1
|
Santos MJ, Picco S, Fernández R, Pedreira ME, Boccia M, Klappenbach M, Krawczyk MC. Remembering how to run: a descriptive wheel run analysis in CF1 males and females mice. IBRO Neurosci Rep 2022; 12:333-341. [PMID: 35746966 PMCID: PMC9210458 DOI: 10.1016/j.ibneur.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/15/2022] [Indexed: 12/01/2022] Open
Abstract
Physical exercise is known to have beneficial effects on general health and wellbeing in humans and it is also related to neuronal plasticity, increasing neurogenesis and consequently leading to improvements in processes such as learning and memory. In this sense, wheel running performance in mice appears as an extensively used behavioral approach for neurobiological studies. Here, we explored the running patterns in CF1 male and female mice allowing voluntary wheel running for 20 min along three consecutive days. We analyzed differences in the accumulated distance traveled, instant velocity, and latency to run and breaks taken in both males and females, comparing performance between days. Results revealed that after a first experience with the wheel, animals that had learnt how to run on day 1 quickly look forward to stepping into the wheel in subsequent training days, reflected by a significant increase in daily running distance and velocity. Further, no differences were found in the running performance between males and females. In summary, in a first experience with the wheel, animals get familiarized with the wheel and grow accustomed to it.
Collapse
|
2
|
Kharazi U, Keyhanmanesh R, Hamidian GR, Ghaderpour S, Ghiasi R. Voluntary exercise could reduce sperm malformations by improving hypothalamus-hypophysis-gonadal axis and kisspeptin/leptin signaling in type 2 diabetic rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1624-1631. [PMID: 35432804 PMCID: PMC8976912 DOI: 10.22038/ijbms.2021.58740.13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/20/2021] [Indexed: 11/08/2022]
Abstract
Objectives Most male patients with type 2 diabetes mellitus (T2DM) experience infertility. It is well established that regular physical activity could alleviate diabetic infertility symptoms. This study was designed to determine the effect of voluntary exercise on sperm malformation. Materials and Methods Thirty-two male Wistar rats were randomly divided into control (C), diabetic (D), voluntary exercise (Ex), and diabetic-voluntary exercise (D-Ex) groups. Diabetes was induced by an intraperitoneal injection of streptozotocin (35 mg/kg) followed by a high-fat diet for four weeks. Voluntary exercise was performed by placing the animals in the rotary wheel cages for ten weeks. Sperm malformations were analyzed. Moreover, the hypothalamic leptin, kisspeptin, kisspeptin receptors (KissR), as well as plasma LH, FSH, testosterone, and leptin levels were evaluated. Results Results showed that induction of T2DM caused increased sperm malformation, plasma, and hypothalamic leptin as well as decreased hypothalamic kisspeptin, KissR, and plasma LH levels compared with the C group (P<0.001 to P<0.01). Voluntary exercise in the Ex group increased hypothalamic KissR, plasma FSH, LH, and testosterone levels compared with the C group; however, it decreased sperm malformation and hypothalamic leptin levels (P<0.001 to P<0.05). Voluntary exercise in the D-Ex group reduced sperm malformation, hypothalamic leptin, and plasma testosterone while elevated hypothalamic kisspeptin and KissR protein levels compared with the D group (P<0.001 to P<0.01). Conclusion The results illustrated voluntary exercise reduces sperm malformations by improving the HHG axis and kisspeptin/leptin signaling in rats with T2DM.
Collapse
Affiliation(s)
- Uldouz Kharazi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran ,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran ,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Medical Education Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding authors: Rana Keyhanmanesh and Rafighe Ghiasi. Department of physiology, Faculty of Medicine, Tabriz university of Medical Sciences, Tabriz, Iran. Tel/Fax: +98-33364664; ;
| | - Gholam Reza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Saber Ghaderpour
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafighe Ghiasi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran ,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding authors: Rana Keyhanmanesh and Rafighe Ghiasi. Department of physiology, Faculty of Medicine, Tabriz university of Medical Sciences, Tabriz, Iran. Tel/Fax: +98-33364664; ;
| |
Collapse
|
3
|
Powell DR, Revelli JP, Doree DD, DaCosta CM, Desai U, Shadoan MK, Rodriguez L, Mullens M, Yang QM, Ding ZM, Kirkpatrick LL, Vogel P, Zambrowicz B, Sands AT, Platt KA, Hansen GM, Brommage R. High-Throughput Screening of Mouse Gene Knockouts Identifies Established and Novel High Body Fat Phenotypes. Diabetes Metab Syndr Obes 2021; 14:3753-3785. [PMID: 34483672 PMCID: PMC8409770 DOI: 10.2147/dmso.s322083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Obesity is a major public health problem. Understanding which genes contribute to obesity may better predict individual risk and allow development of new therapies. Because obesity of a mouse gene knockout (KO) line predicts an association of the orthologous human gene with obesity, we reviewed data from the Lexicon Genome5000TM high throughput phenotypic screen (HTS) of mouse gene KOs to identify KO lines with high body fat. MATERIALS AND METHODS KO lines were generated using homologous recombination or gene trapping technologies. HTS body composition analyses were performed on adult wild-type and homozygous KO littermate mice from 3758 druggable mouse genes having a human ortholog. Body composition was measured by either DXA or QMR on chow-fed cohorts from all 3758 KO lines and was measured by QMR on independent high fat diet-fed cohorts from 2488 of these KO lines. Where possible, comparisons were made to HTS data from the International Mouse Phenotyping Consortium (IMPC). RESULTS Body fat data are presented for 75 KO lines. Of 46 KO lines where independent external published and/or IMPC KO lines are reported as obese, 43 had increased body fat. For the remaining 29 novel high body fat KO lines, Ksr2 and G2e3 are supported by data from additional independent KO cohorts, 6 (Asnsd1, Srpk2, Dpp8, Cxxc4, Tenm3 and Kiss1) are supported by data from additional internal cohorts, and the remaining 21 including Tle4, Ak5, Ntm, Tusc3, Ankk1, Mfap3l, Prok2 and Prokr2 were studied with HTS cohorts only. CONCLUSION These data support the finding of high body fat in 43 independent external published and/or IMPC KO lines. A novel obese phenotype was identified in 29 additional KO lines, with 27 still lacking the external confirmation now provided for Ksr2 and G2e3 KO mice. Undoubtedly, many mammalian obesity genes remain to be identified and characterized.
Collapse
Affiliation(s)
- David R Powell
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Jean-Pierre Revelli
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Deon D Doree
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Christopher M DaCosta
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Urvi Desai
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Melanie K Shadoan
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Lawrence Rodriguez
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Michael Mullens
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Qi M Yang
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Zhi-Ming Ding
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Laura L Kirkpatrick
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Peter Vogel
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Brian Zambrowicz
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Arthur T Sands
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Kenneth A Platt
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Gwenn M Hansen
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Robert Brommage
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| |
Collapse
|
4
|
Adank DN, Lunzer MM, Ericson MD, Koeperich ZM, Wilber SL, Fleming KA, Haskell-Luevano C. Comparative Intracerebroventricular and Intrathecal Administration of a Nanomolar Macrocyclic Melanocortin Receptor Agonist MDE6-5-2c (c[Pro-His-DPhe-Arg-Trp-Dap-Ala-DPro]) Decreases Food Intake in Mice. ACS Chem Neurosci 2020; 11:3051-3063. [PMID: 32822157 PMCID: PMC7605118 DOI: 10.1021/acschemneuro.0c00409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is a critical need to find safe therapeutics to treat an increasingly obese population and diseases associated with an imbalance in energy homeostasis. The melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) ligands have long been the focus to help scientists understand energy homeostasis and the regulation of feeding behavior. Herein, we use a nanomolar macrocyclic melanocortin receptor agonist ligand MDE6-5-2c (c[Pro-His-DPhe-Arg-Trp-Dap-Ala-DPro) to examine metabolic and energy hemostasis profiles upon intrathecal (IT) administration directly into the spinal cord as compared to intracerebroventricular (ICV) administration directly into the brain. Overall, central ICV administration of MDE6-5-2c resulted in decreased food intake, in a dose-dependent manner, and decreased respiratory exchange ratio (RER). Comparison of IT versus ICV routes of MDE6-5-2c administration resulted in MDE6-5-2c possessing a longer duration of action on both feeding behavior and RER via IT. The C-peptide, ghrelin, GIP, leptin, IL-6, and resistin plasma hormones and biomarkers were compared using IT versus ICV MDE6-5-2c routes of administration. Plasma resistin levels were decreased upon ICV treatment of MDE6-5-2c, as compared to ICV vehicle control treatment. Intrathecal treatment resulted in significantly decreased inflammatory cytokine interleukin-6 (IL-6) levels compared to ICV administration. Investigation of the nonselective MC3R and MC4R macrocyclic agonist MDE6-5-2c molecule revealed differences in food intake, RER, and plasma biomarker profiles based upon ICV or IT routes of administration and characterize this novel molecular chemotype as a molecular probe to study the melanocortin system in vivo.
