1
|
Roth‐Walter F, Adcock IM, Benito‐Villalvilla C, Bianchini R, Bjermer L, Caramori G, Cari L, Chung KF, Diamant Z, Eguiluz‐Gracia I, Knol EF, Jesenak M, Levi‐Schaffer F, Nocentini G, O'Mahony L, Palomares O, Redegeld F, Sokolowska M, Van Esch BCAM, Stellato C. Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology. Allergy 2024; 79:1089-1122. [PMID: 38108546 PMCID: PMC11497319 DOI: 10.1111/all.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.
Collapse
Affiliation(s)
- F. Roth‐Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - I. M. Adcock
- Molecular Cell Biology Group, National Heart & Lung InstituteImperial College LondonLondonUK
| | - C. Benito‐Villalvilla
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - R. Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
| | - L. Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence CenterLund UniversityLundSweden
| | - G. Caramori
- Department of Medicine and SurgeryUniversity of ParmaPneumologiaItaly
| | - L. Cari
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - K. F. Chung
- Experimental Studies Medicine at National Heart & Lung InstituteImperial College London & Royal Brompton & Harefield HospitalLondonUK
| | - Z. Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical ScienceSkane University HospitalLundSweden
- Department of Respiratory Medicine, First Faculty of MedicineCharles University and Thomayer HospitalPragueCzech Republic
- Department of Clinical Pharmacy & PharmacologyUniversity Groningen, University Medical Center Groningen and QPS‐NLGroningenThe Netherlands
| | - I. Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de Málaga‐Instituto de Investigación Biomédica de Málaga (IBIMA)‐ARADyALMálagaSpain
| | - E. F. Knol
- Departments of Center of Translational Immunology and Dermatology/AllergologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - M. Jesenak
- Department of Paediatrics, Department of Pulmonology and Phthisiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in MartinUniversity Teaching HospitalMartinSlovakia
| | - F. Levi‐Schaffer
- Institute for Drug Research, Pharmacology Unit, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - G. Nocentini
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - L. O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - O. Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - F. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - M. Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZürichDavosSwitzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - B. C. A. M. Van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - C. Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”University of SalernoSalernoItaly
| |
Collapse
|
2
|
Qureshi N, Desousa J, Siddiqui AZ, Drees BM, Morrison DC, Qureshi AA. Dysregulation of Gene Expression of Key Signaling Mediators in PBMCs from People with Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:2732. [PMID: 36769056 PMCID: PMC9916932 DOI: 10.3390/ijms24032732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetes is currently the fifth leading cause of death by disease in the USA. The underlying mechanisms for type 2 Diabetes Mellitus (DM2) and the enhanced susceptibility of such patients to inflammatory disorders and infections remain to be fully defined. We have recently shown that peripheral blood mononuclear cells (PBMCs) from non-diabetic people upregulate expression of inflammatory genes in response to proteasome modulators, such as bacterial lipopolysaccharide (LPS) and soybean lectin (LEC); in contrast, resveratrol (RES) downregulates this response. We hypothesized that LPS and LEC will also elicit a similar upregulation of gene expression of key signaling mediators in (PBMCs) from people with type 2 diabetes (PwD2, with chronic inflammation) ex vivo. Unexpectedly, using next generation sequencing (NGS), we show for the first time, that PBMCs from PwD2 failed to elicit a robust LPS- and LEC-induced gene expression of proteasome subunit LMP7 (PSMB8) and mediators of T cell signaling that were observed in non-diabetic controls. These repressed genes included: PSMB8, PSMB9, interferon-γ, interferon-λ, signal-transducer-and-activator-of-transcription-1 (STAT1), human leukocyte antigen (HLA DQB1, HLA DQA1) molecules, interleukin 12A, tumor necrosis factor-α, transporter associated with antigen processing 1 (TAP1), and several others, which showed a markedly weak upregulation with toxins in PBMCs from PwD2, as compared to those from non-diabetics. Resveratrol (proteasome inhibitor) further downregulated the gene expression of these inflammatory mediators in PBMCs from PwD2. These results might explain why PwD2 may be susceptible to infectious disease. LPS and toxins may be leading to inflammation, insulin resistance, and thus, metabolic changes in the host cells.
Collapse
Affiliation(s)
- Nilofer Qureshi
- Department of Biomedical Sciences, Shock/Trauma Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
- Department of Pharmacology/Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Julia Desousa
- Department of Biomedical Sciences, Shock/Trauma Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
- Department of Pharmacology/Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Adeela Z. Siddiqui
- Department of Biomedical Sciences, Shock/Trauma Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Betty M. Drees
- Internal Medicine, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - David C. Morrison
- Department of Biomedical Sciences, Shock/Trauma Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Asaf A. Qureshi
- Department of Biomedical Sciences, Shock/Trauma Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| |
Collapse
|
3
|
Reprograming of Gene Expression of Key Inflammatory Signaling Pathways in Human Peripheral Blood Mononuclear Cells by Soybean Lectin and Resveratrol. Int J Mol Sci 2022; 23:ijms232112946. [DOI: 10.3390/ijms232112946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammation is linked to several human diseases like microbial infections, cancer, heart disease, asthma, diabetes, and neurological disorders. We have shown that the prototype inflammatory agonist LPS modulates the activity of Ubiquitin-Proteasome System (UPS) and regulates transcription factors such as NF-κB, leading to inflammation, tolerance, hypoxia, autophagy, and apoptosis of cells. We hypothesized that proteasome modulators resveratrol and soybean lectin would alter the gene expression of mediators involved in inflammation-induced signaling pathways, when administered ex vivo to human peripheral blood mononuclear blood cells (PBMCs) obtained from normal healthy controls. To test this hypothesis, analysis of RNA derived from LPS-treated human PBMCs, with or without resveratrol and soybean lectin, was carried out using Next Generation Sequencing (NGS). Collectively, the findings described herein suggest that proteasome modulators, resveratrol (proteasome inhibitor) and lectins (proteasome activator), have a profound capacity to modulate cytokine expression in response to proteasome modulators, as well as expression of mediators in multiple signaling pathways in PBMCs of control subjects. We show for the first-time that resveratrol downregulates expression of mediators involved in several key signaling pathways IFN-γ, IL-4, PSMB8 (LMP7), and a subset of LPS-induced genes, while lectins induced IFN-γ, IL-4, PSMB8, and many of the same genes as LPS that are important for innate and adaptive immunity. These findings suggest that inflammation may be influenced by common dietary components and this knowledge may be used to prevent or reverse inflammation-based diseases.
Collapse
|
4
|
Dailah HG. Therapeutic Potential of Small Molecules Targeting Oxidative Stress in the Treatment of Chronic Obstructive Pulmonary Disease (COPD): A Comprehensive Review. Molecules 2022; 27:molecules27175542. [PMID: 36080309 PMCID: PMC9458015 DOI: 10.3390/molecules27175542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an increasing and major global health problem. COPD is also the third leading cause of death worldwide. Oxidative stress (OS) takes place when various reactive species and free radicals swamp the availability of antioxidants. Reactive nitrogen species, reactive oxygen species (ROS), and their counterpart antioxidants are important for host defense and physiological signaling pathways, and the development and progression of inflammation. During the disturbance of their normal steady states, imbalances between antioxidants and oxidants might induce pathological mechanisms that can further result in many non-respiratory and respiratory diseases including COPD. ROS might be either endogenously produced in response to various infectious pathogens including fungi, viruses, or bacteria, or exogenously generated from several inhaled particulate or gaseous agents including some occupational dust, cigarette smoke (CS), and air pollutants. Therefore, targeting systemic and local OS with therapeutic agents such as small molecules that can increase endogenous antioxidants or regulate the redox/antioxidants system can be an effective approach in treating COPD. Various thiol-based antioxidants including fudosteine, erdosteine, carbocysteine, and N-acetyl-L-cysteine have the capacity to increase thiol content in the lungs. Many synthetic molecules including inhibitors/blockers of protein carbonylation and lipid peroxidation, catalytic antioxidants including superoxide dismutase mimetics, and spin trapping agents can effectively modulate CS-induced OS and its resulting cellular alterations. Several clinical and pre-clinical studies have demonstrated that these antioxidants have the capacity to decrease OS and affect the expressions of several pro-inflammatory genes and genes that are involved with redox and glutathione biosynthesis. In this article, we have summarized the role of OS in COPD pathogenesis. Furthermore, we have particularly focused on the therapeutic potential of numerous chemicals, particularly antioxidants in the treatment of COPD.
Collapse
Affiliation(s)
- Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
5
|
Xu F, Du H, Hou J, Liu J, Li N. Anti-inflammation properties of resveratrol in the detrusor smooth muscle of the diabetic rat. Int Urol Nephrol 2022; 54:2833-2843. [PMID: 35943662 DOI: 10.1007/s11255-022-03334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE In this paper, we aimed to prove that resveratrol can inhibit inflammation in the detrusor smooth muscle of diabetic rats, which may provide a new direction for diabetic cystopathy (DCP) treatment. METHODS We induced a Sprague-Dawley (SD) rat model of type 1 diabetes by intraperitoneal injections of streptozotocin (STZ). Then, we separated the SD rats into four groups: (1) an excipient-treated control group; (2) a resveratrol-treated control group; (3) an excipient-treated streptozotocin (STZ)-injected group; and (4) a resveratrol-treated STZ-injected group. We administered the resveratrol or excipient by intragastric administration. After 12 weeks of diabetes induction, we measured the blood-sugar concentrations and bladder weights, and we took the bladder tissues of each group of rats for hematoxylin-eosin staining to observe the histological changes. We used real-time quantitative polymerase chain reaction (qPCR) and Western blotting to analyze the expression levels of tumor necrosis factor-alpha (TNF-α), nuclear factor kappa B (NF-κB), interleukin (IL)-6, and IL-1β. RESULTS The bodyweights of the diabetic rats were appreciably reduced, while the bladder weights and blood-glucose concentrations were substantially increased. Oral resveratrol could not improve the changes in the bodyweights and blood-glucose concentrations, but it had a certain effect on the bladder weights. In a macroscopic evaluation, the bladder walls of the STZ-induced diabetes rats were thickened, and, from the H&E staining, we could see that the bladder tissues of the diabetic rats had inflammatory cell infiltration, edema, and the capillary congestion of the mucosa and lamina propria. After resveratrol treatment, the bladder-wall thickening was reduced, and the tissue damage and inflammation were significantly ameliorated. We could associate all these changes with markedly heightened expressions of TNF-α, IL-1β, IL-6, and NF-κB in the detrusor smooth muscle (DSM) tissues of the diabetic rats. Oral treatment with resveratrol alleviated the expressivity of the inflammatory cytokines in the DSM tissues. CONCLUSIONS Resveratrol treatment ameliorated the histological changes in the bladder and inhibited the expressions of DSM-tissue inflammatory factors in diabetes rats. Resveratrol may provide a new direction of research for the treatment of diabetic cystopathy.
