germany.
| |
Collapse
|
12
|
Vujosevic S, Lupidi M, Donati S, Astarita C, Gallinaro V, Pilotto E. Role of inflammation in diabetic macular edema and neovascular age-related macular degeneration. Surv Ophthalmol 2024; 69:870-881. [PMID: 39029747 DOI: 10.1016/j.survophthal.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Diabetic macular edema (DME) and neovascular age-related macular degeneration (nAMD) are multifactorial disorders that affect the macula and cause significant vision loss. Although inflammation and neoangiogenesis are hallmarks of DME and nAMD, respectively, they share some biochemical mediators. While inflammation is a trigger for the processes that lead to the development of DME, in nAMD inflammation seems to be the consequence of retinal pigment epithelium and Bruch membrane alterations. These pathophysiologic differences may be the key issue that justifies the difference in treatment strategies. Vascular endothelial growth factor inhibitors have changed the treatment of both diseases, however, many patients with DME fail to achieve the established therapeutic goals. From a clinical perspective, targeting inflammatory pathways with intravitreal corticosteroids has been proven to be effective in patients with DME. On the contrary, the clinical relevance of addressing inflammation in patients with nAMD has not been proven yet. We explore the role and implication of inflammation in the development of nAMD and DME and its therapeutical relevance.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences University of Milan, Milan, Italy; Eye Clinic, IRCCS MultiMedica, Milan, Italy
| | - Marco Lupidi
- Eye Clinic, Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona, Italy.
| | - Simone Donati
- Department of Medicine and Surgery, University of Insubria of Varese, Varese, Italy
| | - Carlo Astarita
- AbbVie S.r.l., SR 148 Pontina, Campoverde, LT 04011, Italy
| | | | - Elisabetta Pilotto
- Department of Neuroscience-Ophthalmology, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Lim RR, Thomas A, Ramasubramanian A, Chaurasia SS. Retinal microglia-derived S100A9 incite NLRP3 inflammasome in a Western diet fed Ossabaw pig retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621160. [PMID: 39554084 PMCID: PMC11565851 DOI: 10.1101/2024.10.30.621160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Purpose We established S100A9 as a myeloid-derived damage-associated molecular pattern (DAMPs) protein associated with increasing severity of diabetic retinopathy (DR) in type 2 diabetic subjects. The present study investigates the retinal localization, expression, and mechanisms of action for S100A9 in the young obese Ossabaw pig retina. Methods Retinae from Ossabaw pigs fed a Western diet for 10 weeks were evaluated for S100 and inflammatory mediator expression using quantitative PCR and Western blot. Double immunohistochemistry was performed to identify the cellular sources of S100A9 in the pig retina. Primary pig retinal microglial cells (pMicroglia) were examined for S100A9 production. S100A9-induced responses were also investigated, and inhibitor studies elucidated the mechanism of action via the NLRP3 inflammasome. A specific inhibitor, Paquinimod (ABR-215757), was administered in vitro to assess the rescue of S100A9-induced NLRP3 inflammasome activation in pMicroglia. Results The expression of the S100 family in the obese Ossabaw pig retina showed a significant elevation of S100A9, consistent with increased levels of circulating S100A9. Moreover, the retina had elevated levels of inflammatory mediators IL-6, IL-8, MCP-1, IL-1β and NLRP3. Retinal microglia in obese Ossabaw were activated and accompanied by an increased expression of intracellular S100A9. pMicroglia isolated from pig retina transformed from ramified to amoeboid state when activated with LPS and produced high S100A9 transcript and protein levels. The S100A9 protein, in turn, further activated pMicroglia by heightened production of S100A9 transcripts and secretion of pro-inflammatory IL-1β protein. Inhibition of TLR4 with TAK242 and NLRP3 with MCC950 attenuated the production of IL-1β during S100A9 stimulus. Finally, pre-treatment with Paquinimod successfully reduced S100A9-driven increases of glycosylated-TLR4, NLRP3, ASC, Caspase-1, and IL-1β production. Conclusion We demonstrated that microglial-derived S100A9 perpetuates pro-inflammatory responses via the NLRP3 inflammasome in the retina of young Western-diet-fed Ossabaw pigs exhibiting diabetic retinopathy.
Collapse
|
14
|
Ruan Y, Zhang P, Jia X, Hua S, Yao D. Association between controlling nutritional status score and diabetic retinopathy: Data from National Health and Nutrition Examination Survey. Eur J Ophthalmol 2024:11206721241289971. [PMID: 40123147 DOI: 10.1177/11206721241289971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
ObjectiveThis study aimed to examine the association between controlling nutritional status (CONUT) score and diabetic retinopathy (DR) risk, as well as investigate the impact of CONUT score on mortality risk among DR patients.MethodsThis retrospective study included 5,256 patients with diabetes from National Health and Nutrition Examination Surveys. These participants were classified into two groups: the DR group (n = 641) and the non-DR group (n = 4,615). We used weighted univariate and multivariate logistic regression models to assess the correlation of CONUT score and DR risk. Weighted univariate and multivariate Cox models were adopted to explore the association of CONUT score with all-cause mortality and cardiovascular disease (CVD)-related mortality in patients with DR.Results305 patients diagnosed with DR had died by the end of the follow-up period, among whom 111 individuals died due to CVD. After adjusting all potential confounding factors, there was an association between CONUT score and DR development in patients with diabetes [odd ratio (OR) = 1.18, 95% confidence interval (CI): 1.05-1.33]. Additionally, CONUT score was found to be associated with all-cause mortality of patients with DR [hazard ratio (HR) = 1.11, 95%CI: 1.01-1.22, P= 0.041]. However, there was no significant difference in the CONUT score and CVD-related mortality of patients with DR.ConclusionsCONUT score may be a valuable tool for assessing the risk of developing DR, and predicting prognosis in patients with DR. However, as this was a cross-sectional study, we cannot infer the causality of CONUT score and DR risk.
Collapse
Affiliation(s)
- Yimeng Ruan
- Department of Ophthalmology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, P.R. China
| | - Ping Zhang
- Department of Ophthalmology, Ningbo Eye Center Hospital, Ningbo, Zhejiang Province, P.R. China
| | - Xinru Jia
- Department of Ophthalmology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, P.R. China
| | - Shanshan Hua
- Department of Ophthalmology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, P.R. China
| | - Dongwei Yao
- Department of Ophthalmology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, P.R. China
| |
Collapse
|
15
|
Barone V, Surico PL, Cutrupi F, Mori T, Gallo Afflitto G, Di Zazzo A, Coassin M. The Role of Immune Cells and Signaling Pathways in Diabetic Eye Disease: A Comprehensive Review. Biomedicines 2024; 12:2346. [PMID: 39457658 PMCID: PMC11505591 DOI: 10.3390/biomedicines12102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Diabetic eye disease (DED) encompasses a range of ocular complications arising from diabetes mellitus, including diabetic retinopathy, diabetic macular edema, diabetic keratopathy, diabetic cataract, and glaucoma. These conditions are leading causes of visual impairments and blindness, especially among working-age adults. Despite advancements in our understanding of DED, its underlying pathophysiological mechanisms remain incompletely understood. Chronic hyperglycemia, oxidative stress, inflammation, and neurodegeneration play central roles in the development and progression of DED, with immune-mediated processes increasingly recognized as key contributors. This review provides a comprehensive examination of the complex interactions between immune cells, inflammatory mediators, and signaling pathways implicated in the pathogenesis of DED. By delving in current research, this review aims to identify potential therapeutic targets, suggesting directions of research for future studies to address the immunopathological aspects of DED.
Collapse
Affiliation(s)
- Vincenzo Barone
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| | - Pier Luigi Surico
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Francesco Cutrupi
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| | - Tommaso Mori
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
- Department of Ophthalmology, University of California San Diego, La Jolla, CA 92122, USA
| | - Gabriele Gallo Afflitto
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00128 Rome, Italy;
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Antonio Di Zazzo
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| | - Marco Coassin
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| |
Collapse
|
16
|
Wei B, Zhou L, Shu BL, Huang QY, Chai H, Yuan HY, Wu XR. Association of diabetic retinopathy with plasma atherosclerotic index, visceral obesity index, and lipid accumulation products: NHANES 2005-2008. Lipids Health Dis 2024; 23:331. [PMID: 39390607 PMCID: PMC11465674 DOI: 10.1186/s12944-024-02325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Abdominal obesity, a significant risk factor for the progression of diabetic retinopathy (DR), may lead to improved visual outcomes through early assessment. This study aims to evaluate any potential associations between DR and novel lipid metabolism markers, including the Atherogenic Index of Plasma (AIP), Visceral Adiposity Index (VAI), and Lipid Accumulation Product (LAP). METHODS This study aimed to elucidate the association between various lipid markers and DR by screening the National Health and Nutrition Examination Survey (NHANES) database in the United States from 2005 to 2008. To examine the correlation, multifactor logistic regression analysis, subgroup analysis, threshold effect analysis, interaction test, and smooth curve fitting were used. RESULTS Among the 2591 participants included, the incidence of DR was 13.6% and the mean age was 59.55 ± 12.26 years. After adjusting for important confounding covariates, logistic regression studies suggested a possible positive association between LAP, VAI, AIP, and DR occurrence (odds ratio [OR] = 1.004; 95% confidence interval [CI]: 1.002, 1.006; P < 0.0001; [OR] = 1.090; 95% [CI]: 1.037, 1.146; P = 0.0007; [OR] = 1.802; 95% [CI]: 1.240, 2.618; P = 0.0020). The nonlinear association between LAP and DR was further illustrated using an S-shaped curve by smoothing curve fitting, with the inflection point of the curve located at 63.4. Subgroup analyses and interaction tests were performed with full variable adjustment (P > 0.05 for all interactions). CONCLUSION Studies have shown that elevated levels of LAP, VAI, and AIP increase the likelihood of DR, suggesting that they have the potential to be predictive markers of DR, emphasizing their potential utility in risk assessment and prevention strategies, and advocating for early intervention to mitigate the likelihood of DR.
