1
|
Wise TJ, Ott ME, Joseph MS, Welsby IJ, Darrow CC, McMahon TJ. Modulation of the allosteric and vasoregulatory arms of erythrocytic oxygen transport. Front Physiol 2024; 15:1394650. [PMID: 38915775 PMCID: PMC11194670 DOI: 10.3389/fphys.2024.1394650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 06/26/2024] Open
Abstract
Efficient distribution of oxygen (O2) to the tissues in mammals depends on the evolved ability of red blood cell (RBC) hemoglobin (Hb) to sense not only O2 levels, but metabolic cues such as pH, PCO2, and organic phosphates, and then dispense or take up oxygen accordingly. O2 delivery is the product of not only oxygen release from RBCs, but also blood flow, which itself is also governed by vasoactive molecular mediators exported by RBCs. These vascular signals, including ATP and S-nitrosothiols (SNOs) are produced and exported as a function of the oxygen and metabolic milieu, and then fine-tune peripheral metabolism through context-sensitive vasoregulation. Emerging and repurposed RBC-oriented therapeutics can modulate either or both of these allosteric and vasoregulatory activities, with a single molecule or other intervention influencing both arms of O2 transport in some cases. For example, organic phosphate repletion of stored RBCs boosts the negative allosteric effector 2,3 biphosphoglycerate (BPG) as well as the anti-adhesive molecule ATP. In sickle cell disease, aromatic aldehydes such as voxelotor can disfavor sickling by increasing O2 affinity, and in newer generations, these molecules have been coupled to vasoactive nitric oxide (NO)-releasing adducts. Activation of RBC pyruvate kinase also promotes a left shift in oxygen binding by consuming and lowering BPG, while increasing the ATP available for cell health and export on demand. Further translational and clinical investigation of these novel allosteric and/or vasoregulatory approaches to modulating O2 transport are expected to yield new insights and improve the ability to correct or compensate for anemia and other O2 delivery deficits.
Collapse
Affiliation(s)
- Thomas J. Wise
- Duke University School of Medicine, Durham, NC, United States
| | - Maura E. Ott
- Duke University School of Medicine, Durham, NC, United States
| | - Mahalah S. Joseph
- Duke University School of Medicine, Durham, NC, United States
- Florida International University School of Medicine, Miami, FL, United States
| | - Ian J. Welsby
- Duke University School of Medicine, Durham, NC, United States
| | - Cole C. Darrow
- Duke University School of Medicine, Durham, NC, United States
| | - Tim J. McMahon
- Duke University School of Medicine, Durham, NC, United States
- Durham VA Health Care System, Durham, NC, United States
| |
Collapse
|
2
|
Wyss MT, Heuer C, Herwerth M. The bumpy road of purinergic inhibitors to clinical application in immune-mediated diseases. Neural Regen Res 2024; 19:1206-1211. [PMID: 37905866 PMCID: PMC11467927 DOI: 10.4103/1673-5374.386405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Purinergic signaling plays important roles throughout the body in the regulation of organ functions during and following the disruption of homeostasis. This is also reflected by the widespread expression of two families of purinergic receptors (P1 and P2) with numerous subtypes. In the last few decades, there has been increasing evidence that purinergic signaling plays an important role in the regulation of immune functions. Mainly, signals mediated by P2 receptors have been shown to contribute to immune system-mediated pathologies. Thus, interference with P2 receptors may be a promising strategy for the modulation of immune responses. Although only a few clinical studies have been conducted in isolated entities with limited success, preclinical work suggests that the use of P2 receptor inhibitors may bear some promise in various autoimmune diseases. Despite the association of P2 receptors with several disorders from this field, the use of P2 receptor antagonists in clinical therapy is still very scarce. In this narrative review, we briefly review the involvement of the purinergic system in immunological responses and clinical studies on the effect of purinergic inhibition on autoimmune processes. We then open the aperture a bit and show some preclinical studies demonstrating a potential effect of purinergic blockade on autoimmune events. Using suramin, a non-specific purinergic inhibitor, as an example, we further show that off-target effects could be responsible for observed effects in immunological settings, which may have interesting implications. Overall, we believe that it is worthwhile to further investigate this hitherto underexplored area.
Collapse
Affiliation(s)
- Matthias T. Wyss
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zürich, Switzerland
| | - Christine Heuer
- Neurology Department, University Hospital of Zurich, Zürich, Switzerland
| | - Marina Herwerth
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zürich, Switzerland
- Neurology Department, University Hospital of Zurich, Zürich, Switzerland
| |
Collapse
|
3
|
Gupta S, Saini M, Joshi N, Shafi S, Najmi AK, Singh S. Antimalarial and Plasmodium falciparum serpentine receptor 12 targeting effect of FDA approved purinergic receptor antagonist. J Biomol Struct Dyn 2023; 41:9462-9475. [PMID: 36351236 DOI: 10.1080/07391102.2022.2142298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Intraerythrocytic stages of Plasmodium falciparum responsible for all clinical manifestations of malaria are regulated by array of signalling cascades that represent attractive targets for antimalarial therapy. G-protein coupled receptors (GPCRs) are druggable targets in the treatment of various pathological conditions, however, there is limited understanding about the role of GPCRs in malaria pathogenesis. In Plasmodium, serpentine receptors (PfSR1, PfSR10, PfSR12 and PfSR25) with GPCR-like membrane topology have been reported with the finite knowledge about their potential as antimalarial targets. We analyzed the localization of these receptors in malaria parasite by immunofluorescence assays. All four receptors were expressed in blood stages with PfSR12 expressing more in late intraerythrocytic stages. Further, we evaluated the druggability of PfSR12 using FDA-approved P2Y purinergic receptor antagonist, Prasugrel and its active metabolite R138727, which is proposed to be specific towards PfSR12. Interestingly, biophysical analysis indicated strong binding between PfSR12 and R138727 as compared to the prodrug Prasugrel. This binding interaction was further confirmed by thermal shift assay. Treatment of parasite with Prasugrel and R138727 resulted in growth inhibition of P. falciparum indicating an important role of purinergic signalling and PfSR12 in parasite survival. Next, progression studies indicated the inhibitory effect of Prasugrel begins in late erythrocyte stages corroborating with PfSR12 expression at these stages. Furthermore, Prasugrel also blocked in vivo growth of malaria parasite in a mouse experimental model. This study indicates the presence of P2Y type of purinergic signalling in growth and development of malaria parasite and suggests PfSR12, putative purinergic receptor druggability through Prasugrel.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sonal Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Monika Saini
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Nishant Joshi
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Pereira PHS, Borges-Pereira L, Garcia CRS. Evidences of G Coupled-Protein Receptor (GPCR) Signaling in the human Malaria Parasite Plasmodium falciparum for Sensing its Microenvironment and the Role of Purinergic Signaling in Malaria Parasites. Curr Top Med Chem 2021; 21:171-180. [PMID: 32851963 DOI: 10.2174/1568026620666200826122716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
The nucleotides were discovered in the early 19th century and a few years later, the role of such molecules in energy metabolism and cell survival was postulated. In 1972, a pioneer work by Burnstock and colleagues suggested that ATP could also work as a neurotransmitter, which was known as the "purinergic hypothesis". The idea of ATP working as a signaling molecule faced initial resistance until the discovery of the receptors for ATP and other nucleotides, called purinergic receptors. Among the purinergic receptors, the P2Y family is of great importance because it comprises of G proteincoupled receptors (GPCRs). GPCRs are widespread among different organisms. These receptors work in the cells' ability to sense the external environment, which involves: to sense a dangerous situation or detect a pheromone through smell; the taste of food that should not be eaten; response to hormones that alter metabolism according to the body's need; or even transform light into an electrical stimulus to generate vision. Advances in understanding the mechanism of action of GPCRs shed light on increasingly promising treatments for diseases that have hitherto remained incurable, or the possibility of abolishing side effects from therapies widely used today.
Collapse
Affiliation(s)
- Pedro H S Pereira
- Department of Clinical and Toxicological Analyses, University of Sao Paulo, Sao Paulo, Brazil
| | - Lucas Borges-Pereira
- Department of Clinical and Toxicological Analyses, University of Sao Paulo, Sao Paulo, Brazil
| | - Célia R S Garcia
- Department of Clinical and Toxicological Analyses, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
5
|
Abstract
The purine nucleotide ATP is a fundamental unit in cellular energy metabolism. Extracellular ATP and its metabolites are also ligands for a family of receptors, known as purinergic receptors, which are expressed ubiquitously in almost every cell type. In the immune system, extracellular ATP and its signals regulate the migration and activation of immune cells to orchestrate the induction and resolution of inflammation. In this review, we provide an overview of purinergic receptors and their downstream signaling related to macrophage activation. We also discuss the roles of purinergic signaling for macrophage functions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine
| | - Naoki Takemura
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Tatsuya Saitoh
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
6
|
Repurposing Drugs to Fight Hepatic Malaria Parasites. Molecules 2020; 25:molecules25153409. [PMID: 32731386 PMCID: PMC7435416 DOI: 10.3390/molecules25153409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Malaria remains one of the most prevalent infectious diseases worldwide, primarily affecting some of the most vulnerable populations around the globe. Despite achievements in the treatment of this devastating disease, there is still an urgent need for the discovery of new drugs that tackle infection by Plasmodium parasites. However, de novo drug development is a costly and time-consuming process. An alternative strategy is to evaluate the anti-plasmodial activity of compounds that are already approved for other purposes, an approach known as drug repurposing. Here, we will review efforts to assess the anti-plasmodial activity of existing drugs, with an emphasis on the obligatory and clinically silent liver stage of infection. We will also review the current knowledge on the classes of compounds that might be therapeutically relevant against Plasmodium in the context of other communicable diseases that are prevalent in regions where malaria is endemic. Repositioning existing compounds may constitute a faster solution to the current gap of prophylactic and therapeutic drugs that act on Plasmodium parasites, overall contributing to the global effort of malaria eradication.