Collapse
Affiliation(s)
- Danielle N. Adank
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Mary M. Lunzer
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Mark D. Ericson
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Zoe M. Koeperich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Stacey L. Wilber
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Katlyn A. Fleming
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
5
|
Mifune H, Tajiri Y, Sakai Y, Kawahara Y, Hara K, Sato T, Nishi Y, Nishi A, Mitsuzono R, Kakuma T, Kojima M. Voluntary exercise is motivated by ghrelin, possibly related to the central reward circuit. J Endocrinol 2020; 244:123-132. [PMID: 31629323 PMCID: PMC6859445 DOI: 10.1530/joe-19-0213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 01/05/2023]
Abstract
We previously reported that voluntary exercise contributed to the amelioration of abnormal feeding behavior with a concomitant restoration of ghrelin production in a rat model of obesity, suggesting a possible relationship between exercise and appetite-regulating hormones. Ghrelin is known to be involved in the brain reward circuits via dopamine neurons related to motivational properties. We investigated the relevance of ghrelin as an initiator of voluntary exercise as well as feeding behavior. The plasma ghrelin concentration fluctuates throughout the day with its peak at the beginning of the dark period in the wild-type (WT) mice with voluntary exercise. Although predominant increases in wheel running activity were observed accordant to the peak of plasma ghrelin concentration in the WT mice, those were severely attenuated in the ghrelin-knockout (GKO) mice under either ad libitum or time-restricted feeding. A single injection of ghrelin receptor agonist brought about and reproduced a marked enhancement of wheel running activity, in contrast to no effect by the continuous administration of the same drug. Brain dopamine levels (DAs) were enhanced after food consumption in the WT mice under voluntary exercise. Although the acceleration of DAs were apparently blunted in the GKO mice, they were dramatically revived after the administration of ghrelin receptor agonist, suggesting the relevance of ghrelin in the reward circuit under voluntary exercise. These findings emphasize that the surge of ghrelin plays a crucial role in the formation of motivation for the initiation of voluntary exercise possibly related to the central dopamine system.
Collapse
Affiliation(s)
- Hiroharu Mifune
- Institute of Animal Experimentation, Kurume University School of Medicine, Kurume, Japan
| | - Yuji Tajiri
- Division of Endocrinology and Metabolism, Kurume University School of Medicine, Kurume, Japan
- Correspondence should be addressed to Y Tajiri:
| | - Yusuke Sakai
- Institute of Animal Experimentation, Kurume University School of Medicine, Kurume, Japan
| | - Yukie Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Kento Hara
- Division of Endocrinology and Metabolism, Kurume University School of Medicine, Kurume, Japan
| | - Takahiro Sato
- Molecular Genetics, Life Science Institute, Kurume University, Kurume, Japan
| | - Yoshihiro Nishi
- Department of Physiology, Kurume University School of Medicine, Kurume, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Ryouichi Mitsuzono
- Department of Exercise Physiology, Institute of Health and Sports Science, Kurume University, Kurume, Japan
| | | | - Masayasu Kojima
- Molecular Genetics, Life Science Institute, Kurume University, Kurume, Japan
| |
Collapse
|
6
|
Derkach K, Zakharova I, Zorina I, Bakhtyukov A, Romanova I, Bayunova L, Shpakov A. The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect. PLoS One 2019; 14:e0213779. [PMID: 30870482 PMCID: PMC6417728 DOI: 10.1371/journal.pone.0213779] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/19/2019] [Indexed: 12/16/2022] Open
Abstract
In diet-induced obesity, metformin (MF) has weight-lowering effect and improves glucose homeostasis and insulin sensitivity. However, there is no information on the efficiency of MF and the mechanisms of its action in melanocortin-type obesity. We studied the effect of the 10-day treatment with MF at the doses of 200, 400 and 600 mg/kg/day on the food intake and the metabolic and hormonal parameters in female C57Bl/6J (genotype Ay/a) agouti-mice with melanocortin-type obesity, and the influence of MF on the hypothalamic signaling in obese animals at the most effective metabolic dose (600 mg/kg/day). MF treatment led to a decrease in food intake, the body and fat weights, the plasma levels of glucose, insulin and leptin, all increased in agouti-mice, to an improvement of the lipid profile and glucose sensitivity, and to a reduced fatty liver degeneration. In the hypothalamus of obese agouti-mice, the leptin and insulin content was reduced and the expression of the genes encoding leptin receptor (LepR), MC3- and MC4-melanocortin receptors and pro-opiomelanocortin (POMC), the precursor of anorexigenic melanocortin peptides, was increased. The activities of AMP-activated kinase (AMPK) and the transcriptional factor STAT3 were increased, while Akt-kinase activity did not change from control C57Bl/6J (a/a) mice. In the hypothalamus of MF-treated agouti-mice (10 days, 600 mg/kg/day), the leptin and insulin content was restored, Akt-kinase activity was increased, and the activities of AMPK and STAT3 were reduced and did not differ from control mice. In the hypothalamus of MF-treated agouti-mice, the Pomc gene expression was six times higher than in control, while the gene expression for orexigenic neuropeptide Y was decreased by 39%. Thus, we first showed that MF treatment leads to an improvement of metabolic parameters and a decrease of hyperleptinemia and hyperinsulinaemia in genetically-induced melanocortin obesity, and the specific changes in the hypothalamic signaling makes a significant contribution to this effect of MF.
Collapse
Affiliation(s)
- Kira Derkach
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina Zakharova
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Inna Zorina
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Andrey Bakhtyukov
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina Romanova
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Liubov Bayunova
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander Shpakov
- Department of Molecular Endocrinology and Neurochemistry, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- * E-mail:
| |
Collapse
|
7
|
Yoshizawa T, Shimada S, Takizawa Y, Makino T, Kanada Y, Ito Y, Ochiai T, Matsumoto K. Continuous measurement of locomotor activity during convalescence and acclimation in group-housed rats. Exp Anim 2019; 68:277-283. [PMID: 30760650 PMCID: PMC6699979 DOI: 10.1538/expanim.18-0097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Locomotor activity is affected by a range of factors in addition to experimental
treatment, including the breeding environment. Appropriate convalescence and acclimation
are important for animal experiments, because environmental changes and physical burden
can result from surgery, transportation, and cage exchange. However, the duration that
locomotor activity is affected by these factors is currently unclear, because it has
traditionally been difficult to measure locomotor activity in multiple group-housed
animals in any location other than the analysis room. In the present study, we analyzed
the locomotor activity of group-housed rats using a nano tag® after surgery,
transportation, and cage exchange. The nano tag®, a new device for analyzing
activity, can measure locomotor activity in laboratory animals with no limitation on the
number of animals in same cage. Any type of cage can be used for analysis, at any time of
day, and in any location. Nano tags® were subcutaneously implanted in male rats
(F344/NSlc, 6 weeks of age) and locomotor activity was continuously measured after
surgery, transportation, and cage exchange. Significant activity changes were observed in
rats after transportation and cage exchange, 9 days and 3 h after the event, respectively.