Collapse
Affiliation(s)
- Bin Wei
- The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lin Zhou
- The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ben-Liang Shu
- The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qin-Yi Huang
- The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hua Chai
- The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hao-Yu Yuan
- The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiao-Rong Wu
- The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
17
|
Lv BJ, Zuo HJ, Li QF, Huang FF, Zhang T, Huang RX, Zheng SJ, Wan WJ, Hu K. Retinal microcirculation changes in prediabetic patients with short-term increased blood glucose using optical coherence tomography angiography. World J Radiol 2024; 16:407-417. [PMID: 39355394 PMCID: PMC11440280 DOI: 10.4329/wjr.v16.i9.407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/03/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Retinal microcirculation alterations are early indicators of diabetic microvascular complications. Optical coherence tomography angiography (OCTA) is a noninvasive method to assess these changes. This study analyzes changes in retinal microcirculation in prediabetic patients during short-term increases in blood glucose using OCTA. AIM To investigate the changes in retinal microcirculation in prediabetic patients experiencing short-term increases in blood glucose levels using OCTA. METHODS Fifty volunteers were divided into three groups: Group 1 [impaired fasting glucose (IFG) or impaired glucose tolerance (IGT)], Group 2 (both IFG and IGT), and a control group. Retinal microcirculation parameters, including vessel density (VD), perfusion density (PD), and foveal avascular zone (FAZ) metrics, were measured using OCTA. Correlations between these parameters and blood glucose levels were analyzed in both the fasting and postprandial states. RESULTS One hour after glucose intake, the central VD (P = 0.023), central PD (P = 0.026), and parafoveal PD (P < 0.001) were significantly greater in the control group than in the fasting group. In Group 1, parafoveal PD (P < 0.001) and FAZ circularity (P = 0.023) also increased one hour after glucose intake. However, no significant changes were observed in the retinal microcirculation parameters of Group 2 before or after glucose intake (P > 0.05). Compared with the control group, Group 1 had a larger FAZ area (P = 0.032) and perimeter (P = 0.018), whereas Group 2 had no significant differences in retinal microcirculation parameters compared with the control group (P > 0.05). Compared with Group 1, Group 2 had greater central VD (P = 0.013) and PD (P = 0.008) and a smaller FAZ area (P = 0.012) and perimeter (P = 0.010). One hour after glucose intake, Group 1 had a larger FAZ area (P = 0.044) and perimeter (P = 0.038) than did the control group, whereas Group 2 showed no significant differences in retinal microcirculation parameters compared with the control group (P > 0.05). Group 2 had greater central VD (P = 0.042) and PD (P = 0.022) and a smaller FAZ area (P = 0.015) and perimeter (P = 0.016) than Group 1. At fasting, central PD was significantly positively correlated with blood glucose levels (P = 0.044), whereas no significant correlations were found between blood glucose levels and OCTA parameters one hour after glucose intake. CONCLUSION A short-term increase in blood glucose has a more pronounced effect on retinal microcirculation in prediabetic patients with either IFG or IGT.
Collapse
Affiliation(s)
- Bing-Jing Lv
- Chongqing Medical University, Chongqing 400000, China
- Department of Ophthalmology, Dianjiang People’s Hospital of Chongqing, Chongqing 4008300, Chongqing, China
| | - Hang-Jia Zuo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, China
| | - Qi-Fu Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fan-Fan Huang
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tong Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, China
| | - Rong-Xi Huang
- Chongqing People’s Hospital, Chongqing 400000, China
| | - Shi-Jie Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wen-Juan Wan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, China
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
18
|
Huang Z, Chen LJ, Huang D, Yi J, Chen Z, Lin P, Wang Y, Zheng J, Chen W. Preoperative Intravitreal Conbercept Injection Reduced Both Angiogenic and Inflammatory Cytokines in Patients With Proliferative Diabetic Retinopathy. J Diabetes Res 2024; 2024:2550367. [PMID: 39308630 PMCID: PMC11416173 DOI: 10.1155/2024/2550367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/21/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024] Open
Abstract
Aims: To investigate the impact of intravitreal injection of conbercept, a recombinant fusion protein with decoy receptors for the vascular endothelial growth factor (VEGF) family, on intraocular concentrations of angiogenic and inflammatory mediators in patients with proliferative diabetic retinopathy (PDR), analyzed its potential impact on surgical outcomes. Methods: Forty eyes from 40 patients with PDR were included in this prospective study. Patients received intravitreal injection of conbercept followed by vitrectomy or phacovitrectomy in 1 week. Aqueous humor samples were collected before and 1 week after the conbercept injection. The concentrations of angiogenic and inflammatory cytokines and chemokines were measured by flow cytometry. Follow-up clinical data were collected and analyzed. Results: Intravitreal conbercept injection significantly decreased aqueous concentrations of VEGF (325.5 (baseline) versus 22.3 pg/mL (postinjection), p < 0.0001), PlGF (39.5 versus 24.5 pg/mL, p < 0.0001), and PDGF-A (54.1 versus 47.0 pg/mL, p = 0.0016), while no impact on bFGF levels. For inflammatory mediators, the concentration of TNF-α (0.79 versus 0.45 pg/mL, p = 0.0004) and IL-8 (180.6 versus 86 pg/mL, p < 0.0001) were decreased, while IL-6 (184.1 versus 333.7 pg/mL, p = 0.0003) and IL-10 (1.1 versus 1.5 pg/mL, p = 0.0032) were increased. No significant changes in IFN-γ or MCP-1 were detected. Three months after surgery, the mean best-corrected visual acuity improved from a baseline of 1.8 ± 0.1 logMAR to 0.7 ± 0.1 logMAR (p < 0.0001), with 36 eyes (90%) achieving an improvement of visual function. Conclusions: Intravitreal conbercept injection presents dual effects of antiangiogenesis and anti-inflammation and can be served as an adjuvant treatment to vitrectomy for PDR patients.
Collapse
Affiliation(s)
- Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Li Jia Chen
- Department of Ophthalmology & Visual SciencesThe Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Dingguo Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Jingsheng Yi
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Zhiying Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Fifth Clinical InstituteShantou University Medical College, Shantou, Guangdong, China
| | - Peimin Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yifan Wang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Jianlong Zheng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Weiqi Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| |
Collapse
|
19
|
Bhandarkar NS, Shetty KB, Shetty N, Shetty K, Kiran A, Pindipapanahalli N, Shetty R, Ghosh A. Comprehensive analysis of systemic, metabolic, and molecular changes following prospective change to low-carbohydrate diet in adults with type 2 diabetes mellitus in India. Front Nutr 2024; 11:1394298. [PMID: 39279894 PMCID: PMC11397303 DOI: 10.3389/fnut.2024.1394298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024] Open
Abstract
Purpose South Asians, especially Indians, face higher diabetes-related risks despite lower body mass index (BMI) compared with the White population. Limited research connects low-carbohydrate high-fat (LCHF)/ketogenic diets to metabolic changes in this group. Systematic studies are needed to assess the long-term effects of the diet, such as ocular health. Method In this prospective, observational study, 465 candidates aged 25-75 years with type 2 diabetes included with institutional ethics approval. A total of 119 subjects were included in the final study assessment based on the availability of pathophysiological reports, tears, and blood samples collected at baseline, 3rd, and 6th months. Serum and tear samples were analyzed by an enzyme-linked lectinsorbent assay, to examine secreted soluble protein biomarkers, such as IL-1β (interleukin 1 Beta), IL-6 (interleukin 6), IL-10 (interleukin 10), IL-17A (interleukin 17A), MMP-9 (matrix metalloproteinase 9), ICAM-1 (intercellular adhesion molecule 1), VEGF-A (vascular endothelial growth factor A), and TNF-α (tumor necrosis factor-alpha). A Wilcoxon test was performed for paired samples. Spearman's correlation was applied to test the strength and direction of the association between tear biomarkers and HbA1c. p-value of < 0.05 was considered significant. Results After a 3- and 6-month LCHF intervention, fasting blood sugar decreased by 10% (Δ: -14 mg/dL; p < 0.0001) and 7% (Δ: -8 mg/dL; p < 0.0001), respectively. Glycated hemoglobin A1c levels decreased by 13% (Δ: -1%; p < 0.0001) and 9% (Δ: -0.6%; p < 0.0001). Triglycerides reduced by 22% (Δ: -27 mg/dL; p < 0.0001) and 14% (Δ: -19 mg/dL; p < 0.0001). Total cholesterol reduced by 5.4% (Δ: -10.5 mg/dL; p < 0.003) and 4% (Δ: -7 mg/dL; p < 0.03), while low-density lipoprotein decreased by 10% (Δ: -11.5 mg/dL; p < 0.003) and 9% (Δ: -11 mg/dL; p < 0.002). High-density lipoprotein increased by 11% (Δ: 5 mg/dL; p < 0.0001) and 17% (Δ: 8 mg/dL; p < 0.0001). At the first follow-up, tear proteins such as ICAM-1, IL-17A, and TNF-α decreased by 30% (Δ: -2,739 pg/mL; p < 0.01), 22% (Δ: -4.5 pg/mL; p < 0.02), and 34% (Δ: -0.9 pg/mL; p < 0.002), respectively. At the second follow-up, IL-1β and TNF-α reduced by 41% (Δ: -2.4 pg/mL; p < 0.05) and 34% (Δ: -0.67 pg/mL; p < 0.02). Spearman's correlation between HbA1c and tear analytes was not statistically significant. Conclusion The LCHF diet reduces the risk of hyperglycemia and dyslipidemia. Changes in tear fluid protein profiles were observed, but identifying promising candidate biomarkers requires validation in a larger cohort.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| |
Collapse
|
20
|
Zhang X, Hu Q, Peng H, Huang J, Sang W, Guan J, Huang Z, Jiang B, Sun D. Therapeutic potential of flavopiridol in diabetic retinopathy: Targeting DDX58. Int Immunopharmacol 2024; 137:112504. [PMID: 38897127 DOI: 10.1016/j.intimp.2024.112504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Diabetic retinopathy (DR), a common complication of diabetes, is characterized by inflammation and neovascularization, and is intricately regulated by the ubiquitin-proteasome system (UPS). Despite advancements, identifying ubiquitin-related genes and drugs specifically targeting DR remains a significant challenge. In this study, bioinformatics analyses and the Connectivity Map (CMAP) database were utilized to explore the therapeutic potential of genes and drugs for DR. Through these methodologies, flavopiridol was identified as a promising therapeutic candidate. To evaluate flavopiridol's therapeutic potential in DR, an in vitro model using Human Umbilical Vein Endothelial Cells (HUVECs) induced by high glucose (HG) conditions was established. Additionally, in vivo models using mice with streptozotocin (STZ)-induced DR and oxygen-induced retinopathy (OIR) were employed. The current study reveals that flavopiridol possesses robust anti-inflammatory and anti-neovascularization properties. To further elucidate the molecular mechanisms of flavopiridol, experimental validation and molecular docking techniques were employed. These efforts identified DDX58 as a predictive target for flavopiridol. Notably, our research demonstrated that flavopiridol modulates the DDX58/NLRP3 signaling pathway, thereby exerting its therapeutic effects in suppressing inflammation and neovascularization in DR. This study unveils groundbreaking therapeutic agents and innovative targets for DR, and establishes a progressive theoretical framework for the application of ubiquitin-related therapies in DR.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Qiang Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hongsong Peng
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jiayang Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Wei Sang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jitian Guan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Zhangxin Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Bo Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Dawei Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
21
|
Bautista-Elivar N, Avilés-Trigueros M, Bueno JM. Quantification of Photoreceptors' Changes in a Diabetic Retinopathy Model with Two-Photon Imaging Microscopy. Int J Mol Sci 2024; 25:8756. [PMID: 39201444 PMCID: PMC11354294 DOI: 10.3390/ijms25168756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Emerging evidence suggests that retinal neurodegeneration is an early event in the pathogenesis of diabetic retinopathy (DR), preceding the development of microvascular abnormalities. Here, we assessed the impact of neuroinflammation on the retina of diabetic-induced rats. For this aim we have used a two-photon microscope to image the photoreceptors (PRs) at different eccentricities in unstained retinas obtained from both control (N = 4) and pathological rats (N = 4). This technique provides high-resolution images where individual PRs can be identified. Within each image, every PR was located, and its transversal area was measured and used as an objective parameter of neuroinflammation. In control samples, the size of the PRs hardly changed with retinal eccentricity. On the opposite end, diabetic retinas presented larger PR transversal sections. The ratio of PRs suffering from neuroinflammation was not uniform across the retina. Moreover, the maximum anatomical resolving power (in cycles/deg) was also calculated. This presents a double-slope pattern (from the central retina towards the periphery) in both types of specimens, although the values for diabetic retinas were significantly lower across all retinal locations. The results show that chronic retinal inflammation due to diabetes leads to an increase in PR transversal size. These changes are not uniform and depend on the retinal location. Two-photon microscopy is a useful tool to accurately characterize and quantify PR inflammatory processes and retinal alterations.