Collapse
Affiliation(s)
- Feihong Xu
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| | - Huifang Du
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| | - Jun Hou
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| | - Jingxuan Liu
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| | - Ning Li
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
Barnes PJ. Oxidative Stress in Chronic Obstructive Pulmonary Disease. Antioxidants (Basel) 2022; 11:antiox11050965. [PMID: 35624831 PMCID: PMC9138026 DOI: 10.3390/antiox11050965] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/16/2022] Open
Abstract
There is a marked increase in oxidative stress in the lungs of patients with COPD, as measured by increased exhaled 8-isoprostane, ethane, and hydrogen peroxide in the breath. The lung may be exposed to exogenous oxidative stress from cigarette smoking and indoor or outdoor air pollution and to endogenous oxidative stress from reactive oxygen species released from activated inflammatory cells, particularly neutrophils and macrophages, in the lungs. Oxidative stress in COPD may be amplified by a reduction in endogenous antioxidants and poor intake of dietary antioxidants. Oxidative stress is a major driving mechanism of COPD through the induction of chronic inflammation, induction of cellular senescence and impaired autophagy, reduced DNA repair, increased autoimmunity, increased mucus secretion, and impaired anti-inflammatory response to corticosteroids. Oxidative stress, therefore, drives the pathology of COPD and may increase disease progression, amplify exacerbations, and increase comorbidities through systemic oxidative stress. This suggests that antioxidants may be effective as disease-modifying treatments. Unfortunately, thiol-based antioxidants, such as N-acetylcysteine, have been poorly effective, as they are inactivated by oxidative stress in the lungs, so there is a search for more effective and safer antioxidants. New antioxidants in development include mitochondria-targeted antioxidants, NOX inhibitors, and activators of the transcription factor Nrf2, which regulates several antioxidant genes.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London SW5 9LH, UK
| |
Collapse
|
7
|
Audousset C, McGovern T, Martin JG. Role of Nrf2 in Disease: Novel Molecular Mechanisms and Therapeutic Approaches - Pulmonary Disease/Asthma. Front Physiol 2021; 12:727806. [PMID: 34658913 PMCID: PMC8511424 DOI: 10.3389/fphys.2021.727806] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a major transcription factor involved in redox homeostasis and in the response induced by oxidative injury. Nrf2 is present in an inactive state in the cytoplasm of cells. Its activation by internal or external stimuli, such as infections or pollution, leads to the transcription of more than 500 elements through its binding to the antioxidant response element. The lungs are particularly susceptible to factors that generate oxidative stress such as infections, allergens and hyperoxia. Nrf2 has a crucial protective role against these ROS. Oxidative stress and subsequent activation of Nrf2 have been demonstrated in many human respiratory diseases affecting the airways, including asthma and chronic obstructive pulmonary disease (COPD), or the pulmonary parenchyma such as acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. Several compounds, both naturally occurring and synthetic, have been identified as Nrf2 inducers and enhance the activation of Nrf2 and expression of Nrf2-dependent genes. These inducers have proven particularly effective at reducing the severity of the oxidative stress-driven lung injury in various animal models. In humans, these compounds offer promise as potential therapeutic strategies for the management of respiratory pathologies associated with oxidative stress but there is thus far little evidence of efficacy through human trials. The purpose of this review is to summarize the involvement of Nrf2 and its inducers in ARDS, COPD, asthma and lung fibrosis in both human and in experimental models.
Collapse
Affiliation(s)
- Camille Audousset
- Meakins-Christie Laboratories, McGill University, Montréal, QC, Canada
| | - Toby McGovern
- Meakins-Christie Laboratories, McGill University, Montréal, QC, Canada
| | - James G Martin
- Meakins-Christie Laboratories, McGill University, Montréal, QC, Canada
| |
Collapse
|
8
|
Deng HJ, Zhou CH, Huang LT, Wen LB, Zhou ML, Wang CX. Activation of silent information regulator 1 exerts a neuroprotective effect after intracerebral hemorrhage by deacetylating NF-κB/p65. J Neurochem 2020; 157:574-585. [PMID: 33289070 DOI: 10.1111/jnc.15258] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022]
Abstract
Nuclear factor (NF)-κB-mediated neuroinflammation is an important mechanism of intracerebral hemorrhage (ICH)-induced neurotoxicity. Silent information regulator 1 (SIRT1) plays a multi-protective effect in a variety of diseases by deacetylating and inhibiting NF-κB/p65. However, the role of SIRT1 in brain damage following ICH remains unclear. We hypothesized that SIRT1 can protect against ICH-induced brain damage by inhibiting neuroinflammation through deacetylating NF-κB/p65. The ICH model was induced in vivo (with collagenase) and in vitro (with hemoglobin). Resveratrol and Ex527 were administered to activate or inhibit SIRT1, respectively. Western blot, immunohistochemistry, and immunofluorescence assays were performed to detect the expression of SIRT1 and p65. Enzyme-linked immunosorbent assays (ELISAs) were used to explore tumor necrosis factor (TNF)-α and interleukin (IL)-1β release. The neurological score, brain water content, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and brain hemoglobin content were determined to evaluate the neuroprotective effect of SIRT1. SIRT1 expression was decreased, whereas the level of acetylated p65 (Ac-p65) was elevated after ICH in vivo. Moreover, hemoglobin treatment decreased the expression of SIRT1 in vitro. Activation of SIRT1 by resveratrol had a neuroprotective effect, along with decreased levels of Ac-p65, IL-1β, TNF-α, and apoptosis after ICH. The effect of resveratrol was abolished by the SIRT1 inhibitor Ex527. Our results are consistent with the hypothesis that SIRT1 exerts a neuroprotective effect after ICH by deacetylating p65 to inhibit the NF-κB-dependent inflammatory response.
Collapse
Affiliation(s)
- Hong-Ji Deng
- Department of Neurosurgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Chen-Hui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University School of Medicine, Ningbo, China
| | - Li-Tian Huang
- Department of Neurosurgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Liang-Bao Wen
- Department of Neurosurgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Meng-Liang Zhou
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chun-Xi Wang
- Department of Neurosurgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
Zhang L, Chen J, Liao H, Li C, Chen M. Anti-inflammatory effect of lipophilic grape seed proanthocyanidin in RAW 264.7 cells and a zebrafish model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
10
|
Barnes PJ. Oxidative stress-based therapeutics in COPD. Redox Biol 2020; 33:101544. [PMID: 32336666 PMCID: PMC7251237 DOI: 10.1016/j.redox.2020.101544] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress is a major driving mechanism in the pathogenesis of COPD. There is increased oxidative stress in the lungs of COPD patients due to exogenous oxidants in cigarette smoke and air pollution and due to endogenous generation of reactive oxygen species by inflammatory and structural cells in the lung. Mitochondrial oxidative stress may be particularly important in COPD. There is also a reduction in antioxidant defences, with inactivation of several antioxidant enzymes and the transcription factors Nrf2 and FOXO that regulate multiple antioxidant genes. Increased systemic oxidative stress may exacerbate comorbidities and contribute to skeletal muscle weakness. Oxidative stress amplifies chronic inflammation, stimulates fibrosis and emphysema, causes corticosteroid resistance, accelerates lung aging, causes DNA damage and stimulates formation of autoantibodies. This suggests that treating oxidative stress by antioxidants or enhancing endogenous antioxidants should be an effective strategy to treat the underlying pathogenetic mechanisms of COPD. Most clinical studies in COPD have been conducted using glutathione-generating antioxidants such as N-acetylcysteine, carbocysteine and erdosteine, which reduce exacerbations in COPD patients, but it is not certain whether this is due to their antioxidant or mucolytic properties. Dietary antioxidants have so far not shown to be clinically effective in COPD. There is a search for more effective antioxidants, which include superoxide dismutase mimetics, NADPH oxidase inhibitors, mitochondria-targeted antioxidants and Nrf2 activators.
Collapse
Affiliation(s)
- Peter J Barnes
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, Dovehouse Street, SW3 6LY, London, UK.
| |
Collapse
|
11
|
Belchamber KBR, Donnelly LE. Targeting defective pulmonary innate immunity - A new therapeutic option? Pharmacol Ther 2020; 209:107500. [PMID: 32061706 DOI: 10.1016/j.pharmthera.2020.107500] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Chronic pulmonary conditions now account for 1 in 15 deaths in the US and mortality is increasing. Chronic obstructive pulmonary disease (COPD) is due to become the 3rd largest cause of mortality by 2030 and mortality from other respiratory conditions such as asthma, idiopathic pulmonary fibrosis and cystic fibrosis are not reducing. There is an urgent need for novel therapies to address this problem as many of the current strategies targeting inflammation are not sufficient. The innate immune system of the lung is an important defence against invading pathogens, but in many chronic pulmonary diseases, this system mounts an inappropriate response. In COPD, macrophages are increased in number, but fail to clear pathogens correctly and become highly activated. This leads to increased damage and remodelling of the airways. In idiopathic fibrosis, there is a switch of macrophage phenotype to a cell that promotes abnormal repair. Neutrophils also display dysfunction in COPD where aberrant migratory profiles may lead to increased damage to lung tissue and emphysema; while in cystic fibrosis the proteolytic lung environment damages neutrophil receptors leading to ineffective phagocytosis and migration. Targeting the innate immune system to restore 'normal function' could have enormous benefits. Improving phagocytosis of pathogens could reduce exacerbations and hence the associated decline in lung function, and novel therapeutics such as sulforaphane appear to do this in vitro. Other natural products such as resveratrol and derivatives also have anti-inflammatory properties. Statins have traditionally been used to manage cholesterol levels in hypercholesterolaemia, however these molecules also have beneficial effects on the innate immune cells. Statins have been shown to be anti-inflammatory and restore aberrant neutrophil chemotaxis in aged cells. Other possible agents that may be efficacious are senolytics. These compounds include natural products such as quercetin which have anti-inflammatory properties but can also suppress viral replication. As viruses have been shown to suppress phagocytosis of macrophages, it is possible that these compounds could have benefit during viral exacerbations to protect this innate response. These compounds demonstrate that it is possible to address defective innate responses in the lung but a better understanding of the mechanisms driving defective innate immunity in pulmonary disease may lead to improved therapeutics.
Collapse
Affiliation(s)
- Kylie B R Belchamber
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | - Louise E Donnelly
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK.
| |
Collapse
|
12
|
Roudsari NM, Lashgari NA, Momtaz S, Farzaei MH, Marques AM, Abdolghaffari AH. Natural polyphenols for the prevention of irritable bowel syndrome: molecular mechanisms and targets; a comprehensive review. Daru 2019; 27:755-780. [PMID: 31273572 PMCID: PMC6895345 DOI: 10.1007/s40199-019-00284-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a well diagnosed disease, thoroughly attributed to series of symptoms criteria that embrace a broad range of abdominal complainers. Such criteria help to diagnosis the disease and can guide controlled clinical trials to seek new therapeutic agents. Accordingly, a verity of mechanisms and pathophysiological conditions including inflammation, oxidative stress, lipid peroxidation and different life styles are involved in IBS. Predictably, diverse therapeutic approaches are available and prescribed by clinicians due to major manifestations (i.e., diarrhea-predominance, constipation-predominance, abdominal pain and visceral hypersensitivity), psychological disturbances, and patient preferences between herbal treatments versus pharmacological therapies, dietary or microbiological approaches. Herein, we gathered the latest scientific data between 1973 and 2019 from databases such as PubMed, Google Scholar, Scopus and Cochrane library on relevant studies concerning beneficial effects of herbal treatments for IBS, in particular polyphenols. This is concluded that polyphenols might be applicable for preventing IBS and improving the IBS symptoms, mainly through suppressing the inflammatory signaling pathways, which nowadays are known as novel platform for the IBS management. Graphical abstract.