Collapse
|
7
|
Gao J, Xin W, Huang J, Ji B, Gao S, Chen L, Kang L, Yang H, Shen X, Zhao B, Wang J. Research articleHemolysis in human erythrocytes by Clostridium perfringens epsilon toxin requires activation of P2 receptors. Virulence 2019; 9:1601-1614. [PMID: 30277122 PMCID: PMC6276848 DOI: 10.1080/21505594.2018.1528842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epsilon-toxin (ETX) is produced by types B and D strains of Clostridium perfringens, which cause fatal enterotoxaemia in sheep, goats and cattle. Previous studies showed that only a restricted number of cell lines are sensitive to ETX and ETX-induced hemolysis has not previously been reported. In this study, the hemolytic ability of ETX was examined using erythrocytes from 10 species including murine, rabbit, sheep, monkey and human. We found that ETX caused hemolysis in human erythrocytes (HC50 = 0.2 μM) but not erythrocytes from the other test species. Moreover, the mechanism of ETX-induced hemolysis was further explored. Recent studies showed that some bacterial toxins induce hemolysis through purinergic receptor (P2) activation. Hence, the function of purinergic receptors in ETX-induced hemolysis was tested, and we found that the non-selective P2 receptor antagonists PPADS inhibited ETX-induced lysis of human erythrocytes in a concentration-dependent manner, indicating that ETX-induced hemolysis requires activation of purinergic receptors. P2 receptors comprise seven P2X (P2X1-7) and eight P2Y (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11-P2Y14) receptor subtypes. The pattern of responsiveness to more selective P2-antagonists implies that both P2Y13 and P2X7 receptors are involved in ETX-induced hemolysis in human species. Furthermore, we demonstrated that extracellular ATP is likely not involved in ETX-induced hemolysis and the activation of P2 receptors. These findings clarified the mechanism of ETX-induced hemolysis and provided new insight into the activities and ETX mode of action.
Collapse
Affiliation(s)
- Jie Gao
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China.,b College of Life Sciences , Hebei Normal University , Shijiazhuang , China
| | - Wenwen Xin
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Jing Huang
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China.,b College of Life Sciences , Hebei Normal University , Shijiazhuang , China
| | - Bin Ji
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Shan Gao
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Liang Chen
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Lin Kang
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Hao Yang
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Xin Shen
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Baohua Zhao
- b College of Life Sciences , Hebei Normal University , Shijiazhuang , China
| | - Jinglin Wang
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| |
Collapse
|
8
|
Beri D, Ramdani G, Balan B, Gadara D, Poojary M, Momeux L, Tatu U, Langsley G. Insights into physiological roles of unique metabolites released from Plasmodium-infected RBCs and their potential as clinical biomarkers for malaria. Sci Rep 2019; 9:2875. [PMID: 30814599 PMCID: PMC6393545 DOI: 10.1038/s41598-018-37816-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/12/2018] [Indexed: 11/10/2022] Open
Abstract
Plasmodium sp. are obligate intracellular parasites that derive most of their nutrients from their host meaning the metabolic circuitry of both are intricately linked. We employed untargeted, global mass spectrometry to identify metabolites present in the culture supernatants of P. falciparum-infected red blood cells synchronized at ring, trophozoite and schizont developmental stages. This revealed a temporal regulation in release of a distinct set of metabolites compared with supernatants of non-infected red blood cells. Of the distinct metabolites we identified pipecolic acid to be abundantly present in parasite lysate, infected red blood cells and infected culture supernatant. Further, we performed targeted metabolomics to quantify pipecolic acid concentrations in both the supernatants of red blood cells infected with P. falciparum, as well as in the plasma and infected RBCs of P. berghei-infected mice. Measurable and significant hyperpipecolatemia suggest that pipecolic acid has the potential to be a diagnostic marker for malaria.
Collapse
Affiliation(s)
- Divya Beri
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Ghania Ramdani
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014, France.,Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
| | - Balu Balan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Darshak Gadara
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mukta Poojary
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Laurence Momeux
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014, France.,Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
| | - Utpal Tatu
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Gordon Langsley
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, 75014, France. .,Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
9
|
Lauri N, Bazzi Z, Alvarez CL, Leal Denis MF, Schachter J, Herlax V, Ostuni MA, Schwarzbaum PJ. ATPe Dynamics in Protozoan Parasites. Adapt or Perish. Genes (Basel) 2018; 10:E16. [PMID: 30591699 PMCID: PMC6356682 DOI: 10.3390/genes10010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 01/25/2023] Open
Abstract
In most animals, transient increases of extracellular ATP (ATPe) are used for physiological signaling or as a danger signal in pathological conditions. ATPe dynamics are controlled by ATP release from viable cells and cell lysis, ATPe degradation and interconversion by ecto-nucleotidases, and interaction of ATPe and byproducts with cell surface purinergic receptors and purine salvage mechanisms. Infection by protozoan parasites may alter at least one of the mechanisms controlling ATPe concentration. Protozoan parasites display their own set of proteins directly altering ATPe dynamics, or control the activity of host proteins. Parasite dependent activation of ATPe conduits of the host may promote infection and systemic responses that are beneficial or detrimental to the parasite. For instance, activation of organic solute permeability at the host membrane can support the elevated metabolism of the parasite. On the other hand ecto-nucleotidases of protozoan parasites, by promoting ATPe degradation and purine/pyrimidine salvage, may be involved in parasite growth, infectivity, and virulence. In this review, we will describe the complex dynamics of ATPe regulation in the context of protozoan parasite⁻host interactions. Particular focus will be given to features of parasite membrane proteins strongly controlling ATPe dynamics. This includes evolutionary, genetic and cellular mechanisms, as well as structural-functional relationships.
Collapse
Affiliation(s)
- Natalia Lauri
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Zaher Bazzi
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Cora L Alvarez
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Exact and Natural Sciences, Department of Biodiversity and Experimental Biology, University of Buenos Aires, Intendente Güiraldes, Buenos Aires 2160, Argentina.
| | - María F Leal Denis
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Chair of Analytical Chemistry and Physicochemistry, Faculty of Pharmacy and Biochemistry, Department of Analytical Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Julieta Schachter
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Vanesa Herlax
- Biochemistry Research Institute of La Plata (INIBIOLP) "Prof. Dr. Rodolfo R. Brenner", Faculty of Medical Sciences, National University of La Plata, National Scientific and Technical Research Council, Av. 60 y Av. 120 La Plata, Argentina.
- National University of La Plata, Faculty of Medical Sciences, Av. 60 y Av. 120 La Plata, Argentina.
| | - Mariano A Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Paris Diderot University, Sorbonne Paris Cité, University of La Réunion, University of Antilles, F-75015 Paris, France.
- National Institute of Blood Transfusion (INTS), Laboratory of Excellence GR-Ex, F-75015 Paris, France.
| | - Pablo J Schwarzbaum
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| |
Collapse
|
10
|
Marginedas-Freixa I, Alvarez CL, Moras M, Hattab C, Bouyer G, Chene A, Lefevre SD, Le Van Kim C, Bihel F, Schwarzbaum PJ, Ostuni MA. Induction of ATP Release, PPIX Transport, and Cholesterol Uptake by Human Red Blood Cells Using a New Family of TSPO Ligands. Int J Mol Sci 2018; 19:ijms19103098. [PMID: 30308949 PMCID: PMC6213633 DOI: 10.3390/ijms19103098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 02/07/2023] Open
Abstract
Two main isoforms of the Translocator Protein (TSPO) have been identified. TSPO1 is ubiquitous and is mainly present at the outer mitochondrial membrane of most eukaryotic cells, whereas, TSPO2 is specific to the erythroid lineage, located at the plasma membrane, the nucleus, and the endoplasmic reticulum. The design of specific tools is necessary to determine the molecular associations and functions of TSPO, which remain controversial nowadays. We recently demonstrated that TSPO2 is involved in a supramolecular complex of the erythrocyte membrane, where micromolar doses of the classical TSPO ligands induce ATP release and zinc protoporphyrin (ZnPPIX) transport. In this work, three newly-designed ligands (NCS1016, NCS1018, and NCS1026) were assessed for their ability to modulate the functions of various erythrocyte's and compare them to the TSPO classical ligands. The three new ligands were effective in reducing intraerythrocytic Plasmodium growth, without compromising erythrocyte survival. While NCS1016 and NCS1018 were the most effective ligands in delaying sorbitol-induced hemolysis, NCS1016 induced the highest uptake of ZnPPIX and NCS1026 was the only ligand inhibiting the cholesterol uptake. Differential effects of ligands are probably due, not only, to ligand features, but also to the dynamic interaction of TSPO with various partners at the cell membrane. Further studies are necessary to fully understand the mechanisms of the TSPO's complex activation.
Collapse
Affiliation(s)
- Irene Marginedas-Freixa
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Cora L Alvarez
- Instituto de Química y Fisico-Química Biológicas "Prof. Alejandro C. Paladini", UBA, CONICET, Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina.
- Departamento de Biodiversidad y Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1113AAD Buenos Aires, Argentina.
| | - Martina Moras
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Claude Hattab
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Guillaume Bouyer
- UMR 8227 LBI2M, Comparative Erythrocyte's Physiology, CNRS, Sorbonne Université, Laboratoire d'Excellence GR-Ex, F-29680 Roscoff, France.
| | - Arnaud Chene
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Sophie D Lefevre
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Caroline Le Van Kim
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Frederic Bihel
- UMR7200, Laboratoire d'Innovation Thérapeutique, Faculty of Pharmacy, University of Strasbourg, CNRS, F-67400 Illkirch Graffenstaden, France.
| | - Pablo J Schwarzbaum
- Instituto de Química y Fisico-Química Biológicas "Prof. Alejandro C. Paladini", UBA, CONICET, Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD Buenos Aires, Argentina.
| | - Mariano A Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| |
Collapse
|
11
|
Pacheco PAF, Dantas LP, Ferreira LGB, Faria RX. Purinergic receptors and neglected tropical diseases: why ignore purinergic signaling in the search for new molecular targets? J Bioenerg Biomembr 2018; 50:307-313. [PMID: 29882206 DOI: 10.1007/s10863-018-9761-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022]
Abstract
Purinergic receptors are widespread in the human organism and are involved in several physiological functions like neurotransmission, nociception, platelet aggregation, etc. In the immune system, they may regulate the expression and release of pro-inflammatory factors as well as the activation and death of several cell types. It is already described the participation of some purinergic receptors in the inflammation and pathological processes, such as a few neglected tropical diseases (NTDs) which affect more than 1 billion people in the world. Although the high social influence those diseases represent endemic countries, most of them do not have an efficient, safe or affordable drug treatment. In that way, this review aims to discuss the current literature involving purinergic receptor and immune response to NTDs pathogens, which may contribute in the search for new therapeutic possibilities.