Collapse
Affiliation(s)
- Nazario Bautista-Elivar
- Departamento de Ingeniería Eléctrica y Electrónica, Tecnológico Nacional de México/Instituto Tecnológico de Pachuca, Pachuca 42082, Hidalgo, Mexico
| | - Marcelino Avilés-Trigueros
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, “Campus Mare Nostrum” de Excelencia International, 30100 Murcia, Spain
| | - Juan M. Bueno
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
22
|
Ong WJ, Seng JJB, Yap B, He G, Moochhala NA, Ng CL, Ganguly R, Lee JH, Chong SL. Impact of neonatal sepsis on neurocognitive outcomes: a systematic review and meta-analysis. BMC Pediatr 2024; 24:505. [PMID: 39112966 PMCID: PMC11304789 DOI: 10.1186/s12887-024-04977-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/26/2024] [Indexed: 08/11/2024] Open
Abstract
INTRODUCTION Sepsis is associated with neurocognitive impairment among preterm neonates but less is known about term neonates with sepsis. This systematic review and meta-analysis aims to provide an update of neurocognitive outcomes including cognitive delay, visual impairment, auditory impairment, and cerebral palsy, among neonates with sepsis. METHODS We performed a systematic review of PubMed, Embase, CENTRAL and Web of Science for eligible studies published between January 2011 and March 2023. We included case-control, cohort studies and cross-sectional studies. Case reports and articles not in English language were excluded. Using the adjusted estimates, we performed random effects model meta-analysis to evaluate the risk of developing neurocognitive impairment among neonates with sepsis. RESULTS Of 7,909 studies, 24 studies (n = 121,645) were included. Majority of studies were conducted in the United States (n = 7, 29.2%), and all studies were performed among neonates. 17 (70.8%) studies provided follow-up till 30 months. Sepsis was associated with increased risk of cognitive delay [adjusted odds ratio, aOR 1.14 (95% CI: 1.01-1.28)], visual impairment [aOR 2.57 (95%CI: 1.14- 5.82)], hearing impairment [aOR 1.70 (95% CI: 1.02-2.81)] and cerebral palsy [aOR 2.48 (95% CI: 1.03-5.99)]. CONCLUSION Neonates surviving sepsis are at a higher risk of poorer neurodevelopment. Current evidence is limited by significant heterogeneity across studies, lack of data related to long-term neurodevelopmental outcomes and term infants.
Collapse
Affiliation(s)
- Wei Jie Ong
- MOH Holdings, Singapore, 1 Maritime Square, Singapore, 099253, Singapore
| | - Jun Jie Benjamin Seng
- MOH Holdings, Singapore, 1 Maritime Square, Singapore, 099253, Singapore.
- SingHealth Regional Health System PULSES Centre, Singapore Health Services, Outram Rd, Singapore, 169608, Singapore.
- SingHealth Duke-NUS Family Medicine Academic Clinical Programme, Singapore, Singapore.
| | - Beijun Yap
- MOH Holdings, Singapore, 1 Maritime Square, Singapore, 099253, Singapore
| | - George He
- Yong Loo Lin School of Medicine, 10 Medical Dr, Yong Loo Lin School of Medicine, Singapore, Singapore
| | | | - Chen Lin Ng
- MOH Holdings, Singapore, 1 Maritime Square, Singapore, 099253, Singapore
| | - Rehena Ganguly
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
| | - Jan Hau Lee
- Children's Intensive Care Unit, KK Women's and Children's Hospital, SingHealth Paediatrics Academic Clinical Programme, 100 Bukit Timah Rd, Singapore, 229899, Singapore
| | - Shu-Ling Chong
- Department of Emergency Medicine, KK Women's and Children's Hospital, SingHealth Paediatrics Academic Clinical Programme, SingHealth Emergency Medicine Academic Clinical Programme, 100 Bukit Timah Rd, Singapore, 229899, Singapore
| |
Collapse
|
23
|
Grether U, Foxton RH, Gruener S, Korn C, Kimbara A, Osterwald A, Zirwes E, Uhles S, Thoele J, Colé N, Rogers-Evans M, Röver S, Nettekoven M, Martin RE, Adam JM, Fingerle J, Bissantz C, Guba W, Alker A, Szczesniak AM, Porter RF, Toguri TJ, Revelant F, Poirier A, Perret C, Winther L, Caruso A, Fezza F, Maccarrone M, Kelly MEM, Fauser S, Ullmer C. RG7774 (Vicasinabin), an orally bioavailable cannabinoid receptor 2 (CB2R) agonist, decreases retinal vascular permeability, leukocyte adhesion, and ocular inflammation in animal models. Front Pharmacol 2024; 15:1426446. [PMID: 39070793 PMCID: PMC11272598 DOI: 10.3389/fphar.2024.1426446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Preclinical studies suggest that cannabinoid receptor type 2 (CB2R) activation has a therapeutic effect in animal models on chronic inflammation and vascular permeability, which are key pathological features of diabetic retinopathy (DR). A novel CB2R agonist, triazolopyrimidine RG7774, was generated through lead optimization of a high-throughput screening hit. The aim of this study was to characterize the pharmacology, absorption, distribution, metabolism, elimination, and toxicity (ADMET) profile of RG7774, and to explore its potential for managing the key pathological features associated with retinal disease in rodents. Methods The in vitro pharmacology of RG7774 was investigated for CB2R binding and receptor activation using recombinant human and mouse CB2R expression in Chinese hamster ovary cells, and endogenous CB2R expression in human Jurkat cells, and rat and mouse spleen cells. The ADMET profile was evaluated and the effects of RG7774 on retinal permeability, leukocyte adhesion, and choroidal neovascularization (CNV) were investigated in rodent models of retinal disease. Pharmacokinetic (PK) parameters and the exposure-response relationship were characterized in healthy animals and in animals with laser-induced CNV. Results RG7774 was found to be a potent (EC50: 2.8 nM and Ki: 51.3 nM), selective, and full CB2R agonist with no signs of cannabinoid receptor type 1 (CB1R) binding or activation. The ligand showed a favorable ADMET profile and exhibited systemic and ocular exposure after oral delivery. Functional potency in vitro translated from recombinant to endogenous expression systems. In vivo, orally administered RG7774 reduced retinal permeability and leukocyte adhesion in rodents with lipopolysaccharide (LPS)-induced uveitis and streptozotocin (STZ)-induced DR, and reduced lesion areas in rats with laser-induced CNV with an ED50 of 0.32 mg/kg. Anatomically, RG7774 reduced the migration of retinal microglia to retinal lesions. Discussion RG7774 is a novel, highly selective, and orally bioavailable CB2R agonist, with an acceptable systemic and ocular PK profile, and beneficial effects on retinal vascular permeability, leukocyte adhesion, and ocular inflammation in rodent animal models. Results support the development of RG7774 as a potential treatment for retinal diseases with similar pathophysiologies as addressed by the animal models.
Collapse
Affiliation(s)
- Uwe Grether
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Richard H. Foxton
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Sabine Gruener
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Claudia Korn
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Atsushi Kimbara
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Anja Osterwald
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Elisabeth Zirwes
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Sabine Uhles
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Janina Thoele
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Nadine Colé
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Mark Rogers-Evans
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Stephan Röver
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Matthias Nettekoven
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Rainer E. Martin
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Jean-Michel Adam
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Jürgen Fingerle
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Caterina Bissantz
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Wolfgang Guba
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - André Alker
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Anna M. Szczesniak
- Departments of Pharmacology, Anesthesia, Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Ross F. Porter
- Departments of Pharmacology, Anesthesia, Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Tom J. Toguri
- Departments of Pharmacology, Anesthesia, Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Franco Revelant
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Agnès Poirier
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Camille Perret
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Lotte Winther
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Antonello Caruso
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Filomena Fezza
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, Rome, Italy
| | - Melanie E. M. Kelly
- Departments of Pharmacology, Anesthesia, Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Sascha Fauser
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Christoph Ullmer
- F. Hoffmann-La Roche Ltd, Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
24
|
Serikbaeva A, Li Y, Ma S, Yi D, Kazlauskas A. Resilience to diabetic retinopathy. Prog Retin Eye Res 2024; 101:101271. [PMID: 38740254 PMCID: PMC11262066 DOI: 10.1016/j.preteyeres.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Chronic elevation of blood glucose at first causes relatively minor changes to the neural and vascular components of the retina. As the duration of hyperglycemia persists, the nature and extent of damage increases and becomes readily detectable. While this second, overt manifestation of diabetic retinopathy (DR) has been studied extensively, what prevents maximal damage from the very start of hyperglycemia remains largely unexplored. Recent studies indicate that diabetes (DM) engages mitochondria-based defense during the retinopathy-resistant phase, and thereby enables the retina to remain healthy in the face of hyperglycemia. Such resilience is transient, and its deterioration results in progressive accumulation of retinal damage. The concepts that co-emerge with these discoveries set the stage for novel intellectual and therapeutic opportunities within the DR field. Identification of biomarkers and mediators of protection from DM-mediated damage will enable development of resilience-based therapies that will indefinitely delay the onset of DR.