Collapse
Affiliation(s)
- Nazanin Momeni Roudsari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Naser-Aldin Lashgari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - André M Marques
- Oswaldo Cruz Foundation (FIOCRUZ), Institute of Technology in Pharmaceuticals (Farmanguinhos), Rio de Janeiro, RJ, Brazil
| | - Amir Hossein Abdolghaffari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Sarcoidosis is a chronic disease, which is routinely treated with corticosteroids. Steroid resistance or steroid-induced adverse effects require alternatives. Other immune-modulating pharmacological treatments have been developed, and therefore expanded tremendously. Until now, the role of nutrition in the overall management of sarcoidosis has been neglected although anti-inflammatory properties of nutritional components have been known for many years now. New nutritional possibilities emerge from already existing data and offer new therapeutic avenues in the treatment of sarcoidosis. RECENT FINDINGS Various dietary components have been shown to reduce pulmonary inflammatory processes. It is increasingly recognized, however, that the specificity and magnitude of the effect of nutrition differs from pharmacological interventions. Conventional randomized clinical trials are less suitable to test the effect of nutrition in comparison with testing drugs. Mechanistic knowledge on the action of dietary components in conjunction with an increasing understanding of the molecular processes underlying steroid resistance (as investigated in asthma and COPD and unfortunately hardly in sarcoidosis) lead to exciting suggestions on combinations of nutrition/nutritional bioactive compounds and corticosteroids that may benefit sarcoidosis patients. SUMMARY In order to understand the effects of nutrition in chronic disease, it is important to elucidate mechanisms and pathways of effects. Several complementing lines of evidence should be integrated in order to be able to advise sarcoidosis patients on a healthy diet as such or in combination with prescribed anti-inflammatory therapy.
Collapse
|
14
|
Systemic treatment with resveratrol alleviates adjuvant arthritis-interstitial lung disease in rats via modulation of JAK/STAT/RANKL signaling pathway. Pulm Pharmacol Ther 2019; 56:69-74. [PMID: 30930172 DOI: 10.1016/j.pupt.2019.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/13/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023]
Abstract
Interstitial lung disease (ILD) is the most common pulmonary manifestation of Rheumatoid arthritis (RA) lung disease. The mechanism of RA-ILD remains obscure and more effective treatments are still needed. Resveratrol (RSV) a phytoalexin found with anti-inflammation and antioxidant activity. RSV has been reported to protect against RA. In current study, we evaluated the effects of RSV on RA-ILD and further explored the underlying mechanisms. We established the RA-ILD rat model by injecting Freund's complete adjuvant (FCA). After administration of RSV into RA-ILD rats, the disease parameters were assessed, inflammatory cytokines productions were analyzed, and the effects of RSV on JAK/STAT/RANKL were evaluated. Injection of FCA caused RA-ILD in rats, which had clear lung damage, fibrosis, and elevated pro-inflammatory cytokines in both serum and lung. RSV treatment significantly ameliorated the lung disease and prevented pro-inflammatory cytokines production. In addition, RSV inhibited JAK/STAT/RANKL signaling pathway in RA-ILD rats. RSV treatment alleviates RA-ILD in rats by inhibiting JAK/STAT/RANKL signaling pathway.
Collapse
|
15
|
Chen YH, Fu YC, Wu MJ. Does Resveratrol Play a Role in Decreasing the Inflammation Associated with Contrast Induced Nephropathy in Rat Model? J Clin Med 2019; 8:jcm8020147. [PMID: 30691208 PMCID: PMC6406726 DOI: 10.3390/jcm8020147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/13/2019] [Accepted: 01/24/2019] [Indexed: 01/14/2023] Open
Abstract
Contrast is widely used in invasive image examinations such as computed tomography (CT) and angiography; however, the risk of contrast-induced nephropathy (CIN) is high. The aim of this study was to investigate the protective effect of resveratrol in a rat model of CIN. Sprague-Dawley rats were divided into four groups: the control group (0.9% saline infusion only); resveratrol group (RSV, resveratrol, 30 mg/kg); contrast media group (CIN); and resveratrol + contrast media group (RCIN, resveratrol 30 mg/kg 60 min before CIN). CIN was induced via an intravenous injection of a single dose of indomethacin (10 mg/kg), one dose of N-nitro-L-arginine methyl ester (10 mg/kg), and a single dose of contrast medium iopromide (2 g/kg). Blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin (NGAL) were higher in the CIN group compared to the other groups. Histopathological tubule injury scores were also higher in the CIN group compared to the other groups (p < 0.01). NLPR3 in kidney tissue were higher in the CIN group compared to the other groups; however, these results were improved by resveratrol in the RCIN group compared with the CIN group. The expressions of IL-1β and the percentage of apoptotic cells were higher in the CIN group than in the control and RSV groups, but they were lower in the RCIN group than in the CIN group. The expression of cleaved caspase-3 was higher in the CIN group than in the control and RSV groups, but lower in the RCIN group than in the CIN group. Resveratrol treatment attenuated both injury processes and apoptosis and inhibited the inflammasome pathway in this rat CIN model.
Collapse
Affiliation(s)
- Yi-Hsin Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Nephrology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan.
- School of Medicine, Tzu Chi University, Hualien 907, Taiwan.
| | - Yun-Ching Fu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan.
- Section of Pediatric Cardiology, Department of Pediatrics, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Ming-Ju Wu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| |
Collapse
|
16
|
Farrokhi E, Ghatreh-Samani K, Salehi-Vanani N, Mahmoodi A. The effect of resveratrol on expression of matrix metalloproteinase 9 and its tissue inhibitors in vascular smooth muscle cells. ARYA ATHEROSCLEROSIS 2019; 14:157-162. [PMID: 30627191 PMCID: PMC6312567 DOI: 10.22122/arya.v14i4.1484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Matrix metalloproteinase 9 (MMP-9) is involved in extracellular matrix degradation and remodeling. An increase in MMP-9 expression by vascular component cells plays an important role in atherosclerotic plaque formation and rupture. Resveratrol, a polyphenolic substance, was suggested to play a role in preventing the progress of atherosclerotic disease. The aim of this study was to investigate the effect of resveratrol on MMP-9 and tissue inhibitors of metalloproteinases (TIMPs) in vascular smooth muscle cells (VSMCs) after treatment with H2O2. METHODS Cultured VSMCs were pre-treated with 0.2 mM of H2O2 before stimulation with different concentration of resveratrol. Expression of MMP-9, TIMP-1, and TIMP-3 genes were measured using real-time polymerase chain reaction (PCR) method, and MMP-9 protein level was detected using western blot analysis. RESULTS Resveratrol at 120 μmol/l concentration reduced the elevated level of MMP-9 induced by H2O2 in VSMCs as 1.85 ± 0.35 folds (P < 0.050) and 8.70 ± 1.20 folds (P < 0.050) after 24 and 48 hours, respectively. Resveratrol increased the diminished level of TIMP-1 induced by H2O2 as 2.5 ± 0.48 folds following the treatment with 120 μmol/l after 48 hours (P < 0.050). CONCLUSION Resveratrol as an antioxidant can decrease MMP-9 production, not only by suppressing MMP-9 expression, but also by augmenting TIMP-1 production. Altogether, resveratrol as an antioxidant can regulate the MMP-9/TIMP-1 balance, and may be considered as a preservative agent in the treatment and prevention of atherosclerosis.
Collapse
Affiliation(s)
- Effat Farrokhi
- Assistant Professor, Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Keihan Ghatreh-Samani
- Associate Professor, Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Najmeh Salehi-Vanani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Mahmoodi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
17
|
Abstract
Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis are regarded as a diseases of accelerated lung ageing and show all of the hallmarks of ageing, including telomere shortening, cellular senescence, activation of PI3 kinase-mTOR signaling, impaired autophagy, mitochondrial dysfunction, stem cell exhaustion, epigenetic changes, abnormal microRNA profiles, immunosenescence and a low grade chronic inflammation due to senescence-associated secretory phenotype (SASP). Many of these ageing mechanisms are driven by exogenous and endogenous oxidative stress. There is also a reduction in anti-ageing molecules, such as sirtuins and Klotho, which further accelerate the ageing process. Understanding these molecular mechanisms has identified several novel therapeutic targets and several drugs and dietary interventions are now in development to treat chronic lung disease.
Collapse
Affiliation(s)
- Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|
18
|
Wang FM, Hu Z, Liu X, Feng JQ, Augsburger RA, Gutmann JL, Glickman GN. Resveratrol represses tumor necrosis factor α/c-Jun N-terminal kinase signaling via autophagy in human dental pulp stem cells. Arch Oral Biol 2019; 97:116-121. [PMID: 30384152 PMCID: PMC6927335 DOI: 10.1016/j.archoralbio.2018.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To study the effects of polyphenol resveratrol on TNFα-induced inflammatory signaling as well as the underlying mechanism in human dental pulp stem cells (DPSCs). MATERIALS AND METHODS Human DPSCs were cultured and treated by TNFα in the presence or absence of resveratrol. NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways were analyzed by Western blotting and immunofluorescence staining. Interleukin 6 (IL6) and interleukin 8 (IL8) mRNA levels were analyzed by reverse transcription polymerase chain reaction. For the mechanistic study, autophagy was examined and further manipulated by gene silencing of Atg5 using siRNAs. Statistical analysis was performed by Student's t- test, and values of p < 0.05 were considered significant. RESULTS Upon TNFα treatments, neither degradation of IκBα nor the phosphorylation and nuclear translocation of p65 NF-κB were inhibited by resveratrol at different concentrations. In contrast, resveratrol dramatically inhibited TNFα-induced phosphorylation of c-Jun N-terminal kinase (JNK) MAPK. Furthermore, resveratrol activated autophagy, as evidenced by the accumulated autophagic puncta formed by lipid bound LC3B in resveratrol-treated cells. Intriguingly, both resveratrol and JNK inhibitor SP600125 suppressed TNFα-induced IL6 and IL8 mRNA expression (P < 0.05). Silencing autophagy gene Atg5 led to the hyper-activation of JNK and augmented TNFα-induced IL6 and IL8 mRNA expression (P < 0.05). CONCLUSIONS The results suggest that resveratrol suppresses TNFα-induced inflammatory cytokines expressed by DPSCs through regulating the inhibitory autophagy-JNK signaling cascade. Resveratrol might be beneficial to ameliorate pulpal damage during the acute phase of inflammation in vital pulp therapy.
Collapse
Affiliation(s)
- Feng-Ming Wang
- Department of Endodontics, Texas A&M College of Dentistry, Dallas, TX, USA.
| | - Zhiai Hu
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | | | - James L Gutmann
- Professor Emeritus, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Gerald N Glickman
- Department of Endodontics, Texas A&M College of Dentistry, Dallas, TX, USA
| |
Collapse
|
19
|
Dua K, Malyla V, Singhvi G, Wadhwa R, Krishna RV, Shukla SD, Shastri MD, Chellappan DK, Maurya PK, Satija S, Mehta M, Gulati M, Hansbro N, Collet T, Awasthi R, Gupta G, Hsu A, Hansbro PM. Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: An emerging need for novel drug delivery systems. Chem Biol Interact 2018; 299:168-178. [PMID: 30553721 DOI: 10.1016/j.cbi.2018.12.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/02/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Oxidative stress is intensely involved in enhancing the severity of various chronic respiratory diseases (CRDs) including asthma, chronic obstructive pulmonary disease (COPD), infections and lung cancer. Even though there are various existing anti-inflammatory therapies, which are not enough to control the inflammation caused due to various contributing factors such as anti-inflammatory genes and antioxidant enzymes. This leads to an urgent need of novel drug delivery systems to combat the oxidative stress. This review gives a brief insight into the biological factors involved in causing oxidative stress, one of the emerging hallmark feature in CRDs and particularly, highlighting recent trends in various novel drug delivery carriers including microparticles, microemulsions, microspheres, nanoparticles, liposomes, dendrimers, solid lipid nanocarriers etc which can help in combating the oxidative stress in CRDs and ultimately reducing the disease burden and improving the quality of life with CRDs patients. These carriers improve the pharmacokinetics and bioavailability to the target site. However, there is an urgent need for translational studies to validate the drug delivery carriers for clinical administration in the pulmonary clinic.