The results suggest that continuous measurement of locomotor activity with nano
tags® can be used to monitor changes in activity induced by environmental
changes, and will be helpful for designing animal experiments analyzing locomotor
activity.
Collapse
Affiliation(s)
- Takahiro Yoshizawa
- Division of Animal Research, Research Center for Supports to Advanced Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Shin Shimada
- Division of Animal Research, Research Center for Supports to Advanced Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Yoshito Takizawa
- KISSEI COMTEC Co., Ltd., 4010-10 Wada, Matsumoto, Nagano 390-1293, Japan
| | - Tsuyoshi Makino
- Biotechnical Center, Japan SLC, Inc., 3-5-1 Aoihigashi, Naka-ku, Hamamatsu, Shizuoka 433-8114, Japan.,Retired
| | - Yasuhide Kanada
- Biotechnical Center, Japan SLC, Inc., 3-5-1 Aoihigashi, Naka-ku, Hamamatsu, Shizuoka 433-8114, Japan
| | - Yoshiharu Ito
- KISSEI COMTEC Co., Ltd., 4010-10 Wada, Matsumoto, Nagano 390-1293, Japan
| | - Toshiaki Ochiai
- Biotechnical Center, Japan SLC, Inc., 3-5-1 Aoihigashi, Naka-ku, Hamamatsu, Shizuoka 433-8114, Japan
| | - Kiyoshi Matsumoto
- Division of Animal Research, Research Center for Supports to Advanced Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| |
Collapse
|
8
|
Albertz J, Boersma GJ, Tamashiro KL, Moran TH. The effects of scheduled running wheel access on binge-like eating behavior and its consequences. Appetite 2018; 126:176-184. [PMID: 29654852 DOI: 10.1016/j.appet.2018.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/02/2018] [Accepted: 04/10/2018] [Indexed: 11/19/2022]
Abstract
Binge eating disorder (BED) is an eating disorder involving repeated, intermittent over consumption of food in brief periods of time, usually with no compensatory behaviors. There are few successful treatments and the underlying neural mechanisms remain unclear. In the current study, we hypothesized that voluntary running wheel (RW) activity could reduce binge-like eating behavior in a rat model. Rats were given intermittent (3 times/wk) limited (1hr) access to a high-fat food (Crisco), in addition to continuously available chow. Crisco was available every Mon, Wed, and Fri for 1hr before dark onset. Rats were divided into 2 groups: those with RW access during the first half of the experiment and sedentary during the second half (RW-SED) and those that were sedentary during the first half of the experiment and had RW access during the second half (SED-RW). Crisco intake was significantly less in both groups during the period of time with a RW present. Within the bingeing RW-SED rats, the gene expression of the orexigenic neuropeptides AgRP and NPY were similar to a non-bingeing sedentary control (CON) group, while the expression of the anorexigenic neuropeptide POMC was significantly increased relative to the SED-RW and CON groups. Despite elevated POMC, the rats continued to binge. Additionally, within both groups, the gene expression of the D2R and Oprm1 in the NAc and the VTA were altered suggesting that the reward system was stimulated by both the bingeing behavior and the running wheel activity. Overall, access to a RW and the resulting activity significantly reduced binge-like behavior as well as modulated the effects of binging on brain appetite and reward systems.
Collapse
Affiliation(s)
- Jennifer Albertz
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gretha J Boersma
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kellie L Tamashiro
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Smith JK. Exercise, Obesity and CNS Control of Metabolic Homeostasis: A Review. Front Physiol 2018; 9:574. [PMID: 29867590 PMCID: PMC5965103 DOI: 10.3389/fphys.2018.00574] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/30/2018] [Indexed: 01/12/2023] Open
Abstract
This review details the manner in which the central nervous system regulates metabolic homeostasis in normal weight and obese rodents and humans. It includes a review of the homeostatic contributions of neurons located in the hypothalamus, the midbrain and limbic structures, the pons and the medullary area postrema, nucleus tractus solitarius, and vagus nucleus, and details how these brain regions respond to circulating levels of orexigenic hormones, such as ghrelin, and anorexigenic hormones, such as glucagon-like peptide 1 and leptin. It provides an insight as to how high intensity exercise may improve homeostatic control in overweight and obese subjects. Finally, it provides suggestions as to how further progress can be made in controlling the current pandemic of obesity and diabetes.
Collapse
Affiliation(s)
- John K Smith
- Departments of Academic Affairs and Biomedical Science, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
10
|
Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms. Physiol Rev 2017; 97:1351-1402. [PMID: 28814614 PMCID: PMC6347102 DOI: 10.1152/physrev.00019.2016] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
This review proposes that physical inactivity could be considered a behavior selected by evolution for resting, and also selected to be reinforcing in life-threatening situations in which exercise would be dangerous. Underlying the notion are human twin studies and animal selective breeding studies, both of which provide indirect evidence for the existence of genes for physical inactivity. Approximately 86% of the 325 million in the United States (U.S.) population achieve less than the U.S. Government and World Health Organization guidelines for daily physical activity for health. Although underappreciated, physical inactivity is an actual contributing cause to at least 35 unhealthy conditions, including the majority of the 10 leading causes of death in the U.S. First, we introduce nine physical inactivity-related themes. Next, characteristics and models of physical inactivity are presented. Following next are individual examples of phenotypes, organ systems, and diseases that are impacted by physical inactivity, including behavior, central nervous system, cardiorespiratory fitness, metabolism, adipose tissue, skeletal muscle, bone, immunity, digestion, and cancer. Importantly, physical inactivity, itself, often plays an independent role as a direct cause of speeding the losses of cardiovascular and strength fitness, shortening of healthspan, and lowering of the age for the onset of the first chronic disease, which in turn decreases quality of life, increases health care costs, and accelerates mortality risk.
Collapse
Affiliation(s)
- Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Christian K Roberts
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - John P Thyfault
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
11
|
Affiliation(s)
- Yuji Tajiri
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Asahi-machi 67, Kurume, 830-0011 Japan
| |
Collapse
|
12
|
Yang T, Xu WJ, York H, Liang NC. Diet choice patterns in rodents depend on novelty of the diet, exercise, species, and sex. Physiol Behav 2017; 176:149-158. [DOI: 10.1016/j.physbeh.2017.02.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 11/29/2022]
|
13
|
Severe Atherosclerosis and Hypercholesterolemia in Mice Lacking Both the Melanocortin Type 4 Receptor and Low Density Lipoprotein Receptor. PLoS One 2016; 11:e0167888. [PMID: 28030540 PMCID: PMC5193345 DOI: 10.1371/journal.pone.0167888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
Dysfunction of the melanocortin system can result in severe obesity accompanied with dyslipidemia and symptoms of the metabolic syndrome but the effect on vascular atherogenesis is not known. To study the impact of obesity and dyslipidemia on the cardiovascular system, we generated mice double-deficient for the melanocortin type 4 receptor (Mc4rmut mice) and the LDL receptor (Ldlr-/- mice). Mc4rmut mice develop obesity due to hyperphagia. Double-mutant mice (Mc4rmut;Ldlr-/-) exhibited massive increases in body weight, plasma cholesterol and triacylglycerol levels and developed atherosclerosis. Atherosclerotic lesion size was affected throughout the aortic root and brachiocephalic artery not only under semisynthetic, cholesterol-containing diet but also under cholesterol-free standard chow. The Mc4rmut mice developed a hepatic steatosis which contributes to increased plasma cholesterol levels even under cholesterol-free standard chow. Transcripts of cholesterol biosynthesis components and liver cholesterol levels did not significantly differ between wild-type and all mutant mouse strains but RNA sequencing data and biochemical measurements point to an altered bile acid elimination in Mc4rmut;Ldlr-/-. Therefore, the unchanged endogenous cholesterol biosynthesis together with a reduced hepatic VLDL and LDL-cholesterol clearance most likely led to increased plasma lipid levels and consequently to atherosclerosis in this animal model. Our data indicate that dysfunction of the melanocortin-regulated food intake and the resulting obesity significantly add to the proatherogenic lipoprotein profile caused by LDL receptor deficiency and, therefore, can be regarded as relevant risk factor for atherosclerosis.
