1
|
Zhang Y, Huang C, Zhao J, Hu L, Yang L, Zhang Y, Sang W. Insights into tolerance mechanisms of earthworms (Eisenia fetida) in copper-contaminated soils by integrating multi-omics analyses. ENVIRONMENTAL RESEARCH 2024; 252:118910. [PMID: 38604487 DOI: 10.1016/j.envres.2024.118910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/17/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Earthworms can resist high levels of soil copper (Cu) contamination and play an essential role in absorbing them effectively. However, the molecular mechanisms underlying Cu tolerance in earthworms are poorly understood. To address this research gap, we studied alterations of Eisenia fetida in antioxidant enzymes, gut microbiota, metabolites, and genes under varying levels of Cu exposure soils (0, 67.58, 168.96, 337.92 mg/kg). Our results revealed a reduction in antioxidant enzyme activities across all treatment groups, indicating an adaptive response to alleviate Cu-induced oxidative stress. Analysis of gut microbiota revealed a significant increase in the abundance of bacteria associated with nutrient uptake and Cu2+ excretion under Cu stress. Furthermore, metabolomic analysis discovered an increase in certain metabolites associated with energy metabolism, such as pyruvic acid, L-malic acid, and fumaric acid, as Cu concentration escalated. These results suggested that enhanced energy supply contributes to the elevated tolerance of E. fetida towards Cu. Additionally, transcriptome analysis not only identified crucial detoxification genes (Hsp70, CTSL, GST, CHAC, and GCLC), but also confirmed the critical role of glutathione metabolism as a key pathway in E. fetida Cu detoxification processes. These findings provide a new perspective on the molecular mechanisms of Cu tolerance in earthworms.
Collapse
Affiliation(s)
- Yanliang Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Chenyu Huang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jinqi Zhao
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Luyi Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Lan Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yuanyuan Zhang
- Beijing Milu Ecological Research Center, Beijing, 100076, China; Beijing Biodiversity Conservation Research Center, Beijing, 100076, China.
| | - Weiguo Sang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
2
|
Wang P, Du S, Guo C, Ni Z, Huang Z, Deng N, Bao H, Deng W, Lu J, Kong S, Zhang H, Wang H. The presence of blastocyst within the uteri facilitates lumenal epithelium transformation for implantation via upregulating lysosome proteostasis activity. Autophagy 2024; 20:58-75. [PMID: 37584546 PMCID: PMC10761037 DOI: 10.1080/15548627.2023.2247747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
ABBREVIATIONS ACTB: actin beta; AREG: amphiregulin; ATP6V0A4: ATPase, H+ transporting, lysosomal V0 subunit A4; Baf A1: bafilomycin A1; BSA: bovine serum albumin; CLDN1: claudin 1; CTSB: cathepsin B; DEGs: differentially expressed genes; E2: 17β-estradiol; ESR: estrogen receptor; GATA2: GATA binding protein 2; GLA: galactosidase, alpha; GO: gene ontology; HBEGF: heparin-binding EGF-like growth factor; IGF1R: insulin-like growth factor 1 receptor; Ihh: Indian hedgehog; ISH: in situ hybridization; LAMP1: lysosomal-associated membrane protein 1; LCM: laser capture microdissection; Le: lumenal epithelium; LGMN: legumain; LIF: leukemia inhibitory factor; LIFR: LIF receptor alpha; MSX1: msh homeobox 1; MUC1: mucin 1, transmembrane; P4: progesterone; PBS: phosphate-buffered saline; PCA: principal component analysis; PPT1: palmitoyl-protein thioesterase 1; PGR: progesterone receptor; PSP: pseudopregnancy; PTGS2/COX2: prostaglandin-endoperoxide synthase 2; qPCR: quantitative real-time polymerase chain reaction; SP: pregnancy; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Peike Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shuailin Du
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Chuanhui Guo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zhangli Ni
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ziying Huang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Na Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Zhang Y, Li Q, Wang Z, Dong Y, Yi D, Wu T, Wang L, Zhao D, Hou Y. Dietary supplementation with a complex of cinnamaldehyde, carvacrol, and thymol negatively affects the intestinal function in LPS-challenged piglets. Front Vet Sci 2023; 10:1098579. [PMID: 37065240 PMCID: PMC10097997 DOI: 10.3389/fvets.2023.1098579] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
Background The effects of cinnamaldehyde, carvacrol and thymol complex (CCT) on the growth performance and intestinal function of piglets challenged with lipopolysaccharide (LPS) were determined. Colistin sulphate (CS) was as a positive control. Method Piglets (n = 24, 32 days of age) were allocated to four treatments: Control group (fed basal diet), LPS group (fed basal diet), CS+LPS group (fed basal diet + 50 mg/kg CS), and CCT+LPS group (fed basal diet + 50 mg/kg CCT). Results Results showed that diarrhea rates of piglets were significantly reduced by CCT and CS supplementation respectively. Further research showed that CS supplementation tended to improve the intestinal absorption function in LPS-challenged piglets. Moreover, CS supplementation significantly reduced the contents of cortisol in blood and malondialdehyde in the duodenum and the activities of inducible nitric oxide synthase in the duodenum and ileum and total nitric oxide synthase in the ileum in LPS-challenged piglets. CS supplementation significantly increased the activities of sucrase in the ileum and myeloperoxidase in the jejunum in LPS-challenged piglets. CS supplementation significantly alleviated the reduced mRNA levels of immune-related genes (IL-4, IL-6, IL-8, IL-10) in mesenteric lymph nodes and jejunum and mucosal growth-related genes (IGF-1, mTOR, ALP) in LPS-challenged piglets. These results suggested that CS supplementation improved the intestinal function in LPS-challenged piglets by improving intestinal oxidative stress, immune stress, and absorption and repair function. However, although CCT supplementation improved oxidative stress by reducing (p < 0.05) the content of malondialdehyde and the activity of nitric oxide synthase in the duodenum, CCT supplementation tended to aggravate the intestinal absorption dysfunction in LPS-challenged piglets. Furthermore, compared with the control and LPS groups, CCT supplementation remarkably elevated the content of prostaglandin in plasma and the mRNA levels of pro-inflammatory factor IL-6 in mesenteric lymph nodes and jejunum, and reduced the activity of maltase in the ileum in LPS-challenged piglets. These results suggested that CCT supplementation had a negative effect on intestinal function by altering intestinal immune stress response and reducing disaccharidase activity in LPS-challenged piglets. Conclusions Compared to CS, CCT supplementation exhibited a negative effect on intestinal function, suggesting whether CCT can be as an effective feed additive still needs further study.
Collapse
|
4
|
Jones C, Avino M, Giroux V, Boudreau F. HNF4α Acts as Upstream Functional Regulator of Intestinal Wnt3 and Paneth Cell Fate. Cell Mol Gastroenterol Hepatol 2023; 15:593-612. [PMID: 36464209 PMCID: PMC9871320 DOI: 10.1016/j.jcmgh.2022.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND & AIMS The intestinal epithelium intrinsically renews itself ex vivo via the proliferation of Lgr5+ intestinal stem cells, which is sustained by the establishment of an epithelial stem cell niche. Differentiated Paneth cells are the main source of epithelial-derived niche factor supplies and produce Wnt3 as an essential factor in supporting Lgr5+ stem cell activity in the absence of redundant mesenchymal Wnts. Maturation of Paneth cells depends on canonical Wnt signaling, but few transcriptional regulators have been identified to this end. The role of HNF4α in intestinal epithelial cell differentiation is considered redundant with its paralog HNF4γ. However, it is unclear whether HNF4α alone controls intrinsic intestinal epithelial cell growth and fate in the absence of a mesenchymal niche. METHODS We used transcriptomic analyses to dissect the role of HNF4α in the maintenance of jejunal epithelial culture when cultured ex vivo as enteroids in the presence or absence of compensatory mesenchymal cells. RESULTS HNF4α plays a crucial role in supporting the growth and survival of jejunal enteroids. Transcriptomic analyses revealed an autonomous function of HNF4α in Wnt3 transcriptional regulation and Paneth cell differentiation. We showed that Wnt3a supplementation or co-culture with intestinal subepithelial mesenchymal cells reversed cell death and transcriptional changes caused by the deletion of Hnf4a in jejunal enteroids. CONCLUSIONS Our results support the intrinsic epithelial role of HNF4α in regulating Paneth cell homeostasis and intestinal epithelium renewal in the absence of compensatory Wnt signaling.
Collapse
Affiliation(s)
- Christine Jones
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mariano Avino
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Véronique Giroux
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Francois Boudreau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
5
|
Bigot P, Chesseron S, Saidi A, Sizaret D, Parent C, Petit-Courty A, Courty Y, Lecaille F, Lalmanach G. Cleavage of Occludin by Cigarette Smoke-Elicited Cathepsin S Increases Permeability of Lung Epithelial Cells. Antioxidants (Basel) 2022; 12:antiox12010005. [PMID: 36670867 PMCID: PMC9854811 DOI: 10.3390/antiox12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is an irreversible disease mainly caused by smoking. COPD is characterized by emphysema and chronic bronchitis associated with enhanced epithelial permeability. HYPOTHESIS Lung biopsies from smokers revealed a decreased expression level of occludin, which is a protein involved in the cohesion of epithelial tight junctions. Moreover, the occludin level correlated negatively with smoking history (pack-years), COPD grades, and cathepsin S (CatS) activity. Thus, we examined whether CatS could participate in the modulation of the integrity of human lung epithelial barriers. METHODS AND RESULTS Cigarette smoke extract (CSE) triggered the upregulation of CatS by THP-1 macrophages through the mTOR/TFEB signaling pathway. In a co-culture model, following the exposure of macrophages to CSE, an enhanced level of permeability of lung epithelial (16HBE and NHBE) cells towards FITC-Dextran was observed, which was associated with a decrease in occludin level. Similar results were obtained using 16HBE and NHBE cells cultured at the air-liquid interface. The treatment of THP-1 macrophages by CatS siRNAs or by a pharmacological inhibitor restored the barrier function of epithelial cells, suggesting that cigarette smoke-elicited CatS induced an alteration of epithelial integrity via the proteolytic injury of occludin. CONCLUSIONS Alongside its noteworthy resistance to oxidative stress induced by cigarette smoke oxidants and its deleterious elastin-degrading potency, CatS may also have a detrimental effect on the barrier function of epithelial cells through the cleavage of occludin. The obtained data emphasize the emerging role of CatS in smoking-related lung diseases and strengthen the relevance of targeting CatS in the treatment of emphysema and COPD.
Collapse
Affiliation(s)
- Paul Bigot
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Simon Chesseron
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Ahlame Saidi
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Damien Sizaret
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Pathological Anatomy and Cytology, The University Hospital Center of Tours, 37000 Tours, France
| | - Christelle Parent
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Aerosol therapy and Biotherapeutics for Respiratory Diseases”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Agnès Petit-Courty
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Yves Courty
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Fabien Lecaille
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Gilles Lalmanach
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
- Correspondence: ; Tel.: +33-2-47-36-61-51
| |
Collapse
|
6
|
Zoncu R, Perera RM. Built to last: lysosome remodeling and repair in health and disease. Trends Cell Biol 2022; 32:597-610. [DOI: 10.1016/j.tcb.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/21/2022]
|
7
|
NCOR1 Sustains Colorectal Cancer Cell Growth and Protects against Cellular Senescence. Cancers (Basel) 2021; 13:cancers13174414. [PMID: 34503224 PMCID: PMC8430780 DOI: 10.3390/cancers13174414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary NCOR1 is a scaffold protein that interacts with multiple partners to repress gene transcription. NCOR1 controls immunometabolic functions in several tissues and has been recently shown to protect against experimental colitis in mice. Our laboratory has observed a pro-proliferative role of NCOR1 in normal intestinal epithelial cells. However, it is unclear whether NCOR1 is functionally involved in colon cancer. This study demonstrated that NCOR1 is required for colorectal cancer cell growth. Depletion of NCOR1 caused these cells to become senescent. Transcriptomic signatures confirmed these observations but also predicted the potential for these cells to become pro-invasive. Thus, NCOR1 plays a novel role in preventing cancer-associated senescence and could represent a target for controlling colon cancer progression. Abstract NCOR1 is a corepressor that mediates transcriptional repression through its association with nuclear receptors and specific transcription factors. Some evidence supports a role for NCOR1 in neonatal intestinal epithelium maturation and the maintenance of epithelial integrity during experimental colitis in mice. We hypothesized that NCOR1 could control colorectal cancer cell proliferation and tumorigenicity. Conditional intestinal epithelial deletion of Ncor1 in ApcMin/+ mice resulted in a significant reduction in polyposis. RNAi targeting of NCOR1 in Caco-2/15 and HT-29 cell lines led to a reduction in cell growth, characterized by cellular senescence associated with a secretory phenotype. Tumor growth of HT-29 cells was reduced in the absence of NCOR1 in the mouse xenografts. RNA-seq transcriptome profiling of colon cancer cells confirmed the senescence phenotype in the absence of NCOR1 and predicted the occurrence of a pro-migration cellular signature in this context. SOX2, a transcription factor essential for pluripotency of embryonic stem cells, was induced under these conditions. In conclusion, depletion of NCOR1 reduced intestinal polyposis in mice and caused growth arrest, leading to senescence in human colorectal cell lines. The acquisition of a pro-metastasis signature in the absence of NCOR1 could indicate long-term potential adverse consequences of colon-cancer-induced senescence.