Collapse
Affiliation(s)
- Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.
| | - Vamshikrishna Malyla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, India
| | - Ridhima Wadhwa
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Rapalli Vamshi Krishna
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, India
| | - Shakti Dhar Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Madhur D Shastri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Jant-Pali, Mahendergarh District, 123031, Haryana, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab, 144441, India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab, 144441, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab, 144441, India
| | - Nicole Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Trudi Collet
- Indigenous Medicines Group, Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University, Sec. 125, Noida, 201303, Uttar Pradesh, India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, India
| | - Alan Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| |
Collapse
|
20
|
Khodabandehloo H, Seyyedebrahimi S, Esfahani EN, Razi F, Meshkani R. Resveratrol supplementation decreases blood glucose without changing the circulating CD14 + CD16 + monocytes and inflammatory cytokines in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled study. Nutr Res 2018; 54:40-51. [DOI: 10.1016/j.nutres.2018.03.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/21/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
|
21
|
Kim G, Piao C, Oh J, Lee M. Self-assembled polymeric micelles for combined delivery of anti-inflammatory gene and drug to the lungs by inhalation. NANOSCALE 2018; 10:8503-8514. [PMID: 29693671 DOI: 10.1039/c8nr00427g] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Acute lung injury (ALI) is a lung inflammatory disease for which pulmonary delivery of drug and gene could be a useful strategy. In this study, cholesterol-conjugated polyamidoamine (PAM-Chol) was synthesized and characterized as a carrier for combined delivery of anti-inflammatory gene and drug into the lungs by inhalation. The PAM-Chol formed self-assembled micelles in an aqueous solution with a critical micelle concentration of 0.22 mg ml-1. An in vitro transfection assay to L2 lung epithelial cells showed that the PAM-Chol micelle had higher transfection efficiency than lipofectamine and polyethylenimine (25 kDa, PEI25k). As the anti-inflammatory drug, resveratrol was loaded into the cores of the PAM-Chol micelles using the oil-in-water emulsion/solvent evaporation method. In lipopolysaccharide (LPS)-activated macrophage cells, resveratrol-loaded PAM-Chol (PAM-Chol/Res) reduced pro-inflammatory cytokines, confirming the anti-inflammatory effects of resveratrol. In in vitro transfection assays to L2 cells, the PAM-Chol/Res micelles had transfection efficiency similar to that of PAM-Chol. The delivery of resveratrol or the heme oxygenase-1 gene (pHO-1) by inhalation was evaluated in an ALI animal model. Resveratrol delivery using the PAM-Chol/Res micelles inhibited the nuclear translocation of nuclear factor-κB (NF-κB) and reduced pro-inflammatory cytokines in the lungs. pHO-1 delivery using PAM-Chol induced HO-1 expression and reduced pro-inflammatory cytokines. However, the highest anti-inflammatory effects were obtained with combined delivery of pHO-1 and resveratrol using the pHO-1/PAM-Chol/Res complex, as demonstrated in cytokine assays and immunohistochemical studies. Therefore, the PAM-Chol micelle is an efficient carrier of resveratrol and pHO-1 into the lungs and could be useful for the treatment of ALI by inhalation.
Collapse
Affiliation(s)
- Gyeungyun Kim
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| | | | | | | |
Collapse
|
22
|
Beijers RJHCG, Gosker HR, Schols AMWJ. Resveratrol for patients with chronic obstructive pulmonary disease: hype or hope? Curr Opin Clin Nutr Metab Care 2018; 21:138-144. [PMID: 29200030 PMCID: PMC5811233 DOI: 10.1097/mco.0000000000000444] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Chronic obstructive pulmonary disease (COPD) is a progressive lung disease with a high prevalence of extrapulmonary manifestations and, frequently, cardiovascular comorbidity. Resveratrol is a food-derived compound with anti-inflammatory, antioxidant, metabolic and cardioprotective potential. Therefore, resveratrol might improve the pulmonary as well as extrapulmonary pathology in COPD. In this review, we will evaluate knowledge on the effects of resveratrol on lung injury, muscle metabolism and cardiovascular risk profile and discuss if resveratrol is a hype or hope for patients with COPD. RECENT FINDINGS Experimental models of COPD consistently show decreased inflammation and oxidative stress in the lungs after resveratrol treatment. These beneficial anti-inflammatory and antioxidant properties of resveratrol can indirectly also improve both skeletal and respiratory muscle impairment in COPD. Recent clinical studies in non-COPD populations show improved mitochondrial oxidative metabolism after resveratrol treatment, which could be beneficial for both lung and muscle impairment in COPD. Moreover, preclinical studies suggest cardioprotective effects of resveratrol but results of clinical studies are inconclusive. SUMMARY Resveratrol might be an interesting therapeutic candidate to counteract lung and muscle impairments characteristic to COPD. However, there is no convincing evidence that resveratrol will significantly decrease the cardiovascular risk in patients with COPD.
Collapse
Affiliation(s)
- Rosanne J H C G Beijers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | | |
Collapse
|
23
|
Sarubbo F, Esteban S, Miralles A, Moranta D. Effects of Resveratrol and other Polyphenols on Sirt1: Relevance to Brain Function During Aging. Curr Neuropharmacol 2018; 16:126-136. [PMID: 28676015 PMCID: PMC5883375 DOI: 10.2174/1570159x15666170703113212] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/15/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Classically the oxidative stress and more recently inflammatory processes have been identified as the major causes of brain aging. Oxidative stress and inflammation affect each other, but there is more information about the effects of oxidative stress on aging than regarding the contribution of inflammation on it. METHODS In the intense research for methods to delay or mitigate the effects of aging, are interesting polyphenols, natural molecules synthesized by plants (e.g. resveratrol). Their antioxidant and anti-inflammatory properties make them useful molecules in the prevention of aging. RESULTS The antiaging effects of polyphenols could be due to several related mechanisms, among which are the prevention of oxidative stress, SIRT1 activation and inflammaging modulation, via regulation of some signaling pathways, such as NF-κB. CONCLUSION In this review, we describe the positive effects of polyphenols on the prevention of the changes that occur during aging in the brain and their consequences on cognition, emphasizing the possible modulation of inflammaging by polyphenols through a SIRT1-mediated mechanism.
Collapse
Affiliation(s)
- F. Sarubbo
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| | - S. Esteban
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| | - A. Miralles
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| | - D. Moranta
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| |
Collapse
|
24
|
Pastor RF, Restani P, Di Lorenzo C, Orgiu F, Teissedre PL, Stockley C, Ruf JC, Quini CI, Garcìa Tejedor N, Gargantini R, Aruani C, Prieto S, Murgo M, Videla R, Penissi A, Iermoli RH. Resveratrol, human health and winemaking perspectives. Crit Rev Food Sci Nutr 2017; 59:1237-1255. [PMID: 29206058 DOI: 10.1080/10408398.2017.1400517] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Resveratrol, (3, 5, 4'-trihydroxystilbene) is a non-flavonoid polyphenol stilbene synthesized by plants when damaged by infectious diseases or ionizing radiation. Although present in more than seventy plant species, grapes and wine are the major dietary contributors of resveratrol, responsible for 98% of the daily intake. In 1992, Renaud and De Lorgeril first linked wine polyphenols, including resveratrol, to the potential health benefits ascribed to regular and moderate wine consumption (the so called "French Paradox"). Since then, resveratrol has received increasing scientific interest, leading to research on its biological actions, and to a large number of published papers, which have been collected and discussed in this review. The relatively low amounts of resveratrol measured in wine following moderate consumption, however, may be insufficient to mitigate biological damage, such as that due to oxidative stress. On this basis, the authors also highlight the importance of viticulture and the winemaking process to enhance resveratrol concentrations in wine in order to bolster potential health benefits.
Collapse
Affiliation(s)
- Raúl Francisco Pastor
- a Polyphenols, Wine and Health, Internal Medicine IV Chair, University of Buenos Aires , Argentina.,b Research Institute, Faculty of Medical Sciences, University of Aconcagua , Mendoza , Argentina
| | - Patrizia Restani
- c Dept. Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Italy
| | - Chiara Di Lorenzo
- c Dept. Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Italy
| | - Francesca Orgiu
- c Dept. Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Italy
| | - Pierre-Louis Teissedre
- d Univ. Bordeaux, ISVV, EA 4577, OEnologie, 210 Chemin de Leysotte, Villenave d'Ornon, France-INRA, ISVV , USC 1366 OEnologie, Villenave d'Ornon , France
| | - Creina Stockley
- e Manager, Health and Regulatory Information, The Australian Wine Research Institute , Urrbrae , South Australia , Australia
| | - Jean Claude Ruf
- f OIV - International Organisation of Vine and Wine , Paris , France
| | | | - Nuria Garcìa Tejedor
- h Agencia Española de Seguridad Alimentaria Y Nutriciòn (AESAN) , Madrid , Spain
| | | | - Carla Aruani
- g Instituto Nacional de Vitivinicultura , Mendoza , Argentina
| | | | - Marcelo Murgo
- g Instituto Nacional de Vitivinicultura , Mendoza , Argentina
| | - Rodolfo Videla
- g Instituto Nacional de Vitivinicultura , Mendoza , Argentina
| | - Alicia Penissi
- b Research Institute, Faculty of Medical Sciences, University of Aconcagua , Mendoza , Argentina.,i National Council of Scientific and Technological Research (CONICET)
| | - Roberto Héctor Iermoli
- a Polyphenols, Wine and Health, Internal Medicine IV Chair, University of Buenos Aires , Argentina.,b Research Institute, Faculty of Medical Sciences, University of Aconcagua , Mendoza , Argentina
| |
Collapse
|
25
|
Resveratrol pretreatment reduces circulating inflammatory interleukins in CCl 4 -induced hepatotoxicity rats. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.bfopcu.2017.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Liu X, Chen Z. The pathophysiological role of mitochondrial oxidative stress in lung diseases. J Transl Med 2017; 15:207. [PMID: 29029603 PMCID: PMC5640915 DOI: 10.1186/s12967-017-1306-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/30/2017] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are critically involved in reactive oxygen species (ROS)-dependent lung diseases, such as lung fibrosis, asbestos, chronic airway diseases and lung cancer. Mitochondrial DNA (mtDNA) encodes mitochondrial proteins and is more sensitive to oxidants than nuclear DNA. Damage to mtDNA causes mitochondrial dysfunction, including electron transport chain impairment and mitochondrial membrane potential loss. Furthermore, damaged mtDNA also acts as a damage-associated molecular pattern (DAMP) that drives inflammatory and immune responses. In this review, crosstalk among alveolar epithelial cells, alveolar macrophages and mitochondria is examined. ROS-related transcription factors and downstream cell signaling pathways are also discussed. We conclude that targeting oxidative stress with antioxidant agents, such as thiol molecules, polyphenols and superoxide dismutase (SOD), and promoting mitochondrial biogenesis should be considered as novel strategies for treating lung diseases that currently have no effective treatment options.