Collapse
Affiliation(s)
- Anara Serikbaeva
- Department of Physiology and Biophysics, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Yanliang Li
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Simon Ma
- Department of Bioengineering, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Darvin Yi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Andrius Kazlauskas
- Department of Physiology and Biophysics, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA.
| |
Collapse
|
25
|
Hu Y, Li Z, Li H, Xu Q, Xu C, Lin W, Ma X, Hao M, Kuang H. Severe hypoglycaemia-induced microglial inflammation damages microvascular endothelial cells, leading to retinal destruction. Diab Vasc Dis Res 2024; 21:14791641241278506. [PMID: 39187253 PMCID: PMC11348349 DOI: 10.1177/14791641241278506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Human microglia (HMC) are stress-induced inflammatory cells of the retina. It is unknown whether severe hypoglycaemia causes inflammation in microglia, affects the permeability of human retinal microvascular endothelial cells (HRMECs), and causes retinal damage. This study aimed to explore the effects of severe hypoglycaemia on retinal microglial inflammation and endothelial cell permeability and evaluate the damage caused by hypoglycaemia to the retina. The CCK-8 assay was used to measure cell viability. Western blotting was used to detect IL-1β, IL-6, TNF- α, claudin-1, and occludin expression. ELISA was used to detect IL-1β, IL-6, and TNF- α. Transmission electron microscopy (TEM) and haematoxylin and eosin staining were used to observe the retinal structure. Immunohistochemistry and immunofluorescence staining assays were also used to detect IL-1β, IL-6, TNF- α, claudin-1, and occludin expression. Severe hypoglycaemia promoted inflammation in HMC3 cells. Inflammation caused by hypoglycaemia leads to the decreased expression of tight junction proteins. In vivo, severe hypoglycaemia induced structural damage to the retina, increased the expression of inflammatory factors, and decreased the expression of tight junction proteins. Our results suggest that severe hypoglycaemia leads to acute retinal inflammation, affecting the permeability of HRMECs and causing retinal damage.
Collapse
Affiliation(s)
- Yuxin Hu
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhen Li
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongxue Li
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qian Xu
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengye Xu
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjian Lin
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuefei Ma
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Hao
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Kuang
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Li B, Hussain W, Jiang ZL, Wang JY, Hussain S, Yasoob TB, Zhai YK, Ji XY, Dang YL. Nuclear proteins and diabetic retinopathy: a review. Biomed Eng Online 2024; 23:62. [PMID: 38918766 PMCID: PMC11197269 DOI: 10.1186/s12938-024-01258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/23/2024] [Indexed: 06/27/2024] Open
Abstract
Diabetic retinopathy (DR) is an eye disease that causes blindness and vision loss in diabetic. Risk factors for DR include high blood glucose levels and some environmental factors. The pathogenesis is based on inflammation caused by interferon and other nuclear proteins. This review article provides an overview of DR and discusses the role of nuclear proteins in the pathogenesis of the disease. Some core proteins such as MAPK, transcription co-factors, transcription co-activators, and others are part of this review. In addition, some current advanced treatment resulting from the role of nuclear proteins will be analyzes, including epigenetic modifications, the use of methylation, acetylation, and histone modifications. Stem cell technology and the use of nanobiotechnology are proposed as promising approaches for a more effective treatment of DR.
Collapse
Affiliation(s)
- Bin Li
- Department of Ophthalmology, The First Affiliated Hospital, Henan University, Kaifeng, 475004, Henan, China
| | - Wahab Hussain
- School of Stomatology, Henan University, Kaifeng, 475000, China
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medicine Science, Henan University, Kaifeng, 475000, China
| | - Zhi-Liang Jiang
- School of Clinical Medicine, Henan University, Kaifeng, 475004, Henan, China
| | - Jia-Yi Wang
- San-Quan College, XinXiang Medical University, No. 688 Xiangyang Road, Hongmen Town, Hongqi District, Xinxiang City, Henan, 453003, China
| | - Sarfraz Hussain
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Talat Bilal Yasoob
- Department of Animal Sciences, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| | - Yuan-Kun Zhai
- School of Stomatology, Henan University, Kaifeng, 475000, China.
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, 475000, China.
| | - Xin-Ying Ji
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medicine Science, Henan University, Kaifeng, 475000, China.
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Mazhai, Erqi District, Zhengzhou, 450064, Henan, China.
| | - Ya-Long Dang
- Department of Ophthalmology, Sanmenxia Central Hospital, Henan University of Science and Technology, Sanmenxia, Henan, China.
- Department of Ophthalmology, Sanmenxia Eye Hospital, Sanmenxia, Henan, China.
- Department of Ophthalmology, Henan University of Science and Technology School of Medicine, Luoyang, Henan, China.
| |
Collapse
|
27
|
Gouliopoulos N, Siasos G, Oikonomou E, Sapounas S, Rouvas A, Ziogas AC, Moschos MM, Tousoulis D. The Association of Systemic Endothelial Dysfunction With Diffuse Diabetic Macular Edema. Angiology 2024:33197241263384. [PMID: 38889729 DOI: 10.1177/00033197241263384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Our aim was to assess whether systemic endothelial dysfunction, evaluated non-invasively by flow mediated dilation (FMD), is associated with diabetic macular edema (DME) and to determine if it is further impaired in patients with diffuse-DME. Consecutive patients (n = 84) with type-2 diabetes mellitus (T2DM) and diabetic retinopathy were enrolled. DME was not present in 38 (non-DME) and present in 46 patients; 25 with focal and 21 with diffuse-DME. No differences were detected between DME and non-DME groups regarding the clinical and demographic characteristics, except for the age of T2DM initiation (lower in non-DME). FMD values were significantly impaired in DME compared with non-DME patients, even after adjustment for multiple covariates (3.56 ± 1.03 vs 4.57 ± 1.25%, P = .003). Among DME patients, no differences were found concerning the clinical and demographic data, while FMD levels were significantly lower in diffuse-DME patients, compared with the focal-DME ones, regardless of the impact several confounders (2.88 ± 0.65 vs 4.08 ± 0.95%, P = .002). It is noteworthy that FMD values of non-DME and focal-DME patients did not differ significantly (4.52 ± 1.24 vs 4.21 ± 1.06%, P = .307). Moreover, among DME patients, impaired FMD was an independent predictor of diffuse-DME (odds ratio: 0.06, 95% CI 0.01-0.47, P = .007).
Collapse
Affiliation(s)
- Nikolaos Gouliopoulos
- 2nd Department of Ophthalmology, Medical School of National and Kapodistrian University of Athens, 'Attikon' University General Hospital, Athens, Greece
| | - Gerasimos Siasos
- Department of Cardiology, Medical School of National and Kapodistrian University of Athens, Sotiria Thoracic Diseases General Hospital, Athens, Greece
| | - Evangelos Oikonomou
- Department of Cardiology, Medical School of National and Kapodistrian University of Athens, Sotiria Thoracic Diseases General Hospital, Athens, Greece
| | - Spyros Sapounas
- Endocrine Unit and Diabetes Centre, Department of Clinical Therapeutics, Medical School of National and Kapodistrian University of Athens, 'Alexandra' Hospital, Athens, Greece
| | - Alexandros Rouvas
- 2nd Department of Ophthalmology, Medical School of National and Kapodistrian University of Athens, 'Attikon' University General Hospital, Athens, Greece
| | - Apostolos C Ziogas
- Department of Obstetrics and Gynecology, Medical School of University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Marilita M Moschos
- 1st Department of Ophthalmology, Medical School of National and Kapodistrian University of Athens, 'G. Gennimatas' General Hospital, Athens, Greece
| | - Dimitris Tousoulis
- Department of Cardiology, Medical School of National and Kapodistrian University of Athens, 'Hippokration' General Hospital, Athens, Greece
| |
Collapse
|
28
|
Ichihashi Y, Takamura Y, Hirano T, Shimura M, Yoneda K, Konno K, Yamada Y, Morioka M, Gozawa M, Matsumura T, Inatani M. Flare levels after intravitreal injection of brolucizumab for diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 2024; 262:1745-1753. [PMID: 38217767 PMCID: PMC11106208 DOI: 10.1007/s00417-024-06374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024] Open
Abstract
PURPOSE This study aimed to evaluate anterior flare intensity (AFI) after intravitreal injection of brolucizumab (IVBr) in patients with diabetic macular edema (DME), and to identify the factors associated with the change of AFI after IVBr. METHODS This prospective multicenter study was conducted at five sites in Japan for patients with DME who underwent a single IVBr. AFI and central retinal thickness (CRT) were measured using a laser flare meter and spectral-domain optical coherence tomography, respectively, at weeks 0 and 6. RESULTS Sixty-five patients (phakia, 37 eyes; pseudophakia, 28 eyes) were enrolled. Six weeks after IVBr, CRT and best-corrected visual acuity significantly improved (p < 0.0001). AFI (p = 0.0003) and age (p = 0.0054) were significantly higher in patients with pseudophakic eyes than those with phakic eyes. The AFI of the phakic eyes decreased after IVBr (p = 0.043). As the AFI before injection is higher (p = 0.0363) and the age is lower (p = 0.0016), the AFI decreases after IVBr. There was a significant positive correlation between the rates of change in CRT and AFI (p = 0.024). CONCLUSION After IVBr, AFI decreases in phakic eyes but not in pseudophakic eyes. The age, AFI and CRT before injection and changes of CRT are involved in the change in AFI after IVBr.
Collapse
Affiliation(s)
- Yushi Ichihashi
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Eiheiji-Cho, Yoshida-Gun, Fukui-Ken, 910-1193, Japan
| | - Yoshihiro Takamura
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Eiheiji-Cho, Yoshida-Gun, Fukui-Ken, 910-1193, Japan.
| | - Takao Hirano
- Department of Ophthalmology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masahiko Shimura
- Department of Ophthalmology, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| | - Keisuke Yoneda
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Japan
| | - Keiichiro Konno
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yutaka Yamada
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Eiheiji-Cho, Yoshida-Gun, Fukui-Ken, 910-1193, Japan
| | - Masakazu Morioka
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Eiheiji-Cho, Yoshida-Gun, Fukui-Ken, 910-1193, Japan
| | - Makoto Gozawa
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Eiheiji-Cho, Yoshida-Gun, Fukui-Ken, 910-1193, Japan
| | - Takehiro Matsumura
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Eiheiji-Cho, Yoshida-Gun, Fukui-Ken, 910-1193, Japan
| | - Masaru Inatani
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Eiheiji-Cho, Yoshida-Gun, Fukui-Ken, 910-1193, Japan
| |
Collapse
|
29
|
Pan X, Tan X, McDonald J, Kaminga AC, Chen Y, Dai F, Qiu J, Zhao K, Peng Y. Chemokines in diabetic eye disease. Diabetol Metab Syndr 2024; 16:115. [PMID: 38790059 PMCID: PMC11127334 DOI: 10.1186/s13098-024-01297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Diabetic eye disease is a common micro-vascular complication of diabetes and a leading cause of decreased vision and blindness in people of working age worldwide.Although previous studies have shown that chemokines system may be a player in pathogenesis of diabetic eye disease, it is unclear which chemokines play the most important role.To date, there is no meta-analysis which has investigated the role of chemokines in diabetic eye disease.We hope this study will contribute to a better understanding of both the signaling pathways of the chemokines in the pathophysiological process, and more reliable therapeutic targets for diabetic eye disease. METHODS Embase, PubMed, Web of Science and Cochrane Library systematically searched for relevant studies from inception to Sep 1, 2023. A random-effect model was used and standardized mean differences (SMDs) and 95% confidence intervals (CIs) were calculated to summarize the associated measure between chemokines concentrations and diabetic eye disease. Network meta-analysis to rank chemokines-effect values according to ranked probabilities. RESULTS A total of 33 different chemokines involving 11,465 subjects (6559 cases and 4906 controls) were included in the meta-analysis. Results of the meta-analysis showed that concentrations of CC and CXC chemokines in the diabetic eye disease patients were significantly higher than those in the controls. Moreover, network meta-analysis showed that the effect of CCL8, CCL2, CXCL8 and CXCL10 were ranked highest in terms of probabilities. Concentrations of CCL8, CCL2, CXCL8 and CXCL10 may be associated with diabetic eye disease, especially in diabetic retinopathy and diabetic macular edema. CONCLUSION Our study suggests that CCL2 and CXCL8 may play key roles in pathogenesis of diabetic eye disease. Future research should explore putative mechanisms underlying these links, with the commitment to develop novel prophylactic and therapeutic for diabetic eye disease.