Collapse
|
8
|
Hentschel V, Groß R, Krüger J, Münch J, Müller M, Kleger A. [SARS-CoV-2 and the digestive tract - Organoids to model gastrointestinal infection]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 59:1205-1213. [PMID: 34311478 DOI: 10.1055/a-1500-8420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 is a novel human pathogenic coronavirus whose predilection for the respiratory tract has given rise to a rapid pandemic spread via airborne particles. Organ-specific susceptibility is substantially determined by the density of cell surface expression of ACE2, which is exploited by viral spike protein as a receptor molecule to mediate adhesion and, thus, to permit internalization of the viral genome into the host cell. Based on an ample data set derived from clinical studies and case reports, evidence suggests that distinct cell populations of the digestive and olfactory-gustatory system are equally equipped with membrane-bound ACE2, rendering them "vulnerable" to SARS-CoV-2. Numerous reports on concomitant gastrointestinal complaints and laboratory abnormalities are thought to reflect a relevant degree of organ dysfunction and underscore the tropism of SARS-CoV-2 for the digestive tract. Organoids are three-dimensional in vitro replicas of organ tissue which, owing to their organotypic complex cellular composition and functional resemblance to primary cells, are particularly appreciated for basic research in the field of infectious diseases. This review specifically addresses the involvement of digestive organs by SARS-CoV-2 and outlines the significant contribution of organoid- and primary-cell culture-based models to gaining a deeper understanding of the underlying pathophysiological processes.
Collapse
Affiliation(s)
| | - Rüdiger Groß
- Institut für molekulare Virologie, Universitätsklinik Ulm, Ulm, Germany
| | - Jana Krüger
- Klinik für Innere Medizin I, Universitätsklinik Ulm, Ulm, Germany
| | - Jan Münch
- Institut für molekulare Virologie, Universitätsklinik Ulm, Ulm, Germany
| | - Martin Müller
- Klinik für Innere Medizin I, Universitätsklinik Ulm, Ulm, Germany
| | - Alexander Kleger
- Klinik für Innere Medizin I, Universitätsklinik Ulm, Ulm, Germany
| |
Collapse
|
9
|
Parigiani MA, Ketscher A, Timme S, Bronsert P, Schlimpert M, Kammerer B, Jacquel A, Chaintreuil P, Reinheckel T. Conditional Gene Targeting Reveals Cell Type-Specific Roles of the Lysosomal Protease Cathepsin L in Mammary Tumor Progression. Cancers (Basel) 2020; 12:E2004. [PMID: 32707827 PMCID: PMC7463523 DOI: 10.3390/cancers12082004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Cathepsin L (Ctsl) is a cysteine protease mainly located within the endosomal/lysosomal cell compartment. High expression of Ctsl indicates poor prognosis in human breast cancer. However, the cell type-specific Ctsl functions responsible for this association remain elusive. Methods: Because constitutive Ctsl-/- mice develop a complex phenotype, we developed a conditional model allowing for cell type-specific inactivation of Ctsl in mammary epithelium or myeloid cells in the transgenic mouse mammary tumor virus (MMTV)-polyoma middle T (PyMT) breast cancer model. Results: Ctsl ablation in mammary epithelial cells resulted in delayed initiation and end-stage of cancers. The latter displayed large dead cell areas. Inducible in vitro deletion of Ctsl in MMTV-PyMT-derived breast cancer cells revealed expansion of the acidic cell compartment, alteration of intracellular amino acid levels, and impaired mTOR signaling. In consequence, Ctsl-deficient cells exhibited slow growth rates and high apoptosis susceptibility. In contrast to Ctsl-deficient mammary epithelium, selective knockout of Ctsl in myeloid cells had no effects on primary tumors, but promoted lung metastasis formation. Conclusions: Our cell type-specific in vivo analysis provides strong evidence for a cancer cell-intrinsic, tumor-promoting role of Ctsl in primary breast cancer, whereas metastasis is negatively regulated by Ctsl expressed by bone marrow-derived cells.
Collapse
Affiliation(s)
- María Alejandra Parigiani
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Stefan Meier Str. 17, 79104 Freiburg, Germany; (M.A.P.); (A.K.)
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schaenzle Str. 1, 79104 Freiburg, Germany;
| | - Anett Ketscher
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Stefan Meier Str. 17, 79104 Freiburg, Germany; (M.A.P.); (A.K.)
| | - Sylvia Timme
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Breisacher Str. 115A, 79106 Freiburg, Germany; (S.T.); (P.B.)
- Tumorbank Comprehensive Cancer Center Freiburg, Medical Center–University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Breisacher Str. 153, 79110 Freiburg, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Breisacher Str. 115A, 79106 Freiburg, Germany; (S.T.); (P.B.)
- Tumorbank Comprehensive Cancer Center Freiburg, Medical Center–University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Breisacher Str. 153, 79110 Freiburg, Germany
| | - Manuel Schlimpert
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schaenzle Str. 1, 79104 Freiburg, Germany;
- Center for Biological Systems Analysis (ZBSA), University of Freiburg, 79104 Freiburg, Germany;
| | - Bernd Kammerer
- Center for Biological Systems Analysis (ZBSA), University of Freiburg, 79104 Freiburg, Germany;
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schaenzle Str. 18, 79104 Freiburg, Germany
| | - Arnaud Jacquel
- Université Côte d’Azur, C3M Inserm U1065, 06204 Nice, France; (A.J.); (P.C.)
- INSERM U1065, C3M, Team: Myeloid Malignancies and Multiple Myeloma, 06204 Nice, France
- Equipe Labellisée par la Fondation ARC, 94803 Villejuif, France
| | - Paul Chaintreuil
- Université Côte d’Azur, C3M Inserm U1065, 06204 Nice, France; (A.J.); (P.C.)
- INSERM U1065, C3M, Team: Myeloid Malignancies and Multiple Myeloma, 06204 Nice, France
- Equipe Labellisée par la Fondation ARC, 94803 Villejuif, France
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Stefan Meier Str. 17, 79104 Freiburg, Germany; (M.A.P.); (A.K.)
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schaenzle Str. 18, 79104 Freiburg, Germany
- Faculty German Cancer Consortium (DKTK), Partner Site Freiburg, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Hölzen L, Parigiani MA, Reinheckel T. Tumor cell- and microenvironment-specific roles of cysteine cathepsins in mouse models of human cancers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140423. [PMID: 32247787 DOI: 10.1016/j.bbapap.2020.140423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 12/22/2022]
Abstract
The human genome encodes for 11 papain-like endolysosomal cysteine peptidases, collectively known as the cysteine cathepsins. Based on their biochemical properties and with the help of experiments in cell culture, the cysteine cathepsins have acquired a reputation as promotors of progression and metastasis of various cancer entities. However, tumors are known to be complex tissues in which non-cancerous cells are also critical for tumorigenesis. Here we discuss the results of the intense investigation of cathepsins in mouse models of human cancers. We focus on models in immunocompetent mice, because only such models allow for analysis of cathepsins in a fully functional tumor microenvironment. An important outcome of those studies was the identification of cancer-promoting cathepsins in tumor-associated macrophages. Another interesting outcome of these animal studies was the identification of a homeostatic tumor-suppressive role for cathepsin L in skin and intestinal cancers. Taken together, these in vivo findings provide a basis for the use of cysteine cathepsins as therapeutic targets, prodrug activators, or as proteases for imaging tumors.
Collapse
Affiliation(s)
- Lena Hölzen
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany
| | - Maria Alejandra Parigiani
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Chen J, Zhang L, Yang N, Cao M, Tian M, Fu Q, Su B, Li C. Characterization of the immune roles of cathepsin L in turbot (Scophthalmus maximus L.) mucosal immunity. FISH & SHELLFISH IMMUNOLOGY 2020; 97:322-335. [PMID: 31805413 DOI: 10.1016/j.fsi.2019.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Cathepsin L (CTSL) is one of the crucial enzymes in cathepsin family, which has been widely known for its involvement in the innate immunity. However, it still remains poorly understood how CTSL modulates the immune system of teleosts. In this study, we captured three cathepsin L genes (SmCTSL, SmCTSL.1 and SmCTSL1) from turbot (Scophthalmus maximus). The coding sequences of SmCTSL, SmCTSL.1 and SmCTSL1 are 1,026 bp, 1,005 bp and 1,017 bp in length and encode 341, 334 and 338 amino acids, respectively. In details, transcripts of CTSL genes share same domains as other CTSL genes, one signal peptide, one propeptide and one papain family cysteine protease domain. Protein interaction network analysis indicated that turbot CTSL genes may play important roles in apoptotic signaling and involve in innate immune response. Evidence from subcellular localization demonstrated that the three Cathepsin L proteins were ubiquitous in nucleus and cytoplasm. The cathepsin L genes were widely expressed in all the tested tissues with the highest expression level of SmCTSL in spleen, and SmCTSL.1 and SmCTSL1 in intestine. Following Vibrio anguillarum, Edwardsiella tarda and Streptococcus iniae challenge, these cathepsin L genes were significantly regulated in mucosal tissues in all the challenges, especially significant down-regulation occurred rapidly in intestine in all the three challenges. In addition, the three cathepsin L genes showed strong binding ability to all the examined microbial ligands (LPS, PGN and LTA). Further studies should be used to analyze the specific function of these three cathepsin L genes. By then, we can use their function to maintain the integrity of the mucosal barrier, thereby promoting the disease resistance line and family selection in turbot.
Collapse
Affiliation(s)
- Jinghua Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lu Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Mengyu Tian
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
12
|
HNF4α is a novel regulator of intestinal glucose-dependent insulinotropic polypeptide. Sci Rep 2019; 9:4200. [PMID: 30862908 PMCID: PMC6414548 DOI: 10.1038/s41598-019-41061-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/23/2019] [Indexed: 11/24/2022] Open
Abstract
Mutations in the HNF4A gene cause MODY1 and are associated with an increased risk of Type 2 diabetes mellitus. On the other hand, incretins are hormones that potentiate reductions in blood glucose levels. Given the established role of incretin-based therapy to treat diabetes and metabolic disorders, we investigated a possible regulatory link between intestinal epithelial HNF4α and glucose-dependent insulinotropic polypeptide (GIP), an incretin that is specifically produced by gut enteroendocrine cells. Conditional deletion of HNF4α in the whole intestinal epithelium was achieved by crossing Villin-Cre and Hnf4αloxP/loxP C57BL/6 mouse models. GIP expression was measured by qPCR, immunofluorescence and ELISA. Gene transcription was assessed by luciferase and electrophoretic mobility shift assays. Metabolic parameters were analyzed by indirect calorimetry and dual-energy X-ray absorptiometry. HNF4α specific deletion in the intestine led to a reduction in GIP. HNF4α was able to positively control Gip transcriptional activity in collaboration with GATA-4 transcription factor. Glucose homeostasis and glucose-stimulated insulin secretion remained unchanged in HNF4α deficient mice. Changes in GIP production in these mice did not impact nutrition or energy metabolism under normal physiology but led to a reduction of bone area and mineral content, a well described physiological consequence of GIP deficiency. Our findings point to a novel regulatory role between intestinal HNF4α and GIP with possible functional impact on bone density.