Collapse
Affiliation(s)
- Xiaojing Liu
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Diseases, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.,Geriatric Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No 600 Yishan Road, Shanghai, China
| | - Zhihong Chen
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Diseases, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
27
|
Che DN, Xie GH, Cho BO, Shin JY, Kang HJ, Jang SI. Protective effects of grape stem extract against UVB-induced damage in C57BL mice skin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:551-559. [PMID: 28697472 DOI: 10.1016/j.jphotobiol.2017.06.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 12/22/2022]
Abstract
Humans have become exposed to another form of a trait which is ultraviolet B (UVB) radiation reaching the earth's surface. This has become a major source of oxidative stress that ultimately leads to inflammation, DNA damage, photoaging and pigmentation disorders etc. Although several studies have shown the photo-protective role of different grape parts like the fruits and seeds, little or no data demonstrating the in vivo photo-protective role of grape stem, which is the most discarded part of the grape are available. We evaluated the protective influence of grape stem extract against UVB-induced oxidative damage in C57BL mice characterized by epidermal hyperplasia, pigmentation, collagen degradation and inflammation. Grape stem extract was administered topically 1week before UVB irradiation (120mJ/cm2) and continued until the termination of the experiment. A group of non-irradiated mice and a group of irradiated mice topically administered with propylene were used as a negative and positive control. Epidermal thickness, pigmentation, erythema, mast cell and neutrophil infiltration, collagen degradation and COX-2, Nrf2, and HO-1 expressions were evaluated. Grape stem extract markedly recovered skin damage induced by the UVB radiation through the prevention of epidermal hyperplasia, pigmentation, erythema, mast cell and neutrophil infiltrations, collagen degradation and COX-2, Nrf2, and HO-1 expressions. Our study demonstrated for the first time in C57BL mice that grape stem extract reduces UVB-induced oxidative damage and hence can play a protective role in skin photo-damage.
Collapse
Affiliation(s)
- Denis Nchang Che
- Department of Health Care & Science, Jeonju University, Jeonju 55069, Republic of Korea
| | - Guang Hua Xie
- Department of General Surgery, YanBian University Hospital, JiLin 133-000, China
| | - Byoung Ok Cho
- Department of Health Care & Science, Jeonju University, Jeonju 55069, Republic of Korea; Research Institute, Ato Q&A Corporation, Jeonju 55069, Republic of Korea
| | - Jae Young Shin
- Department of Health Care & Science, Jeonju University, Jeonju 55069, Republic of Korea
| | - Hyun Ju Kang
- Research Institute, Ato Q&A Corporation, Jeonju 55069, Republic of Korea
| | - Seon Il Jang
- Department of Health Care & Science, Jeonju University, Jeonju 55069, Republic of Korea; Research Institute, Ato Q&A Corporation, Jeonju 55069, Republic of Korea.
| |
Collapse
|
28
|
Baker K, Raemdonck K, Snelgrove RJ, Belvisi MG, Birrell MA. Characterisation of a murine model of the late asthmatic response. Respir Res 2017; 18:55. [PMID: 28399855 PMCID: PMC5387391 DOI: 10.1186/s12931-017-0541-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/28/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The incidence of asthma is increasing at an alarming rate. While the current available therapies are effective, there are associated side effects and they fail to adequately control symptoms in all patient subsets. In the search to understand disease pathogenesis and find effective therapies hypotheses are often tested in animal models before progressing into clinical studies. However, current dogma is that animal model data is often not predictive of clinical outcome. One possible reason for this is the end points measured such as antigen-challenge induced late asthmatic response (LAR) is often used in early clinical development, but seldom in animal model systems. As the mouse is typically selected as preferred species for pre-clinical models, we wanted to characterise and probe the validity of a murine model exhibiting an allergen induced LAR. METHODS C57BL/6 mice were sensitised with antigen and subsequently topically challenged with the same antigen. The role of AlumTM adjuvant, glucocorticoid, long acting muscarinic receptor antagonist (LAMA), TRPA1, CD4+ and CD8+ T cells, B cells, Mast cells and IgE were determined in the LAR using genetically modified mice and a range of pharmacological tools. RESULTS Our data showed that unlike other features of asthma (e.g. cellular inflammation, elevated IgE levels and airway hyper-reactivity (AHR) the LAR required AlumTMadjuvant. Furthermore, the LAR appeared to be sensitive to glucocorticoid and required CD4+ T cells. Unlike in other species studied, the LAR was not sensitive to LAMA treatment nor required the TRPA1 ion channel, suggesting that airway sensory nerves are not involved in the LAR in this species. Furthermore, the data suggested that CD8+ T cells and the mast cell-B-cell - IgE axis appear to be protective in this murine model. CONCLUSION Together we can conclude that this model does feature steroid sensitive, CD4+ T cell dependent, allergen induced LAR. However, collectively our data questions the validity of using the murine pre-clinical model of LAR in the assessment of future asthma therapies.
Collapse
Affiliation(s)
- Katie Baker
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Kristof Raemdonck
- Department of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450, Porto, Portugal
| | - Robert J Snelgrove
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maria G Belvisi
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Mark A Birrell
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK.
| |
Collapse
|
29
|
Kalita B, Das MK, Sarma M, Deka A. Sustained Anti-inflammatory Effect of Resveratrol-Phospholipid Complex Embedded Polymeric Patch. AAPS PharmSciTech 2017; 18:629-645. [PMID: 27173988 DOI: 10.1208/s12249-016-0542-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 04/26/2016] [Indexed: 01/10/2023] Open
Abstract
Resveratrol-phospholipid complex (Phytosome®) (RSVP) was found better aqueous soluble and permeable than free resveratrol (RSV). RSVPs were incorporated in polymeric patch prepared by solvent casting method using Eudragit RL 100, PVP K30, and PEG 400 for application on dermal sites for sustained treating of inflammation. Prepared patches were evaluated for various physicochemical properties, surface morphology by SEM, TEM, and compatibility of patch components by FT-IR and DSC studies. Optimized formulation (F9) gave 95.79 ± 3.02% drug release and 51.36% (4.28 ± 0.48 mg/cm2) skin permeation after 24 h. Skin extract when examined for drug accumulation showed 38.31 ± 2.42% drug content. FE-SEM images of the patch taken after drug release and skin permeation studies showed that RSVPs in polymeric patch are stable and retain their structure after 24 h long exposure to physiologic environment. Sustained anti-inflammatory effect was established in carrageenan-induced paw edema model in which test formulation gave 84.10% inhibition of inflammation at 24 h as compared to 39.58% for standard diclofenac sodium gel. The CLSM study confirmed the localization of RSVPs for a longer period, thus enabling drug targeting to the dermis for sustained effect. Skin irritation test on rabbit revealed that the patches are safe for skin application. Histological observations suggested that after exposure to the permeants, the SC integrity had not altered and no evidence of presence of inflammatory cells found. RSVP (Phytosome®) containing patches abled to give sustained therapeutic effect that may be useful in treating acute and chronic inflammation.
Collapse
|
30
|
de Boer A, van de Worp WRPH, Hageman GJ, Bast A. The effect of dietary components on inflammatory lung diseases - a literature review. Int J Food Sci Nutr 2017; 68:771-787. [PMID: 28276906 DOI: 10.1080/09637486.2017.1288199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anti-inflammatory treatment in chronic inflammatory lung diseases usually involves glucocorticosteroids. With patients suffering from serious side effects or becoming resistant, specific nutrients, that are suggested to positively influence disease progression, can be considered as new treatment options. The dietary inflammatory index is used to calculate effects of dietary components on inflammation and lung function to identify most potent dietary components, based on 162 articles. The positive effects of n-3 PUFAs and vitamin E on lung function can at least partially be explained by their anti-inflammatory effect. Many other dietary components showed only small or no effects on inflammation and/or lung function, although the number of weighted studies was often too small for a reliable assessment. Optimal beneficial dietary elements might reduce the required amounts of anti-inflammatory treatments, thereby decreasing both side effects and development of resistance as to improve quality of life of patients suffering from chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Alie de Boer
- a Faculty of Humanities and Sciences , Food Claims Centre Venlo, Maastricht University Campus Venlo, Maastricht University , Venlo , The Netherlands
| | - Wouter R P H van de Worp
- b Department of Pharmacology and Toxicology, Faculty of Health Medicine and Life Sciences , Maastricht University , Maastricht , The Netherlands
| | - Geja J Hageman
- b Department of Pharmacology and Toxicology, Faculty of Health Medicine and Life Sciences , Maastricht University , Maastricht , The Netherlands
| | - Aalt Bast
- b Department of Pharmacology and Toxicology, Faculty of Health Medicine and Life Sciences , Maastricht University , Maastricht , The Netherlands.,c Faculty of Humanities and Sciences , Maastricht University Campus Venlo, Maastricht University , Venlo , The Netherlands
| |
Collapse
|
31
|
Polyphenols in Regulation of Redox Signaling and Inflammation During Cardiovascular Diseases. Cell Biochem Biophys 2017; 72:485-94. [PMID: 25701407 DOI: 10.1007/s12013-014-0492-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases remain one of the major health problems worldwide. The worldwide research against cardiovascular diseases as well as genome wide association studies were successful in indentifying the loci associated with this prominent life-threatening disease but still a substantial amount of casualty remains unexplained. Over the last decade, the thorough understanding of molecular and biochemical mechanisms of cardiac disorders lead to the knowledge of various mechanisms of action of polyphenols to target inflammation during cardiac disorders. The present review article summarizes major mechanisms of polyphenols against cardiovascular diseases.
Collapse
|
32
|
Kim HY. Resveratrol in Asthma: A French Paradox? ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2017; 9:1-2. [PMID: 27826956 PMCID: PMC5102830 DOI: 10.4168/aair.2017.9.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Hye Young Kim
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Korea.,Department of Medical Science, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
33
|
Li D, Liu N, Zhao L, Tong L, Kawano H, Yan HJ, Li HP. Protective effect of resveratrol against nigrostriatal pathway injury in striatum via JNK pathway. Brain Res 2016; 1654:1-8. [PMID: 27769789 DOI: 10.1016/j.brainres.2016.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/03/2016] [Accepted: 10/15/2016] [Indexed: 02/07/2023]
Abstract
Nigrostriatal pathway injury is one of the traumatic brain injury models that usually lead to neurological dysfunction or neuron necrosis. Resveratrol-induced benefits have recently been demonstrated in several models of neuronal degeneration diseases. However, the protective properties of resveratrol against neurodegeneration have not been explored definitely. Thus, we employ the nigrostriatal pathway injury model to mimic the insults on the brain. Resveratrol decreased the p-ERK expression and increased the p-JNK expression compared to the DMSO group, but not alter the p38 MAPK proteins around the lesion site by Western blot. Prior to the injury, mice were infused with resveratrol intracerebroventricularly with or without JNK-IN-8, a specific c-JNK pathway inhibitor for JNK1, JNK2 and JNK4. The study assessed modified improved neurological function score (mNSS) and beam/walking test, the level of inflammatory cytokines IL-1β, IL-6 and TNF-α, and striatal expression of Bax and Bcl-2 proteins associated with neuronal apoptosis. The results revealed that resveratrol exerted a neuroprotective effect as shown by the improved mNSS and beam latency, anti-inflammatory effects as indicated by the decreased level of IL-1β, TNF-α and IL-6. Furthermore, resveratrol up-regulated the protein expression of p-JNK and Bcl-2, down-regulated the expression of Bax and the number of Fluoro-Jade C (FJC) positive neurons. However, these advantages of resveratrol were abolished by JNK-IN-8 treatment. Overall, we demonstrated that resveratrol treatment attenuates the nigrostriatal pathway injury-induced neuronal apoptosis and inflammation via activation of c-JNK signaling.