Collapse
Affiliation(s)
- P A F Pacheco
- Department of Chemistry, Chemistry Institute, Fluminense Federal University, Niterói, Brazil
| | - L P Dantas
- Laboratory of Molecular Virology, Biology Institute, Fluminense Federal University, Niterói, Brazil
| | - L G B Ferreira
- Laboratory of Inflammation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Robson Xavier Faria
- Laboratory of Toxoplasmosis and other Protozoans, FIOCRUZ, Oswaldo Cruz Institute, Rio de Janeiro, Brazil. .,Fundação Oswaldo Cruz, Laboratório de Toxoplasmose e outras Protozooses, Instituto Oswaldo Cruz, Avenida Brasil 4365, sala 32; Manguinhos, Rio de Janeiro, RJ, CEP 21045-900, Brazil.
| |
Collapse
|
12
|
Soni R, Sharma D, Rai P, Sharma B, Bhatt TK. Signaling Strategies of Malaria Parasite for Its Survival, Proliferation, and Infection during Erythrocytic Stage. Front Immunol 2017; 8:349. [PMID: 28400771 PMCID: PMC5368685 DOI: 10.3389/fimmu.2017.00349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/10/2017] [Indexed: 12/22/2022] Open
Abstract
Irrespective of various efforts, malaria persist the most debilitating effect in terms of morbidity and mortality. Moreover, the existing drugs are also vulnerable to the emergence of drug resistance. To explore the potential targets for designing the most effective antimalarial therapies, it is required to focus on the facts of biochemical mechanism underlying the process of parasite survival and disease pathogenesis. This review is intended to bring out the existing knowledge about the functions and components of the major signaling pathways such as kinase signaling, calcium signaling, and cyclic nucleotide-based signaling, serving the various aspects of the parasitic asexual stage and highlighted the Toll-like receptors, glycosylphosphatidylinositol-mediated signaling, and molecular events in cytoadhesion, which elicit the host immune response. This discussion will facilitate a look over essential components for parasite survival and disease progression to be implemented in discovery of novel antimalarial drugs and vaccines.
Collapse
Affiliation(s)
- Rani Soni
- Department of Biotechnology, School of Life sciences, Central University of Rajasthan , Ajmer , India
| | - Drista Sharma
- Department of Biotechnology, School of Life sciences, Central University of Rajasthan , Ajmer , India
| | - Praveen Rai
- Department of Biotechnology, School of Life sciences, Central University of Rajasthan , Ajmer , India
| | - Bhaskar Sharma
- Department of Biotechnology, School of Life sciences, Central University of Rajasthan , Ajmer , India
| | - Tarun K Bhatt
- Department of Biotechnology, School of Life sciences, Central University of Rajasthan , Ajmer , India
| |
Collapse
|
13
|
Faulks M, Kuit TA, Sophocleous RA, Curtis BL, Curtis SJ, Jurak LM, Sluyter R. P2X7 receptor activation causes phosphatidylserine exposure in canine erythrocytes. World J Hematol 2016; 5:88-93. [DOI: 10.5315/wjh.v5.i4.88] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/10/2016] [Accepted: 09/22/2016] [Indexed: 02/05/2023] Open
Abstract
AIM To determine if activation of the ATP-gated P2X7 receptor channel induces phosphatidylserine (PS) exposure in erythrocytes from multiple dog breeds.
METHODS Peripheral blood was collected from 25 dogs representing 13 pedigrees and seven crossbreeds. ATP-induced PS exposure on canine erythrocytes in vitro was assessed using a flow cytometric Annexin V binding assay.
RESULTS ATP induced PS exposure in erythrocytes from all dogs studied. ATP caused PS exposure in a concentration-dependent manner with an EC50 value of 395 μmol/L. The non-P2X7 agonists, ADP or AMP, did not cause PS exposure. The P2X7 antagonist, AZ10606120, but not the P2X1 antagonist, NF449, blocked ATP-induced PS exposure.
CONCLUSION The results indicate that ATP induces PS exposure in erythrocytes from various dog breeds and that this process is mediated by P2X7 activation.
Collapse
|
14
|
Inhibition of P2X Receptors Protects Human Monocytes against Damage by Leukotoxin from Aggregatibacter actinomycetemcomitans and α-Hemolysin from Escherichia coli. Infect Immun 2016; 84:3114-3130. [PMID: 27528275 DOI: 10.1128/iai.00674-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 01/14/2023] Open
Abstract
α-Hemolysin (HlyA) from Escherichia coli and leukotoxin A (LtxA) from Aggregatibacter actinomycetemcomitans are important virulence factors in ascending urinary tract infections and aggressive periodontitis, respectively. The extracellular signaling molecule ATP is released immediately after insertion of the toxins into plasma membranes and, via P2X receptors, is essential for the erythrocyte damage inflicted by these toxins. Moreover, ATP signaling is required for the ensuing recognition and phagocytosis of damaged erythrocytes by the monocytic cell line THP-1. Here, we investigate how these toxins affect THP-1 monocyte function. We demonstrate that both toxins trigger early ATP release and a following increase in the intracellular Ca2+ concentration ([Ca2+]i) in THP-1 monocytes. The HlyA- and LtxA-induced [Ca2+]i response is diminished by the P2 receptor antagonist in a pattern that fits the functional P2 receptor expression in these cells. Both toxins are capable of lysing THP-1 cells, with LtxA being more aggressive. Either desensitization or blockage of P2X1, P2X4, or P2X7 receptors markedly reduces toxin-induced cytolysis. This pattern is paralleled in freshly isolated human monocytes from healthy volunteers. Interestingly, only a minor fraction of the toxin-damaged THP-1 monocytes eventually lyse. P2X7 receptor inhibition generally prevents cell damage, except from a distinct cell shrinkage that prevails in response to the toxins. Moreover, we find that preexposure to HlyA preserves the capacity of THP-1 monocytes to phagocytose damaged erythrocytes and may induce readiness to discriminate between damaged and healthy erythrocytes. These findings suggest a new pharmacological target for protecting monocytes during exposure to pore-forming cytolysins during infection or injury.
Collapse
|
15
|
Kakani P, Suman S, Gupta L, Kumar S. Ambivalent Outcomes of Cell Apoptosis: A Barrier or Blessing in Malaria Progression. Front Microbiol 2016; 7:302. [PMID: 27014225 PMCID: PMC4791532 DOI: 10.3389/fmicb.2016.00302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/24/2016] [Indexed: 12/20/2022] Open
Abstract
The life cycle of Plasmodium in two evolutionary distant hosts, mosquito, and human, is a complex process. It is regulated at various stages of developments by a number of diverged mechanisms that ultimately determine the outcome of the disease. During the development processes, Plasmodium invades a variety of cells in two hosts. The invaded cells tend to undergo apoptosis and are subsequently removed from the system. This process also eliminates numerous parasites along with these apoptotic cells as a part of innate defense against the invaders. Plasmodium should escape the invaded cell before it undergoes apoptosis or it should manipulate host cell apoptosis for its survival. Interestingly, both these phenomena are evident in Plasmodium at different stages of development. In addition, the parasite also exhibits altruistic behavior and triggers its own killing for the selection of the best ‘fit’ progeny, removal of the ‘unfit’ parasites to conserve the nutrients and to support the host survival. Thus, the outcomes of cell apoptosis are ambivalent, favorable as well as unfavorable during malaria progression. Here we discuss that the manipulation of host cell apoptosis might be helpful in the regulation of Plasmodium development and will open new frontiers in the field of malaria research.
Collapse
Affiliation(s)
- Parik Kakani
- Molecular Parasitology and Vector Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| | - Sneha Suman
- Molecular Parasitology and Vector Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| | - Lalita Gupta
- Molecular Parasitology and Vector Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| | - Sanjeev Kumar
- Molecular Parasitology and Vector Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| |
Collapse
|
16
|
Structural and functional attributes of malaria parasite diadenosine tetraphosphate hydrolase. Sci Rep 2016; 6:19981. [PMID: 26829485 PMCID: PMC4734340 DOI: 10.1038/srep19981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/15/2015] [Indexed: 11/09/2022] Open
Abstract
Malaria symptoms are driven by periodic multiplication cycles of Plasmodium parasites in human red blood corpuscles (RBCs). Malaria infection still accounts for ~600,000 annual deaths, and hence discovery of both new drug targets and drugs remains vital. In the present study, we have investigated the malaria parasite enzyme diadenosine tetraphosphate (Ap4A) hydrolase that regulates levels of signalling molecules like Ap4A by hydrolyzing them to ATP and AMP. We have tracked the spatial distribution of parasitic Ap4A hydrolase in infected RBCs, and reveal its unusual localization on the infected RBC membrane in subpopulation of infected cells. Interestingly, enzyme activity assays reveal an interaction between Ap4A hydrolase and the parasite growth inhibitor suramin. We also present a high resolution crystal structure of Ap4A hydrolase in apo- and sulphate- bound state, where the sulphate resides in the enzyme active site by mimicking the phosphate of substrates like Ap4A. The unexpected infected erythrocyte localization of the parasitic Ap4A hydrolase hints at a possible role of this enzyme in purinerigic signaling. In addition, atomic structure of Ap4A hydrolase provides insights for selective drug targeting.