Collapse
|
13
|
Li Y, Wu J, Niu Y, Chen H, Tang Q, Zhong Y, Lambers TT, Cai W. Milk Fat Globule Membrane Inhibits NLRP3 Inflammasome Activation and Enhances Intestinal Barrier Function in a Rat Model of Short Bowel. JPEN J Parenter Enteral Nutr 2018; 43:677-685. [PMID: 30144105 DOI: 10.1002/jpen.1435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND The milk fat globule membrane (MFGM) contains various bioactive components which have been shown to maintain gut barrier integrity. This study aimed to evaluate the protective effects of MFGM on intestinal barrier function and its possible mechanisms in a rat model of short bowel syndrome (SBS). MATERIALS AND METHODS Five-week-old male Sprague-Dawley rats were divided into 3 groups (n = 8 per group), consisting of Sham group and rats submitted to massive small-bowel resection then supplemented with either water (SBS) or 1.5g/kg/d MFGM (SBS+MFGM) by daily gavage. Rats were sacrificed on day 15 postoperation. Intestinal adaptation, gut permeability, bacterial translocation (BT), expression of tight junction proteins, mucin 1 (MUC1), and nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) pathway in the ileum were evaluated. RESULTS Both SBS+MFGM and SBS groups exhibited lower body weight and higher ileum villus height than Sham group, but no difference was detected between each other. SBS group had significantly higher intestinal permeability and BT rate than other groups (P < .05). Compared with SBS rats, SBS+MFGM group showed higher expression of tight junction proteins and MUC1, lower expression of NLRP3 and caspase-1 in the ileum, as well as lower interleukin (IL)-1β but higher IL-18 levels in ileum tissue. CONCLUSIONS Supplementation of MFGM helps to modulate NLRP3 inflammasome activation and enhances gut barrier integrity in rats after massive small-bowel resection, which provides experimental support for potential applications of MGFM in intestinal barrier dysfunction, although further studies are needed.
Collapse
Affiliation(s)
- Ying Li
- Department of Clinical Nutrition, Xin Hua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Wu
- Department of Clinical Nutrition, Xin Hua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yang Niu
- Department of Clinical Nutrition, Xin Hua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honghao Chen
- Department of Clinical Nutrition, Xin Hua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingya Tang
- Department of Clinical Nutrition, Xin Hua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yan Zhong
- Mead Johnson Pediatric Nutrition Institute, Nijmegen, the Netherlands
| | - Tim T Lambers
- Mead Johnson Pediatric Nutrition Institute, Nijmegen, the Netherlands
| | - Wei Cai
- Department of Clinical Nutrition, Xin Hua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Department of Pediatric Surgery, Xin Hua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Babeu JP, Jones C, Geha S, Carrier JC, Boudreau F. P1 promoter-driven HNF4α isoforms are specifically repressed by β-catenin signaling in colorectal cancer cells. J Cell Sci 2018; 131:jcs.214734. [PMID: 29898915 DOI: 10.1242/jcs.214734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/31/2018] [Indexed: 01/19/2023] Open
Abstract
HNF4α is a key nuclear receptor for regulating gene expression in the gut. Although both P1 and P2 isoform classes of HNF4α are expressed in colonic epithelium, specific inhibition of P1 isoforms is commonly found in colorectal cancer. Previous studies have suggested that P1 and P2 isoforms might regulate different cellular functions. Despite these advances, it remains unclear whether these isoform classes are functionally divergent in the context of human biology. Here, the consequences of specific inhibition of P1 or P2 isoform expression was measured in a human colorectal cancer cell transcriptome. Results indicate that P1 isoforms were specifically associated with the control of cell metabolism, whereas P2 isoforms globally supported aberrant oncogenic signalization, promoting cancer cell survival and progression. P1 promoter-driven isoform expression was found to be repressed by β-catenin, one of the earliest oncogenic pathways to be activated during colon tumorigenesis. These findings identify a novel cascade by which the expression of P1 isoforms is rapidly shut down in the early stages of colon tumorigenesis, allowing a change in HNF4α-dependent transcriptome, thereby promoting colorectal cancer progression.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jean-Philippe Babeu
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, J1E4K8
| | - Christine Jones
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, J1E4K8
| | - Sameh Geha
- Department of Pathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, J1E4K8
| | - Julie C Carrier
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada, J1E4K8
| | - François Boudreau
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, J1E4K8.
| |
Collapse
|
15
|
Yi D, Li B, Hou Y, Wang L, Zhao D, Chen H, Wu T, Zhou Y, Ding B, Wu G. Dietary supplementation with an amino acid blend enhances intestinal function in piglets. Amino Acids 2018; 50:1089-1100. [PMID: 29770867 DOI: 10.1007/s00726-018-2586-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022]
Abstract
The traditionally classified nutritionally non-essential amino acids are now known to be insufficiently synthesized for maximal growth and optimal health in piglets. This study determined the effects of dietary supplementation with an amino acid blend (AAB; glutamate:glutamine:glycine:arginine:N-acetylcysteine = 5:2:2:1:0.5) on piglet growth performance and intestinal functions. Sixteen piglets (24-day-old) were randomly assigned to a corn and soybean meal-based diet supplemented with 0.99% alanine (isonitrogenous control) or 1% AAB. On day 20 of the trial, blood and intestinal tissue samples were obtained from piglets. Compared with the control, AAB supplementation reduced (P < 0.05) diarrhoea incidence; plasma alanine aminotransferase and diamine oxidase activities; intestinal concentrations of hydrogen peroxide, malondialdehyde, and heat shock protein-70, and intestinal mRNA levels for interleukin-1β, interferon-γ, and chemokine (C-X-C motif) ligand-9; and the numbers of Enterobacterium family, Enterococcus genus and Clostridium coccoides in the colon digesta. Furthermore, AAB supplementation enhanced (P < 0.05): the plasma concentrations of serine, aspartate, glutamate, cysteine, tyrosine, phenylalanine, tryptophan, lysine, arginine, citrulline, ornithine, taurine, and γ-aminobutyric acid; intestinal villus height and surface area, villus height/crypt depth ratio, antioxidative enzyme activities, and mRNA levels for porcine β-defensin-1, sodium-independent amino acid transporters (b0,+AT and y+LAT1), aquaporin (AQP) 3, AQP8, AQP10, nuclear factor erythroid 2-related factor 2 and glutathione S-transferase omega-2, and protein abundances of AQP3, AQP4, claudin-1, occludin and myxovirus resistance 1; and the numbers of Bifidobacterium genus and Lactobacillus genus in the colon digesta. Collectively, these comprehensive results indicate that dietary AAB supplementation plays an important role in improving piglet growth and intestinal function.
Collapse
Affiliation(s)
- Dan Yi
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Baocheng Li
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yongqing Hou
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Lei Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Di Zhao
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hongbo Chen
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Tao Wu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ying Zhou
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Binying Ding
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Guoyao Wu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.,Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
16
|
Transcription factor CUX1 is required for intestinal epithelial wound healing and targets the VAV2-RAC1 Signalling complex. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2347-2355. [DOI: 10.1016/j.bbamcr.2017.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 01/02/2023]
|
17
|
Sigloch FC, Tholen M, Gomez-Auli A, Biniossek ML, Reinheckel T, Schilling O. Proteomic analysis of lung metastases in a murine breast cancer model reveals divergent influence of CTSB and CTSL overexpression. J Cancer 2017; 8:4065-4074. [PMID: 29187882 PMCID: PMC5706009 DOI: 10.7150/jca.21401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/09/2017] [Indexed: 12/26/2022] Open
Abstract
Studies in the MMTV-PyMT (PyMT) breast cancer mouse model have shown a strong influence of the lysosomal cysteine cathepsins B or L on lung metastasis formation. Transgenic expression of human CTSB (tgCTSB) or CTSL (tgCTSL) both led to similar metastatic phenotypes with increased metastatic burden in the PyMT mice. However, recent studies in other tumor models proved marked differences in effects of either cathepsin on the proteome composition. We sought to analyze and compare proteome changes in the metastatic proteome of PyMT mice expressing either tgCTSB or tgCTSL to evaluate similarities and differences in those models. Performing an explorative, quantitative proteome comparison based on LC-MS/MS, we identified up to 3,000 proteins from murine lung metastases in three independent biological replicates per genotype. In both cases, when compared to wild-type (WT) mice, we noticed a pronounced impact of transgene cathepsin expression on the metastasis proteome. Highlights include increased moesin, integrin beta 1 and vinexin levels in the tgCTSB dataset and increased saposin and granulin levels in the tgCTSL dataset. Importantly, non-supervised hierarchical clustering clearly separated tgCTSB vs. tgCTSL induced proteome changes. In summary, tgCTSB and tgCTSL both display a strong and distinct impact on proteome composition of lung macrometastases in the PyMT model. Our observations suggest that they impact malignant behavior in distinct ways, thus further emphasizing interest into their tumor-contextual functionality.
Collapse
Affiliation(s)
- Florian Christoph Sigloch
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Martina Tholen
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, D-79104 Freiburg, Germany.,Present address: Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Alejandro Gomez-Auli
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, D-79104 Freiburg, Germany
| | - Martin Lothar Biniossek
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
18
|
Leblanc C, Langlois M, Coulombe G, Vaillancourt‐Lavigueur V, Jones C, Carrier JC, Boudreau F, Rivard N. Epithelial Src homology region 2 domain–containing phosphatase‐1 restrains intestinal growth, secretory cell differentiation, and tumorigenesis. FASEB J 2017; 31:3512-3526. [DOI: 10.1096/fj.201601378r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Caroline Leblanc
- Département d'Anatomie et de Biologie CellulaireFaculté de Médecine et des Sciences de la SantéUniversité de Sherbrooke Sherbrooke Quebec Canada
| | - Marie‐Josée Langlois
- Département d'Anatomie et de Biologie CellulaireFaculté de Médecine et des Sciences de la SantéUniversité de Sherbrooke Sherbrooke Quebec Canada
| | - Geneviève Coulombe
- Département d'Anatomie et de Biologie CellulaireFaculté de Médecine et des Sciences de la SantéUniversité de Sherbrooke Sherbrooke Quebec Canada
| | - Vanessa Vaillancourt‐Lavigueur
- Département d'Anatomie et de Biologie CellulaireFaculté de Médecine et des Sciences de la SantéUniversité de Sherbrooke Sherbrooke Quebec Canada
| | - Christine Jones
- Département d'Anatomie et de Biologie CellulaireFaculté de Médecine et des Sciences de la SantéUniversité de Sherbrooke Sherbrooke Quebec Canada
| | - Julie C. Carrier
- Département d'Anatomie et de Biologie CellulaireFaculté de Médecine et des Sciences de la SantéUniversité de Sherbrooke Sherbrooke Quebec Canada
| | - François Boudreau
- Département d'Anatomie et de Biologie CellulaireFaculté de Médecine et des Sciences de la SantéUniversité de Sherbrooke Sherbrooke Quebec Canada
| | - Nathalie Rivard
- Département d'Anatomie et de Biologie CellulaireFaculté de Médecine et des Sciences de la SantéUniversité de Sherbrooke Sherbrooke Quebec Canada
| |
Collapse
|
19
|
Gata4 is critical to maintain gut barrier function and mucosal integrity following epithelial injury. Sci Rep 2016; 6:36776. [PMID: 27827449 PMCID: PMC5101531 DOI: 10.1038/srep36776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/20/2016] [Indexed: 12/24/2022] Open
Abstract
The intestinal epithelial barrier is critical to limit potential harmful consequences from exposure to deleterious luminal contents on the organism. Although this barrier is functionally important along the entire gut, specific regional regulatory mechanisms involved in the maintenance of this barrier are poorly defined. Herein, we identified Gata4 as a crucial regulator of barrier integrity in the mouse proximal intestinal epithelium. Conditional deletion of Gata4 in the intestine led to a drastic increase in claudin-2 expression that was associated with an important increase of gut barrier permeability without causing overt spontaneous inflammation. Administration of indomethacin, a non-steroidal anti-inflammatory drug (NSAID) that causes enteritis, led to rapid and restricted proximal small intestinal injuries in Gata4 mutant mice as opposed to control mice. Comparative analysis of gene transcript profiles from indomethacin-challenged control and Gata4 mutant mice identified defects in epithelial cell survival, inflammatory cell recruitment and tissue repair mechanisms. Altogether, these observations identify Gata4 as a novel crucial regulator of the intestinal epithelial barrier and as a critical epithelial transcription factor implicated in the maintenance of proximal intestinal mucosal integrity after injury.