Collapse
Affiliation(s)
- Dan Li
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Nan Liu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liang Zhao
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lei Tong
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hitoshi Kawano
- Department of Health and Dietetics, Faculty of Health and Medical Science, Teikyo Heisei University, Tokyo 170-8445, Japan
| | - Hong-Jing Yan
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hong-Peng Li
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
34
|
Lakshmikanth CL, Jacob SP, Kudva AK, Latchoumycandane C, Yashaswini PSM, Sumanth MS, Goncalves-de-Albuquerque CF, Silva AR, Singh SA, Castro-Faria-Neto HC, Prabhu SK, McIntyre TM, Marathe GK. Escherichia coli Braun Lipoprotein (BLP) exhibits endotoxemia - like pathology in Swiss albino mice. Sci Rep 2016; 6:34666. [PMID: 27698491 PMCID: PMC5048175 DOI: 10.1038/srep34666] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/15/2016] [Indexed: 02/08/2023] Open
Abstract
The endotoxin lipopolysaccharide (LPS) promotes sepsis, but bacterial peptides also promote inflammation leading to sepsis. We found, intraperitoneal administration of live or heat inactivated E. coli JE5505 lacking the abundant outer membrane protein, Braun lipoprotein (BLP), was less toxic than E. coli DH5α possessing BLP in Swiss albino mice. Injection of BLP free of LPS purified from E. coli DH5α induced massive infiltration of leukocytes in lungs and liver. BLP activated human polymorphonuclear cells (PMNs) ex vivo to adhere to denatured collagen in serum and polymyxin B independent fashion, a property distinct from LPS. Both LPS and BLP stimulated the synthesis of platelet activating factor (PAF), a potent lipid mediator, in human PMNs. In mouse macrophage cell line, RAW264.7, while both BLP and LPS similarly upregulated TNF-α and IL-1β mRNA; BLP was more potent in inducing cyclooxygenase-2 (COX-2) mRNA and protein expression. Peritoneal macrophages from TLR2−/− mice significantly reduced the production of TNF-α in response to BLP in contrast to macrophages from wild type mice. We conclude, BLP acting through TLR2, is a potent inducer of inflammation with a response profile both common and distinct from LPS. Hence, BLP mediated pathway may also be considered as an effective target against sepsis.
Collapse
Affiliation(s)
| | - Shancy Petsel Jacob
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore - 570 006, Karnataka, India
| | - Avinash Kundadka Kudva
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, 115 Henning Building, The Pennsylvania State University, University Park, PA 16802, USA
| | - Calivarathan Latchoumycandane
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | | - Mosale Seetharam Sumanth
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore - 570 006, Karnataka, India
| | | | - Adriana R Silva
- Laboratótio de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Sridevi Annapurna Singh
- Department of Protein Chemistry &Technology, Central Food Technological Research Institute/CSIR, Mysore - 570 020, Karnataka, India
| | - Hugo C Castro-Faria-Neto
- Laboratótio de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Sandeep Kumble Prabhu
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, 115 Henning Building, The Pennsylvania State University, University Park, PA 16802, USA
| | - Thomas M McIntyre
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore - 570 006, Karnataka, India
| |
Collapse
|
35
|
André DM, Calixto MC, Sollon C, Alexandre EC, Leiria LO, Tobar N, Anhê GF, Antunes E. Therapy with resveratrol attenuates obesity-associated allergic airway inflammation in mice. Int Immunopharmacol 2016; 38:298-305. [PMID: 27344038 DOI: 10.1016/j.intimp.2016.06.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023]
Abstract
Obesity and insulin resistance have been associated with deterioration in asthma outcomes. High oxidative stress and deficient activation of AMP-activated protein kinase (AMPK) have emerged as important regulators linking insulin resistance and inflammation. This study aimed to evaluate the effects of resveratrol on obesity-associated allergic pulmonary inflammation. Male C57/Bl6 mice fed with high-fat diet to induce obesity (obese group) or standard-chow diet (lean group) were treated or not with resveratrol (100mg/kg/day, two weeks). Mice were sensitized and challenged with ovalbumin (OVA). At 48h thereafter, bronchoalveolar lavage fluid was performed, and lungs collected for morphological studies and Western blot analysis. Treatment of obese mice with resveratrol significantly reduced hyperglycemia and insulin resistance, as well as the body measures (body mass, fat mass, % fat, and body area). OVA-challenge promoted a higher increase in pulmonary eosinophil infiltration in obese compared with lean mice, which was nearly abrogated by resveratrol treatment. Resveratrol markedly increased the phosphorylated AMPK expression in lung tissues of obese compared with lean mice. Resveratrol reduced the p47phox expression and reactive-oxygen species (ROS) production, and elevated the superoxide dismutase (SOD) levels in lung tissues of obese mice. The increased pulmonary levels of TNF-α and inducible nitric oxide synthase (iNOS) in obese mice were also normalized after resveratrol treatment. In lean mice, resveratrol failed to affect the levels of fasting glucose, p47phox, ROS levels, TNF-α, iNOS and phosphorylated AMPK. Resveratrol exhibits protective effects in obesity-associated lung inflammation that is accompanied by local AMPK activation and antioxidant property.
Collapse
Affiliation(s)
- Diana Majolli André
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marina Ciarallo Calixto
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carolina Sollon
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eduardo Costa Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luiz O Leiria
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Natalia Tobar
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Gabriel Forato Anhê
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
36
|
Leischner C, Burkard M, Pfeiffer MM, Lauer UM, Busch C, Venturelli S. Nutritional immunology: function of natural killer cells and their modulation by resveratrol for cancer prevention and treatment. Nutr J 2016; 15:47. [PMID: 27142426 PMCID: PMC4855330 DOI: 10.1186/s12937-016-0167-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells as part of the innate immune system represent the first line of defence against (virus-) infected and malignantly transformed cells. The emerging field of nutritional immunology focuses on compounds featuring immune-modulating activities in particular on NK cells, which e.g. can be exploited for cancer prevention and treatment. The plant-based nutrition resveratrol is a ternary hydroxylated stilbene, which is present in many foods and beverages, respectively. In humans it comprises a large variety of distinct biological activities. Interestingly, resveratrol strongly modulates the immune response including the activity of NK cells. This review will give an overview on NK cell functions and summarize the resveratrol-mediated modulation thereof.
Collapse
Affiliation(s)
- Christian Leischner
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany
| | - Markus Burkard
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany.,Division of Dermatologic Oncology, Department of Dermatology and Allergology, University of Tuebingen, Tuebingen, Germany
| | - Matthias M Pfeiffer
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany
| | - Christian Busch
- Division of Dermatologic Oncology, Department of Dermatology and Allergology, University of Tuebingen, Tuebingen, Germany.,Pallas Clinic, Olten, Switzerland
| | - Sascha Venturelli
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany.
| |
Collapse
|
37
|
The investigation of resveratrol and analogs as potential inducers of fetal hemoglobin. Blood Cells Mol Dis 2016; 58:6-12. [DOI: 10.1016/j.bcmd.2015.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 11/24/2015] [Accepted: 11/29/2015] [Indexed: 11/23/2022]
|
38
|
LIU XIAOJU, BAO HAIRONG, ZENG XIAOLI, WEI JUNMING. Effects of resveratrol and genistein on nuclear factor‑κB, tumor necrosis factor‑α and matrix metalloproteinase‑9 in patients with chronic obstructive pulmonary disease. Mol Med Rep 2016; 13:4266-72. [PMID: 27035424 PMCID: PMC4838123 DOI: 10.3892/mmr.2016.5057] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/10/2016] [Indexed: 12/31/2022] Open
Abstract
Chronic airway inflammation and airway remodeling are the major pathophysiological characteristics of chronic obstructive pulmonary disease (COPD). Resveratrol and genistein have been previously demonstrated to have anti‑inflammatory and antioxidative properties. The present study aimed to measure the inhibitory effects of resveratrol and genistein on tumor necrosis factor (TNF)‑α and matrix metalloproteinase (MMP)‑9 concentration in patients with COPD. Lymphocytes were isolated from the blood of 34 patients with COPD and 30 healthy subjects, then randomly divided into the following four treatment groups: Control, dexamethasone (0.5 µmol/l), resveratrol (12.5 µmol/l) and genistein (25 µmol/l) groups. After 1 h of treatment, 100 µl lymphocytes were collected for nuclear factor (NF)‑κB immunocytochemical staining. After 48 h treatment, the supernatant of the lymphocytes was collected for analysis of TNF‑α and MMP‑9 concentration levels. The percentage of lymphocytes with positive nuclear NF‑κB expression was analyzed by immunocytochemical staining. The concentration levels of TNF‑α and MMP‑9 were measured using radioimmunoassay and enzyme‑linked immunosorbent assay, respectively. The present study demonstrated that the percentage of NF‑κB‑positive cells, and the levels of TNF‑α and MMP‑9 in lymphocytes from patients with COPD patients were significantly higher compared with healthy subjects. Additionally, there were positive correlations between the percentage of NF‑κB‑positive cells, and the concentration levels of TNF‑α and MMP‑9 in patients with COPD. All three factors were significantly reduced in lymphocytes treated with resveratrol and genistein, and the inhibitory effects of resveratrol on NF‑κB, TNF‑α and MMP‑9 were more potent than the effects of genistein. In conclusion, resveratrol and genistein may inhibit the NF‑κB, TNF‑α and MMP‑9‑associated pathways in patients with COPD. It is suggested that resveratrol and genistein may be potential drugs candidates for use in the treatment of COPD.
Collapse
Affiliation(s)
- XIAO-JU LIU
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - HAI-RONG BAO
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - XIAO-LI ZENG
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - JUN-MING WEI
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
39
|
Siard MH, McMurry KE, Adams AA. Effects of polyphenols including curcuminoids, resveratrol, quercetin, pterostilbene, and hydroxypterostilbene on lymphocyte pro-inflammatory cytokine production of senior horses in vitro. Vet Immunol Immunopathol 2016; 173:50-9. [PMID: 27090627 DOI: 10.1016/j.vetimm.2016.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/05/2016] [Accepted: 04/03/2016] [Indexed: 01/29/2023]
Abstract
Senior horses (aged ≥ 20 years) exhibit increased chronic, low-grade inflammation systemically, termed inflamm-aging. Inflammation is associated with many afflictions common to the horse, including laminitis and osteoarthritis, which are commonly treated with the non-steroidal anti-inflammatory drugs (NSAIDs) flunixin meglumine and phenylbutazone. Although these NSAIDs are effective in treating acute inflammatory problems, long-term treatment with NSAIDs can result in negative side effects. Thus, bioactive polyphenols including curcuminoids, resveratrol, quercetin, pterostilbene, and hydroxypterostilbene were investigated to determine their effectiveness as anti-inflammatory agents in vitro. Heparinized blood was collected via jugular venipuncture from senior horses (n = 6; mean age = 26 ± 2 years), and peripheral blood mononuclear cells (PBMC) were isolated using a Ficoll density gradient. PBMC were then incubated 22 h at 37°C, 5% CO2 with multiple concentrations (320, 160, 80, 40, 20, 10 μM) of all five polyphenols (curcuminoids, resveratrol, quercetin, pterostilbene, and hydroxypterostilbene), dissolved in DMSO to achieve the aforementioned concentrations. PBMC were stimulated the last 4h of the incubation period with phorbol 12-myristate 13-acetate (PMA)/ionomycin and Brefeldin A (BFA). A Vicell-XR counter evaluated cell viability following incubation. PBMC were stained intracellularly for interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) and analyzed via flow cytometry. Data was analyzed by one-way analysis of variance (ANOVA). Viability of PBMC incubated with various compound concentrations were compared with PBMC incubated with DMSO alone (positive control) to determine at what concentration each compound caused cytotoxicity. The highest concentration at which cell viability did not significantly differ from the positive control was: 20 μM for curcuminoids, 40 μM for hydroxypterostilbene, 80 μM for pterostilbene, and 160 μM for quercetin and resveratrol. Flunixin meglumine and phenylbutazone were then evaluated within this range of optimal concentrations for the polyphenol compounds (160, 80, 40, 20 μM) to compare the polyphenols to NSAIDs at equivalent concentrations. The highest concentration at which viability did not significantly differ from the positive control was: 40 μM for flunixin meglumine and 160 μM for phenylbutazone. All five polyphenols and flunixin meglumine significantly decreased lymphocyte production of IFN-γ, while only hydroxypterostilbene, pterostilbene, quercetin, and resveratrol significantly reduced lymphocyte production of TNF-α compared to the positive control (p < 0.05). Polyphenols performed similarly to or more effectively than common NSAIDs in reducing lymphocyte production of inflammatory cytokines of the senior horse in vitro. This study therefore supports the further investigation of polyphenols to determine whether they may be effective anti-inflammatory treatments for chronic inflammation in the horse.