Collapse
Affiliation(s)
- Xiongfeng Pan
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Rd, Changsha, Hunan, People's Republic of China, 410007.
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| | - Xinrui Tan
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Judy McDonald
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada
| | | | - Yuyao Chen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feizhao Dai
- Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jun Qiu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Rd, Changsha, Hunan, People's Republic of China, 410007
| | - Kunyan Zhao
- School of Public Health, University of South China, Hengyang, China
| | - Yunlong Peng
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
30
|
Cappellani F, Regillo CD, Haller JA, Gagliano C, Pulido JS. Exploring the Associated Genetic Causes of Diabetic Retinopathy as a Model of Inflammation in Retinal Diseases. Int J Mol Sci 2024; 25:5456. [PMID: 38791494 PMCID: PMC11121794 DOI: 10.3390/ijms25105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
To investigate potential biomarkers and biological processes associated with diabetic retinopathy (DR) using transcriptomic and proteomic data. The OmicsPred PheWAS application was interrogated to identify genes and proteins associated with DR and diabetes mellitus (DM) at a false discovery rate (FDR)-adjusted p-value of <0.05 and also <0.005. Gene Ontology PANTHER analysis and STRING database analysis were conducted to explore the biological processes and protein interactions related to the identified biomarkers. The interrogation identified 49 genes and 22 proteins associated with DR and/or DM; these were divided into those uniquely associated with diabetic retinopathy, uniquely associated with diabetes mellitus, and the ones seen in both conditions. The Gene Ontology PANTHER and STRING database analyses highlighted associations of several genes and proteins associated with diabetic retinopathy with adaptive immune response, valyl-TRNA aminoacylation, complement activation, and immune system processes. Our analyses highlight potential transcriptomic and proteomic biomarkers for DR and emphasize the association of known aspects of immune response, the complement system, advanced glycosylation end-product formation, and specific receptor and mitochondrial function with DR pathophysiology. These findings may suggest pathways for future research into novel diagnostic and therapeutic strategies for DR.
Collapse
Affiliation(s)
- Francesco Cappellani
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.C.)
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy
| | - Carl D. Regillo
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.C.)
| | - Julia A. Haller
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.C.)
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy;
- Ocular Immunology and Rare Diseases Unit, San Marco Hospital, 95123 Catania, Italy
| | - Jose S. Pulido
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.C.)
| |
Collapse
|
31
|
Ding R, Zeng Y, Wei Z, He Z, Jiang Z, Yu J, You C. The L-shape relationship between hemoglobin, albumin, lymphocyte, platelet score and the risk of diabetic retinopathy in the US population. Front Endocrinol (Lausanne) 2024; 15:1356929. [PMID: 38800491 PMCID: PMC11116578 DOI: 10.3389/fendo.2024.1356929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Background The primary aim of this study was to investigate the correlation between diabetic retinopathy (DR) and the HALP score (hemoglobin, albumin, lymphocyte, and platelet) in individuals with diabetes within the United States population. Methods This cross-sectional investigation was based on the National Health and Nutrition Examination Survey (NHANES) database from 2003-2018. The following module calculated the HALP score: HALP score = [lymphocytes (/L) × hemoglobin (g/L) × albumin (g/L)]/platelets (/L). By performing the receiver operating characteristic (ROC) analysis, the optimal cutoff value of HALP was ascertained. Restricted cubic splines (RCS), multivariable logistic regression analysis, sensitivity analysis, and subgroup analysis were conducted to evaluate the effect of the HALP score on DR patients. Finally, the decision curve analysis (DCA) and clinical impact curve (CIC) were conducted to estimate the predictive power and clinical utility of the HALP score with clinical indicators. Results According to the cutoff value (42.9) determined by the ROC curve, the participants were stratified into a lower HALP group (HALPlow) and a higher HALP group (HALPhigh). An L-shaped relationship between HALP score and DR risk was presented in the RCS model (P for nonlinearity <0.001). The DR risk sharply decreased with the increase of HALP, and the decline reached a plateau when HALP was more than 42.9. After fully adjustment, the multivariate logistic regression analysis found that HALPlow was an independent risk factor for DR (OR = 1.363, 95% CI: 1.111-1.671, P < 0.001). Besides, sensitivity analysis showed consistent results. Furthermore, the combination of HALP score and clinical indicators demonstrated predictive power and clinical utility, as shown by the ROC curve, DCA, and CIC. Conclusion The HALP score has an L-shaped correlation with the risk of DR, and thus, the HALP score may contribute to the timely intervention of diabetes patients.
Collapse
Affiliation(s)
- Ranran Ding
- Department of Ophthalmology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
- Tianjin Medical University, Heping District, Tianjin, China
| | - Yusong Zeng
- Department of Ophthalmology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
- Tianjin Medical University, Heping District, Tianjin, China
| | - Zhimei Wei
- Department of Ophthalmology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
- Tianjin Medical University, Heping District, Tianjin, China
| | - Zitong He
- Department of Ophthalmology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
- Tianjin Medical University, Heping District, Tianjin, China
| | - Zhixin Jiang
- Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
| | - Jinguo Yu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| | - Caiyun You
- Department of Ophthalmology, Tianjin Medical University General Hospital, Heping District, Tianjin, China
| |
Collapse
|
32
|
Lee AM, Xu TT, Starr MR. Trends in Research Payments for Diabetic Macular Edema from 2015 to 2021. OPHTHALMOLOGY SCIENCE 2024; 4:100379. [PMID: 37868798 PMCID: PMC10587623 DOI: 10.1016/j.xops.2023.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 08/02/2023] [Indexed: 10/24/2023]
Abstract
Purpose To evaluate characteristics of research payments for diabetic macular edema (DME) studies and correlations to current management trends. Design Retrospective cross-sectional study. Subjects Research payments for DME. Methods Studies with keywords of "diabetic macular edema" or "DME" in the title were extracted from the Centers of Medicare & Medicaid Services Open Payments database from 2015 to 2021. Recipients, payors, and payment amounts were identified. Industry funding was compared with public research funding by the National Eye Institute (NEI). Main Outcome Measures Trends and total value of industry and public fundings for DME from 2015 to 2021. Results From 2015 to 2021, 451 beneficiaries received 6062 industry payments for a total of $120 148 997.41 for DME-related research. The total value of industry funding increased from $8 225 859.08 in 2015 to $50 092 778.45 in 2021. Of the 6062 industry payments, 5367 (88.5%) were reported by male recipients compared with 695 (11.5%) female beneficiaries. Payments to female recipients increased from 60 (7.1%) in 2015 to 335 (13.7%) in 2021. In comparison, public funding for DME-related research from the NEI was comprised of $18 863 266.00 to 17 principal investigators from 2015 to 2021. The total value of public funding increased from $973 590.00 in 2015 to $3 354 376.00 in 2021. Of 59 public research payments, 46 (78.0%) were reported by male recipients and 13 (22.0%) by female recipients. Payments to female recipients increased from 1 (25.0%) in 2015 to 3 (30.0%) in 2021. The most highly invested product by industry were anti-VEGF agents, accounting for $89 955 595.20 (74.9%) of total payment value. Conclusions There was an increase in both industry and public-sponsored funding for DME-related research from 2015 to 2021. There seemed to be a possible discrepancy in both industry and public funding based on sex for DME studies during the study period. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- April M. Lee
- SUNY Downstate College of Medicine, Brooklyn, New York
| | - Timothy T. Xu
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
33
|
Sarkar S, Osman N, Thrimawithana T, Wann SB, Kalita J, Manna P. Alleviation of Diabetic Retinopathy by Glucose-Triggered Delivery of Vitamin D via Dextran-Gated Functionalized Mesoporous Silica Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:1260-1270. [PMID: 38315019 DOI: 10.1021/acsabm.3c01200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Diabetic retinopathy (DR) is the most common retinal disorder, developed in 35% of patients with diabetes mellitus. Lower serum levels of 25-hydroxyvitamin D are associated with the increased risk of developing DR. High doses of the active form of vitamin D (VD), on the contrary, for a long period of time may lead to hypercalcemia and an imbalance in the regulation of bone metabolism. Herein, we studied the efficacy of dextran-gated carboxyphenylboronic acid (CPBA)-functionalized mesoporous silica nanoparticles (MSNs) for glucose-sensitive delivery of 1,25-dihydroxyvitamin D3 to modulate cellular oxidative stress and inflammation for managing DR. The physical adsorption technique was employed to load VD onto nanoparticles (263.63 μg/mg (w/w)). In the presence of glucose, the dextran molecules detach from pores, allowing VD to release since glucose has 1,2-cis diol groups which have very high affinity to CPBA. Approximately 75% of VD was released upon exposure to 25 mM glucose at a time point of 10 h, demonstrating glucose-responsive delivery. Furthermore, MSN-CPBA was able to deliver VD in a glucose-dependent manner and improve the bioavailability of VD. In high-glucose-supplemented human retinal cells, MSN-CPBA increased the bioavailability of VD and reduced cellular oxidative stress and inflammation. The results suggested that the VD-loaded nanocarrier exerted remarkable therapeutic capacity in reducing the risk of developing DR. By using MSN-CPBA as a delivery platform with dextran gating, the research proposes an effective treatment approach for improving the bioavailability and effectiveness of a hydrophobic molecule in the treatment of DR.