Collapse
|
17
|
Lang E, Bissinger R, Gulbins E, Lang F. Ceramide in the regulation of eryptosis, the suicidal erythrocyte death. Apoptosis 2015; 20:758-67. [PMID: 25637185 DOI: 10.1007/s10495-015-1094-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Similar to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, a suicidal death characterized by cell shrinkage and phospholipid scrambling of the cell membrane leading to phosphatidylserine exposure at the cell surface. As eryptotic erythrocytes are rapidly cleared from circulating blood, excessive eryptosis may lead to anemia. Moreover, eryptotic erythrocytes may adhere to the vascular wall and thus impede microcirculation. Stimulators of eryptosis include osmotic shock, oxidative stress and energy depletion. Mechanisms involved in the stimulation eryptosis include ceramide formation which may result from phospholipase A2 dependent formation of platelet activating factor (PAF) with PAF dependent stimulation of sphingomyelinases. Enhanced erythrocytic ceramide formation is observed in fever, sepsis, HUS, uremia, hepatic failure, and Wilson's disease. Enhanced eryptosis is further observed in iron deficiency, phosphate depletion, dehydration, malignancy, malaria, sickle-cell anemia, beta-thalassemia and glucose-6-phosphate dehydrogenase-deficiency. Moreover, eryptosis is triggered by osmotic shock and a wide variety of xenobiotics, which are again partially effective by enhancing ceramide abundance. Ceramide formation is inhibited by high concentrations of urea. As shown in Wilson's disease, pharmacological interference with ceramide formation may be a therapeutic option in the treatment of eryptosis inducing clinical disorders.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, 72076, Tuebingen, Germany
| | | | | | | |
Collapse
|
18
|
Burnstock G. Blood cells: an historical account of the roles of purinergic signalling. Purinergic Signal 2015; 11:411-34. [PMID: 26260710 PMCID: PMC4648797 DOI: 10.1007/s11302-015-9462-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022] Open
Abstract
The involvement of purinergic signalling in the physiology of erythrocytes, platelets and leukocytes was recognised early. The release of ATP and the expression of purinoceptors and ectonucleotidases on erythrocytes in health and disease are reviewed. The release of ATP and ADP from platelets and the expression and roles of P1, P2Y(1), P2Y(12) and P2X1 receptors on platelets are described. P2Y(1) and P2X(1) receptors mediate changes in platelet shape, while P2Y(12) receptors mediate platelet aggregation. The changes in the role of purinergic signalling in a variety of disease conditions are considered. The successful use of P2Y(12) receptor antagonists, such as clopidogrel and ticagrelor, for the treatment of thrombosis, myocardial infarction and stroke is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK.
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
19
|
Sluyter R. P2X and P2Y receptor signaling in red blood cells. Front Mol Biosci 2015; 2:60. [PMID: 26579528 PMCID: PMC4623207 DOI: 10.3389/fmolb.2015.00060] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/10/2015] [Indexed: 12/29/2022] Open
Abstract
Purinergic signaling involves the activation of cell surface P1 and P2 receptors by extracellular nucleosides and nucleotides such as adenosine and adenosine triphosphate (ATP), respectively. P2 receptors comprise P2X and P2Y receptors, and have well-established roles in leukocyte and platelet biology. Emerging evidence indicates important roles for these receptors in red blood cells. P2 receptor activation stimulates a number of signaling pathways in progenitor red blood cells resulting in microparticle release, reactive oxygen species formation, and apoptosis. Likewise, activation of P2 receptors in mature red blood cells stimulates signaling pathways mediating volume regulation, eicosanoid release, phosphatidylserine exposure, hemolysis, impaired ATP release, and susceptibility or resistance to infection. This review summarizes the distribution of P2 receptors in red blood cells, and outlines the functions of P2 receptor signaling in these cells and its implications in red blood cell biology.
Collapse
Affiliation(s)
- Ronald Sluyter
- School of Biological Sciences, University of WollongongWollongong, NSW, Australia
- Centre for Medical and Molecular Bioscience, University of WollongongWollongong, NSW, Australia
- Illawarra Health and Medical Research InstituteWollongong, NSW, Australia
| |
Collapse
|
20
|
Quadros Gomes BA, da Silva LFD, Quadros Gomes AR, Moreira DR, Dolabela MF, Santos RS, Green MD, Carvalho EP, Percário S. N-acetyl cysteine and mushroom Agaricus sylvaticus supplementation decreased parasitaemia and pulmonary oxidative stress in a mice model of malaria. Malar J 2015; 14:202. [PMID: 25971771 PMCID: PMC4435846 DOI: 10.1186/s12936-015-0717-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022] Open
Abstract
Background Malaria infection can cause high oxidative stress, which could lead to the development of severe forms of malaria, such as pulmonary malaria. In recent years, the role of reactive oxygen species in the pathogenesis of the disease has been discussed, as well as the potential benefit of antioxidants supplementation. The aim of this study was to investigate the effects of N-acetyl cysteine (NAC) or mushroom Agaricus sylvaticus supplementation on the pulmonary oxidative changes in an experimental model of malaria caused by Plasmodium berghei strain ANKA. Methods Swiss male mice were infected with P. berghei and treated with NAC or AS. Samples of lung tissue and whole blood were collected after one, three, five, seven or ten days of infection for the assessment of thiobarbituric acid reactive substances (TBARS), trolox equivalent antioxidant capacity (TEAC), nitrites and nitrates (NN) and to assess the degree of parasitaemia. Results Although parasitaemia increased progressively with the evolution of the disease in all infected groups, there was a significant decrease from the seventh to the tenth day of infection in both antioxidant-supplemented groups. Results showed significant higher levels of TEAC in both supplemented groups, the highest occurring in the group supplemented with A. sylvaticus. In parallel, TBARS showed similar levels among all groups, while levels of NN were higher in animals supplemented with NAC in relation to the positive control groups and A. sylvaticus, whose levels were similar to the negative control group. Conclusion Oxidative stress arising from plasmodial infection was attenuated by supplementation of both antioxidants, but A. sylvaticus proved to be more effective and has the potential to become an important tool in the adjuvant therapy of malaria. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0717-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bruno A Quadros Gomes
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil.
| | - Lucio F D da Silva
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil.
| | - Antonio R Quadros Gomes
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil.
| | - Danilo R Moreira
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil.
| | - Maria Fani Dolabela
- Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil.
| | - Rogério S Santos
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil.
| | - Michael D Green
- Division of Parasitic Diseases and Malaria, US Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Mailstop G49, Atlanta, GA, USA.
| | - Eliete P Carvalho
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil.
| | - Sandro Percário
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil.
| |
Collapse
|
21
|
Identification of signalling cascades involved in red blood cell shrinkage and vesiculation. Biosci Rep 2015; 35:BSR20150019. [PMID: 25757360 PMCID: PMC4400636 DOI: 10.1042/bsr20150019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Even though red blood cell (RBC) vesiculation is a well-documented phenomenon, notably in the context of RBC aging and blood transfusion, the exact signalling pathways and kinases involved in this process remain largely unknown. We have established a screening method for RBC vesicle shedding using the Ca2+ ionophore ionomycin which is a rapid and efficient method to promote vesiculation. In order to identify novel pathways stimulating vesiculation in RBC, we screened two libraries: the Library of Pharmacologically Active Compounds (LOPAC) and the Selleckchem Kinase Inhibitor Library for their effects on RBC from healthy donors. We investigated compounds triggering vesiculation and compounds inhibiting vesiculation induced by ionomycin. We identified 12 LOPAC compounds, nine kinase inhibitors and one kinase activator which induced RBC shrinkage and vesiculation. Thus, we discovered several novel pathways involved in vesiculation including G protein-coupled receptor (GPCR) signalling, the phosphoinositide 3-kinase (PI3K)–Akt (protein kinase B) pathway, the Jak–STAT (Janus kinase–signal transducer and activator of transcription) pathway and the Raf–MEK (mitogen-activated protein kinase kinase)–ERK (extracellular signal-regulated kinase) pathway. Moreover, we demonstrated a link between casein kinase 2 (CK2) and RBC shrinkage via regulation of the Gardos channel activity. In addition, our data showed that inhibition of several kinases with unknown functions in mature RBC, including Alk (anaplastic lymphoma kinase) kinase and vascular endothelial growth factor receptor 2 (VEGFR-2), induced RBC shrinkage and vesiculation. After screening two libraries of small bioactive molecules and kinase inhibitors, we identified several signalling pathways to be involved in red blood cell (RBC) shrinkage and vesiculation. These include the Jak (Janus kinase)–STAT (signal transducer and activator of transcription) pathway, phosphoinositide 3-kinase (PI3K)–Akt pathway, the Raf–MEK (mitogen-activated protein kinase kinase)–ERK (extracellular signal-regulated kinase) pathway and GPCR (G protein-coupled receptor) signalling.
Collapse
|
22
|
In silico characterization of Plasmodium falciparum purinergic receptor: a novel chemotherapeutic target. SYSTEMS AND SYNTHETIC BIOLOGY 2015; 9:11-6. [PMID: 26702303 DOI: 10.1007/s11693-015-9165-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
Serpentine receptors with G-protein coupled receptor like seven transmembrane (7 TM) topology are identified in Plasmodium. A class of 7 TM receptors known as purinergic receptors binds to purines such as ADP, ATP and UTP and mediates important physiological functions including regulation of calcium signaling. Here we performed in silico analysis of Plasmodium falciparum serpentine receptors and found that one of the P. falciparum serpentine receptors, PfSR12 possess nucleotide binding consensus P-loop sequence in addition to seven transmembrane domains. The presence of conserved seven transmembrane domains and a consensus nucleotide binding sequence (P-loop) suggest that PfSR12 is a putative purinergic receptor. On further analysis using docking programmes we found four active binding residues Asn149, Lys150, Asn151 and Gly152 in P-loop of PfSR12, interact with ATP. This work gives insights into the interactions between putative purinergic receptor PfSR12 and its ligand ATP which can be explored in structure based drug designing against malaria.
Collapse
|
23
|
Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death. BIOMED RESEARCH INTERNATIONAL 2015; 2015:513518. [PMID: 25821808 PMCID: PMC4364016 DOI: 10.1155/2015/513518] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 12/13/2022]
Abstract
Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca(2+) entry, ceramide formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases. Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16). Phosphatidylserine exposing erythrocytes are further engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective erythrocytes thus counteracting parasitemia in malaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis, however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders.