Collapse
Affiliation(s)
- Melissa H Siard
- M. H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Kellie E McMurry
- M. H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Amanda A Adams
- M. H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
40
|
Lakshmikanth CL, Jacob SP, Chaithra VH, de Castro-Faria-Neto HC, Marathe GK. Sepsis: in search of cure. Inflamm Res 2016; 65:587-602. [PMID: 26995266 DOI: 10.1007/s00011-016-0937-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Sepsis is a complex inflammatory disorder believed to originate from an infection by any types of microbes and/or their products. It is the leading cause of death in intensive care units (ICUs) throughout the globe. The mortality rates depend both on the severity of infection and the host's response to infection. METHODS Literature survey on pathobiology of sepsis in general and failure of more than hundred clinical trials conducted so far in search of a possible cure for sepsis resulted in the preparation of this manuscript. FINDINGS Sepsis lacks a suitable animal model that mimics human sepsis. However, based on the results obtained in animal models of sepsis, clinical trials conducted so far have been disappointing. Although involvement of multiple mediators and pathways in sepsis has been recognized, only few components are being targeted and this could be the major reason behind the failure of clinical trials. CONCLUSION Inability to recognize a single critical mediator of sepsis may be the underlying cause for the poor therapeutic intervention of sepsis. Therefore, sepsis is still considered as a disease-in search of cure.
Collapse
Affiliation(s)
| | - Shancy Petsel Jacob
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore, 570 006, India
| | | | | | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore, 570 006, India.
| |
Collapse
|
41
|
Brunst KJ, Baccarelli AA, Wright RJ. Integrating mitochondriomics in children's environmental health. J Appl Toxicol 2015; 35:976-91. [PMID: 26046650 PMCID: PMC4714560 DOI: 10.1002/jat.3182] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/23/2015] [Indexed: 12/18/2022]
Abstract
The amount of scientific research linking environmental exposures and childhood health outcomes continues to grow; yet few studies have teased out the mechanisms involved in environmentally-induced diseases. Cells can respond to environmental stressors in many ways: inducing oxidative stress/inflammation, changes in energy production and epigenetic alterations. Mitochondria, tiny organelles that each retains their own DNA, are exquisitely sensitive to environmental insults and are thought to be central players in these pathways. While it is intuitive that mitochondria play an important role in disease processes, given that every cell of our body is dependent on energy metabolism, it is less clear how environmental exposures impact mitochondrial mechanisms that may lead to enhanced risk of disease. Many of the effects of the environment are initiated in utero and integrating mitochondriomics into children's environmental health studies is a critical priority. This review will highlight (i) the importance of exploring environmental mitochondriomics in children's environmental health, (ii) why environmental mitochondriomics is well suited to biomarker development in this context, and (iii) how molecular and epigenetic changes in mitochondria and mitochondrial DNA (mtDNA) may reflect exposures linked to childhood health outcomes.
Collapse
Affiliation(s)
- Kelly J. Brunst
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health, Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Rosalind J. Wright
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1428 Madison Avenue, New York, NY 10029, USA
| |
Collapse
|
42
|
Urriquia IAC, Llavore LD. The effect of red wine extract, resveratrol, on the degree and rate of orthodontic tooth movement in guinea pigs. APOS TRENDS IN ORTHODONTICS 2015. [DOI: 10.4103/2321-1407.163416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
ObjectiveAn animal trial, its protocol approved by the Institutional Animal Care and Use Committee of the U.P. National Institutes of Health (IACUC Protocol No. 2010-008), was employed to investigate the effects of resveratrol on the degree and rate of orthodontic tooth movement in guinea pigs.Materials and MethodsEighteen male adult guinea pigs were randomly allocated into 3 groups: low dose, high dose, and control groups. A 0.016″ titanium molybdenum alloy wire formed into a helical torsion spring with a coil, with the loops cemented onto the maxillary incisors of the animals, served as the orthodontic appliance. Daily oral administration of resveratrol was provided to the low dose (0.047 mg/kg) and high dose (0.47 mg/kg) groups, while water was provided to the control group. Measurements were taken everyday at the interproximal area at the level of the incisal edge using a measuring caliper.ResultsThe results of the ANOVA showed no statistically significant differences in the mean measurements of tooth separation among the three groups from day 2 (P=0.966) to day 8 (P=0.056). However, starting from day 9 (P=0.049) until day 18 (P=0.000), there was a significant difference in the mean tooth separation among the test groups.ConclusionUsing the LSD, it was noted that the low dose and the high dose groups have similar degrees of mean tooth separation, with the control group being significantly different from the two.
Collapse
Affiliation(s)
- Isidro Alex C. Urriquia
- Graduate Program in Orthodontics, College of Dentistry, University of the Philippines, Manila, Philippines
| | - Lotus D. Llavore
- Graduate Program in Orthodontics, College of Dentistry, University of the Philippines, Manila, Philippines
| |
Collapse
|
43
|
Pereira S, Park E, Moore J, Faubert B, Breen DM, Oprescu AI, Nahle A, Kwan D, Giacca A, Tsiani E. Resveratrol prevents insulin resistance caused by short-term elevation of free fatty acids in vivo. Appl Physiol Nutr Metab 2015; 40:1129-36. [PMID: 26455923 DOI: 10.1139/apnm-2015-0075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Elevated levels of plasma free fatty acids (FFA), which are commonly found in obesity, induce insulin resistance. FFA activate protein kinases including the proinflammatory IκBα kinase β (IKKβ), leading to serine phosphorylation of insulin receptor substrate 1 (IRS-1) and impaired insulin signaling. To test whether resveratrol, a polyphenol found in red wine, prevents FFA-induced insulin resistance, we used a hyperinsulinemic-euglycemic clamp with a tracer to assess hepatic and peripheral insulin sensitivity in overnight-fasted Wistar rats infused for 7 h with saline, Intralipid plus 20 U·mL(-1) heparin (IH; triglyceride emulsion that elevates FFA levels in vivo; 5.5 μL·min(-1)) with or without resveratrol (3 mg·kg(-1)·h(-1)), or resveratrol alone. Infusion of IH significantly decreased glucose infusion rate (GIR; P < 0.05) and peripheral glucose utilization (P < 0.05) and increased endogenous glucose production (EGP; P < 0.05) during the clamp compared with saline infusion. Resveratrol co-infusion, however, completely prevented the effects induced by IH infusion: it prevented the decreases in GIR (P < 0.05 vs. IH), peripheral glucose utilization (P < 0.05 vs. IH), and insulin-induced suppression of EGP (P < 0.05 vs. IH). Resveratrol alone had no effect. Furthermore, IH infusion increased serine (307) phosphorylation of IRS-1 in soleus muscle (∼30-fold, P < 0.001), decreased total IRS-1 levels, and decreased IκBα content, consistent with activation of IKKβ. Importantly, all of these effects were abolished by resveratrol (P < 0.05 vs. IH). These results suggest that resveratrol prevents FFA-induced hepatic and peripheral insulin resistance and, therefore, may help mitigate the health consequences of obesity.
Collapse
Affiliation(s)
- Sandra Pereira
- a Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Edward Park
- a Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessy Moore
- b Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Brandon Faubert
- b Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Danna M Breen
- a Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrei I Oprescu
- c Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ashraf Nahle
- a Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Denise Kwan
- a Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Adria Giacca
- a Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,c Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.,d Department of Medicine, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Evangelia Tsiani
- b Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
44
|
Expanding the chemical space of polyketides through structure-guided mutagenesis of Vitis vinifera stilbene synthase. Biochimie 2015; 115:136-43. [PMID: 26048582 DOI: 10.1016/j.biochi.2015.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/22/2015] [Indexed: 01/08/2023]
Abstract
Several natural polyketides (PKs) have been associated with important pharmaceutical properties. Type III polyketide synthases (PKS) that generate aromatic PK polyketides have been studied extensively for their substrate promiscuity and product diversity. Stilbene synthase-like (STS) enzymes are unique in the type III PKS class as they possess a hydrogen bonding network, furnishing them with thioesterase-like properties, resulting in aldol condensation of the polyketide intermediates formed. Chalcone synthases (CHS) in contrast, lack this hydrogen-bonding network, resulting primarily in the Claisen condensation of the polyketide intermediates formed. We have attempted to expand the chemical space of this interesting class of compounds generated by creating structure-guided mutants of Vitis vinifera STS. Further, we have utilized a previously established workflow to quickly compare the wild-type reaction products to those generated by the mutants and identify novel PKs formed by using XCMS analysis of LC-MS and LC-MS/MS data. Based on this approach, we were able to generate 15 previously unreported PK molecules by exploring the substrate promiscuity of the wild-type enzyme and all mutants using unnatural substrates. These structures were specific to STSs and cannot be formed by their closely related CHS-like counterparts.
Collapse
|
45
|
Kwak Y, Kim HE, Park SG. Insights into Myeloid-Derived Suppressor Cells in Inflammatory Diseases. Arch Immunol Ther Exp (Warsz) 2015; 63:269-85. [PMID: 25990434 DOI: 10.1007/s00005-015-0342-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/14/2015] [Indexed: 02/06/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells involved in immune regulation. This population subdivides into granulocytic MDSCs and monocytic MDSCs, which regulate immune responses via the production of various molecules including reactive oxygen species, nitric oxide, arginase-1, interleukin-10, and transforming growth factor-β. Most studies of MDSCs focused on their role in tumors. MDSCs protect tumor cells from immune responses, and thus the frequency of MDSCs associates with poor prognosis. Many recent studies reported an important role for MDSCs in inflammatory diseases via the regulation of immune cells. In addition, the utilization of MDSCs by infectious pathogens suggests an immune evasion mechanism. Thus, MDSCs are important immune regulators in inflammatory diseases, as well as in tumors. This review focuses on the role of MDSCs in the regulation of inflammation in non-tumor settings.