Collapse
|
14
|
Tan HY, Steyn FJ, Huang L, Cowley M, Veldhuis JD, Chen C. Hyperphagia in male melanocortin 4 receptor deficient mice promotes growth independently of growth hormone. J Physiol 2016; 594:7309-7326. [PMID: 27558671 DOI: 10.1113/jp272770] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Loss of function of the melanocortin 4 receptor (MC4R) results in hyperphagia, obesity and increased growth. Despite knowing that MC4Rs control food intake, we are yet to understand why defects in the function of the MC4R receptor contribute to rapid linear growth. We show that hyperphagia following germline loss of MC4R in male mice promotes growth while suppressing the growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis. We propose that hyperinsulinaemia promotes growth while suppressing the GH-IGF-1 axis. It is argued that physiological responses essential to maintain energy flux override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. ABSTRACT Defects in melanocortin-4-receptor (MC4R) signalling result in hyperphagia, obesity and increased growth. Clinical observations suggest that loss of MC4R function may enhance growth hormone (GH)-mediated growth, although this remains untested. Using male mice with germline loss of the MC4R, we assessed pulsatile GH release and insulin-like growth factor-1 (IGF-1) production and/or release relative to pubertal growth. We demonstrate early-onset suppression of GH release in rapidly growing MC4R deficient (MC4RKO) mice, confirming that increased linear growth in MC4RKO mice does not occur in response to enhanced activation of the GH-IGF-1 axis. The progressive suppression of GH release in MC4RKO mice occurred alongside increased adiposity and the progressive worsening of hyperphagia-associated hyperinsulinaemia. We next prevented hyperphagia in MC4RKO mice through restricting calorie intake in these mice to match that of wild-type (WT) littermates. Pair feeding of MC4RKO mice did not prevent increased adiposity, but attenuated hyperinsulinaemia, recovered GH release, and normalized linear growth rate to that seen in pair-fed WT littermate controls. We conclude that the suppression of GH release in MC4RKO mice occurs independently of increased adipose mass, and is a consequence of hyperphagia-associated hyperinsulinaemia. It is proposed that physiological responses essential to maintain energy flux (hyperinsulinaemia and the suppression of GH release) override conventional mechanisms of pubertal growth to promote the storage of excess energy while ensuring growth. Implications of these findings are likely to extend beyond individuals with defects in MC4R signalling, encompassing physiological changes central to mechanisms of growth and energy homeostasis universal to hyperphagia-associated childhood-onset obesity.
Collapse
Affiliation(s)
- H Y Tan
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - F J Steyn
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia.,The University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - L Huang
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - M Cowley
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - J D Veldhuis
- Department of Medicine, Endocrine Research Unit, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, MN, USA
| | - C Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Lensing CJ, Adank DN, Doering SR, Wilber SL, Andreasen A, Schaub JW, Xiang Z, Haskell-Luevano C. Ac-Trp-DPhe(p-I)-Arg-Trp-NH2, a 250-Fold Selective Melanocortin-4 Receptor (MC4R) Antagonist over the Melanocortin-3 Receptor (MC3R), Affects Energy Homeostasis in Male and Female Mice Differently. ACS Chem Neurosci 2016; 7:1283-91. [PMID: 27385405 PMCID: PMC5687811 DOI: 10.1021/acschemneuro.6b00156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The melanocortin-4 receptor (MC4R) has been indicated as a therapeutic target for metabolic disorders such as anorexia, cachexia, and obesity. The current study investigates the in vivo effects on energy homeostasis of a 15 nM MC4R antagonist SKY2-23-7, Ac-Trp-DPhe(p-I)-Arg-Trp-NH2, that is a 3700 nM melanocortin-3 receptor (MC3R) antagonist with minimal MC3R and MC4R agonist activity. When monitoring both male and female mice in TSE metabolic cages, sex-specific responses were observed in food intake, respiratory exchange ratio (RER), and energy expenditure. A 7.5 nmol dose of SKY2-23-7 increased food intake, increased RER, and trended toward decreasing energy expenditure in male mice. However, this compound had minimal effect on female mice's food intake and RER at the 7.5 nmol dose. A 2.5 nmol dose of SKY2-23-7 significantly increased female food intake, RER, and energy expenditure while having a minimal effect on male mice at this dose. The observed sex differences of SKY2-23-7 administration result in the discovery of a novel chemical probe for elucidating the molecular mechanisms of the sexual dimorphism present within the melanocortin pathway. To further explore the melanocortin sexual dimorphism, hypothalamic gene expression was examined. The mRNA expression of the MC3R and proopiomelanocortin (POMC) were not significantly different between sexes. However, the expression of agouti-related peptide (AGRP) was significantly higher in female mice which may be a possible mechanism for the sex-specific effects observed with SKY2-23-7.
Collapse
MESH Headings
- Animals
- Eating/drug effects
- Energy Metabolism/drug effects
- Female
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Oligopeptides/pharmacology
- Peptide Fragments/pharmacology
- Peptide YY/pharmacology
- Perilipin-2/genetics
- Perilipin-2/metabolism
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- Receptor, Melanocortin, Type 3/antagonists & inhibitors
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Sex Factors
- Structure-Activity Relationship
- Time Factors
Collapse
Affiliation(s)
- Cody J. Lensing
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Danielle N. Adank
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Skye R. Doering
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Stacey L. Wilber
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Amy Andreasen
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jay W. Schaub
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Zhimin Xiang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Sukhov IB, Derkach KV, Chistyakova OV, Bondareva VM, Shpakov AO. The effect of prolonged intranasal administration of serotonin on the activity of hypothalamic signaling systems in male rats with neonatal diabetes. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s1990519x1604012x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Sukhov IB, Derkach KV, Chistyakova OV, Bondareva VM, Shpakov AO. Functional state of hypothalamic signaling systems in rats with type 2 diabetes mellitus treated with intranasal insulin. J EVOL BIOCHEM PHYS+ 2016. [DOI: 10.1134/s0022093016030030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
The effect of physical exercise on orexigenic and anorexigenic peptides and its role on long-term feeding control. Med Hypotheses 2016; 93:30-3. [PMID: 27372853 DOI: 10.1016/j.mehy.2016.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/09/2016] [Indexed: 11/24/2022]
Abstract
Over the past decades, life-styles changing have led to exacerbated food and caloric intake and a reduction in energy expenditure. Obesity, main outcome of these changes, increases the risk for developing type 2 diabetes, cardiovascular disease and metabolic syndrome, the leading cause of death in adult and middle age population. Body weight and energy homeostasis are maintained via complex interactions between orexigenic and anorexigenic neuropeptides that take place predominantly in the hypothalamus. Overeating may disrupt the mechanisms of feeding control, by decreasing the expression of proopiomelanocortin (POMC) and α-melanocyte stimulating hormone (α-MSH) and increasing orexigenic neuropeptide Y (NPY) and agouti-related peptide (AgRP), which leads to a disturbance in appetite control and energy balance. Studies have shown that regular physical exercise might decrease body-weight, food intake and improve the metabolic profile, however until the currently there is no consensus about its effects on the expression of orexigenic/anorexigenic neuropeptides expression. Therefore, we propose that the type and length of physical exercise affect POMC/αMSH and NPY/AgRP systems differently and plays an important role in feeding behavior. Moreover, based on the present reports, we hypothesize that increased POMC/αMSH overcome NPY/AgRP expression decreasing food intake in long term physical exercise and that results in amelioration of several conditions related to overweight and obesity.