Collapse
|
24
|
Lang E, Lang F. Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin Cell Dev Biol 2015; 39:35-42. [PMID: 25636585 DOI: 10.1016/j.semcdb.2015.01.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022]
Abstract
Eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling, is stimulated by Ca(2+) entry through Ca(2+)-permeable, PGE2-activated cation channels, by ceramide, caspases, calpain, complement, hyperosmotic shock, energy depletion, oxidative stress, and deranged activity of several kinases (e.g. AMPK, GK, PAK2, CK1α, JAK3, PKC, p38-MAPK). Eryptosis is triggered by intoxication, malignancy, hepatic failure, diabetes, chronic renal insufficiency, hemolytic uremic syndrome, dehydration, phosphate depletion, fever, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Eryptosis may precede and protect against hemolysis but by the same token result in anemia and deranged microcirculation.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany.
| |
Collapse
|
25
|
Abstract
SIGNIFICANCE Eryptosis, the suicidal erythrocyte death, is characterized by cell shrinkage, membrane blebbing, and phosphatidylserine translocation to the outer membrane leaflet. Phosphatidylserine at the erythrocyte surface binds endothelial CXCL16/SR-PSOX (CXC-Motiv-Chemokin-16/Scavenger-receptor-for-phosphatidylserine-and-oxidized-low-density-lipoprotein) and fosters engulfment of affected erythrocytes by phagocytosing cells. Eryptosis serves to eliminate infected or defective erythrocytes, but excessive eryptosis may lead to anemia and may interfere with microcirculation. Clinical conditions with excessive eryptosis include diabetes, chronic renal failure, hemolytic uremic syndrome, sepsis, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, glutamate cysteine ligase modulator deficiency, and Wilson's disease. RECENT ADVANCES Eryptosis is triggered by a wide variety of xenobiotics and other injuries such as oxidative stress. Signaling of eryptosis includes prostaglandin E₂ formation with subsequent activation of Ca(2+)-permeable cation channels, Ca(2+) entry, activation of Ca(2+)-sensitive K(+) channels, and cell membrane scrambling, as well as phospholipase A2 stimulation with release of platelet-activating factor, sphingomyelinase activation, and ceramide formation. Eryptosis may involve stimulation of caspases and calpain with subsequent degradation of the cytoskeleton. It is regulated by AMP-activated kinase, cGMP-dependent protein kinase, Janus-activated kinase 3, casein kinase 1α, p38 kinase, and p21-activated kinase 2. It is inhibited by erythropoietin, antioxidants, and further small molecules. CRITICAL ISSUES It remains uncertain for most disorders whether eryptosis is rather beneficial because it precedes and thus prevents hemolysis or whether it is harmful because of induction of anemia and impairment of microcirculation. FUTURE DIRECTIONS This will address the significance of eryptosis, further mechanisms underlying eryptosis, and additional pharmacological tools fostering or inhibiting eryptosis.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen , Tübingen, Germany
| | | | | | | |
Collapse
|
26
|
Alvarez CL, Schachter J, de Sá Pinheiro AA, Silva LDS, Verstraeten SV, Persechini PM, Schwarzbaum PJ. Regulation of extracellular ATP in human erythrocytes infected with Plasmodium falciparum. PLoS One 2014; 9:e96216. [PMID: 24858837 PMCID: PMC4032238 DOI: 10.1371/journal.pone.0096216] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/03/2014] [Indexed: 11/18/2022] Open
Abstract
In human erythrocytes (h-RBCs) various stimuli induce increases in [cAMP] that trigger ATP release. The resulting pattern of extracellular ATP accumulation (ATPe kinetics) depends on both ATP release and ATPe degradation by ectoATPase activity. In this study we evaluated ATPe kinetics from primary cultures of h-RBCs infected with P. falciparum at various stages of infection (ring, trophozoite and schizont stages). A "3V" mixture containing isoproterenol (β-adrenergic agonist), forskolin (adenylate kinase activator) and papaverine (phosphodiesterase inhibitor) was used to induce cAMP-dependent ATP release. ATPe kinetics of r-RBCs (ring-infected RBCs), t-RBCs (trophozoite-infected RBCs) and s-RBCs (schizont-infected RBCs) showed [ATPe] to peak acutely to a maximum value followed by a slower time dependent decrease. In all intraerythrocytic stages, values of ΔATP1 (difference between [ATPe] measured 1 min post-stimulus and basal [ATPe]) increased nonlinearly with parasitemia (from 2 to 12.5%). Under 3V exposure, t-RBCs at parasitemia 94% (t94-RBCs) showed 3.8-fold higher ΔATP1 values than in h-RBCs, indicative of upregulated ATP release. Pre-exposure to either 100 µM carbenoxolone, 100 nM mefloquine or 100 µM NPPB reduced ΔATP1 to 83-87% for h-RBCs and 63-74% for t94-RBCs. EctoATPase activity, assayed at both low nM concentrations (300-900 nM) and 500 µM exogenous ATPe concentrations increased approx. 400-fold in t94-RBCs, as compared to h-RBCs, while intracellular ATP concentrations of t94-RBCs were 65% that of h-RBCs. In t94-RBCs, production of nitric oxide (NO) was approx. 7-fold higher than in h-RBCs, and was partially inhibited by L-NAME pre-treatment. In media with L-NAME, ΔATP1 values were 2.7-times higher in h-RBCs and 4.2-times higher in t94-RBCs, than without L-NAME. Results suggest that P. falciparum infection of h-RBCs strongly activates ATP release via Pannexin 1 in these cells. Several processes partially counteracted ATPe accumulation: an upregulated ATPe degradation, an enhanced NO production, and a decreased intracellular ATP concentration.
Collapse
Affiliation(s)
- Cora Lilia Alvarez
- Instituto de Química y Fisicoquímica Biológicas (Facultad de Farmacia y Bioquímica), Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brasil
- INPeTAm Instituto Nacional de Ciência e Tecnologia em Pesquisa Translacional em Saúde e Ambiente na Reigião Amazônica, Rio de Janeiro, Brasil
| | - Julieta Schachter
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brasil
- INPeTAm Instituto Nacional de Ciência e Tecnologia em Pesquisa Translacional em Saúde e Ambiente na Reigião Amazônica, Rio de Janeiro, Brasil
| | - Ana Acacia de Sá Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brasil
| | - Leandro de Souza Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brasil
| | - Sandra Viviana Verstraeten
- Instituto de Química y Fisicoquímica Biológicas (Facultad de Farmacia y Bioquímica), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Muanis Persechini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brasil
- INPeTAm Instituto Nacional de Ciência e Tecnologia em Pesquisa Translacional em Saúde e Ambiente na Reigião Amazônica, Rio de Janeiro, Brasil
| | - Pablo Julio Schwarzbaum
- Instituto de Química y Fisicoquímica Biológicas (Facultad de Farmacia y Bioquímica), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
27
|
Abstract
As it grows and replicates within the erythrocytes of its host the malaria parasite takes up nutrients from the extracellular medium, exports metabolites and maintains a tight control over its internal ionic composition. These functions are achieved via membrane transport proteins, integral membrane proteins that mediate the passage of solutes across the various membranes that separate the biochemical machinery of the parasite from the extracellular environment. Proteins of this type play a key role in antimalarial drug resistance, as well as being candidate drug targets in their own right. This review provides an overview of recent work on the membrane transport biology of the malaria parasite-infected erythrocyte, encompassing both the parasite-induced changes in the membrane transport properties of the host erythrocyte and the cell physiology of the intracellular parasite itself.
Collapse
|
28
|
Eugenin EA. Role of connexin/pannexin containing channels in infectious diseases. FEBS Lett 2014; 588:1389-95. [PMID: 24486013 DOI: 10.1016/j.febslet.2014.01.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/12/2022]
Abstract
In recent years it has become evident that gap junctions and hemichannels, in concert with extracellular ATP and purinergic receptors, play key roles in several physiological processes and pathological conditions. However, only recently has their importance in infectious diseases been explored, likely because early reports indicated that connexin containing channels were completely inactivated under inflammatory conditions, and therefore no further research was performed. However, recent evidence indicates that several infectious agents take advantage of these communication systems to enhance inflammation and apoptosis, as well as to participate in the infectious cycle of several pathogens. In the current review, we will discuss the role of these channels/receptors in the pathogenesis of several infectious diseases and the possibilities of generating novel therapeutic approaches to reduce or prevent these diseases.
Collapse
Affiliation(s)
- Eliseo A Eugenin
- Public Health Research Institute (PHRI), Rutgers New Jersey Medical School, Rutgers The State University of New Jersey, Newark, NJ, USA; Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
29
|
P2X receptor stimulation amplifies complement-induced haemolysis. Pflugers Arch 2012; 465:529-41. [PMID: 23149487 DOI: 10.1007/s00424-012-1174-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 02/03/2023]
Abstract
Activation of the complement system evokes cell damage by insertion of membrane attack complexes, which constitute the basis of the pathogenesis of various haemolytic disorders. Recently, we found that haemolysis caused by other types of membrane pore-forming proteins such as α-haemolysin (HlyA) from Escherichia coli, α-toxin from Staphylococcus aureus and leukotoxin from Aggregatibacter actinomycetemcomitans inflict their cytotoxic effects through P2 receptor activation. Here we show that similar to haemolysis induced by HlyA, leukotoxin and α-toxin, complement-induced haemolysis is amplified through ATP release and subsequent P2 receptor activation. Similar results were found both in murine, sensitised ovine and human erythrocytes, with either human plasma or guinea pig serum as complement donors. Non-selective P2 antagonists (PPADS and suramin) concentration-dependently inhibited complement-induced haemolysis. More specific P2 receptor antagonists imply that P2X1 and P2X7 are the main receptors involved in this response. Moreover, complement activation produces a sustained increase in [Ca(2+)]i, which initially triggers significant erythrocyte shrinkage, most likely mediated by KCa3.1-dependent K(+) efflux. These results indicate that complement, similar to HlyA and α-toxin, requires purinergic signalling for full haemolysis and that activation of erythrocyte volume regulation protracts the process. This finding points to several new pathways to interfere with haemolytic diseases and implies that P2 receptor antagonists potentially can be used to prevent intravascular haemolysis.