Collapse
|
20
|
Coulombe G, Langlois A, De Palma G, Langlois MJ, McCarville JL, Gagné-Sanfaçon J, Perreault N, Feng GS, Bercik P, Boudreau F, Verdu EF, Rivard N. SHP-2 Phosphatase Prevents Colonic Inflammation by Controlling Secretory Cell Differentiation and Maintaining Host-Microbiota Homeostasis. J Cell Physiol 2016; 231:2529-40. [PMID: 27100271 PMCID: PMC5330278 DOI: 10.1002/jcp.25407] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022]
Abstract
Polymorphisms in the PTPN11 gene encoding for the tyrosine phosphatase SHP‐2 were described in patients with ulcerative colitis. We have recently demonstrated that mice with an intestinal epithelial cell‐specific deletion of SHP‐2 (SHP‐2IEC‐KO) develop severe colitis 1 month after birth. However, the mechanisms by which SHP‐2 deletion induces colonic inflammation remain to be elucidated. We generated SHP‐2IEC‐KO mice lacking Myd88 exclusively in the intestinal epithelium. The colonic phenotype was histologically analyzed and cell differentiation was determined by electron microscopy and lysozyme or Alcian blue staining. Microbiota composition was analyzed by 16S sequencing. Results show that innate defense genes including those specific to Paneth cells were strongly up‐regulated in SHP‐2‐deficient colons. Expansion of intermediate cells (common progenitors of the Goblet and Paneth cell lineages) was found in the colon of SHP‐2IEC‐KO mice whereas Goblet cell number was clearly diminished. These alterations in Goblet/intermediate cell ratio were noticed 2 weeks after birth, before the onset of inflammation and were associated with significant alterations in microbiota composition. Indeed, an increase in Enterobacteriaceae and a decrease in Firmicutes were observed in the colon of these mice, indicating that dysbiosis also occurred prior to inflammation. Importantly, loss of epithelial Myd88 expression inhibited colitis development in SHP‐2IEC‐KO mice, rescued Goblet/intermediate cell ratio, and prevented NFκB hyperactivation and inflammation. These data indicate that SHP‐2 is functionally important for the maintenance of appropriate barrier function and host‐microbiota homeostasis in the large intestine. J. Cell. Physiol. 231: 2529–2540, 2016. © 2016 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Geneviève Coulombe
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ariane Langlois
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Marie-Josée Langlois
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Justin L McCarville
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jessica Gagné-Sanfaçon
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Perreault
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gen-Sheng Feng
- Department of Pathology and Division of Biological Sciences, University of California San Diego, La Jolla, California
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - François Boudreau
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Nathalie Rivard
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
21
|
Gonneaud A, Turgeon N, Boudreau F, Perreault N, Rivard N, Asselin C. Distinct Roles for Intestinal Epithelial Cell-Specific Hdac1 and Hdac2 in the Regulation of Murine Intestinal Homeostasis. J Cell Physiol 2016; 231:436-48. [PMID: 26174178 DOI: 10.1002/jcp.25090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/07/2015] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium responds to and transmits signals from the microbiota and the mucosal immune system to insure intestinal homeostasis. These interactions are in part conveyed by epigenetic modifications, which respond to environmental changes. Protein acetylation is an epigenetic signal regulated by histone deacetylases, including Hdac1 and Hdac2. We have previously shown that villin-Cre-inducible intestinal epithelial cell (IEC)-specific Hdac1 and Hdac2 deletions disturb intestinal homeostasis. To determine the role of Hdac1 and Hdac2 in the regulation of IEC function and the establishment of the dual knockout phenotype, we have generated villin-Cre murine models expressing one Hdac1 allele without Hdac2, or one Hdac2 allele without Hdac1. We have also investigated the effect of short-term deletion of both genes in naphtoflavone-inducible Ah-Cre and tamoxifen-inducible villin-Cre(ER) mice. Mice with one Hdac1 allele displayed normal tissue architecture, but increased sensitivity to DSS-induced colitis. In contrast, mice with one Hdac2 allele displayed intestinal architecture defects, increased proliferation, decreased goblet cell numbers as opposed to Paneth cells, increased immune cell infiltration associated with fibrosis, and increased sensitivity to DSS-induced colitis. In comparison to dual knockout mice, intermediary activation of Notch, mTOR, and Stat3 signaling pathways was observed. While villin-Cre(ER) Hdac1 and Hdac2 deletions led to an impaired epithelium and differentiation defects, Ah-Cre-mediated deletion resulted in blunted proliferation associated with the induction of a DNA damage response. Our results suggest that IEC determination and intestinal homeostasis are highly dependent on Hdac1 and Hdac2 activity levels, and that changes in the IEC acetylome may alter the mucosal environment.
Collapse
Affiliation(s)
- Alexis Gonneaud
- Département d'anatomie et biologie cellulaire, Pavillon de recherche appliquée sur le cancer, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Naomie Turgeon
- Département d'anatomie et biologie cellulaire, Pavillon de recherche appliquée sur le cancer, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - François Boudreau
- Département d'anatomie et biologie cellulaire, Pavillon de recherche appliquée sur le cancer, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nathalie Perreault
- Département d'anatomie et biologie cellulaire, Pavillon de recherche appliquée sur le cancer, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nathalie Rivard
- Département d'anatomie et biologie cellulaire, Pavillon de recherche appliquée sur le cancer, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Claude Asselin
- Département d'anatomie et biologie cellulaire, Pavillon de recherche appliquée sur le cancer, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
22
|
Ji C, Wang L, Dai R, Shan L, Yang H, Zhu H, Meng Q. Hyperthermia exacerbates the effects of cathepsin L on claudin-1 in a blood-brain barrier model in vitro. Brain Res 2015; 1631:72-9. [PMID: 26655064 DOI: 10.1016/j.brainres.2015.11.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 01/17/2023]
Abstract
PURPOSE The effects of cathepsin L on claudin-1 expression were investigated under hyperthermic condition in a blood-brain barrier (BBB) model in vitro, in order to estimate the potential effects of hyperthermia on BBB dysfunction. MATERIALS AND METHODS Brain microvascular endothelial cells (BMECs) and astrocytes were obtained from rat brain. The BBB models were randomly divided into a sham (37°C) group, a 39°C group, a 37°C+cathepsin L group and a 39°C+cathepsin L group. The permeability of BBB was judged. The expressions of cathepsin L in astrocytes and claudin-1 in BMECs were detected using immunohistochemistry method and western blot assay. RESULTS The permeability of BBB models was higher in the 39°C group than in the sham group. The cathepsin L expression in astrocytes was higher in the 39°C group than in the sham group (P<0.01), whereas the claudin-1 expression in BMECs was lower in the 39°C group than in the sham group (P<0.01). The claudin-1 expression in BMECs was significantly lower in the 37°C+cathepsin L group than in the sham group (P<0.01). At the same time point, the claudin-1 expression in BMECs was significantly lower in the 39°C+cathepsin L group than in the 37°C+cathepsin L group (P<0.01). CONCLUSION Hyperthermia can probably decrease claudin-1 expression in BMECs by upregulating cathepsin L expression in astrocytes in a BBB model in vitro.
Collapse
Affiliation(s)
- Conghua Ji
- Department of Postgraduate, Kunming Medical University, Kunming, Yunnan, China
| | - Limin Wang
- Department of Postgraduate, Kunming Medical University, Kunming, Yunnan, China
| | - Rongrong Dai
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Li Shan
- Department of Postgraduate, Kunming Medical University, Kunming, Yunnan, China
| | - Hui Yang
- Department of Pathology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Hongyan Zhu
- Department of Clinical Laboratory, the Affiliated Kunhua Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qiang Meng
- Department of Neurology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| |
Collapse
|
23
|
Wang R, Song L, Su B, Zhao H, Zhang D, Peatman E, Li C. Mucosal expression signatures of two Cathepsin L in channel catfish (Ictalurus punctatus) following bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2015; 47:582-589. [PMID: 26434716 DOI: 10.1016/j.fsi.2015.09.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/17/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
The mucosal surfaces of fish are the first line of host defense against various pathogens. The mucosal immune responses are the most critical events to prevent pathogen attachment and invasion. Cathepsins are a group of peptidases that involved in different levels of immune responses, but the knowledge of the roles of Cathepsin in mucosal immune responses against bacterial infection are still lacking. Therefore, in the present study we characterized the Cathepsin L gene family in channel catfish, and profiled their expression levels after challenging with two different Gram-negative bacterial pathogens. Here, two Cathepsin L genes were identified from channel catfish and were designated CTSL1a and CTSL.1. Comparing to other fish species, the catfish CTSL genes are highly conserved in their structural features. Phylogenetic analysis was conducted to confirm the identification of CTSL genes. Expression analysis revealed that the CTSL genes were ubiquitously expressed in all tested tissues. Following infection, the CTSL genes were significantly induced at most timepoints in mucosal tissues. But the expression patterns varied depending on both pathogen and tissue types, suggesting that CTSL genes may exert disparate functions or exhibit distinct tissue-selective roles in mucosal immune responses. Our findings here, clearly revealed the key roles of CTSL in catfish mucosal immunity; however, further studies are needed to expand functional characterization and examine whether CTSL may also play additional physiological roles in catfish mucosal tissues.
Collapse
Affiliation(s)
- Renjie Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Lin Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Baofeng Su
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Honggang Zhao
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Dongdong Zhang
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
24
|
Lepage D, Bruneau J, Brouillard G, Jones C, Lussier CR, Rémillard A, Lemieux É, Asselin C, Boudreau F. Identification of GATA-4 as a novel transcriptional regulatory component of regenerating islet-derived family members. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1411-22. [PMID: 26477491 DOI: 10.1016/j.bbagrm.2015.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 01/30/2023]
Abstract
Intestinal epithelial cells are exposed to luminal bacterial threat and require adequate defense mechanisms to ensure host protection and epithelium regeneration against possible deleterious damage. Differentiated intestinal epithelial cells produce antimicrobial and regenerative components that protect against such challenges. Few intestinal specific transcription factors have been identified to control the switching from repression to activation of this class of gene. Herein, we show that gene transcription of some regenerating islet-derived (REG) family members is dependent on the transcription factor GATA-4. Silencing of GATA-4 expression in cultured intestinal epithelial cells identified Reg3β as a target gene using an unbiased approach of gene expression profiling. Co-transfection and RNA interference assays identified complex GATA-4-interactive transcriptional components required for the activation or repression of Reg3β gene activity. Conditional deletion of Gata4 in the mouse intestinal epithelium supported its regulatory role for Reg1, Reg3α, Reg3β and Reg3γ genes. Reg1 dramatic down-modulation of expression in Gata4 conditional null mice was associated with a significant decrease in intestinal epithelial cell migration. Altogether, these results identify a novel and complex role for GATA-4 in the regulation of REG family members gene expression.