Collapse
|
19
|
Boersma GJ, Tamashiro KL, Moran TH, Liang NC. Corticosterone administration in drinking water decreases high-fat diet intake but not preference in male rats. Am J Physiol Regul Integr Comp Physiol 2016; 310:R733-43. [PMID: 26818055 PMCID: PMC4867410 DOI: 10.1152/ajpregu.00371.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/26/2016] [Indexed: 12/20/2022]
Abstract
One of the mechanisms through which regular exercise contributes to weight maintenance could be by reducing intake and preference for high-fat (HF) diets. Indeed, we previously demonstrated that wheel-running rats robustly reduced HF diet intake and preference. The reduced HF diet preference by wheel running can be so profound that the rats consumed only the chow diet and completely avoided the HF diet. Because previous research indicates that exercise activates the hypothalamic-pituitary-adrenal axis and increases circulating levels of corticosterone, this study tested the hypothesis that elevation of circulating corticosterone is involved in wheel running-induced reduction in HF diet preference in rats.Experiment 1 measured plasma corticosterone levels under sedentary and wheel-running conditions in the two-diet-choice (high-carbohydrate chow vs. HF) feeding regimen. The results revealed that plasma corticosterone is significantly increased and positively correlated with the levels of running in wheel-running rats with two-diet choice.Experiments 2 and 3 determined whether elevated corticosterone without wheel running is sufficient to reduce HF diet intake and preference. Corticosterone was elevated by adding it to the drinking water. Compared with controls, corticosterone-drinking rats had reduced HF diet intake and body weight, but the HF diet preference between groups did not differ. The results of this study support a role for elevated corticosterone on the reduced HF diet intake during wheel running. The elevation of corticosterone alone, however, is not sufficient to produce a robust reduction in HF diet preference.
Collapse
Affiliation(s)
- Gretha J Boersma
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Kellie L Tamashiro
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland; Johns Hopkins Global Obesity Prevention Center, Johns Hopkins University, Baltimore, Maryland; and
| | - Nu-Chu Liang
- Department of Psychology and Neuroscience Program, University of Illinois-Urbana Champaign, Champaign, Illinois
| |
Collapse
|
20
|
Lensing CJ, Freeman KT, Schnell SM, Adank DN, Speth RC, Haskell-Luevano C. An in Vitro and in Vivo Investigation of Bivalent Ligands That Display Preferential Binding and Functional Activity for Different Melanocortin Receptor Homodimers. J Med Chem 2016; 59:3112-28. [PMID: 26959173 DOI: 10.1021/acs.jmedchem.5b01894] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pharmacological probes for the melanocortin receptors have been utilized for studying various disease states including cancer, sexual function disorders, Alzheimer's disease, social disorders, cachexia, and obesity. This study focused on the design and synthesis of bivalent ligands to target melanocortin receptor homodimers. Lead ligands increased binding affinity by 14- to 25-fold and increased cAMP signaling potency by 3- to 5-fold compared to their monovalent counterparts. Unexpectedly, different bivalent ligands showed preferences for particular melanocortin receptor subtypes depending on the linker that connected the binding scaffolds, suggesting structural differences between the various dimer subtypes. Homobivalent compound 12 possessed a functional profile that was unique from its monovalent counterpart providing evidence of the discrete effects of bivalent ligands. Lead compound 7 significantly decreased feeding in mice after intracerebroventricular administration. To the best of our knowledge, this is the first report of a melanocortin bivalent ligand's in vivo physiological effects.
Collapse
Affiliation(s)
- Cody J Lensing
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Katie T Freeman
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Sathya M Schnell
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Danielle N Adank
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Robert C Speth
- College of Pharmacy, Nova Southeastern University , Fort Lauderdale, Florida 33328-2018, United States.,Department of Pharmacology and Physiology, Georgetown University , Washington, D.C. 20057, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci OA 2015; 1:FSO25. [PMID: 28031898 PMCID: PMC5137856 DOI: 10.4155/fso.15.23] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The changes in the brain signaling systems play an important role in etiology and pathogenesis of Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), being a possible cause of these diseases. Therefore, their restoration at the early stages of T2DM and MS can be regarded as a promising way to treat and prevent these diseases and their complications. The data on the functional state of the brain signaling systems regulated by insulin, IGF-1, leptin, dopamine, serotonin, melanocortins and glucagon-like peptide-1, in T2DM and MS, are analyzed. The pharmacological approaches to restoration of these systems and improvement of insulin sensitivity, energy expenditure, lipid metabolism, and to prevent diabetic complications are discussed.
Collapse
|
22
|
Gamu D, Trinh A, Bombardier E, Tupling AR. Persistence of diet-induced obesity despite access to voluntary activity in mice lacking sarcolipin. Physiol Rep 2015; 3:3/9/e12549. [PMID: 26400985 PMCID: PMC4600390 DOI: 10.14814/phy2.12549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several rodent models of obesity have been shown to develop excessive adiposity only when voluntary cage ambulation is restricted. We have previously shown that mice lacking the sarco(endo)plasmic reticulum Ca2+-ATPase pump regulatory protein sarcolipin (Sln–/–), an uncoupler of Ca2+ uptake, develop excessive diet-induced obesity under standard housing conditions. However, it is unclear whether this phenotype is due, in part, to the sedentary housing environment in which these animals are kept. To address this, we allowed wild-type and Sln–/– animals ad libitum access to voluntary wheel running while consuming a standard chow or high-fat diet for 8 weeks. During this period, wheel revolutions were monitored along with weekly mass gain. Postdiet glucose tolerance and visceral adiposity were also taken. The volume of wheel running completed was similar between genotype, regardless of diet. Although voluntary activity reduced mass gain relative to sedentary controls within each diet (P < 0.05), visceral adiposity was surprisingly unaltered with activity. However, Sln–/– mice developed excessive obesity (P < 0.05) and glucose intolerance (P < 0.05) with high-fat feeding relative to wild-type controls. These findings indicate that the excessive diet-induced obese phenotype previously observed in Sln–/– mice is not the result of severely restricted daily ambulation, but in fact the inability to recruit uncoupling of the Ca2+-ATPase pump.
Collapse
Affiliation(s)
- Daniel Gamu
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Anton Trinh
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
23
|
Obici S, Magrisso IJ, Ghazarian AS, Shirazian A, Miller JR, Loyd CM, Begg DP, Krawczewski Carhuatanta KA, Haas MK, Davis JF, Woods SC, Sandoval DA, Seeley RJ, Goodyear LJ, Pothos EN, Mul JD. Moderate voluntary exercise attenuates the metabolic syndrome in melanocortin-4 receptor-deficient rats showing central dopaminergic dysregulation. Mol Metab 2015; 4:692-705. [PMID: 26500841 PMCID: PMC4588435 DOI: 10.1016/j.molmet.2015.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/12/2023] Open
Abstract
Objective Melanocortin-4 receptors (MC4Rs) are highly expressed by dopamine-secreting neurons of the mesolimbic tract, but their functional role has not been fully resolved. Voluntary wheel running (VWR) induces adaptations in the mesolimbic dopamine system and has a myriad of long-term beneficial effects on health. In the present experiments we asked whether MC4R function regulates the effects of VWR, and whether VWR ameliorates MC4R-associated symptoms of the metabolic syndrome. Methods Electrically evoked dopamine release was measured in slice preparations from sedentary wild-type and MC4R-deficient Mc4rK314X (HOM) rats. VWR was assessed in wild-type and HOM rats, and in MC4R-deficient loxTBMc4r mice, wild-type mice body weight-matched to loxTBMc4r mice, and wild-type mice with intracerebroventricular administration of the MC4R antagonist SHU9119. Mesolimbic dopamine system function (gene/protein expression) and metabolic parameters were examined in wheel-running and sedentary wild-type and HOM rats. Results Sedentary obese HOM rats had increased electrically evoked dopamine release in several ventral tegmental area (VTA) projection sites compared to wild-type controls. MC4R loss-of-function decreased VWR, and this was partially independent of body weight. HOM wheel-runners had attenuated markers of intracellular D1-type dopamine receptor signaling despite increased dopamine flux in the VTA. VWR increased and decreased ΔFosB levels in the nucleus accumbens (NAc) of wild-type and HOM runners, respectively. VWR improved metabolic parameters in wild-type wheel-runners. Finally, moderate voluntary exercise corrected many aspects of the metabolic syndrome in HOM runners. Conclusions Central dopamine dysregulation during VWR reinforces the link between MC4R function and molecular and behavioral responding to rewards. The data also suggest that exercise can be a successful lifestyle intervention in MC4R-haploinsufficient individuals despite reduced positive reinforcement during exercise training. MC4R-deficiency causes metabolic syndrome. Loss of MC4R signaling decreases voluntary wheel running (VWR). Despite moderate amounts of VWR, MC4R-associated metabolic syndrome is severely attenuated. MC4R-deficiency is associated with mesolimbic dopamine dysregulation during VWR.