Collapse
|
30
|
Munksgaard PS, Vorup-Jensen T, Reinholdt J, Söderström CM, Poulsen K, Leipziger J, Praetorius HA, Skals M. Leukotoxin from Aggregatibacter actinomycetemcomitans causes shrinkage and P2X receptor-dependent lysis of human erythrocytes. Cell Microbiol 2012; 14:1904-20. [PMID: 22906303 DOI: 10.1111/cmi.12021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 12/13/2022]
Abstract
Leukotoxin (LtxA) is a virulence factor secreted by the bacterium Aggregatibacter actinomycetemcomitans, which can cause localized aggressive periodontitis and endocarditis. LtxA belongs to the repeat-in-toxin (RTX) family of exotoxins of which other members inflict lysis by formation of membrane pores. Recently, we documented that the haemolytic process induced by another RTX toxin [α-haemolysin (HlyA) from Escherichia coli] requires P2X receptor activation and consists of sequential cell shrinkage and swelling. In contrast, the cellular and molecular mechanisms of LtxA-mediated haemolysis are not fully understood. Here, we investigate the effect of LtxA on erythrocyte volume and whether P2 receptors also play a part in LtxA-mediated haemolysis. We observed that LtxA initially decreases the cell size, followed by a gradual rise in volume until the cell finally lyses. Moreover, LtxA triggers phosphatidylserine (PS) exposure in the erythrocyte membrane and both the shrinkage and the PS-exposure is preceded by increments in the intracellular Ca(2+) concentration ([Ca(2+)](i)). Interestingly, LtxA-mediated haemolysis is significantly potentiated by ATP release and P2X receptor activation in human erythrocytes. Furthermore, the LtxA-induced [Ca(2+)](i) increase and following volume changes partially depend on P2 receptor activation. Theseobservations imply that intervention against local P2-mediated auto- and paracrine signalling may prevent LtxA-mediated cell damage.
Collapse
|
31
|
Corriden R, Insel PA. New insights regarding the regulation of chemotaxis by nucleotides, adenosine, and their receptors. Purinergic Signal 2012; 8:587-98. [PMID: 22528684 PMCID: PMC3360098 DOI: 10.1007/s11302-012-9311-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/05/2012] [Indexed: 12/23/2022] Open
Abstract
The directional movement of cells can be regulated by ATP, certain other nucleotides (e.g., ADP, UTP), and adenosine. Such regulation occurs for cells that are "professional phagocytes" (e.g., neutrophils, macrophages, certain lymphocytes, and microglia) and that undergo directional migration and subsequent phagocytosis. Numerous other cell types (e.g., fibroblasts, endothelial cells, neurons, and keratinocytes) also change motility and migration in response to ATP, other nucleotides, and adenosine. In this article, we review how nucleotides and adenosine modulate chemotaxis and motility and highlight the importance of nucleotide- and adenosine-regulated cell migration in several cell types: neutrophils, microglia, endothelial cells, and cancer cells. We also discuss difficulties in conducting experiments and drawing conclusions regarding the ability of nucleotides and adenosine to modulate the migration of professional and non-professional phagocytes.
Collapse
Affiliation(s)
- Ross Corriden
- Institute of Cell Signalling, University of Nottingham, Nottingham, UK
| | - Paul A. Insel
- Departments of Pharmacology and Medicine, University of California, San Diego, CA USA
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, Mail code 0636, La Jolla, CA 92093 USA
| |
Collapse
|
32
|
Zhang Y, Xia Y. Adenosine signaling in normal and sickle erythrocytes and beyond. Microbes Infect 2012; 14:863-73. [PMID: 22634345 DOI: 10.1016/j.micinf.2012.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/11/2012] [Accepted: 05/11/2012] [Indexed: 01/21/2023]
Abstract
Sickle cell disease (SCD) is a debilitating hemolytic genetic disorder with high morbidity and mortality affecting millions of individuals worldwide. Although SCD was discovered more than a century ago, no effective mechanism-based prevention and treatment are available due to poorly understood molecular basis of sickling, the fundamental pathogenic process of the disease. SCD patients constantly face hypoxia. One of the best-known signaling molecules to be induced under hypoxic conditions is adenosine. Recent studies demonstrate that hypoxia-mediated elevated adenosine signaling plays an important role in normal erythrocyte physiology. In contrast, elevated adenosine signaling contributes to sickling and multiple life threatening complications including tissue damage, pulmonary dysfunction and priapism. Here, we summarize recent research on the role of adenosine signaling in normal and sickle erythrocytes, progression of the disease and therapeutic implications. In normal erythrocytes, both genetic and pharmacological studies demonstrate that adenosine can enhance 2,3-bisphosphoglycerate (2,3-BPG) production via A(2B) receptor (ADORA2B) activation, suggesting that elevated adenosine has an unrecognized role in normal erythrocytes to promote O(2) release and prevent acute ischemic tissue injury. However, in sickle erythrocytes, the beneficial role of excessive adenosine-mediated 2,3-BPG induction becomes detrimental by promoting deoxygenation, polymerization of sickle hemoglobin and subsequent sickling. Additionally, adenosine signaling via the A(2A) receptor (ADORA2A) on invariant natural killer T (iNKT) cells inhibits iNKT cell activation and attenuates pulmonary dysfunction in SCD mice. Finally, elevated adenosine coupled with ADORA2BR activation is responsible for priapism, a dangerous complication seen in SCD. Overall, the research reviewed here reveals a differential role of elevated adenosine in normal erythrocytes, sickle erythrocytes, iNK cells and progression of disease. Thus, adenosine signaling represents a potentially important therapeutic target for the treatment and prevention of disease.
Collapse
Affiliation(s)
- Yujin Zhang
- Biochemistry and Molecular Biology Department, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | | |
Collapse
|
33
|
Purinoceptor signaling in malaria-infected erythrocytes. Microbes Infect 2012; 14:779-86. [PMID: 22580091 DOI: 10.1016/j.micinf.2012.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 01/25/2023]
Abstract
Human erythrocytes are endowed with ATP release pathways and metabotropic and ionotropic purinoceptors. This review summarizes the pivotal function of purinergic signaling in erythrocyte control of vascular tone, in hemolytic septicemia, and in malaria. In malaria, the intraerythrocytic parasite exploits the purinergic signaling of its host to adapt the erythrocyte to its requirements.
Collapse
|
34
|
Generation of second messengers in Plasmodium. Microbes Infect 2012; 14:787-95. [PMID: 22584103 DOI: 10.1016/j.micinf.2012.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 02/05/2023]
Abstract
Signalling in malaria parasites is a field of growing interest as its components may prove to be valuable drug targets, especially when one considers the burden of a disease that is responsible for up to 500 million infections annually. The scope of this review is to discuss external stimuli in the parasite life cycle and the upstream machinery responsible for translating them into intracellular responses, focussing particularly on the calcium signalling pathway.
Collapse
|
35
|
Rached FB, Ndjembo‐Ezougou C, Chandran S, Talabani H, Yera H, Dandavate V, Bourdoncle P, Meissner M, Tatu U, Langsley G. Construction of a
Plasmodium falciparum
Rab‐interactome identifies CK1 and PKA as Rab‐effector kinases in malaria parasites. Biol Cell 2011; 104:34-47. [PMID: 22188458 PMCID: PMC3437490 DOI: 10.1111/boc.201100081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/28/2011] [Indexed: 12/30/2022]
Affiliation(s)
- Fathia Ben Rached
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, CNRS (UMR 8104), 75014 Paris, France
- Inserm U1016, Paris 75014, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| | - Carinne Ndjembo‐Ezougou
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, CNRS (UMR 8104), 75014 Paris, France
- Inserm U1016, Paris 75014, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| | - Syama Chandran
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012 Karnataka, India
| | - Hana Talabani
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, CNRS (UMR 8104), 75014 Paris, France
- Inserm U1016, Paris 75014, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| | - Hélène Yera
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, CNRS (UMR 8104), 75014 Paris, France
- Inserm U1016, Paris 75014, France
| | - Vrushali Dandavate
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012 Karnataka, India
| | - Pierre Bourdoncle
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, CNRS (UMR 8104), 75014 Paris, France
- Inserm U1016, Paris 75014, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| | - Markus Meissner
- Division of Infection and Immunity and Wellcome Centre for Parasitology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Utpal Tatu
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012 Karnataka, India
| | - Gordon Langsley
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, CNRS (UMR 8104), 75014 Paris, France
- Inserm U1016, Paris 75014, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris 75013, France
| |
Collapse
|
36
|
Levano-Garcia J, Dluzewski AR, Markus RP, Garcia CRS. Purinergic signalling is involved in the malaria parasite Plasmodium falciparum invasion to red blood cells. Purinergic Signal 2010; 6:365-72. [PMID: 21437007 DOI: 10.1007/s11302-010-9202-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 09/30/2010] [Indexed: 10/18/2022] Open
Abstract
UNLABELLED Plasmodium falciparum, the most important etiological agent of human malaria, is endowed with a highly complex cell cycle that is essential for its successful replication within the host. A number of evidence suggest that changes in parasite Ca(2+) levels occur during the intracellular cycle of the parasites and play a role in modulating its functions within the RBC. However, the molecular identification of Plasmodium receptors linked with calcium signalling and the causal relationship between Ca(2+) increases and parasite functions are still largely mysterious. We here describe that increases in P. falciparum Ca(2+) levels, induced by extracellular ATP, modulate parasite invasion. In particular, we show that addition of ATP leads to an increase of cytosolic Ca(2+) in trophozoites and segmented schizonts. Addition of the compounds KN62 and Ip5I on parasites blocked the ATP-induced rise in [Ca(2+)](c). Besides, the compounds or hydrolysis of ATP with apyrase added in culture drastically reduce RBC infection by parasites, suggesting strongly a role of extracellular ATP during RBC invasion. The use of purinoceptor antagonists Ip5I and KN62 in this study suggests the presence of putative purinoceptor in P. falciparum. In conclusion, we have demonstrated that increases in [Ca(2+)](c) in the malarial parasite P. falciparum by ATP leads to the modulation of its invasion of red blood cells. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s11302-010-9202-y) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Ghashghaeinia M, Bobbala D, Wieder T, Koka S, Brück J, Fehrenbacher B, Röcken M, Schaller M, Lang F, Ghoreschi K. Targeting glutathione by dimethylfumarate protects against experimental malaria by enhancing erythrocyte cell membrane scrambling. Am J Physiol Cell Physiol 2010; 299:C791-804. [PMID: 20631250 DOI: 10.1152/ajpcell.00014.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The balance between GSH-levels and oxidative stress is critical for cell survival. The GSH-levels of erythrocytes are dramatically decreased during infection with Plasmodium spp. We therefore investigated the consequences of targeting GSH for erythrocyte and Plasmodium survival in vitro and in vivo using dimethylfumarate (DMF) at therapeutically established dosage. We first show that noninfected red blood cells (RBC) exposed to DMF undergo changes typical of apoptosis or eryptosis, such as cell shrinkage and cell membrane scrambling with subsequent phosphatidylserine (PS) exposure. DMF did not induce appreciable hemolysis. DMF-triggered PS exposure was mediated by intracellular GSH depletion and reversed by the antioxidative N-acetyl-l-cysteine. DMF treatment controlled intraerythrocyte DNA amplification and in vitro parasitemia of Plasmodium falciparum-infected RBC. In vivo, DMF treatment had no effect on RBC count or GSH levels in noninfected mice. Consistent with its effects on infected RBC, DMF treatment abrogated parasitemia and enhanced the survival of mice infected with Plasmodium berghei from 0% to 60%. In conclusion, DMF sensitizes the erythrocytes to the effect of Plasmodium infection on PS exposure, thus accelerating the clearance of infected erythrocytes. Accordingly, DMF treatment favorably influences the clinical course of malaria. As DMF targets mechanisms within the host cell, it is not likely to generate resistance of the pathogen.