Collapse
Affiliation(s)
- David Lepage
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Joannie Bruneau
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Geneviève Brouillard
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Christine Jones
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Carine R Lussier
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Anthony Rémillard
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Étienne Lemieux
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Claude Asselin
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - François Boudreau
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
25
|
Brindle NR, Joyce JA, Rostker F, Lawlor ER, Swigart-Brown L, Evan G, Hanahan D, Shchors K. Deficiency for the cysteine protease cathepsin L impairs Myc-induced tumorigenesis in a mouse model of pancreatic neuroendocrine cancer. PLoS One 2015; 10:e0120348. [PMID: 25927437 PMCID: PMC4415914 DOI: 10.1371/journal.pone.0120348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/21/2015] [Indexed: 02/06/2023] Open
Abstract
Motivated by the recent implication of cysteine protease cathepsin L as a potential target for anti-cancer drug development, we used a conditional MycERTAM;Bcl-xL model of pancreatic neuroendocrine tumorigenesis (PNET) to assess the role of cathepsin L in Myc-induced tumor progression. By employing a cysteine cathepsin activity probe in vivo and in vitro, we first established that cathepsin activity increases during the initial stages of MycERTAM;Bcl-xL tumor development. Among the cathepsin family members investigated, only cathepsin L was predominately produced by beta-tumor cells in neoplastic pancreata and, consistent with this, cathepsin L mRNA expression was rapidly upregulated following Myc activation in the beta cell compartment. By contrast, cathepsins B, S and C were highly enriched in tumor-infiltrating leukocytes. Genetic deletion of cathepsin L had no discernible effect on the initiation of neoplastic growth or concordant angiogenesis. However, the tumors that developed in the cathepsin L-deficient background were markedly reduced in size relative to their typical wild-type counterparts, indicative of a role for cathepsin L in enabling expansive tumor growth. Thus, genetic blockade of cathepsin L activity is inferred to retard Myc-driven tumor growth, encouraging the potential utility of pharmacological inhibitors of cysteine cathepsins in treating late stage tumors.
Collapse
Affiliation(s)
- Nicola R. Brindle
- Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Johanna A. Joyce
- Departments of Pathology and Department of Biochemistry and Biophysics, University of California San Francisco (UCSF), San Francisco, United States of America
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Fanya Rostker
- Departments of Pathology and Department of Biochemistry and Biophysics, University of California San Francisco (UCSF), San Francisco, United States of America
| | - Elizabeth R. Lawlor
- Departments of Pathology and Department of Biochemistry and Biophysics, University of California San Francisco (UCSF), San Francisco, United States of America
| | - Lamorna Swigart-Brown
- Departments of Pathology and Department of Biochemistry and Biophysics, University of California San Francisco (UCSF), San Francisco, United States of America
| | - Gerard Evan
- Departments of Pathology and Department of Biochemistry and Biophysics, University of California San Francisco (UCSF), San Francisco, United States of America
| | - Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Ksenya Shchors
- Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Departments of Pathology and Department of Biochemistry and Biophysics, University of California San Francisco (UCSF), San Francisco, United States of America
| |
Collapse
|
26
|
Bian B, Mongrain S, Cagnol S, Langlois MJ, Boulanger J, Bernatchez G, Carrier JC, Boudreau F, Rivard N. Cathepsin B promotes colorectal tumorigenesis, cell invasion, and metastasis. Mol Carcinog 2015; 55:671-87. [PMID: 25808857 PMCID: PMC4832390 DOI: 10.1002/mc.22312] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/05/2015] [Accepted: 02/21/2015] [Indexed: 12/14/2022]
Abstract
Cathepsin B is a cysteine proteinase that primarily functions as an endopeptidase within endolysosomal compartments in normal cells. However, during tumoral expansion, the regulation of cathepsin B can be altered at multiple levels, thereby resulting in its overexpression and export outside of the cell. This may suggest a possible role of cathepsin B in alterations leading to cancer progression. The aim of this study was to determine the contribution of intracellular and extracellular cathepsin B in growth, tumorigenesis, and invasion of colorectal cancer (CRC) cells. Results show that mRNA and activated levels of cathepsin B were both increased in human adenomas and in CRCs of all stages. Treatment of CRC cells with the highly selective and non‐permeant cathepsin B inhibitor Ca074 revealed that extracellular cathepsin B actively contributed to the invasiveness of human CRC cells while not essential for their growth in soft agar. Cathepsin B silencing by RNAi in human CRC cells inhibited their growth in soft agar, as well as their invasion capacity, tumoral expansion, and metastatic spread in immunodeficient mice. Higher levels of the cell cycle inhibitor p27Kip1 were observed in cathepsin B‐deficient tumors as well as an increase in cyclin B1. Finally, cathepsin B colocalized with p27Kip1 within the lysosomes and efficiently degraded the inhibitor. In conclusion, the present data demonstrate that cathepsin B is a significant factor in colorectal tumor development, invasion, and metastatic spreading and may, therefore, represent a potential pharmacological target for colorectal tumor therapy. © 2015 The Authors. Molecular Carcinogenesis, published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Benjamin Bian
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sébastien Mongrain
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sébastien Cagnol
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-Josée Langlois
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jim Boulanger
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gérald Bernatchez
- Gastroenterology Service, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Julie C Carrier
- Gastroenterology Service, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - François Boudreau
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nathalie Rivard
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
27
|
Fujii T, Kamiya M, Urano Y. In Vivo Imaging of Intraperitoneally Disseminated Tumors in Model Mice by Using Activatable Fluorescent Small-Molecular Probes for Activity of Cathepsins. Bioconjug Chem 2014; 25:1838-46. [DOI: 10.1021/bc5003289] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Yasuteru Urano
- Basic
Research Program, Japan Science and Technology Agency, K’s Gobancho, 7, Gobancho,
Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
28
|
Loss of Sonic hedgehog leads to alterations in intestinal secretory cell maturation and autophagy. PLoS One 2014; 9:e98751. [PMID: 24887421 PMCID: PMC4041759 DOI: 10.1371/journal.pone.0098751] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/07/2014] [Indexed: 12/22/2022] Open
Abstract
Background Intestinal epithelial cells express the Sonic and Indian hedgehog ligands. Despite the strong interest in gut hedgehog signaling in GI diseases, no studies have specifically addressed the singular role of intestinal epithelial cell Sonic hedgehog signaling. The aim of this study was to investigate the specific role of Sonic hedgehog in adult ileal epithelial homeostasis. Methodology/Principal Findings A Sonic hedgehog intestinal epithelial conditional knockout mouse model was generated. Assessment of ileal histological abnormalities, crypt epithelial cell proliferation, epithelial cell fate, junctional proteins, signaling pathways, as well as ultrastructural analysis of intracellular organelles were performed in control and mutant mice. Mice lacking intestinal epithelial Sonic Hedgehog displayed decreased ileal crypt/villus length, decreased crypt proliferation as well as a decrease in the number of ileal mucin-secreting goblet cells and antimicrobial peptide-secreting Paneth cells during adult life. These secretory cells also exhibited disruption of their secretory products in mutant mice. Ultrastructural microscopy analysis revealed a dilated ER lumen in secretory cells. This phenotype was also associated with a decrease in autophagy. Conclusions/Significance Altogether, these findings indicate that the loss of Sonic hedgehog can lead to ileal secretory cell modifications indicative of endoplasmic reticulum stress, accompanied by a significant reduction in autophagy.
Collapse
|
29
|
Ruffell B, Affara NI, Cottone L, Junankar S, Johansson M, DeNardo DG, Korets L, Reinheckel T, Sloane BF, Bogyo M, Coussens LM. Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes Dev 2013; 27:2086-98. [PMID: 24065739 PMCID: PMC3850093 DOI: 10.1101/gad.224899.113] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Serine and cysteine cathepsin (Cts) proteases are involved in tumor progression. CtsB plays a significant role during mammary carcinogenesis. Ruffell et al. find that squamous carcinomas develop independently of CtsB. CtsC is not required during mammary carcinogenesis but is necessary for squamous carcinogenesis. Dermal/stromal fibroblasts and bone marrow-derived cells express elevated levels of enzymatically active CtsC that regulate the complexity of infiltrating immune cells in neoplastic skin, development of angiogenic vasculature, and squamous cell carcinoma growth. These findings indicate that tissue specificity can define functional significance. Serine and cysteine cathepsin (Cts) proteases are an important class of intracellular and pericellular enzymes mediating multiple aspects of tumor development. Emblematic of these is CtsB, reported to play functionally significant roles during pancreatic islet and mammary carcinogenesis. CtsC, on the other hand, while up-regulated during pancreatic islet carcinogenesis, lacks functional significance in mediating neoplastic progression in that organ. Given that protein expression and enzymatic activity of both CtsB and CtsC are increased in numerous tumors, we sought to understand how tissue specificity might factor into their functional significance. Thus, whereas others have reported that CtsB regulates metastasis of mammary carcinomas, we found that development of squamous carcinomas occurs independently of CtsB. In contrast to these findings, our studies found no significant role for CtsC during mammary carcinogenesis but revealed squamous carcinogenesis to be functionally dependent on CtsC. In this context, dermal/stromal fibroblasts and bone marrow-derived cells expressed increased levels of enzymatically active CtsC that regulated the complexity of infiltrating immune cells in neoplastic skin, development of angiogenic vasculature, and overt squamous cell carcinoma growth. These studies highlight the important contribution of tissue/microenvironment context to solid tumor development and indicate that tissue specificity defines functional significance for these two members of the cysteine protease family.
Collapse
Affiliation(s)
- Brian Ruffell
- Department of Pathology, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Arampatzidou M, Schütte A, Hansson GC, Saftig P, Brix K. Effects of cathepsin K deficiency on intercellular junction proteins, luminal mucus layers, and extracellular matrix constituents in the mouse colon. Biol Chem 2013; 393:1391-403. [PMID: 23152408 DOI: 10.1515/hsz-2012-0204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/19/2012] [Indexed: 12/14/2022]
Abstract
Cathepsin K has been shown to exhibit antimicrobial and anti-inflammatory activities in the mouse colon. To further elucidate its role, we used Ctsk-/- mice and demonstrated that the absence of cathepsin K was accompanied by elevated protein levels of related cysteine cathepsins (cathepsins B, L, and X) in the colon. In principle, such changes could result in altered subcellular localization; however, the trafficking of cysteine cathepsins was not affected in the colon of Ctsk-/- mice. However, cathepsin K deficiency affected the extracellular matrix constituents, as higher amounts of collagen IV and laminin were observed. Moreover, the localization pattern of the intercellular junction proteins E-cadherin and occludin was altered in the colon of Ctsk-/- mice, suggesting potential impairment of the barrier function. Thus, we used an ex vivo method for assessing the mucus layers and showed that the absence of cathepsin K had no influence on mucus organization and growth. The data of this study support the notion that cathepsin K contributes to intestinal homeostasis and tissue architecture, but the lack of cathepsin K activity is not expected to affect the mucus-depending barrier functions of the mouse colon. These results are important with regard to oral administration of cathepsin K inhibitors that are currently under investigation in clinical trials.
Collapse
Affiliation(s)
- Maria Arampatzidou
- School of Engineering and Science, ResearchCenter MOLIFE – Molecular Life Science, Jacobs University Bremen, Campus Ring 6, D-28759 Bremen , Germany
| | | | | | | | | |
Collapse
|
31
|
Chen H, Wang J, Xiang MX, Lin Y, He A, Jin CN, Guan J, Sukhova GK, Libby P, Wang JA, Shi GP. Cathepsin S-mediated fibroblast trans-differentiation contributes to left ventricular remodelling after myocardial infarction. Cardiovasc Res 2013; 100:84-94. [PMID: 23771947 DOI: 10.1093/cvr/cvt158] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Extracellular matrix (ECM) turnover plays an important role in left ventricular (LV) remodelling following myocardial infarction (MI). Cysteinyl cathepsins contribute to ECM catabolism in arterial diseases, suggesting their participation in post-MI remodelling. METHODS AND RESULTS Left anterior descending artery ligation-induced MI in mice showed increased expression and activity of cathepsin S (CatS). Administration of a non-selective cathepsin inhibitor, E64d, aggravated LV dysfunction at 7 and 28 days post-MI. Mechanistic studies showed that E64d increased post-MI inflammatory cell accumulation and cytokine expression, but did not affect apoptosis or angiogenesis in infarcted myocardium. Furthermore, E64d suppressed TGF-β1-induced Smad2 and Smad3 activation and expression of fibronectin extra domain A (ED-A), an alternatively spliced fibronectin variant, and subsequently prevented cardiac fibroblast trans-differentiation into myofibroblast, which contributed to post-MI collagen and fibronectin synthesis and deposition. Consistently, selective inhibition or genetically determined deficiency of CatS also reduced myocardial Smad2 and Smad3 activation and ED-A fibronectin expression, thus suppressing fibroblast trans-differentiation and resulting in adverse collagen turnover and impaired cardiac function-recapitulating the findings in mice treated with E64d. CONCLUSION Along with its established activities in ECM degradation, CatS plays novel roles in TGF-β1 signalling, myofibroblast trans-differentiation, and ECM protein synthesis, thereby regulating scar formation in the infarcted myocardium and preserving LV function after experimental MI.