Collapse
Affiliation(s)
- Silvana Obici
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - I Jack Magrisso
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Armen S Ghazarian
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Alireza Shirazian
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Jonas R Miller
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Christine M Loyd
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Denovan P Begg
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA ; School of Psychology, UNSW Australia, Sydney, NSW, Australia
| | | | - Michael K Haas
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Jon F Davis
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Stephen C Woods
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Darleen A Sandoval
- North Campus Research Complex, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Randy J Seeley
- North Campus Research Complex, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Emmanuel N Pothos
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Joram D Mul
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA ; Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Leibel RL, Seeley RJ, Darsow T, Berg EG, Smith SR, Ratner R. Biologic Responses to Weight Loss and Weight Regain: Report From an American Diabetes Association Research Symposium. Diabetes 2015; 64:2299-309. [PMID: 26106187 DOI: 10.2337/db15-0004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Rudolph L Leibel
- Division of Molecular Genetics and Naomi Berrie Diabetes Center, Columbia University, New York, NY
| | - Randy J Seeley
- Department of Surgery, North Campus Research Complex, University of Michigan School of Medicine, Ann Arbor, MI
| | - Tamara Darsow
- Division of Science and Medicine, American Diabetes Association, Alexandria, VA
| | - Erika Gebel Berg
- Division of Science and Medicine, American Diabetes Association, Alexandria, VA
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Sanford-Burnham Institute, Florida Hospital, Winter Park, FL
| | - Robert Ratner
- Division of Science and Medicine, American Diabetes Association, Alexandria, VA
| |
Collapse
|
25
|
Shpakov AO, Derkach KV, Zharova OA, Shpakova EA. The functional activity of the adenylate cyclase system in the brains of rats with metabolic syndrome induced by immunization with peptide 11–25 of the type 4 melanocortin receptor. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415010092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Koga S, Kojima A, Ishikawa C, Kuwabara S, Arai K, Yoshiyama Y. Effects of diet-induced obesity and voluntary exercise in a tauopathy mouse model: implications of persistent hyperleptinemia and enhanced astrocytic leptin receptor expression. Neurobiol Dis 2014; 71:180-92. [PMID: 25132556 DOI: 10.1016/j.nbd.2014.08.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 08/02/2014] [Accepted: 08/10/2014] [Indexed: 01/08/2023] Open
Abstract
The number of patients with Alzheimer's disease (AD) is increasing worldwide, and available drugs have shown limited efficacy. Hence, preventive interventions and treatments for presymptomatic AD are currently considered very important. Obesity rates have also been increasing dramatically and it is an independent risk factor of AD. Therefore, for the prevention of AD, it is important to elucidate the pathomechanism between obesity and AD. We generated high calorie diet (HCD)-induced obese tauopathy model mice (PS19), which showed hyperleptinemia but limited insulin resistance. HCD enhanced tau pathology and glial activation. Conversely, voluntary exercise with a running wheel normalized the serum leptin concentration without reducing body weight, and restored the pathological changes induced by HCD. Thus, we speculated that persistent hyperleptinemia played an important role in accelerating pathological changes in PS19 mice. Leptin primarily regulates food intake and body weight via leptin receptor b (LepRb). Interestingly, the nuclear staining for p-STAT3, which was activated by LepRb, was decreased in hippocampal neurons in HCD PS19 mice, indicating leptin resistance. Meanwhile, astroglial activation and the astrocytic expression of a short LepR isoform, LepRa, were enhanced in the hippocampus of HCD PS19 mice. Real-time PCR analysis demonstrated that leptin increased mRNA levels for pro-inflammatory cytokines including IL-1β and TNF-α in primary cultured astrocytes from wild type and LepRb-deficient mice. These observations suggest that persistent hyperleptinemia caused by obesity induces astrocytic activation, astrocytic leptin hypersensitivity with enhanced LepRa expression, and enhanced inflammation, consequently accelerating tau pathology in PS19 mice.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neurology, School of Graduate Medicine, Chiba University, Japan
| | - Ayako Kojima
- Laboratory for Neurodegenerative Disorder Research, Clinical Research Center, Chiba-East National Hospital, Japan
| | - Chieko Ishikawa
- Laboratory for Neurodegenerative Disorder Research, Clinical Research Center, Chiba-East National Hospital, Japan; Department of Neurology, Chiba-East National Hospital, Japan
| | - Satoshi Kuwabara
- Department of Neurology, School of Graduate Medicine, Chiba University, Japan
| | - Kimihito Arai
- Department of Neurology, Chiba-East National Hospital, Japan; Department of Neurology, School of Graduate Medicine, Chiba University, Japan
| | - Yasumasa Yoshiyama
- Laboratory for Neurodegenerative Disorder Research, Clinical Research Center, Chiba-East National Hospital, Japan; Department of Neurology, Chiba-East National Hospital, Japan; Department of Neurology, School of Graduate Medicine, Chiba University, Japan.
| |
Collapse
|
27
|
Voluntary exercise under a food restriction condition decreases blood branched-chain amino acid levels, in addition to improvement of glucose and lipid metabolism, in db mice, animal model of type 2 diabetes. Environ Health Prev Med 2014; 19:339-47. [PMID: 25085431 DOI: 10.1007/s12199-014-0400-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/13/2014] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Exercise is effective for preventing the onset and development of type 2 diabetes mellitus (T2DM) in human cases; however, the effect of exercise on the pathophysiology using animal models of T2DM has not been fully evaluated. METHODS We applied voluntary exercise under pair-fed (P) conditions in db mice, an animal model of T2DM. Exercising (Ex) and sedentary (Se) mice were placed in a cage, equipped with a free or locked running wheel, for 4 weeks, respectively. The amount of food consumed by ad libitum-fed wild-type mice under the Se condition (ad-WT) was supplied to all mice, except ad libitum db mice (ad-db). Blood parameters and expression of the genes involved in nutrient metabolism were analyzed. RESULTS PEx-db (pair-fed and exercising) mice showed significantly lower HbA1c, body weight and liver weight than PSe-db and ad-db mice. Decreased hepatic triglycerides in PEx-db mice corresponded to a lower expression of lipogenic enzyme genes in the liver. Moreover, PEx-db mice showed significantly lower plasma branched-chain amino acids (BCAA), arginine, proline, and tyrosine, in addition to increased skeletal muscle (SM) weight, than PSe-db and ad-db mice, in spite of little influence on the expression of the BCAA transaminase gene, in SM and WAT. CONCLUSION We found that exercise under a food restriction condition decreases several amino acids, including BCAA, and may improve insulin sensitivity more than mere food restriction. We propose that the decreased concentration of blood amino acids may be a valuable marker evaluating the effects of exercise on diabetic conditions.