Collapse
Affiliation(s)
- Sanjib Sarkar
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Discipline of Pharmacy, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3084, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Narin Osman
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Department of Immunology, Monash University, Melbourne, VIC 3004, Australia
| | - Thilini Thrimawithana
- Discipline of Pharmacy, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3084, Australia
| | - Sawlang Borsingh Wann
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Jatin Kalita
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Prasenjit Manna
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
34
|
Ozsaygılı C, Bayram N. Does dexamethasone implant combination with aflibercept monotherapy affect one-year outcomes in treatment-naive diabetic macular edema with inflammatory biomarkers? Int Ophthalmol 2024; 44:51. [PMID: 38336941 DOI: 10.1007/s10792-024-02963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 02/12/2024]
Abstract
PURPOSE To compare the anatomical and functional outcomes of the combination of aflibercept and dexamethasone implant (CT) against aflibercept monotherapy (AM) in treatment-naive diabetic macular edema (DME) patients with serous macular detachment and hyperreflective foci. METHODS This study included 82 eyes of 82 patients with treatment-naive DME who completed the follow-up period of 12 months. All patients had optical coherence tomography biomarkers of an inflammatory DME phenotype. Patients were consecutively selected and classified into two groups: The CT group consisted of 39 eyes treated with aflibercept therapy and initially combined with a single-dose dexamethasone implant. The AM group consisted of 43 eyes treated with aflibercept alone. The primary outcome measures of the study were the mean reduction of the central macular thickness (CMT) and total macular volume parameters (TMV) and improvement in best-corrected visual acuity. RESULTS In both groups, the patient characteristics, including age, gender, duration of diabetes, HbA1c levels, phakic percentage, and diabetic retinopathy status were similar (P > 0.05). The mean reduction in CMT and TMV was significantly higher in the CT group compared to the AM group (P < 0.001 and P = 0.002, respectively). In contrast, mean letter gains were not significantly higher (P = 0.240) at the end of the study. In the CT group, 20.5% of patients showed a transient IOP increase, and 18% developed cataracts. In subgroup analysis, the mean letter gain in pseudophakic eyes was significantly higher (12.5 in the CT vs. 9.3 in the AM group, P = 0.027). CONCLUSION The CT, where inflammation is prominent, can provide faster recovery. The pseudophakic eyes seem to be the ideal patient group for CT.
Collapse
Affiliation(s)
- Cemal Ozsaygılı
- Department of Ophthalmology, University of Health Sciences, Kayseri City Training and Research Hospital, Kocasinan, Kayseri, Turkey.
| | - Nurettin Bayram
- University of Health Sciences, Ankara Etlik City Hospital, Yenimahalle, Ankara, Turkey
| |
Collapse
|
35
|
Chandrakumar S, Santiago Tierno I, Agarwal M, Lessieur EM, Du Y, Tang J, Kiser J, Yang X, Rodriguez A, Kern TS, Ghosh K. Mechanical Regulation of Retinal Vascular Inflammation and Degeneration in Diabetes. Diabetes 2024; 73:280-291. [PMID: 37986627 PMCID: PMC10796303 DOI: 10.2337/db23-0584] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Vascular inflammation is known to cause degeneration of retinal capillaries in early diabetic retinopathy (DR), a major microvascular complication of diabetes. Past studies investigating these diabetes-induced retinal vascular abnormalities have focused primarily on the role of molecular or biochemical cues. Here we show that retinal vascular inflammation and degeneration in diabetes are also mechanically regulated by the increase in retinal vascular stiffness caused by overexpression of the collagen-cross-linking enzyme lysyl oxidase (LOX). Treatment of diabetic mice with LOX inhibitor β-aminopropionitrile (BAPN) prevented the increase in retinal capillary stiffness, vascular intracellular adhesion molecule-1 overexpression, and leukostasis. Consistent with these anti-inflammatory effects, BAPN treatment of diabetic mice blocked the upregulation of proapoptotic caspase-3 in retinal vessels, which concomitantly reduced retinal capillary degeneration, pericyte ghost formation, and the diabetes-induced loss of contrast sensitivity in these mice. Finally, our in vitro studies indicate that retinal capillary stiffening is sufficient to increase the adhesiveness and neutrophil elastase-induced death of retinal endothelial cells. By uncovering a link between LOX-dependent capillary stiffening and the development of retinal vascular and functional defects in diabetes, these findings offer a new insight into DR pathogenesis that has important translational potential. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sathishkumar Chandrakumar
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
| | - Irene Santiago Tierno
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
- Molecular, Cellular, and Integrative Physiology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA
| | - Mahesh Agarwal
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
| | - Emma M. Lessieur
- Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA
- Gavin Herbert Eye Institute, University of California, Irvine, CA
| | - Yunpeng Du
- Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA
- Gavin Herbert Eye Institute, University of California, Irvine, CA
| | - Jie Tang
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH
| | - Jianying Kiser
- Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA
- Gavin Herbert Eye Institute, University of California, Irvine, CA
| | - Xiao Yang
- Department of Bioengineering, University of California, Riverside, Riverside, CA
| | | | - Timothy S. Kern
- Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA
- Gavin Herbert Eye Institute, University of California, Irvine, CA
| | - Kaustabh Ghosh
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
- Molecular, Cellular, and Integrative Physiology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
36
|
Cubillos S, Kazlauskas A. Manifestation of Pathology in Animal Models of Diabetic Retinopathy Is Delayed from the Onset of Diabetes. Int J Mol Sci 2024; 25:1610. [PMID: 38338889 PMCID: PMC10855501 DOI: 10.3390/ijms25031610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetic retinopathy (DR) is the most common complication that develops in patients with diabetes mellitus (DM) and is the leading cause of blindness worldwide. Fortunately, sight-threatening forms of DR develop only after several decades of DM. This well-documented resilience to DR suggests that the retina is capable of protecting itself from DM-related damage and also that accumulation of such damage occurs only after deterioration of this resilience. Despite the enormous translational significance of this phenomenon, very little is known regarding the nature of resilience to DR. Rodent models of DR have been used extensively to study the nature of the DM-induced damage, i.e., cardinal features of DR. Many of these same animal models can be used to investigate resilience because DR is delayed from the onset of DM by several weeks or months. The purpose of this review is to provide a comprehensive overview of the literature describing the use of rodent models of DR in type-1 and type-2 diabetic animals, which most clearly document the delay between the onset of DM and the appearance of DR. These readily available experimental settings can be used to advance our current understanding of resilience to DR and thereby identify biomarkers and targets for novel, prevention-based approaches to manage patients at risk for developing DR.
Collapse
Affiliation(s)
- Samuel Cubillos
- University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA;
| | | |
Collapse
|
37
|
Tempone MH, Borges-Martins VP, César F, Alexandrino-Mattos DP, de Figueiredo CS, Raony Í, dos Santos AA, Duarte-Silva AT, Dias MS, Freitas HR, de Araújo EG, Ribeiro-Resende VT, Cossenza M, P. Silva H, P. de Carvalho R, Ventura ALM, Calaza KC, Silveira MS, Kubrusly RCC, de Melo Reis RA. The Healthy and Diseased Retina Seen through Neuron-Glia Interactions. Int J Mol Sci 2024; 25:1120. [PMID: 38256192 PMCID: PMC10817105 DOI: 10.3390/ijms25021120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The retina is the sensory tissue responsible for the first stages of visual processing, with a conserved anatomy and functional architecture among vertebrates. To date, retinal eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, glaucoma, and others, affect nearly 170 million people worldwide, resulting in vision loss and blindness. To tackle retinal disorders, the developing retina has been explored as a versatile model to study intercellular signaling, as it presents a broad neurochemical repertoire that has been approached in the last decades in terms of signaling and diseases. Retina, dissociated and arranged as typical cultures, as mixed or neuron- and glia-enriched, and/or organized as neurospheres and/or as organoids, are valuable to understand both neuronal and glial compartments, which have contributed to revealing roles and mechanisms between transmitter systems as well as antioxidants, trophic factors, and extracellular matrix proteins. Overall, contributions in understanding neurogenesis, tissue development, differentiation, connectivity, plasticity, and cell death are widely described. A complete access to the genome of several vertebrates, as well as the recent transcriptome at the single cell level at different stages of development, also anticipates future advances in providing cues to target blinding diseases or retinal dysfunctions.
Collapse
Affiliation(s)
- Matheus H. Tempone
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Vladimir P. Borges-Martins
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Felipe César
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Dio Pablo Alexandrino-Mattos
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Camila S. de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ícaro Raony
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Aline Araujo dos Santos
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Aline Teixeira Duarte-Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana Santana Dias
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Hércules Rezende Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Elisabeth G. de Araújo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Victor Tulio Ribeiro-Resende
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Hilda P. Silva
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Roberto P. de Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ana L. M. Ventura
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Karin C. Calaza
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana S. Silveira
- Laboratory for Investigation in Neuroregeneration and Development, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil;
| | - Regina C. C. Kubrusly
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Ricardo A. de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| |
Collapse
|
38
|
Dammann O, Stansfield BK. Neonatal sepsis as a cause of retinopathy of prematurity: An etiological explanation. Prog Retin Eye Res 2024; 98:101230. [PMID: 37984792 PMCID: PMC10842718 DOI: 10.1016/j.preteyeres.2023.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Retinopathy of prematurity (ROP) is a complex neonatal disorder with multiple contributing factors. In this paper we have mounted the evidence in support of the proposal that neonatal sepsis meets all requirements for being a cause of ROP (not a condition, mechanism, or even innocent bystander) by means of initiating the early stages of the pathomechanism of ROP occurrence, systemic inflammation. We use the model of etiological explanation, which distinguishes between two overlapping processes in ROP causation. It can be shown that sepsis can initiate the early stages of the pathomechanism via systemic inflammation (causation process) and that systemic inflammation can contribute to growth factor aberrations and the retinal characteristics of ROP (disease process). The combined contribution of these factors with immaturity at birth (as intrinsic risk modifier) and prenatal inflammation (as extrinsic facilitator) seems to provide a cogent functional framework of ROP occurrence. Finally, we apply the Bradford Hill heuristics to the available evidence. Taken together, the above suggests that neonatal sepsis is a causal inducer of ROP.