Collapse
Affiliation(s)
- Han Chen
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lu Z, Ding L, Lu Q, Chen YH. Claudins in intestines: Distribution and functional significance in health and diseases. Tissue Barriers 2013; 1:e24978. [PMID: 24478939 PMCID: PMC3879173 DOI: 10.4161/tisb.24978] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 02/08/2023] Open
Abstract
Intestines are organs that not only digest food and absorb nutrients, but also provide a defense barrier against pathogens and noxious agents ingested. Tight junctions (TJs) are the most apical component of the junctional complex, providing one form of cell-cell adhesion in enterocytes and playing a critical role in regulating paracellular barrier permeability. Alteration of TJs leads to a number of pathophysiological diseases causing malabsorption of nutrition and intestinal structure disruption, which may even contribute to systemic organ failure. Claudins are the major structural and functional components of TJs with at least 24 members in mammals. Claudins have distinct charge-selectivity, either by tightening the paracellular pathway or functioning as paracellular channels, regulating ions and small molecules passing through the paracellular pathway. In this review, we have discussed the functions of claudin family members, their distribution and localization in the intestinal tract of mammals, their alterations in intestine-related diseases and chemicals/agents that regulate the expression and localization of claudins as well as the intestinal permeability, which provide a therapeutic view for treating intestinal diseases.
Collapse
Affiliation(s)
- Zhe Lu
- Department of Basic Medicine; Hangzhou Normal University, Hangzhou, PR China ; Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Lei Ding
- Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA ; Department of Oncology; Beijing Shijitan Hospital; Capital Medical University; Beijing, PR China
| | - Qun Lu
- Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| |
Collapse
|
33
|
Kallunki T, Olsen OD, Jäättelä M. Cancer-associated lysosomal changes: friends or foes? Oncogene 2013; 32:1995-2004. [PMID: 22777359 DOI: 10.1038/onc.2012.292] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/01/2012] [Indexed: 12/28/2022]
Abstract
Rapidly dividing and invasive cancer cells are strongly dependent on effective lysosomal function. Accordingly, transformation and cancer progression are characterized by dramatic changes in lysosomal volume, composition and cellular distribution. Depending on one's point of view, the cancer-associated changes in the lysosomal compartment can be regarded as friends or foes. Most of them are clearly transforming as they promote invasive growth, angiogenesis and drug resistance. The same changes can, however, strongly sensitize cells to lysosomal membrane permeabilization and thereby to lysosome-targeting anti-cancer drugs. In this review we compile our current knowledge on cancer-associated changes in lysosomal composition and discuss the consequences of these alterations to cancer progression and the possibilities they can bring to cancer therapy.
Collapse
Affiliation(s)
- T Kallunki
- Cell Death and Metabolism and Centre for Genotoxic Stress Research, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | | |
Collapse
|
34
|
Epithelial tyrosine phosphatase SHP-2 protects against intestinal inflammation in mice. Mol Cell Biol 2013; 33:2275-84. [PMID: 23530062 DOI: 10.1128/mcb.00043-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Polymorphisms of PTPN11 encoding SHP-2 are biomarkers for ulcerative colitis (UC) susceptibility. However, their functional relevance is unknown. We thus investigated the role of epithelial SHP-2 in the control of intestinal homeostasis. Mice with an intestinal epithelial cell-specific SHP-2 deletion (SHP-2(IEC-KO) mice) were generated. Control and SHP-2(IEC-KO) mice were monitored for clinical symptoms and sacrificed for histological staining and Western blot analyses. Cytokines and chemokines, as well as intestinal permeability, were quantified. SHP-2 mRNA expression was evaluated in control and UC patients. SHP-2(IEC-KO) mice showed growth retardation compared to control littermates and rapidly developed severe colitis. Colon architecture was markedly altered with infiltration of immune cells, crypt abscesses, neutrophil accumulation, and reduced goblet cell numbers. Decreased expression of claudins was associated with enhanced intestinal permeability in mutant SHP-2(IEC-KO) mice. Inflammatory transcription factors Stat3 and NF-κB were hyperactivated early in the mutant colonic epithelium. Levels of several epithelial chemokines and cytokines were markedly enhanced in SHP-2(IEC-KO) mice. Of note, antibiotic treatment remarkably impaired the development of colitis in SHP-2(IEC-KO) mice. Finally, SHP-2 mRNA levels were significantly reduced in intestinal biopsy specimens from UC patients. Our results establish intestinal epithelial SHP-2 as a critical determinant for prevention of gut inflammation.
Collapse
|
35
|
Jones C, St-Jean S, Fréchette I, Bergeron D, Rivard N, Boudreau F. Identification of a novel promyelocytic leukemia zinc-finger isoform required for colorectal cancer cell growth and survival. Int J Cancer 2013; 133:58-66. [PMID: 23280881 DOI: 10.1002/ijc.28008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 10/28/2012] [Accepted: 12/17/2012] [Indexed: 11/06/2022]
Abstract
Promyelocytic leukemia zinc-finger (PLZF) is a transcriptional repressor that regulates proliferation, differentiation and apoptosis among various cellular origins. PLZF expression is upregulated in colorectal cancer cell lines but its putative functional role in this context is unknown. Here, we report the identification of a novel p65 PLZF isoform that results from the usage of an evolutionarily conserved alternative translational initiation site. This isoform is devoid of the classical BTB/POZ domain required for nuclear localization and transcriptional repression. Depletion of p65 PLZF expression in colorectal cancer cell lines results in reduction of cell growth, loss of cell anchorage and increase in cell apoptosis. Overall, these results indicate that p65 PLZF is crucial to maintain colorectal cancer cell adhesion as well as survival and must occur independently of the traditionally viewed transcriptional role of PLZF in the course of these biological processes.
Collapse
Affiliation(s)
- Christine Jones
- Département d'anatomie et biologie cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Marhefka JN, Abbud-Antaki RA. Validation of the Cancer BioChip System as a 3D siRNA screening tool for breast cancer targets. PLoS One 2012; 7:e46086. [PMID: 23049944 PMCID: PMC3458802 DOI: 10.1371/journal.pone.0046086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
Genomic studies have revealed that breast cancer consists of a complex biological process with patient-specific genetic variations, revealing the need for individualized cancer diagnostic testing and selection of patient-specific optimal therapies. One of the bottlenecks in translation of genomic breakthroughs to the clinic is the lack of functional genomic assays that have high clinical translatability. Anchorage-independent three-dimensional (3D) growth assays are considered to be the gold-standard for chemosensitivity testing, and leads identified with these assays have high probability of clinical success. The Cancer BioChip System (CBCS) allows for the simultaneous, quantitative, and real time evaluation of multitudes of anchorage-independent breast cancer cell growth inhibitors. We employed a Test Cancer BioChip that contains silencing RNAs (siRNAs) targeting cancer-related genes to identify 3D-specific effectors of breast cancer cell growth. We compared the effect of these siRNAs on colony growth of the hormone receptor positive (MCF7) and Human Epidermal Growth Factor Receptor 2/c- Erythroblastic Leukemia Viral Oncogene Homolog 2 (HER2/c-erb-b2) positive (SK-BR-3) cells on the Test Cancer BioChip. Our results confirmed cell-specific inhibition of MCF7 and SK-BR-3 colony formation by estrogen receptor α (ESR1) and (ERBB2) siRNA, respectively. Both cell lines were also suppressed by Phosphoinositide-3-kinase Catalytic, alpha Polypeptide (PIK3CA) siRNA. Interestingly, we have observed responses to siRNA that are unique to this 3D setting. For example, ß-actin (ACTB) siRNA suppressed colony growth in both cell types while Cathepsin L2 (CTSL2) siRNA caused opposite effects. These results further validate the importance of the CBCS as a tool for the identification of clinically relevant breast cancer targets.
Collapse
Affiliation(s)
- Joie N. Marhefka
- Falcon Genomics, Inc., Pittsburgh, Pennsylvania, United States of America
| | - Rula A. Abbud-Antaki
- Falcon Genomics, Inc., Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
37
|
Reinheckel T, Peters C, Krüger A, Turk B, Vasiljeva O. Differential Impact of Cysteine Cathepsins on Genetic Mouse Models of De novo Carcinogenesis: Cathepsin B as Emerging Therapeutic Target. Front Pharmacol 2012; 3:133. [PMID: 22798952 PMCID: PMC3394080 DOI: 10.3389/fphar.2012.00133] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/24/2012] [Indexed: 12/12/2022] Open
Abstract
Lysosomal cysteine cathepsins belong to a family of 11 human proteolytic enzymes. Some of them correlate with progression in a variety of cancers and therefore are considered as potential therapeutic targets. Until recently, the contribution of individual cathepsins to tumorigenesis and tumor progression remained unknown. By crossing various types of mouse cancer models with mice where specific cathepsins have been ablated, we contributed to this gap of knowledge and will summarize the results in this report. The employed models are the Rip1-Tag2 model for pancreatic neuroendocrine tumors, the K14-HPV16 model for squamous skin and cervical cancers, and the MMTV-PyMT model for metastasizing breast cancer, the KPC model for pancreatic ductal adenocarcinoma, and the APC(min) mice developing early stages of intestinal neoplasia. All models harbor mutations in relevant tumor suppressors and/or cell-type specific expression of potent oncogenes, which initiate de novo carcinogenesis in the targeted tissues. In all these models deletion of cathepsin B led to suppression of the aggressiveness of the respective cancer phenotype. Cathepsin B is networking with other proteases as it was shown for cathepsin X/Z. In contrast, deletion of cathepsin L was beneficial in the RiP1-Tag2 model, but enhanced tumorigenesis in the APC(min), and the K14-HPV16 mice. A logical consequence of these results would be to further pursue selective inhibition of cathepsin B. Moreover, it became clear that cathepsins B and S derived from cells of the tumor microenvironment support cancer growth. Strikingly, delivery of broad spectrum cysteine cathepsin inhibitors in the tumor microenvironment disrupts the permissive ecosystem of the cancer and results in impaired growth or even in regression of the tumor. In addition, combination of cysteine cathepsin inhibition and standard chemotherapy improves the therapeutic response of the latter. Taken together, the next preclinical challenges for developing cathepsin inhibition as cancer therapy might be the improvement of inhibitor selectivity and targeted delivery to the tumor microenvironment and investigation of the biological context of the individual factors within the complex proteolytic network.