Collapse
|
28
|
Pendergast JS, Branecky KL, Huang R, Niswender KD, Yamazaki S. Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior. Front Psychol 2014; 5:177. [PMID: 24624109 PMCID: PMC3941004 DOI: 10.3389/fpsyg.2014.00177] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/13/2014] [Indexed: 12/18/2022] Open
Abstract
Consumption of high-fat diet acutely alters the daily rhythm of eating behavior and circadian organization (the phase relationship between oscillators in central and peripheral tissues) in mice. Voluntary wheel-running activity counteracts the obesogenic effects of high-fat diet and also modulates circadian rhythms in mice. In this study, we sought to determine whether voluntary wheel-running activity could prevent the proximate effects of high-fat diet consumption on circadian organization and behavioral rhythms in mice. Mice were housed with locked or freely rotating running wheels and fed chow or high-fat diet for 1 week and rhythms of locomotor activity, eating behavior, and molecular timekeeping (PERIOD2::LUCIFERASE luminescence rhythms) in ex vivo tissues were measured. Wheel-running activity delayed the phase of the liver rhythm by 4 h in both chow- and high-fat diet-fed mice. The delayed liver phase was specific to wheel-running activity since an enriched environment without the running wheel did not alter the phase of the liver rhythm. In addition, wheel-running activity modulated the effect of high-fat diet consumption on the daily rhythm of eating behavior. While high-fat diet consumption caused eating events to be more evenly dispersed across the 24 h-day in both locked-wheel and wheel-running mice, the effect of high-fat diet was much less pronounced in wheel-running mice. Together these data demonstrate that wheel-running activity is a salient factor that modulates liver phase and eating behavior rhythms in both chow- and high-fat-diet fed mice. Wheel-running activity in mice is both a source of exercise and a self-motivating, rewarding behavior. Understanding the putative reward-related mechanisms whereby wheel-running activity alters circadian rhythms could have implications for human obesity since palatable food and exercise may modulate similar reward circuits.
Collapse
Affiliation(s)
- Julie S Pendergast
- Department of Biological Sciences, Vanderbilt University Nashville, TN, USA
| | - Katrina L Branecky
- Department of Biological Sciences, Vanderbilt University Nashville, TN, USA
| | | | - Kevin D Niswender
- 3VA Tennessee Valley Healthcare System Nashville, TN, USA ; Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine Nashville, TN, USA
| | - Shin Yamazaki
- Department of Biological Sciences, Vanderbilt University Nashville, TN, USA
| |
Collapse
|
29
|
Furnari MA, Jobes ML, Nekrasova T, Minden A, Wagner GC. Differential sensitivity of Pak5, Pak6, and Pak5/Pak6 double-knockout mice to the stimulant effects of amphetamine and exercise-induced alterations in body weight. Nutr Neurosci 2013; 17:109-15. [PMID: 23710594 DOI: 10.1179/1476830513y.0000000072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES PAK5 and PAK6 are protein kinases highly expressed in the brain. Previously, we observed that Pak6 knockout mice gained significantly more weight during development than Pak5 knockout mice as well as wild-type controls and double-knockout mice lacking both Pak5 and Pak6. In this study, we assessed the effects of exercise on food intake and weight gain of these mice as well as their sensitivity to the stimulant effects of amphetamine. METHODS Mice of each genotype were placed in cages with free access to run wheel exercise or in cages without run wheels for a total of 74 days. Food and fluid intake as well as body weight of each mouse were measured on a weekly basis. Finally, mice were given a high dose of amphetamine and activity levels were observed immediately thereafter for 90 minutes. Brains and testes of mice were assayed for protein levels of the estrogen alpha and progesterone receptors. RESULTS While run wheel mice consumed significantly more food, they weighed less than non-run wheel mice. In addition, although Pak6 knockout mice consumed the same amount of food as wild-type mice, they were significantly heavier regardless of run wheel condition. Pak5 knockout mice were found to be more active than other genotypes after amphetamine treatment. Finally, protein levels of the progesterone and estrogen alpha receptors were altered in brain and testes of the Pak6 knockout mice. DISCUSSION Collectively, these data suggest that PAK6 play a role in weight gain unrelated to exercise and caloric intake and that Pak5 knockout mice are more sensitive to the stimulant effects of amphetamine.
Collapse
|
30
|
Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol 2013; 2:1143-211. [PMID: 23798298 DOI: 10.1002/cphy.c110025] [Citation(s) in RCA: 1315] [Impact Index Per Article: 109.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic diseases are major killers in the modern era. Physical inactivity is a primary cause of most chronic diseases. The initial third of the article considers: activity and prevention definitions; historical evidence showing physical inactivity is detrimental to health and normal organ functional capacities; cause versus treatment; physical activity and inactivity mechanisms differ; gene-environment interaction (including aerobic training adaptations, personalized medicine, and co-twin physical activity); and specificity of adaptations to type of training. Next, physical activity/exercise is examined as primary prevention against 35 chronic conditions [accelerated biological aging/premature death, low cardiorespiratory fitness (VO2max), sarcopenia, metabolic syndrome, obesity, insulin resistance, prediabetes, type 2 diabetes, nonalcoholic fatty liver disease, coronary heart disease, peripheral artery disease, hypertension, stroke, congestive heart failure, endothelial dysfunction, arterial dyslipidemia, hemostasis, deep vein thrombosis, cognitive dysfunction, depression and anxiety, osteoporosis, osteoarthritis, balance, bone fracture/falls, rheumatoid arthritis, colon cancer, breast cancer, endometrial cancer, gestational diabetes, pre-eclampsia, polycystic ovary syndrome, erectile dysfunction, pain, diverticulitis, constipation, and gallbladder diseases]. The article ends with consideration of deterioration of risk factors in longer-term sedentary groups; clinical consequences of inactive childhood/adolescence; and public policy. In summary, the body rapidly maladapts to insufficient physical activity, and if continued, results in substantial decreases in both total and quality years of life. Taken together, conclusive evidence exists that physical inactivity is one important cause of most chronic diseases. In addition, physical activity primarily prevents, or delays, chronic diseases, implying that chronic disease need not be an inevitable outcome during life.
Collapse
Affiliation(s)
- Frank W Booth
- Departments of Biomedical Sciences, Medical Pharmacology and Physiology, and Nutrition and Exercise Physiology, Dalton Cardiovascular Institute, University of Missouri, Columbia, Missouri, USA.
| | | | | |
Collapse
|
31
|
The functional state of hormone-sensitive adenylyl cyclase signaling system in diabetes mellitus. JOURNAL OF SIGNAL TRANSDUCTION 2013; 2013:594213. [PMID: 24191197 PMCID: PMC3804439 DOI: 10.1155/2013/594213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/05/2013] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus (DM) induces a large number of diseases of the nervous, cardiovascular, and some other systems of the organism. One of the main causes of the diseases is the changes in the functional activity of hormonal signaling systems which lead to the alterations and abnormalities of the cellular processes and contribute to triggering and developing many DM complications. The key role in the control of physiological and biochemical processes belongs to the adenylyl cyclase (AC) signaling system, sensitive to biogenic amines and polypeptide hormones. The review is devoted to the changes in the GPCR-G protein-AC system in the brain, heart, skeletal muscles, liver, and the adipose tissue in experimental and human DM of the types 1 and 2 and also to the role of the changes in AC signaling in the pathogenesis and etiology of DM and its complications. It is shown that the changes of the functional state of hormone-sensitive AC system are dependent to a large extent on the type and duration of DM and in experimental DM on the model of the disease. The degree of alterations and abnormalities of AC signaling pathways correlates very well with the severity of DM and its complications.