Collapse
Affiliation(s)
- Olaf Dammann
- Dept. of Public Health & Community Medicine, Tufts University School of Medicine, Boston, USA; Dept. of Gynecology & Obstetrics, Hannover Medical School, Hannover, Germany; Dept. of Neuromedicine & Movement Science, Norwegian University of Science & Technology, Trondheim, Norway; Dept. of Philosophy, University of Johannesburg, Johannesburg, South Africa.
| | | |
Collapse
|
39
|
Lu Z, Fan B, Li Y, Zhang Y. RAGE plays key role in diabetic retinopathy: a review. Biomed Eng Online 2023; 22:128. [PMID: 38115006 PMCID: PMC10729525 DOI: 10.1186/s12938-023-01194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
RAGE is a multiligand receptor for the immunoglobulin superfamily of cell surface molecules and is expressed in Müller cells, vascular endothelial cells, nerve cells and RPE cells of the retina. Diabetic retinopathy (DR) is a multifactorial disease associated with retinal inflammation and vascular abnormalities and is the leading cause of vision loss or impairment in older or working-age adults worldwide. Therapies aimed at reducing the inflammatory response and unnecessary angiogenesis can help slow the progression of DR, which in turn can save patients' vision. To maximize the efficacy and minimize the side effects, treatments that target key players in the pathophysiological process of DR need to be developed. The interaction between RAGE and its ligands is involved in a variety of cytopathological alterations in the retina, including secretion of inflammatory factors, regulation of angiogenesis, oxidative stress, structural and functional changes, and neurodegeneration. In this review, we will summarize the pathologic pathways mediated by RAGE and its ligand interactions and discuss its role in the progression of diabetic retinopathy to explore potential therapeutic targets that are effective and safe for DR.
Collapse
Affiliation(s)
- ZhiWen Lu
- Department of Ophthalmology, The Second Hospital of Jilin University, Nanguan District, No. 4026, Yatai Street, Changchun, 130000, Jilin Province, China
| | - Bin Fan
- Department of Ophthalmology, The Second Hospital of Jilin University, Nanguan District, No. 4026, Yatai Street, Changchun, 130000, Jilin Province, China.
| | - YunZhi Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Nanguan District, No. 4026, Yatai Street, Changchun, 130000, Jilin Province, China
| | - YiXin Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Nanguan District, No. 4026, Yatai Street, Changchun, 130000, Jilin Province, China
| |
Collapse
|
40
|
Liu L, Jiang Y, Steinle JJ. Semaphorin 7a regulates inflammatory mediators and permeability in retinal endothelial cells. Microvasc Res 2023; 150:104587. [PMID: 37453650 PMCID: PMC10528930 DOI: 10.1016/j.mvr.2023.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Research supports a key role for inflammation in damaging the retinal vasculature. Current work is designed to investigate regulation of key inflammatory pathways. In this study, we hypothesized that semaphorin 7a (Sema7a) was involved in the increased inflammatory mediators and permeability changes in retinal endothelial cells (REC) grown in high glucose. For these studies, we used diabetic mouse samples and REC to investigate our hypothesis. Primary retinal endothelial cells were grown in normal (5 mM) or high glucose (25 mM glucose) for measurements. In a subset of cells grown in high glucose, cells were transfected with Sema7a siRNA or scrambled siRNA. We measured levels of key inflammatory mediators and zonula occludens-1 (ZO-1) and occludin levels by Western blot. Data suggest that high glucose increased inflammatory mediators and reduced the tight junction proteins, which follows what is often observed in cells grown in high glucose. Sema7a siRNA significantly decreased inflammatory proteins and increased levels of ZO-1 and occludin. These data suggest that Sema7a mediates the actions of high glucose in REC. Use of Sema7a siRNA may offer a new avenue for treatment.
Collapse
Affiliation(s)
- Li Liu
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Youde Jiang
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jena J Steinle
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
41
|
Jiang Y, Zhou L, Yao L. Serum levels of interleukin-18 in diabetic retinopathy patients: A meta-analysis. Eur J Ophthalmol 2023; 33:2259-2266. [PMID: 36974472 DOI: 10.1177/11206721231163900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
PURPOSE To assess the relationship between plasma interleukin-18 (IL-18) levels and the risk of diabetic retinopathy (DR). MATERIALS AND METHODS PubMed, Embase, Web of science, and Cochrane were reviewed systemically from inception to August 2022. Searches were performed using a combined term that included all spellings of "diabetic retinopathy," and "interleukin-18". Eligible studies were retrospective studies reporting changes in IL-18 levels between the DR group and the control group. The healthy controls had no identifiable DR disease. Pooled outcomes were reported as standard mean difference (SMD) with 95% confidence intervals (CI) with a random-effects model. Heterogeneity was assessed using the I2 statistics, and it was considered significant if I2 > 75%. Publication bias was evaluated using funnel plots and Begg's and Egger's tests. A meta-analysis was conducted using STATA 12.0 (StataCorp LLC, College Station, TX, USA). RESULTS 7 studies and four countries incorporated 160 cases, and 119 controls were incorporated in this meta-analysis. When comparing subjects without DR, those with DR tended to have higher serum IL-18 levels (SMD = 3.41, 95% CI = 1.84-4.97). Publication bias indicated that no publication bias existed in the study. CONCLUSIONS Elevated circulating IL-18 levels may be one of the significant risk factors positively correlated with the development of DR. Future studies should clarify the mechanism behind this trend.
Collapse
Affiliation(s)
- Yingling Jiang
- Department of Metabolism and Endocrinology, The Affiliated Zhuzhou Hospital, Xiangya Medical College CSU, Zhuzhou, China
| | - Lihua Zhou
- Department of Metabolism and Endocrinology, The Affiliated Zhuzhou Hospital, Xiangya Medical College CSU, Zhuzhou, China
| | - Li Yao
- Ophthalmology Department, The Affiliated Zhuzhou Hospital, Xiangya Medical College CSU, Zhuzhou, China
| |
Collapse
|
42
|
Deliyanti D, Suphapimol V, Ang P, Tang X, Jayasimhan A, Wilkinson-Berka JL. Early Depletion of Neutrophils Reduces Retinal Inflammation and Neovascularization in Mice with Oxygen-Induced Retinopathy. Int J Mol Sci 2023; 24:15680. [PMID: 37958664 PMCID: PMC10648252 DOI: 10.3390/ijms242115680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Retinal inflammation is a central feature of ocular neovascular diseases such as diabetic retinopathy and retinopathy of prematurity, but the contribution of neutrophils to this process is not fully understood. We studied oxygen-induced retinopathy (OIR) which develops in two phases, featuring hyperoxia-induced retinal vaso-obliteration in phase I, followed by retinal neovascularization in phase II. As neutrophils are acute responders to tissue damage, we evaluated whether neutrophil depletion with an anti-Ly6G mAb administered in phase I OIR influenced retinal inflammation and vascular injury. Neutrophils were measured in blood and spleen via flow cytometry, and myeloperoxidase, an indicator of neutrophil activity, was evaluated in the retina using Western blotting. Retinal vasculopathy was assessed by quantitating vaso-obliteration, neovascularization, vascular leakage, and VEGF levels. The inflammatory factors, TNF, MCP-1, and ICAM-1 were measured in retina. In the OIR controls, neutrophils were increased in the blood and spleen in phase I but not phase II OIR. In OIR, the anti-Ly6G mAb reduced neutrophils in the blood and spleen, and myeloperoxidase, inflammation, and vasculopathy in the retina. Our findings revealed that the early rise in neutrophils in OIR primes the retina for an inflammatory and angiogenic response that promotes severe damage to the retinal vasculature.
Collapse
Affiliation(s)
| | | | | | | | | | - Jennifer L. Wilkinson-Berka
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia; (D.D.); (V.S.); (P.A.); (X.T.); (A.J.)
| |
Collapse
|
43
|
Sadikan MZ, Abdul Nasir NA, Lambuk L, Mohamud R, Reshidan NH, Low E, Singar SA, Mohmad Sabere AS, Iezhitsa I, Agarwal R. Diabetic retinopathy: a comprehensive update on in vivo, in vitro and ex vivo experimental models. BMC Ophthalmol 2023; 23:421. [PMID: 37858128 PMCID: PMC10588156 DOI: 10.1186/s12886-023-03155-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
Diabetic retinopathy (DR), one of the leading causes of visual impairment and blindness worldwide, is one of the major microvascular complications in diabetes mellitus (DM). Globally, DR prevalence among DM patients is 25%, and 6% have vision-threatening problems among them. With the higher incidence of DM globally, more DR cases are expected to be seen in the future. In order to comprehend the pathophysiological mechanism of DR in humans and discover potential novel substances for the treatment of DR, investigations are typically conducted using various experimental models. Among the experimental models, in vivo models have contributed significantly to understanding DR pathogenesis. There are several types of in vivo models for DR research, which include chemical-induced, surgical-induced, diet-induced, and genetic models. Similarly, for the in vitro models, there are several cell types that are utilised in DR research, such as retinal endothelial cells, Müller cells, and glial cells. With the advancement of DR research, it is essential to have a comprehensive update on the various experimental models utilised to mimic DR environment. This review provides the update on the in vitro, in vivo, and ex vivo models used in DR research, focusing on their features, advantages, and limitations.
Collapse
Affiliation(s)
- Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia (MUCM), Bukit Baru, 75150, Melaka, Malaysia
| | - Nurul Alimah Abdul Nasir
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh, Selangor, Malaysia.
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nur Hidayah Reshidan
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Evon Low
- Ageing Biology Centre, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK
| | - Saiful Anuar Singar
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, 32306, Tallahassee, FL, USA
| | - Awis Sukarni Mohmad Sabere
- Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov sq. 1, 400131 , Volgograd, Russian Federation
| | - Renu Agarwal
- School of Medicine, International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
Maheshwari SY, Kumar S, Sinha AH, Kumar M. Diabetic Retinopathy: A Pharmacological Consideration. Cureus 2023; 15:e46842. [PMID: 37954772 PMCID: PMC10636491 DOI: 10.7759/cureus.46842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Diabetes mellitus (DM) has become a worldwide problem, endangering the well-being of people. This issue is further aggravated by the increased fatty content in the diet of most of the Indian population. It is a preeminent source of the genesis of morbidity in the citizens of any given continent, including both new-world countries and old ones too. A major stumbling block that diabetes creates in the healthy living of any of its sufferers is a complication called diabetic retinopathy (DR), which, in its most elementary and perspicuous form, refers to damage to the blood vessels in the retina of the human eye that occurs as a result of high serum glucose levels. DR can have many symptoms, including obscure and blurred vision, trouble observing and distinguishing various colors, and eye floaters. One of the most significant reasons for the manifestation of new cases of complete blindness may be attributed to DR. The appearance of lesions in the body's small blood vessels forms the basis of retinopathic detection. The currently accepted approach for the prevention and cure of this ailment targets deterring the microvascular complexities through medicinal agents that are placed directly into the vitreous space, photocoagulation through laser medium (visual perceptivity is balanced), and some other surgeries related to the vitreous chamber. Anti-vascular endothelial growth factor (anti-VEGF) therapy provided to the patient by intravitreal route is, at present, the most crucial process for curing the sufferer of the given illness, as it can result in optical advancement with decreased unfavorable effects.