Collapse
Affiliation(s)
- Mehrdad Ghashghaeinia
- Physiologisches Institut der Universität Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lisk G, Pain M, Sellers M, Gurnev PA, Pillai AD, Bezrukov SM, Desai SA. Altered plasmodial surface anion channel activity and in vitro resistance to permeating antimalarial compounds. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1679-88. [PMID: 20451492 DOI: 10.1016/j.bbamem.2010.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 04/21/2010] [Accepted: 04/26/2010] [Indexed: 11/26/2022]
Abstract
Erythrocytes infected with malaria parasites have increased permeability to various solutes. These changes may be mediated by an unusual small conductance ion channel known as the plasmodial surface anion channel (PSAC). While channel activity benefits the parasite by permitting nutrient acquisition, it can also be detrimental because water-soluble antimalarials may more readily access their parasite targets via this channel. Recently, two such toxins, blasticidin S and leupeptin, were used to select mutant parasites with altered PSAC activities, suggesting acquired resistance via reduced channel-mediated toxin uptake. Surprisingly, although these toxins have similar structures and charge, we now show that reduced permeability of one does not protect the intracellular parasite from the other. Leupeptin accumulation in the blasticidin S-resistant mutant was relatively preserved, consistent with retained in vitro susceptibility to leupeptin. Subsequent in vitro selection with both toxins generated a double mutant parasite having additional changes in PSAC, implicating an antimalarial resistance mechanism for water-soluble drugs requiring channel-mediated uptake at the erythrocyte membrane. Characterization of these mutants revealed a single conserved channel on each mutant, albeit with distinct gating properties. These findings are consistent with a shared channel that mediates uptake of ions, nutrients and toxins. This channel's gating and selectivity properties can be modified in response to in vitro selective pressure.
Collapse
Affiliation(s)
- Godfrey Lisk
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Corriden R, Insel PA. Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Sci Signal 2010; 3:re1. [PMID: 20068232 DOI: 10.1126/scisignal.3104re1] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cells release adenosine triphosphate (ATP), which activates plasma membrane-localized P2X and P2Y receptors and thereby modulates cellular function in an autocrine or paracrine manner. Release of ATP and the subsequent activation of P2 receptors help establish the basal level of activation (sometimes termed "the set point") for signal transduction pathways and regulate a wide array of responses that include tissue blood flow, ion transport, cell volume regulation, neuronal signaling, and host-pathogen interactions. Basal release and autocrine or paracrine responses to ATP are multifunctional, evolutionarily conserved, and provide an economical means for the modulation of cell, tissue, and organismal biology.
Collapse
Affiliation(s)
- Ross Corriden
- Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
40
|
The P2X(7) receptor mediates the uptake of organic cations in canine erythrocytes and mononuclear leukocytes: comparison to equivalent human cell types. Purinergic Signal 2009; 5:385-94. [PMID: 19533417 DOI: 10.1007/s11302-009-9163-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 05/26/2009] [Indexed: 01/12/2023] Open
Abstract
We previously demonstrated that canine erythrocytes express the P2X(7) receptor, and that the function and expression of this receptor is greatly increased compared with human erythrocytes. Using (86)Rb(+) (K(+)) and organic cation flux measurements, we further compared P2X(7) in erythrocytes and mononuclear leukocytes from these species. Concentration response curves of BzATP- and ATP-induced (86)Rb(+) efflux demonstrated that canine P2X(7) was less sensitive to inhibition by extracellular Na(+) ions compared to human P2X(7). In contrast, canine and human P2X(7) showed a similar sensitivity to the P2X(7) antagonists KN-62 and Mg(2+). KN-62 and Mg(2+) also inhibited ATP-induced choline(+) uptake into canine and human erythrocytes. BzATP and ATP but not ADP or NAD induced ethidium(+) uptake into canine monocytes, T- and B-cells. ATP-induced ethidium(+) uptake was twofold greater in canine T-cells compared to canine B-cells and monocytes. KN-62 inhibited the ATP-induced ethidium(+) uptake in each cell type. P2X(7)-mediated uptake of organic cations was 40- and fivefold greater in canine erythrocytes and lymphocytes (T- and B-cells), respectively, compared to equivalent human cell types. In contrast, P2X(7) function was threefold lower in canine monocytes compared to human monocytes. Thus, P2X(7) activation can induce the uptake of organic cations into canine erythrocytes and mononuclear leukocytes, but the relative levels of P2X(7) function differ to that of equivalent human cell types.
Collapse
|
41
|
Alpha-hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis. Proc Natl Acad Sci U S A 2009; 106:4030-5. [PMID: 19225107 DOI: 10.1073/pnas.0807044106] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Escherichia coli is the dominant facultative bacterium in the normal intestinal flora. E. coli is, however, also responsible for the majority of serious extraintestinal infections. There are distinct serotypical differences between facultative and invasive E. coli strains. Invasive strains frequently produce virulence factors such as alpha-hemolysin (HlyA), which causes hemolysis by forming pores in the erythrocyte membrane. The present study reveals that this pore formation triggers purinergic receptor activation to mediate the full hemolytic action. Non-selective ATP-receptor (P2) antagonists (PPADS, suramin) and ATP scavengers (apyrase, hexokinase) concentration dependently inhibited HlyA-induced lysis of equine, murine, and human erythrocytes. The pattern of responsiveness to more selective P2-antagonists implies that both P2X(1) and P2X(7) receptors are involved in HlyA-induced hemolysis in all three species. In addition, our results also propose a role for the pore protein pannexin1 in HlyA-induced hemolysis, as non-selective inhibitors of this channel significantly reduced hemolysis in the three species. In conclusion, activation of P2X receptors and possibly also pannexins augment hemolysis induced by the bacterial toxin, HlyA. These findings potentially have clinical perspectives as P2 antagonists may ameliorate symptoms during sepsis with hemolytic bacteria.
Collapse
|
42
|
Merckx A, Bouyer G, Thomas SLY, Langsley G, Egée S. Anion channels in Plasmodium-falciparum-infected erythrocytes and protein kinase A. Trends Parasitol 2009; 25:139-44. [PMID: 19200784 DOI: 10.1016/j.pt.2008.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 12/01/2008] [Accepted: 12/10/2008] [Indexed: 01/09/2023]
Abstract
By replicating within red blood cells, malaria parasites are largely hidden from immune recognition; however, in the cells, nutrients are limiting and hazardous metabolic end products can rapidly accumulate. Therefore, to survive within erythrocytes, parasites alter the permeability of the host plasma membrane, either by upregulating existing transporters or by creating new permeation pathways. Recent electrophysiological studies of Plasmodium-infected erythrocytes have demonstrated that membrane permeability is mediated by transmembrane transport through ion channels in the infected erythrocyte. This article discusses the evidence and controversies concerning the nature of these channels and surveys the potential role of phosphorylation in activating anion channels that could be important in developing novel strategies for future malarial chemotherapies.
Collapse
Affiliation(s)
- Anaïs Merckx
- Institut Cochin, INSERM U567, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | | | | | |
Collapse
|
43
|
Abstract
Eryptosis, the suicidal death of erythrocytes, is characterised by cell shrinkage, membrane blebbing and cell membrane phospholipid scrambling with phosphatidylserine exposure at the cell surface. Phosphatidylserine-exposing erythrocytes are recognised by macrophages, which engulf and degrade the affected cells. Reported triggers of eryptosis include osmotic shock, oxidative stress, energy depletion, ceramide, prostaglandin E(2), platelet activating factor, hemolysin, listeriolysin, paclitaxel, chlorpromazine, cyclosporine, methylglyoxal, amyloid peptides, anandamide, Bay-5884, curcumin, valinomycin, aluminium, mercury, lead and copper. Diseases associated with accelerated eryptosis include sepsis, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase (G6PD)-deficiency, phosphate depletion, iron deficiency, hemolytic uremic syndrome and Wilsons disease. Eryptosis may be inhibited by erythropoietin, adenosine, catecholamines, nitric oxide (NO) and activation of G-kinase. Most triggers of eryptosis except oxidative stress are effective without activation of caspases. Their signalling involves formation of prostaglandin E(2) with subsequent activation of cation channels and Ca2+ entry and/or release of platelet activating factor (PAF) with subsequent activation of sphingomyelinase and formation of ceramide. Ca2+ and ceramide stimulate scrambling of the cell membrane. Ca2+ further activates Ca2+-sensitive K+ channels leading to cellular KCl loss and cell shrinkage and stimulates the protease calpain resulting in degradation of the cytoskeleton. Eryptosis allows defective erythrocytes to escape hemolysis. On the other hand, excessive eryptosis favours the development of anemia. Thus, a delicate balance between proeryptotic and antieryptotic mechanisms is required to maintain an adequate number of circulating erythrocytes and yet avoid noneryptotic death of injured erythrocytes.