Collapse
Affiliation(s)
- Yewon Kwak
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712, Republic of Korea
| | | | | |
Collapse
|
46
|
Joshi MS, Williams D, Horlock D, Samarasinghe T, Andrews KL, Jefferis AM, Berger PJ, Chin-Dusting JP, Kaye DM. Role of mitochondrial dysfunction in hyperglycaemia-induced coronary microvascular dysfunction: Protective role of resveratrol. Diab Vasc Dis Res 2015; 12:208-16. [PMID: 25767181 DOI: 10.1177/1479164114565629] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Microvascular complications are now recognized to play a major role in diabetic complications, and understanding the mechanisms is critical. Endothelial dysfunction occurs early in the course of the development of complications; the precise mechanisms remain poorly understood. Mitochondrial dysfunction may occur in a diabetic rat heart and may act as a source of the oxidative stress. However, the role of endothelial cell-specific mitochondrial dysfunction in diabetic vascular complications is poorly studied. Here, we studied the role of diabetes-induced abnormal endothelial mitochondrial function and the resultant endothelial dysfunction. Understanding the role of endothelial mitochondrial dysfunction in diabetic vasculature is critical in order to develop new therapies. We demonstrate that hyperglycaemia leads to mitochondrial dysfunction in microvascular endothelial cells, and that mitochondrial inhibition induces endothelial dysfunction. Additionally, we show that resveratrol acts as a protective agent; resveratrol-mediated mitochondrial protection may be used to prevent long-term diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Mandar S Joshi
- Heart Failure Research Group, Cardiology Division, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia The Ritchie Centre, Monash University, Melbourne, VIC, Australia Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - David Williams
- Heart Failure Research Group, Cardiology Division, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Duncan Horlock
- Heart Failure Research Group, Cardiology Division, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Karen L Andrews
- Vascular Pharmacology, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ann-Maree Jefferis
- Vascular Pharmacology, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Philip J Berger
- The Ritchie Centre, Monash University, Melbourne, VIC, Australia
| | - Jaye P Chin-Dusting
- Vascular Pharmacology, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David M Kaye
- Heart Failure Research Group, Cardiology Division, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia Heart Failure Unit, Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
47
|
Pirhan D, Yüksel N, Emre E, Cengiz A, Kürşat Yıldız D. Riluzole- and Resveratrol-Induced Delay of Retinal Ganglion Cell Death in an Experimental Model of Glaucoma. Curr Eye Res 2015; 41:59-69. [PMID: 25658983 DOI: 10.3109/02713683.2015.1004719] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE To evaluate the effects of the neuroprotective agents riluzole and resveratrol on the survival of retinal ganglion cells (RGCs) when administered alone or in combination. MATERIALS AND METHODS Experimental glaucoma was induced by injecting hyaluronic acid into the anterior chamber of Wistar albino rats weekly for a six-week period. Intraocular pressure was measured before and immediately after glaucoma induction. The neuroprotective effects of daily intraperitoneal injections of riluzole (8 mg/kg) and resveratrol (10 mg/kg) were evaluated and compared. After the six-week period, dextran tetramethylrhodamine was applied into the optic nerve and the density of surviving RGCs was evaluated by counting the labeled RGCs in whole mount retinas for retrograde labeling of RGCs. RESULTS The mean numbers of RGCs were significantly preserved in all treatment groups compared to the vehicle-treated glaucoma group (G). The mean number of RGCs in mm(2) were 1207 ± 56 in the control group (C), 404 ± 65 in G group, 965 ± 56 in riluzole-treated group in the early phase of glaucoma (E-Ri), 714 ± 25 in riluzole-treated group in the late phase of glaucoma (L-Ri), 735 ± 29 in resveratrol-treated group in the early phase of glaucoma (E-Re), 667 ± 20 in resveratrol-treated group in the late phase of glaucoma (L-Re), and 1071 ± 49 in riluzole and resveratrol combined-treated group in the early phase of glaucoma (E-RiRe group). CONCLUSIONS When used either alone or in combination, both riluzole and resveratrol, two agents with different mechanisms of action in glaucoma, significantly delayed RGC loss in this study's experimental glaucoma model.
Collapse
Affiliation(s)
| | | | - Esra Emre
- a Department of Ophthalmology , School of Medicine
| | - Abdulkadir Cengiz
- b Department of Technical Education , Technical Education Faculty , and
| | - Demir Kürşat Yıldız
- c Department of Pathology , School of Medicine, University of Kocaeli , Kocaeli , Turkey
| |
Collapse
|
48
|
Zhang W, Zhi J, Cui Y, Zhang F, Habyarimana A, Cambier C, Gustin P. Potentiated interaction between ineffective doses of budesonide and formoterol to control the inhaled cadmium-induced up-regulation of metalloproteinases and acute pulmonary inflammation in rats. PLoS One 2014; 9:e109136. [PMID: 25313925 PMCID: PMC4196767 DOI: 10.1371/journal.pone.0109136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/28/2014] [Indexed: 02/02/2023] Open
Abstract
The anti-inflammatory properties of glucocorticoids are well known but their protective effects exerted with a low potency against heavy metals-induced pulmonary inflammation remain unclear. In this study, a model of acute pulmonary inflammation induced by a single inhalation of cadmium in male Sprague-Dawley rats was used to investigate whether formoterol can improve the anti-inflammatory effects of budesonide. The cadmium-related inflammatory responses, including matrix metalloproteinase-9 (MMP-9) activity, were evaluated. Compared to the values obtained in rats exposed to cadmium, pretreatment of inhaled budesonide (0.5 mg/15 ml) elicited a significant decrease in total cell and neutrophil counts in bronchoalveolar lavage fluid (BALF) associated with a significant reduction of MMP-9 activity which was highly correlated with the number of inflammatory cells in BALF. Additionally, cadmium-induced lung injuries characterized by inflammatory cell infiltration within alveoli and the interstitium were attenuated by the pre-treatment of budesonide. Though the low concentration of budesonide (0.25 mg/15 ml) exerted a very limited inhibitory effects in the present rat model, its combination with an inefficient concentration of formoterol (0.5 mg/30 ml) showed an enhanced inhibitory effect on neutrophil and total cell counts as well as on the histological lung injuries associated with a potentiation of inhibition on the MMP-9 activity. In conclusion, high concentration of budesonide alone could partially protect the lungs against cadmium exposure induced-acute neutrophilic pulmonary inflammation via the inhibition of MMP-9 activity. The combination with formoterol could enhance the protective effects of both drugs, suggesting a new therapeutic strategy for the treatment of heavy metals-induced lung diseases.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- * E-mail:
| | - Jianming Zhi
- Department of Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yongyao Cui
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fan Zhang
- Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Adélite Habyarimana
- Department for Functional Sciences B41, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Carole Cambier
- Department for Functional Sciences B41, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Pascal Gustin
- Department for Functional Sciences B41, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
49
|
Semba RD, Ferrucci L, Bartali B, Urpí-Sarda M, Zamora-Ros R, Sun K, Cherubini A, Bandinelli S, Andres-Lacueva C. Resveratrol levels and all-cause mortality in older community-dwelling adults. JAMA Intern Med 2014; 174:1077-84. [PMID: 24819981 PMCID: PMC4346286 DOI: 10.1001/jamainternmed.2014.1582] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IMPORTANCE Resveratrol, a polyphenol found in grapes, red wine, chocolate, and certain berries and roots, is considered to have antioxidant, anti-inflammatory, and anticancer effects in humans and is related to longevity in some lower organisms. OBJECTIVE To determine whether resveratrol levels achieved with diet are associated with inflammation, cancer, cardiovascular disease, and mortality in humans. DESIGN Prospective cohort study, the Invecchiare in Chianti (InCHIANTI) Study ("Aging in the Chianti Region"), 1998 to 2009 conducted in 2 villages in the Chianti area in a population-based sample of 783 community-dwelling men and women 65 years or older. EXPOSURES Twenty-four-hour urinary resveratrol metabolites. MAIN OUTCOMES AND MEASURES Primary outcome measure was all-cause mortality. Secondary outcomes were markers of inflammation (serum C-reactive protein [CRP], interleukin [IL]-6, IL-1β, and tumor necrosis factor [TNF]) and prevalent and incident cancer and cardiovascular disease. RESULTS Mean (95% CI) log total urinary resveratrol metabolite concentrations were 7.08 (6.69-7.48) nmol/g of creatinine. During 9 years of follow-up, 268 (34.3%) of the participants died. From the lowest to the highest quartile of baseline total urinary resveratrol metabolites, the proportion of participants who died from all causes was 34.4%, 31.6%, 33.5%, and 37.4%, respectively (P = .67). Participants in the lowest quartile had a hazards ratio for mortality of 0.80 (95% CI, 0.54-1.17) compared with those in the highest quartile of total urinary resveratrol in a multivariable Cox proportional hazards model that adjusted for potential confounders. Resveratrol levels were not significantly associated with serum CRP, IL-6, IL-1β, TNF, prevalent or incident cardiovascular disease, or cancer. CONCLUSIONS AND RELEVANCE In older community-dwelling adults, total urinary resveratrol metabolite concentration was not associated with inflammatory markers, cardiovascular disease, or cancer or predictive of all-cause mortality. Resveratrol levels achieved with a Western diet did not have a substantial influence on health status and mortality risk of the population in this study.
Collapse
Affiliation(s)
- Richard D Semba
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, Baltimore, Maryland
| | | | - Mireia Urpí-Sarda
- Nutrition and Food Science Department, Biomarkers and Nutrimetabolomics Laboratory, Food Technology Reference Net and Nutrition and Food Safety Research Institute (XaRTA and INSA ), Pharmacy School, University of Barcelona, Barcelona, Spain5Unit of Nutrit
| | - Raul Zamora-Ros
- Nutrition and Food Science Department, Biomarkers and Nutrimetabolomics Laboratory, Food Technology Reference Net and Nutrition and Food Safety Research Institute (XaRTA and INSA ), Pharmacy School, University of Barcelona, Barcelona, Spain5Unit of Nutrit
| | - Kai Sun
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Antonio Cherubini
- Geriatrics and Geriatric Emergency Department, Istituto Nazionale di Riposo e Cura per Anziani V.E.II.-Istituto di Ricovero e Cura a Carattere Scientifico (INRCA-IRCCS), Ancona, Italy
| | | | - Cristina Andres-Lacueva
- Nutrition and Food Science Department, Biomarkers and Nutrimetabolomics Laboratory, Food Technology Reference Net and Nutrition and Food Safety Research Institute (XaRTA and INSA ), Pharmacy School, University of Barcelona, Barcelona, Spain5Unit of Nutrit
| |
Collapse
|
50
|
Zhou XM, Zhou ML, Zhang XS, Zhuang Z, Li T, Shi JX, Zhang X. Resveratrol prevents neuronal apoptosis in an early brain injury model. J Surg Res 2014; 189:159-65. [PMID: 24602480 DOI: 10.1016/j.jss.2014.01.062] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Resveratrol has been shown to attenuate cerebral vasospasm after subarachnoid hemorrhage (SAH); however, no study has explored its neuroprotective effect in early brain injury (EBI) after experimental SAH. The aim of this study was to evaluate the antiapoptotic function of resveratrol in EBI and its relationship with the PI3K/Akt survival pathway. METHODS Experimental SAH was induced in adult male rats by prechiasmatic cistern injection. Control and SAH rats were divided into six groups and treated with low (20 mg/kg) or high (60 mg/kg) concentrations of resveratrol with or without LY294002 cotreatment. Brain samples of the rats were analyzed by immunohistochemistry, immunofluorescence staining, Western blotting, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assays. RESULTS High-concentration but not low-concentration resveratrol treatment in SAH rats led to a significant increase in phosphorylated Akt (p-Akt) protein levels compared with SAH rats without treatment. In addition, p-Akt-positive cells mainly colocalized with NeuN-positive cells. Neuronal apoptosis in SAH rat brain was attenuated by high-concentration resveratrol treatment. The antiapoptotic effect of resveratrol in SAH rats could be partially abrogated by the PI3K/Akt signaling inhibitor LY294002. CONCLUSIONS Our results show that resveratrol has an antiapoptotic effect in EBI and that resveratrol might act through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiao-Ming Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Second Military Medical University, Shanghai, China
| | - Meng-Liang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Xiang-Sheng Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Second Military Medical University, Shanghai, China
| | - Zong Zhuang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Tao Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ji-Xin Shi
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Second Military Medical University, Shanghai, China; Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|