Collapse
Affiliation(s)
- Saket Y Maheshwari
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Arya Harshyt Sinha
- Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mayank Kumar
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
45
|
Wang D, Guo X, Wang W, Xiong K, Yuan M, Gong X, Li Y, Liang X, Huang Z, Zheng S, Huang W, Zuo C. Longitudinal Changes of Parafoveal Vessel Density in Diabetic Patients without Clinical Retinopathy Using Optical Coherence Tomography Angiography. Curr Eye Res 2023; 48:956-964. [PMID: 37326958 DOI: 10.1080/02713683.2023.2227363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/15/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
PURPOSE The purpose of this study was to identify the rate of parafoveal vessel density (VD) changes associated with the progression from non-diabetic retinopathy (NDR) to early stages of DR over a year. METHODS This longitudinal cohort study enrolled diabetic patients from the Guangzhou community in China. The patients with NDR at baseline were included and underwent comprehensive examinations at baseline and after 1 year. A commercial OCTA device (Triton Plus, Topcon, Tokyo, Japan) was employed to quantify the parafoveal VD in the superficial and deep capillary plexuses. The rates of change in parafoveal VD over time in the incident DR and NDR groups were compared after a year. RESULTS A total of 448 NDR patients were included in the study. Among them, 382 (83.2%) were stable and 66 (14.4%) developed incident DR during the 1-year follow-up. The average parafoveal VD in the superficial capillary plexus (SCP) reduced significantly more quickly in the incident DR group than in the NDR group (-1.95 ± 0.45%/year vs. -0.45 ± 0.19/year, p = 0.002). The VD reduction rate for the deep capillary plexus (DCP) was not significantly different for the groups (p = 0.156). CONCLUSIONS The incident DR group experienced a significantly faster reduction in parafoveal VD in the SCP compared with the stable group. Our findings further provide supporting evidence that parafoveal VD in the SCP may be used as an early indicator of the pre-clinical stages of DR.
Collapse
Affiliation(s)
- Dingqiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Xiao Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Kun Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Meng Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Xia Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Yuting Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Zhihong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Shaoyang Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Wenyong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Chengguo Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| |
Collapse
|
46
|
Yao Y, Li J, Zhou Y, Wang S, Zhang Z, Jiang Q, Li K. Macrophage/microglia polarization for the treatment of diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1276225. [PMID: 37842315 PMCID: PMC10569308 DOI: 10.3389/fendo.2023.1276225] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Macrophages/microglia are immune system defense and homeostatic cells that develop from bone marrow progenitor cells. According to the different phenotypes and immune responses of macrophages (Th1 and Th2), the two primary categories of polarized macrophages/microglia are those conventionally activated (M1) and alternatively activated (M2). Macrophage/microglial polarization is a key regulating factor in the development of inflammatory disorders, cancers, metabolic disturbances, and neural degeneration. Macrophage/microglial polarization is involved in inflammation, oxidative stress, pathological angiogenesis, and tissue healing processes in ocular diseases, particularly in diabetic retinopathy (DR). The functional phenotypes of macrophages/microglia affect disease progression and prognosis, and thus regulate the polarization or functional phenotype of microglia at different DR stages, which may offer new concepts for individualized therapy of DR. This review summarizes the involvement of macrophage/microglia polarization in physiological situations and in the pathological process of DR, and discusses the promising role of polarization in personalized treatment of DR.
Collapse
Affiliation(s)
- Yujia Yao
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jiajun Li
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yunfan Zhou
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Suyu Wang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Ziran Zhang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Keran Li
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
47
|
Muns SM, Villegas VM, Flynn HW, Schwartz SG. Update on current pharmacologic therapies for diabetic retinopathy. Expert Opin Pharmacother 2023; 24:1577-1593. [PMID: 37431888 DOI: 10.1080/14656566.2023.2230139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Diabetic retinopathy is a major cause of visual loss worldwide. The most important clinical findings include diabetic macular edema (DME) and proliferative diabetic retinopathy (PDR). AREAS COVERED PubMed was used for our literature review. Articles from 1995 to 2023 were included. Pharmacologic treatment of diabetic retinopathy generally involves the use of intravitreal anti-vascular endothelial growth factor (VEGF) therapy for DME and PDR. Corticosteroids remain important second-line therapies for patients with DME. Most emerging therapies focus on newly identified inflammatory mediators and biochemical signaling pathways involved in disease pathogenesis. EXPERT OPINION Emerging anti-VEGF modalities, integrin antagonists, and anti-inflammatory agents have the potential to improve outcomes with reduced treatment burdens.
Collapse
Affiliation(s)
- Sofía M Muns
- Department of Ophthalmology, University of Puerto Rico, San Juan, Puerto Rico
| | - Victor M Villegas
- Department of Ophthalmology, University of Puerto Rico, San Juan, Puerto Rico
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Harry W Flynn
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephen G Schwartz
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
48
|
Paskeviciute E, Chen M, Xu H, Honoré B, Vorum H, Sørensen TL, Christensen JP, Thomsen AR, Nissen MH, Steffensen MA. Systemic virus infection results in CD8 T cell recruitment to the retina in the absence of local virus infection. Front Immunol 2023; 14:1221511. [PMID: 37662932 PMCID: PMC10471971 DOI: 10.3389/fimmu.2023.1221511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
During recent years, evidence has emerged that immune privileged sites such as the CNS and the retina may be more integrated in the systemic response to infection than was previously believed. In line with this, it was recently shown that a systemic acute virus infection leads to infiltration of CD8 T cells in the brains of immunocompetent mice. In this study, we extend these findings to the neurological tissue of the eye, namely the retina. We show that an acute systemic virus infection in mice leads to a transient CD8 T cell infiltration in the retina that is not directed by virus infection inside the retina. CD8 T cells were found throughout the retinal tissue, and had a high expression of CXCR6 and CXCR3, as also reported for tissue residing CD8 T cells in the lung and liver. We also show that the pigment epithelium lining the retina expresses CXCL16 (the ligand for CXCR6) similar to epithelial cells of the lung. Thus, our results suggest that the retina undergoes immune surveillance during a systemic infection, and that this surveillance appears to be directed by mechanisms similar to those described for non-privileged tissues.
Collapse
Affiliation(s)
- Egle Paskeviciute
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mei Chen
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University of Belfast, Belfast, Ireland
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University of Belfast, Belfast, Ireland
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Henrik Vorum
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Torben Lykke Sørensen
- Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mogens Holst Nissen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
49
|
Wang X, Wang T, Lam E, Alvarez D, Sun Y. Ocular Vascular Diseases: From Retinal Immune Privilege to Inflammation. Int J Mol Sci 2023; 24:12090. [PMID: 37569464 PMCID: PMC10418793 DOI: 10.3390/ijms241512090] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The eye is an immune privileged tissue that insulates the visual system from local and systemic immune provocation to preserve homeostatic functions of highly specialized retinal neural cells. If immune privilege is breached, immune stimuli will invade the eye and subsequently trigger acute inflammatory responses. Local resident microglia become active and release numerous immunological factors to protect the integrity of retinal neural cells. Although acute inflammatory responses are necessary to control and eradicate insults to the eye, chronic inflammation can cause retinal tissue damage and cell dysfunction, leading to ocular disease and vision loss. In this review, we summarized features of immune privilege in the retina and the key inflammatory responses, factors, and intracellular pathways activated when retinal immune privilege fails, as well as a highlight of the recent clinical and research advances in ocular immunity and ocular vascular diseases including retinopathy of prematurity, age-related macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Tianxi Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Enton Lam
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - David Alvarez
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| |
Collapse
|
50
|
Chandrakumar S, Santiago Tierno I, Agarwal M, Matisioudis N, Kern TS, Ghosh K. Subendothelial Matrix Stiffening by Lysyl Oxidase Enhances RAGE-Mediated Retinal Endothelial Activation in Diabetes. Diabetes 2023; 72:973-985. [PMID: 37058096 PMCID: PMC10281239 DOI: 10.2337/db22-0761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Endothelial cell (EC) activation is a crucial determinant of retinal vascular inflammation associated with diabetic retinopathy (DR), a major microvascular complication of diabetes. We previously showed that, similar to abnormal biochemical factors, aberrant mechanical cues in the form of lysyl oxidase (LOX)-dependent subendothelial matrix stiffening also contribute significantly to retinal EC activation in diabetes. Yet, how LOX is itself regulated and precisely how it mechanically controls retinal EC activation in diabetes is poorly understood. Here, we show that high-glucose-induced LOX upregulation in human retinal ECs (HRECs) is mediated by proinflammatory receptor for advanced glycation end products (RAGE). HRECs treated with methylglyoxal (MGO), an active precursor to the advanced glycation end product (AGE) MG-H1, exhibited LOX upregulation that was blocked by a RAGE inhibitor, thus confirming the ability of RAGE to promote LOX expression. Crucially, as a downstream effector of RAGE, LOX was found to mediate both the proinflammatory and matrix remodeling effects of AGE/RAGE, primarily through its ability to crosslink or stiffen matrix. Finally, using decellularized HREC-derived matrices and a mouse model of diabetes, we demonstrate that LOX-dependent matrix stiffening feeds back to enhance RAGE, thereby achieving its autoregulation and proinflammatory effects. Collectively, these findings provide fresh mechanistic insights into the regulation and proinflammatory role of LOX-dependent mechanical cues in diabetes while simultaneously implicating LOX as an alternative (downstream) target to block AGE/RAGE signaling in DR. ARTICLE HIGHLIGHTS We investigated the regulation and proinflammatory role of retinal endothelial lysyl oxidase (LOX) in diabetes. Findings reveal that LOX is upregulated by advanced glycation end products (AGE) and receptor for AGE (RAGE) and mediates AGE/RAGE-induced retinal endothelial cell activation and subendothelial matrix remodeling. We also show that LOX-dependent subendothelial matrix stiffening feeds back to enhance retinal endothelial RAGE. These findings implicate LOX as a key proinflammatory factor and an alternative (downstream) target to block AGE/RAGE signaling in diabetic retinopathy.
Collapse
Affiliation(s)
- Sathishkumar Chandrakumar
- Department of Bioengineering, University of California, Riverside, CA
- Department of Ophthalmology, University of California, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
| | - Irene Santiago Tierno
- Department of Ophthalmology, University of California, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
- Molecular, Cellular, and Integrated Physiology Interdepartmental PhD Program, University of California, Los Angeles, CA
| | - Mahesh Agarwal
- Department of Ophthalmology, University of California, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
| | | | - Timothy S. Kern
- Department of Ophthalmology, University of California, Irvine, CA
- Gavin Herbert Eye Institute, University of California, Irvine, CA
| | - Kaustabh Ghosh
- Department of Bioengineering, University of California, Riverside, CA
- Department of Ophthalmology, University of California, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
- Molecular, Cellular, and Integrated Physiology Interdepartmental PhD Program, University of California, Los Angeles, CA
| |
Collapse
|