Collapse
Affiliation(s)
- Michael Föller
- Department of Physiology, University of Tübingen, Germany
| | | | | |
Collapse
|
44
|
Huber SM, Lang C, Lang F, Duranton C. Organic osmolyte channels in malaria-infected erythrocytes. Biochem Biophys Res Commun 2008; 376:514-8. [DOI: 10.1016/j.bbrc.2008.09.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 01/04/2023]
|
45
|
Akkaya C, Shumilina E, Bobballa D, Brand VB, Mahmud H, Lang F, Huber SM. The Plasmodium falciparum-induced anion channel of human erythrocytes is an ATP-release pathway. Pflugers Arch 2008; 457:1035-47. [PMID: 18696103 DOI: 10.1007/s00424-008-0572-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 07/31/2008] [Indexed: 01/25/2023]
Abstract
Infection with the malaria parasite Plasmodium falciparum induces osmolyte and anion channels in the host erythrocyte membrane involving ATP release and autocrine purinergic signaling. P. falciparum-parasitized but not unstimulated uninfected erythrocytes released ATP in a 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB; 7 microM)-sensitive and serum album (SA; 0.5% w/v)-stimulated manner. Since Plasmodium infection of human erythrocytes induces SA-dependent outwardly (OR) and SA-independent inwardly rectifying (IR) anion conductances, we tested whether the infection-induced OR channels directly generate an ATP release pathway. P. falciparum-parasitized erythrocytes were recorded in whole-cell mode with either Cl(-) or ATP as the only anion in the bath or pipette. In parasitized cells with predominant OR activity, replacement of bath NaCl by Na-ATP (NMDG-Cl pipette solution) shifted the current reversal potential (V (rev)) from -2 +/- 1 to +51 +/- 3 mV (n = 15). In cells with predominant IR activity, in contrast, the same maneuver induced a shift of V (rev) to significantly larger (p < or = 0.05, two-tailed t test) values (from -3 +/- 1 to +66 +/- 8 mV; n = 5) and an almost complete inhibition of outward current. The anion channel blocker NPPB reversibly decreased the ATP-generated OR currents from 1.1 +/- 0.1 nS to 0.2 +/- 0.05 nS and further shifted V (rev) to +87 +/- 7 mV (n = 12). The NPPB-sensitive fraction of the OR reversed at +48 +/- 4 mV suggesting a relative permeability of P (ATP)/P (Cl) approximately 0.01. Together, these data raise the possibility that the OR might be the electrophysiological correlate of an erythrocyte ATP release pathway.
Collapse
Affiliation(s)
- Canan Akkaya
- Department of Physiology, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Kasinathan RS, Föller M, Lang C, Koka S, Lang F, Huber SM. Oxidation induces ClC-3-dependent anion channels in human leukaemia cells. FEBS Lett 2007; 581:5407-12. [DOI: 10.1016/j.febslet.2007.10.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 10/17/2007] [Accepted: 10/17/2007] [Indexed: 02/07/2023]
|
47
|
Erlinge D, Burnstock G. P2 receptors in cardiovascular regulation and disease. Purinergic Signal 2007; 4:1-20. [PMID: 18368530 PMCID: PMC2245998 DOI: 10.1007/s11302-007-9078-7] [Citation(s) in RCA: 280] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 08/22/2007] [Indexed: 12/11/2022] Open
Abstract
The role of ATP as an extracellular signalling molecule is now well established and evidence is accumulating that ATP and other nucleotides (ADP, UTP and UDP) play important roles in cardiovascular physiology and pathophysiology, acting via P2X (ion channel) and P2Y (G protein-coupled) receptors. In this article we consider the dual role of ATP in regulation of vascular tone, released as a cotransmitter from sympathetic nerves or released in the vascular lumen in response to changes in blood flow and hypoxia. Further, purinergic long-term trophic and inflammatory signalling is described in cell proliferation, differentiation, migration and death in angiogenesis, vascular remodelling, restenosis and atherosclerosis. The effects on haemostasis and cardiac regulation is reviewed. The involvement of ATP in vascular diseases such as thrombosis, hypertension and diabetes will also be discussed, as well as various heart conditions. The purinergic system may be of similar importance as the sympathetic and renin-angiotensin-aldosterone systems in cardiovascular regulation and pathophysiology. The extracellular nucleotides and their cardiovascular P2 receptors are now entering the phase of clinical development.
Collapse
Affiliation(s)
- David Erlinge
- Department of Cardiology, Lund University Hospital, 22185, Lund, Sweden,
| | | |
Collapse
|
48
|
Sluyter R, Shemon AN, Hughes WE, Stevenson RO, Georgiou JG, Eslick GD, Taylor RM, Wiley JS. Canine erythrocytes express the P2X7 receptor: greatly increased function compared with human erythrocytes. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2090-8. [PMID: 17761513 DOI: 10.1152/ajpregu.00166.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over three decades ago, Parker and Snow (Am J Physiol 223: 888-893, 1972) demonstrated that canine erythrocytes undergo an increase in cation permeability when incubated with extracellular ATP. In this study we examined the expression and function of the channel/pore-forming P2X(7) receptor on canine erythrocytes. P2X(7) receptors were detected on canine erythrocytes by immunocytochemistry and immunoblotting. Extracellular ATP induced (86)Rb(+) (K(+)) efflux from canine erythrocytes that was 20 times greater than that from human erythrocytes. The P2X(7) agonist 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-trisphosphate (BzATP) was more potent than ATP, and both stimulated (86)Rb(+) efflux from erythrocytes in a dose-dependent fashion with EC(50) values of approximately 7 and approximately 309 microM, respectively. 2-Methylthioadenosine 5'-triphosphate and adenosine 5'-O-(3-thiotriphosphate) induced a smaller (86)Rb(+) efflux from erythrocytes, whereas ADP, AMP, UTP, or adenosine had no effect. ATP-induced (86)Rb(+) efflux from erythrocytes was inhibited by oxidized ATP, KN-62, and Brilliant blue G, known P2X(7) antagonists. ATP also induced uptake of choline(+) into canine erythrocytes that was 60 times greater than that into human erythrocytes. Overnight incubation of canine erythrocytes with ATP and BzATP induced phosphatidylserine exposure in >80% of cells and caused up to 20% hemolysis. In contrast, <30% of human erythrocytes showed phosphatidylserine exposure after overnight incubation with ATP and BzATP, and hemolysis was negligible. Flow cytometric measurements of ATP-induced ethidium(+) uptake showed that P2X(7) function was three times lower in canine monocytes than in human monocytes. These data show that the massive cation permeability increase induced by extracellular ATP in canine erythrocytes results from activation and opening of the P2X(7) receptor channel/pore.
Collapse
Affiliation(s)
- Ronald Sluyter
- Dept. of Medicine, University of Sydney, Nepean Clinical School, Penrith, New South Wales, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sluyter R, Shemon AN, Wiley JS. P2X(7) receptor activation causes phosphatidylserine exposure in human erythrocytes. Biochem Biophys Res Commun 2007; 355:169-73. [PMID: 17286963 DOI: 10.1016/j.bbrc.2007.01.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 01/24/2007] [Indexed: 12/23/2022]
Abstract
Activation of cation channels causes erythrocyte phosphatidylserine (PS) exposure and cell shrinkage. Human erythrocytes express the P2X(7) receptor, an ATP-gated cation channel. The two most potent P2X(7) agonists, BzATP and ATP, stimulated PS exposure in human erythrocytes. Other nucleotides also induced erythrocyte PS exposure with an order of agonist potency of BzATP>ATP>2MeSATP>ATPgammaS; however neither ADP nor UTP had an effect. ATP induced PS exposure in erythrocytes in a dose-dependent fashion with an EC(50) of approximately 75 microM. BzATP- and ATP-induced erythrocyte PS exposure was impaired by oxidised ATP, as well as in erythrocytes from subjects who had inherited loss-of-function polymorphisms in the P2X(7) receptor. ATP-induced PS exposure in erythrocytes was not significantly altered in the presence of EGTA excluding a role for extracellular Ca(2+). These results show that P2X(7) activation by extracellular ATP can induce PS exposure in erythrocytes.
Collapse
Affiliation(s)
- Ronald Sluyter
- Department of Medicine, Nepean Clinical School, University of Sydney, Penrith, NSW, Australia.
| | | | | |
Collapse
|
50
|
Kasinathan RS, Föller M, Koka S, Huber SM, Lang F. Inhibition of eryptosis and intraerythrocytic growth of Plasmodium falciparum by flufenamic acid. Naunyn Schmiedebergs Arch Pharmacol 2006; 374:255-64. [PMID: 17180616 DOI: 10.1007/s00210-006-0122-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 11/02/2006] [Indexed: 12/17/2022]
Abstract
Non-selective (NSC) cation channels participate in the Ca(2+) leak of human erythrocytes. Sustained activity of these channels triggers suicidal erythrocyte death (eryptosis), which is characterized by Ca(2+)-stimulated cell shrinkage and phosphatidylserine (PS) exposure. PS-exposing erythrocytes are rapidly cleared from circulating blood. PGE(2) activates the NSC channels, and erythrocyte PGE(2) formation is stimulated by a decrease in intra- or extracellular Cl(-) concentration. In addition, the intraerythrocytic malaria parasite Plasmodium falciparum activates the NSC channels, most probably to accomplish Na(+) and Ca(2+) entry into the erythrocyte cytosol required for parasite development. By Ca(2+) uptake the parasite maintains a low Ca(2+) concentration in the erythrocyte cytosol and thus delays the suicidal death of the host erythrocyte. Flufenamic acid has previously been shown to inhibit NSC channels. The present study thus explored the effect of flufenamic acid on erythrocyte Ca(2+) entry, on suicidal erythrocyte death and on intraerythrocytic growth of P. falciparum. Within 48 h, replacement of extracellular Cl(-) with gluconate or application of PGE(2) (50 microM) increased Fluo3 fluorescence reflecting cytosolic Ca(2+) activity, decreased forward scatter reflecting cell volume and increased annexin V binding reflecting PS exposure in FACS analysis. All those effects were significantly blunted in the presence of flufenamic acid (10 microM). Flufenamic acid (25 microM) further significantly delayed the intraerythrocytic growth of P. falciparum and the PS exposure of the infected erythrocytes. The present observations disclose a novel effect of flufenamic acid, which may allow the pharmacological manipulation of erythrocyte survival and the course of malaria.
Collapse
Affiliation(s)
- Ravi S Kasinathan
- Department of Physiology, University of Tübingen, Gmelinstrasse 5, Tübingen, Germany
| | | | | | | | | |
Collapse
|