Collapse
Affiliation(s)
- Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | | | | | | | | |
Collapse
|
38
|
Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids 2011; 43:1233-42. [PMID: 22180025 DOI: 10.1007/s00726-011-1191-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
The neonatal small intestine is susceptible to damage by endotoxin, but effective methods for prevention and treatment are lacking. N-acetylcysteine (NAC) is a widely used precursor of L: -cysteine for animal cells and plays an important role in protecting cells against oxidative stress. This study was conducted with the lipopolysaccharide (LPS)-challenged piglet model to determine the effects of NAC on intestinal function. Eighteen piglets were randomly allocated into control, LPS and LPS + NAC groups. The control and LPS groups were fed a corn- and soybean meal-based diet, and the LPS + NAC group was fed the basal diet +500 mg/kg NAC. On days 10, 13 and 20 of the trial, the LPS and LPS + NAC groups received intraperitoneal administration of LPS (100 μg/kg BW), whereas the control piglets received saline. On day 20 of the trial, D-: xylose (0.1 g/kg BW) was orally administrated to all piglets 2 h after LPS or saline injection, and blood samples were collected 1 h thereafter. One hour blood xylose test was used to measure intestinal absorption capacity and mucosal integrity, and diamine oxidase (DAO) was used as a marker of intestinal injury. On day 21 of the trial, pigs were killed to obtain the intestinal mucosa. Compared to the control, LPS challenge reduced (P < 0.05) the concentrations of D-: xylose (a marker of intestinal absorption) in plasma, activities of DAO in the jejunal mucosa, the ratio of villus height to crypt depth in the jejunal mucosa, RNA/DNA and protein/DNA in the jejunal and ileal mucosae, while increasing (P < 0.05) DAO activity in plasma and caspase-3 expression in the intestinal mucosa. The adverse effects of LPS were partially ameliorated (P < 0.05) by NAC supplementation. Moreover, NAC prevented the LPS-induced decrease in claudin-1 and occludin expression in the jejunal and ileal mucosae. Collectively, these results indicate that dietary NAC supplementation alleviates the mucosal damage and improves the absorptive function of the small intestine in LPS-challenged piglets.
Collapse
|
39
|
Benavides F, Perez C, Blando J, Contreras O, Shen J, Coussens LM, Fischer SM, Kusewitt DF, DiGiovanni J, Conti CJ. Protective role of cathepsin L in mouse skin carcinogenesis. Mol Carcinog 2011; 51:352-61. [PMID: 21538579 DOI: 10.1002/mc.20792] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/01/2011] [Accepted: 04/07/2011] [Indexed: 01/15/2023]
Abstract
Lysosomal cysteine protease cathepsin L (CTSL) is believed to play a role in tumor progression and is considered a marker for clinically invasive tumors. Studies from our laboratory using the classical mouse skin carcinogenesis model, with 7,12-dimethyl-benz[a]anthracene (DMBA) for initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA) for promotion, showed that expression of CTSL is increased in papillomas and squamous cell carcinomas (SCC). We also carried out carcinogenesis studies using Ctsl-deficient nackt (nkt) mutant mice on three different inbred backgrounds. Unexpectedly, the multiplicity of papillomas was significantly higher in Ctsl-deficient than in wild-type mice on two unrelated backgrounds. Topical applications of TPA or DMBA alone to the skin of nkt/nkt mice did not induce papillomas, and there was no increase in spontaneous tumors in nkt/nkt mice on any of the three inbred backgrounds. Reduced epidermal cell proliferation in Ctsl-deficient nkt/nkt mice after TPA treatment suggested that they are not more sensitive than wild-type mice to TPA promotion. We also showed that deficiency of CTSL delays terminal differentiation of keratinocytes, and we propose that decreased elimination of initiated cells is at least partially responsible for the increased papilloma formation in the nackt model.
Collapse
Affiliation(s)
- Fernando Benavides
- Department of Molecular Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science-Park, Smithville, Texas
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Duncan EM, Allis CD. Errors in erasure: links between histone lysine methylation removal and disease. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2011; 67:69-90. [PMID: 21141725 DOI: 10.1007/978-3-7643-8989-5_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Many studies have demonstrated that covalent histone modifications are dynamically regulated to cause both chemical and physical changes to the chromatin template. Such changes in the chromatin template lead to biologically significant consequences, including differential gene expression. Histone lysine methylation, in particular, has been shown to correlate with gene expression both positively and negatively, depending on the specific site and degree (i.e., mono-, di-, or tri-) of methylation within the histone sequence. Although genetic alterations in the proteins that establish, or "write," methyl modifications and their effect in various human pathologies have been documented, connections between the misregulation of proteins that remove, or "erase," histone methylation and disease have emerged more recently. Here we discuss three mechanisms through which histone methylation can be removed from the chromatin template. We describe how these "erasure" mechanisms are linked to pathways that are known to be misregulated in diseases, such as cancer. We further describe how errors in the removal of histone methylation can and do lead to human pathologies, both directly and indirectly.
Collapse
Affiliation(s)
- Elizabeth M Duncan
- Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
41
|
Darsigny M, Babeu JP, Seidman EG, Gendron FP, Levy E, Carrier J, Perreault N, Boudreau F. Hepatocyte nuclear factor-4alpha promotes gut neoplasia in mice and protects against the production of reactive oxygen species. Cancer Res 2010; 70:9423-33. [PMID: 21062980 DOI: 10.1158/0008-5472.can-10-1697] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatocyte nuclear factor-4α (Hnf4α) is a transcription factor that controls epithelial cell polarity and morphogenesis. Hnf4α conditional deletion during postnatal development has minor effects on intestinal epithelium integrity but promotes activation of the Wnt/β-catenin pathway without causing tumorigenesis. Here, we show that Hnf4α does not act as a tumor-suppressor gene but is crucial in promoting gut tumorigenesis in mice. Polyp multiplicity in ApcMin mice lacking Hnf4α is suppressed compared with littermate ApcMin controls. Analysis of microarray gene expression profiles from mice lacking Hnf4α in the intestinal epithelium identifies novel functions of this transcription factor in targeting oxidoreductase-related genes involved in the regulation of reactive oxygen species (ROS) levels. This role is supported with the demonstration that HNF4α is functionally involved in the protection against spontaneous and 5-fluorouracil chemotherapy-induced production of ROS in colorectal cancer cell lines. Analysis of a colorectal cancer patient cohort establishes that HNF4α is significantly upregulated compared with adjacent normal epithelial resections. Several genes involved in ROS neutralization are also induced in correlation with HNF4A expression. Altogether, the findings point to the nuclear receptor HNF4α as a potential therapeutic target to eradicate aberrant epithelial cell resistance to ROS production during intestinal tumorigenesis.
Collapse
Affiliation(s)
- Mathieu Darsigny
- Canadian Institute of Health Research Team on Digestive Epithelium, Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lussier CR, Brial F, Roy SAB, Langlois MJ, Verdu EF, Rivard N, Perreault N, Boudreau F. Loss of hepatocyte-nuclear-factor-1alpha impacts on adult mouse intestinal epithelial cell growth and cell lineages differentiation. PLoS One 2010; 5:e12378. [PMID: 20808783 PMCID: PMC2927538 DOI: 10.1371/journal.pone.0012378] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 07/28/2010] [Indexed: 12/19/2022] Open
Abstract
Background and Aims Although Hnf1α is crucial for pancreas and liver functions, it is believed to play a limited functional role for intestinal epithelial functions. The aim of this study was to assess the consequences of abrogating Hnf1α on the maintenance of adult small intestinal epithelial functions. Methodology/Principal Findings An Hnf1α knockout mouse model was used. Assessment of histological abnormalities, crypt epithelial cell proliferation, epithelial barrier, glucose transport and signalling pathways were measured in these animals. Changes in global gene expression were also analyzed. Mice lacking Hnf1α displayed increased crypt proliferation and intestinalomegaly as well as a disturbance of intestinal epithelial cell lineages production during adult life. This phenotype was associated with a decrease of the mucosal barrier function and lumen-to-blood glucose delivery. The mammalian target of rapamycin (mTOR) signalling pathway was found to be overly activated in the small intestine of adult Hnf1α mutant mice. The intestinal epithelium of Hnf1α null mice displayed a reduction of the enteroendocrine cell population. An impact was also observed on proper Paneth cell differentiation with abnormalities in the granule exocytosis pathway. Conclusions/Significance Together, these results unravel a functional role for Hnf1α in regulating adult intestinal growth and sustaining the functions of intestinal epithelial cell lineages.
Collapse
Affiliation(s)
- Carine R. Lussier
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - François Brial
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sébastien A. B. Roy
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marie-Josée Langlois
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Elena F. Verdu
- Division of Gastroenterology, McMaster University, Hamilton, Ontario, Canada
| | - Nathalie Rivard
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathalie Perreault
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - François Boudreau
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- * E-mail:
| |
Collapse
|
43
|
Li P, Waldman SA. Corruption of homeostatic mechanisms in the guanylyl cyclase C signaling pathway underlying colorectal tumorigenesis. Cancer Biol Ther 2010; 10:211-8. [PMID: 20592492 DOI: 10.4161/cbt.10.3.12539] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colon cancer, the second leading cause of cancer-related mortality worldwide, originates from the malignant transformation of intestinal epithelial cells. The intestinal epithelium undergoes a highly organized process of rapid regeneration along the crypt-villus axis, characterized by proliferation, migration, differentiation and apoptosis, whose coordination is essential to maintaining the mucosal barrier. Disruption of these homeostatic processes predisposes cells to mutations in tumor suppressors or oncogenes, whose dysfunction provides transformed cells an evolutionary growth advantage. While sequences of genetic mutations at different stages along the neoplastic continuum have been established, little is known of the events initiating tumorigenesis prior to adenomatous polyposis coli (APC) mutations. Here, we examine a role for the corruption of homeostasis induced by silencing novel tumor suppressors, including the intestine-specific transcription factor CDX2 and its gene target guanylyl cyclase C (GCC), as early events predisposing cells to mutations in APC and other sequential genes that initiate colorectal cancer. CDX2 and GCC maintain homeostatic regeneration in the intestine by restricting cell proliferation, promoting cell maturation and adhesion, regulating cell migration and defending the intestinal barrier and genomic integrity. Elimination of CDX2 or GCC promotes intestinal tumor initiation and growth in aged mice, mice carrying APC mutations or mice exposed to carcinogens. The roles of CDX2 and GCC in suppressing intestinal tumorigenesis, universal disruption in their signaling through silencing of hormones driving GCC, and the uniform overexpression of GCC by tumors underscore the potential value of oral replacement with GCC ligands as targeted prevention and therapy for colorectal cancer.
Collapse
Affiliation(s)
- Peng Li
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA.
| | | |
Collapse
|
44
|
Investigating a new generation of ribozymes in order to target HCV. PLoS One 2010; 5:e9627. [PMID: 20224783 PMCID: PMC2835756 DOI: 10.1371/journal.pone.0009627] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/17/2010] [Indexed: 02/08/2023] Open
Abstract
For a long time nucleic acid-based approaches directed towards controlling the propagation of Hepatitis C Virus (HCV) have been considered to possess high potential. Towards this end, ribozymes (i.e. RNA enzymes) that specifically recognize and subsequently catalyze the cleavage of their RNA substrate present an attractive molecular tool. Here, the unique properties of a new generation of ribozymes are taken advantage of in order to develop an efficient and durable ribozyme-based technology with which to target HCV (+) RNA strands. These ribozymes resulted from the coupling of a specific on/off adaptor (SOFA) to the ribozyme domain derived from the Hepatitis Delta Virus (HDV). The former switches cleavage activity “on” solely in the presence of the desired RNA substrate, while the latter was the first catalytic RNA reported to function naturally in human cells, specifically in hepatocytes. In order to maximize the chances for success, a step-by-step approach was used for both the design and the selection of the ribozymes. This approach included the use of both bioinformatics and biochemical methods for the identification of the sites possessing the greatest potential for targeting, and the subsequent in vitro testing of the cleavage activities of the corresponding SOFA-HDV ribozymes. These efforts led to a significant improvement in the ribozymes' designs. The ability of the resulting SOFA-HDV ribozymes to inhibit HCV replication was further examined using a luciferase-based replicon. Although some of the ribozymes exhibited high levels of cleavage activity in vitro, none appears to be a potential long term inhibitor in cellulo. Analysis of recent discoveries in the cellular biology of HCV might explain this failure, as well as provide some ideas on the potential limits of using nucleic acid-based drugs to control the propagation of HCV. Finally, the above conclusions received support from experiments performed using a collection of SOFA-HDV ribozymes directed against HCV (−) strands.
Collapse
|
45
|
Dennemärker J, Lohmüller T, Mayerle J, Tacke M, Lerch MM, Coussens LM, Peters C, Reinheckel T. Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis. Oncogene 2009; 29:1611-21. [PMID: 20023699 DOI: 10.1038/onc.2009.466] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To define a functional role for the endosomal/lysosomal cysteine protease cathepsin L (Ctsl) during squamous carcinogenesis, we generated mice harboring a constitutive Ctsl deficiency in addition to epithelial expression of the human papillomavirus type 16 oncogenes (human cytokeratin 14 (K14)-HPV16). We found enhanced tumor progression and metastasis in the absence of Ctsl. As tumor progression in K14-HPV16 mice is dependent on inflammation and angiogenesis, we examined immune cell infiltration and vascularization without finding any effect of the Ctsl genotype. In contrast, keratinocyte-specific transgenic expression of cathepsin V, the human orthologue of mouse Ctsl, in otherwise Ctsl-deficient K14-HPV16 mice restored the phenotype observed in the control HPV16 skin. To better understand this phenotype at the molecular level, we measured several oncogenic signal transduction pathways in primary keratinocytes on stimulation with keratinocyte-conditioned cell culture medium. We found increased activation of protein kinase B/Akt and mitogen-activated protein kinase pathways in protease-deficient cells, especially if treated with media conditioned by Ctsl-deficient keratinocytes. Similarly, the level of active GTP-Ras was increased in Ctsl-deficient epidermis. We conclude that Ctsl is critical for the termination of growth factor signaling in the endosomal/lysosomal compartment of keratinocytes and, therefore, functions as an anti-tumor protease.
Collapse
Affiliation(s)
- J Dennemärker
- Institute for Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Darsigny M, Babeu JP, Dupuis AA, Furth EE, Seidman EG, Lévy É, Verdu EF, Gendron FP, Boudreau F. Loss of hepatocyte-nuclear-factor-4alpha affects colonic ion transport and causes chronic inflammation resembling inflammatory bowel disease in mice. PLoS One 2009; 4:e7609. [PMID: 19898610 PMCID: PMC2764139 DOI: 10.1371/journal.pone.0007609] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 10/02/2009] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Hnf4alpha, an epithelial specific transcriptional regulator, is decreased in inflammatory bowel disease and protects against chemically-induced colitis in mice. However, the precise role of this factor in maintaining normal inflammatory homeostasis of the intestine remains unclear. The aim of this study was to evaluate the sole role of epithelial Hnf4alpha in the maintenance of gut inflammatory homeostasis in mice. METHODOLOGY/PRINCIPAL FINDINGS We show here that specific epithelial deletion of Hnf4alpha in mice causes spontaneous chronic intestinal inflammation leading to focal areas of crypt dropout, increased cytokines and chemokines secretion, immune cell infiltrates and crypt hyperplasia. A gene profiling analysis in diseased Hnf4alpha null colon confirms profound genetic changes in cell death and proliferative behaviour related to cancer. Among the genes involved in the immune protection through epithelial barrier function, we identify the ion transporter claudin-15 to be down-modulated early in the colon of Hnf4alpha mutants. This coincides with a significant decrease of mucosal ion transport but not of barrier permeability in young animals prior to the manifestation of the disease. We confirm that claudin-15 is a direct Hnf4alpha gene target in the intestinal epithelial context and is down-modulated in mouse experimental colitis and inflammatory bowel disease. CONCLUSION Our results highlight the critical role of Hnf4alpha to maintain intestinal inflammatory homeostasis during mouse adult life and uncover a novel function for Hnf4alpha in the regulation of claudin-15 expression. This establishes Hnf4alpha as a mediator of ion epithelial transport, an important process for the maintenance of gut inflammatory homeostasis.
Collapse
Affiliation(s)
- Mathieu Darsigny
- Canadian Institutes of Health Research Team on Digestive Epithelium, Département d'anatomie et biologie cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Département d'anatomie et biologie cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Philippe Babeu
- Canadian Institutes of Health Research Team on Digestive Epithelium, Département d'anatomie et biologie cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Département d'anatomie et biologie cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Andrée-Anne Dupuis
- Canadian Institutes of Health Research Team on Digestive Epithelium, Département d'anatomie et biologie cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Département d'anatomie et biologie cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Emma E. Furth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ernest G. Seidman
- Canadian Institutes of Health Research Team on Digestive Epithelium, Département d'anatomie et biologie cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Research Institute, McGill University Health Center, Montréal, Quebec, Canada
| | - Émile Lévy
- Canadian Institutes of Health Research Team on Digestive Epithelium, Département d'anatomie et biologie cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Department of Nutrition, CHU Ste-Justine, Université de Montréal, Quebec, Canada
| | - Elena F. Verdu
- Division of Gastroenterology, McMaster University, Hamilton, Ontario, Canada
| | - Fernand-Pierre Gendron
- Canadian Institutes of Health Research Team on Digestive Epithelium, Département d'anatomie et biologie cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Département d'anatomie et biologie cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - François Boudreau
- Canadian Institutes of Health Research Team on Digestive Epithelium, Département d'anatomie et biologie cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Département d'anatomie et biologie cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- * E-mail:
| |
Collapse
|
47
|
Integrin alpha8beta1 regulates adhesion, migration and proliferation of human intestinal crypt cells via a predominant RhoA/ROCK-dependent mechanism. Biol Cell 2009; 101:695-708. [PMID: 19527220 PMCID: PMC2782361 DOI: 10.1042/bc20090060] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background. Integrins are transmembrane αβ heterodimer receptors that function as structural and functional bridges between the cytoskeleton and ECM (extracellular matrix) molecules. The RGD (arginine-glycine-aspartate tripeptide motif)-dependent integrin α8β1 has been shown to be involved in various cell functions in neuronal and mesenchymal-derived cell types. Its role in epithelial cells remains unknown. Results. Integrin α8β1 was found to be expressed in the crypt cell population of the human intestine but was absent from differentiating and mature epithelial cells of the villus. The function of α8β1 in epithelial crypt cells was investigated at the cellular level using normal HIECs (human intestinal epithelial cells). Specific knockdown of α8 subunit expression using an shRNA (small-hairpin RNA) approach showed that α8β1 plays important roles in RGD-dependent cell adhesion, migration and proliferation via a RhoA/ROCK (Rho-associated kinase)-dependent mechanism as demonstrated by active RhoA quantification and pharmacological inhibition of ROCK. Moreover, loss of α8β1, through RhoA/ROCK, impairs FA (focal adhesion) complex integrity as demonstrated by faulty vinculin recruitment. Conclusions. Integrin α8β1 is expressed in epithelial cells. In intestinal crypt cells, α8β1 is closely involved in the regulation of adhesion, migration and cell proliferation via a predominant RhoA/ROCK-dependent mechanism. These results suggest an important role for this integrin in intestinal crypt cell homoeostasis.
Collapse
|
48
|
Doyon G, St-Jean S, Darsigny M, Asselin C, Boudreau F. Nuclear receptor co-repressor is required to maintain proliferation of normal intestinal epithelial cells in culture and down-modulates the expression of pigment epithelium-derived factor. J Biol Chem 2009; 284:25220-9. [PMID: 19608741 DOI: 10.1074/jbc.m109.022632] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stem cells of the gut epithelium constantly produce precursors that progressively undergo a succession of molecular changes resulting in growth arrest and commitment to a specific differentiation program. Few transcriptional repressors have been identified that maintain the normal intestinal epithelial cell (IEC) proliferation state. Herein, we show that the nuclear receptor co-repressor (NCoR1) is differentially expressed during the proliferation-to-differentiation IEC transition. Silencing of NCoR1 expression in proliferating cells of crypt origin resulted in a rapid growth arrest without associated cell death. A genechip profiling analysis identified several candidate genes to be up-regulated in NCoR1-deficient IEC. Pigment epithelium-derived factor (PEDF, also known as serpinf1), a suspected tumor suppressor gene that plays a key role in the inhibition of epithelial tissue growth, was significantly up-regulated in these cells. Chromatin immunoprecipitation experiments showed that the PEDF gene promoter was occupied by NCoR1 in proliferating epithelial cells. Multiple retinoid X receptor (RXR) heterodimers interacting sites of the PEDF promoter were confirmed to interact with RXR and retinoid acid receptor (RAR). Cotransfection assays showed that RXR and RAR were able to transactivate the PEDF promoter and that NCoR1 was repressing this effect. Finally, forced expression of PEDF in IEC resulted in a slower rate of proliferation. These observations suggest that NCoR1 expression is required to maintain IEC in a proliferative state and identify PEDF as a novel transcriptional target for NCoR1 repressive action.
Collapse
Affiliation(s)
- Geneviève Doyon
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | |
Collapse
|
49
|
Vreemann A, Qu H, Mayer K, Andersen LB, Stefana MI, Wehner S, Lysson M, Farcas AM, Peters C, Reinheckel T, Kalff J, Brix K. Cathepsin B release from rodent intestine mucosa due to mechanical injury results in extracellular matrix damage in early post-traumatic phases. Biol Chem 2009; 390:481-92. [PMID: 19335208 DOI: 10.1515/bc.2009.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An in vivo model was used to investigate the role of cathepsins in mouse intestine after mechanical manipulation. Inspection of different intestine segments by immunofluorescence microscopy provided evidence for a local release of cathepsin B from cells of individual gut sections shortly after traumatic injury. Densitometry of immunoblots ruled out alterations in cathepsin B expression levels. Because similar results were obtained with both mouse and rat intestine trauma models, we were interested in identifying potential targets of released cathepsin B in early post-traumatic phases. Immunoblotting revealed initial declines followed by an increase in protein levels of claudin-1 and E-cadherin, indicating that tight junctions and cell-cell adhesions were only transiently compromised by surgical trauma. Apical aminopeptidase N and dipeptidyl peptidase IV were only slightly affected, whereas basolateral low-density lipoprotein receptors were strongly up-regulated in response to trauma. As potential targets of cathepsin B released from injured cells, we identified collagen IV and laminin of the basement membrane that was damaged during initial post-traumatic stages. Because increased collagen IV expression was observed in the intestine of cathepsin B-deficient animals, we propose a direct role of cathepsin B in that it contributes to acute post-traumatic extracellular matrix damage and may thereby facilitate onset of post-operative ileus.
Collapse
Affiliation(s)
- Anna Vreemann
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 6, D-28759 Bremen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Babeu JP, Darsigny M, Lussier CR, Boudreau F. Hepatocyte nuclear factor 4alpha contributes to an intestinal epithelial phenotype in vitro and plays a partial role in mouse intestinal epithelium differentiation. Am J Physiol Gastrointest Liver Physiol 2009; 297:G124-34. [PMID: 19389805 DOI: 10.1152/ajpgi.90690.2008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) is a regulator of hepatocyte and pancreatic transcription. Hnf4alpha deletion in the mouse is embryonically lethal with severe defects in visceral endoderm formation. It has been concluded in the past that the role of Hnf4alpha in the developing colon was much less important than in the liver. However, the precise role of Hnf4alpha in the homeostasis of the small intestinal epithelium remains unclear. Our aim was to evaluate the potential of Hnf4alpha to support an intestinal epithelial phenotype. First, Hnf4alpha potential to dictate this phenotype was assessed in nonintestinal cell lines in vitro. Forced expression of Hnf4alpha in fibroblasts showed an induction of features normally restricted to epithelial cells. Combinatory expression of Hnf4alpha with specific transcriptional regulators of the intestine resulted in the induction of intestinal epithelial genes in this context. Second, the importance of Hnf4alpha in maintaining the homeostasis of the intestinal epithelium was investigated in mice. Mice conditionally deficient for intestinal Hnf4alpha developed normally throughout adulthood with an epithelium displaying normal morphological and functional structures with minor alterations. Subtle but statistical differences were observed at the proliferation and the cytodifferentiation levels. Hnf4alpha mutant mice displayed an increase in the number of goblet and enteroendocrine cells compared with controls. Given the fundamental role of this transcription factor in other tissues, these findings dispute the crucial role for this regulator in the maintenance of intestinal epithelial cell function at a period of time that follows cytodifferentiation but may suggest a functional role in instructing cells to become specific to the intestinal epithelium.
Collapse
Affiliation(s)
- Jean-Philippe Babeu
- Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke,Canadian Institutes of Health Research Team on Digestive Epithelium, Sherbrooke, QC J1H 5N4, Canada
| | | | | | | |
Collapse
|