Collapse
|
32
|
Treadmill Exercise Training Modulates Hepatic Cholesterol Metabolism and Circulating PCSK9 Concentration in High-Fat-Fed Mice. J Lipids 2013; 2013:908048. [PMID: 23862065 PMCID: PMC3703876 DOI: 10.1155/2013/908048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/04/2013] [Indexed: 12/22/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a novel biomarker of LDL clearance and a therapeutic target of cardiovascular disease. We examined the effects of aerobic exercise training in modulating PCSK9 abundance and hepatic sterol regulation in high-fat-fed C57BL/6 mice. Mice (n = 8) were assigned to a low-fat (LF), high-fat (HF), or an HF with exercise (HF + EX) group for 8 weeks. The HF + EX group was progressively trained 5 days/week on a motorized treadmill. The HF + EX group was protected against body weight (BW) gain and diet-induced dyslipidemia compared with the HF group. The HF + EX group demonstrated an increase in hepatic PCSK9 mRNA (1.9-fold of HF control, P < 0.05) and a reduction in plasma PCSK9 (14%) compared with the HF group. Compared with HF mice, HF + EX mice demonstrated reduced hepatic cholesterol (14%) and increased (P < 0.05) nuclear SREBP2 protein (1.8-fold of HF group) and LDLr mRNA (1.4-fold of HF group). Plasma PCSK9 concentrations correlated positively with plasma non-HDL-C (P = 0.01, r = 0.84). Results suggest that treadmill exercise reduces non-HDL cholesterol and differentially modulates hepatic and blood PCSK9 abundance in HF-fed C57BL/6 mice.
Collapse
|
33
|
|
34
|
Mustonen E, Ruskoaho H, Rysä J. Thrombospondin-4, tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fn14: novel extracellular matrix modulating factors in cardiac remodelling. Ann Med 2012; 44:793-804. [PMID: 22380695 DOI: 10.3109/07853890.2011.614635] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cardiac remodelling is defined as changes in the size, shape, and function of the heart, which are most commonly caused by hypertension-induced left ventricular hypertrophy and myocardial infarction. Both neurohumoral and inflammatory factors have critical roles in the regulation of cardiac remodelling. A characteristic feature of cardiac remodelling is modification of the extracellular matrix (ECM), often manifested by fibrosis, a process that has vital consequences for the structure and function of the myocardium. In addition to established modulators of the ECM, the matricellular protein thrombospondin-4 (TSP-4) as well as the tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 has been recently shown to modulate cardiac ECM. TSP-4 null mice develop pronounced cardiac hypertrophy and fibrosis with defects in collagen maturation in response to pressure overload. TWEAK and Fn14 belong to the tumour necrosis factor superfamily of proinflammatory cytokines. Recently it was shown that elevated levels of circulating TWEAK via Fn14 critically affect the cardiac ECM, characterized by increasing fibrosis and cardiomyocyte hypertrophy in mice. Here we review the literature concerning the role of matricellular proteins and inflammation in cardiac ECM remodelling, with a special focus on TSP-4, TWEAK, and its receptor Fn14.
Collapse
Affiliation(s)
- Erja Mustonen
- Institute of Biomedicine, Department of Pharmacology and Toxicology, Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | | |
Collapse
|
35
|
Boersma GJ, Barf RP, Benthem L, van Dijk G, Scheurink AJW. Forced and voluntary exercise counteract insulin resistance in rats: the role of coping style. Horm Behav 2012; 62:93-8. [PMID: 22609426 DOI: 10.1016/j.yhbeh.2012.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 11/17/2022]
Abstract
There are large individual differences in the success rates of exercise intervention programs aimed at the prevention and treatment of obesity-related disorders. In the present study, we tested the hypothesis that differences in coping style may impact the success rates of these intervention programs. We tested insulin responses before and after voluntary wheel running in both passive (insulin resistant) Roman Low Avoidance (RLA) and proactive (insulin sensitive) Roman High Avoidance (RHA) rats using intravenous glucose tolerance tests (IVGTTs). To control for a potential difference between voluntary and forced exercise, we also included RLA and RHA rats that were subjected to forced running. We found the following: 1) when given the opportunity to run voluntarily in a running wheel, passive RLA rats run more than proactively than RHA rats; 2) voluntary exercise leads to a normalization of insulin responses during an IVGTTs in RLA rats; and 3) there were no behavioral and physiological differences in efficacy between voluntary and forced running. We conclude that exercise, both forced and voluntary, is a successful lifestyle intervention for the treatment of hyperinsulinemia, especially in individuals with a passive coping style.
Collapse
Affiliation(s)
- Gretha J Boersma
- Department of Neuroendocrinology, University of Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
Novak CM, Burghardt PR, Levine JA. The use of a running wheel to measure activity in rodents: relationship to energy balance, general activity, and reward. Neurosci Biobehav Rev 2012; 36:1001-1014. [PMID: 22230703 DOI: 10.1016/j.neubiorev.2011.12.012] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/07/2011] [Accepted: 12/22/2011] [Indexed: 12/21/2022]
Abstract
Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems-including those related to the stress response, mood, and reward, and those responsive to growth factors-that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity.
Collapse
Affiliation(s)
- Colleen M Novak
- Department of Biological Sciences, Kent State University, PO Box 5190, 222 Cunningham Hall, Kent, OH 44242, United States
| | | | - James A Levine
- Mayo Clinic, Endocrine Research Unit, Rochester, MN 55905, United States
| |
Collapse
|
37
|
Bolze F, Rink N, Brumm H, Kühn R, Mocek S, Schwarz AE, Kless C, Biebermann H, Wurst W, Rozman J, Klingenspor M. Characterization of the melanocortin-4-receptor nonsense mutation W16X in vitro and in vivo. THE PHARMACOGENOMICS JOURNAL 2011; 13:80-93. [PMID: 21969101 DOI: 10.1038/tpj.2011.43] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Several genetic diseases are triggered by nonsense mutations leading to the formation of truncated and defective proteins. Aminoglycosides have the capability to mediate a bypass of stop mutations during translation thus resulting in a rescue of protein expression. So far no attention has been directed to obesity-associated stop mutations as targets for nonsense suppression. Herein, we focus on the characterization of the melanocortin-4-receptor (MC4R) nonsense allele W16X identified in obese subjects. Cell culture assays revealed a loss-of-function of Mc4r(X16) characterized by impaired surface expression and defect signaling. The aminoglycoside G-418 restored Mc4r(X16) function in vitro demonstrating that Mc4r(X16) is susceptible to nonsense suppression. For the evaluation of nonsense suppression in vivo, we generated a Mc4r(X16) knock-in mouse line by gene targeting. Mc4r(X16) knock-in mice developed hyperphagia, impaired glucose tolerance, severe obesity and an increased body length demonstrating that this new mouse model resembles typical characteristics of Mc4r deficiency. In a first therapeutic trial, the aminoglycosides gentamicin and amikacin induced no amelioration of obesity. Further experiments with Mc4r(X16) knock-in mice will be instrumental to establish nonsense suppression for Mc4r as an obesity-associated target gene expressed in the central nervous system.
Collapse
Affiliation(s)
- F Bolze
- Technische Universität München, Molecular Nutritional Medicine, Else Kröner-Fresenius Center and ZIEL-Research Center for Nutrition and Food Science, Freising, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hsieh YS, Yang SF, Chen PN, Chu SC, Chen CH, Kuo DY. Knocking down the transcript of protein kinase C-lambda modulates hypothalamic glutathione peroxidase, melanocortin receptor and neuropeptide Y gene expression in amphetamine-treated rats. J Psychopharmacol 2011; 25:982-94. [PMID: 20817751 DOI: 10.1177/0269881110376692] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been reported that neuropeptide Y (NPY) contributes to the behavioral response of amphetamine (AMPH), a psychostimulant. The present study examined whether protein kinase C (PKC)-λ signaling was involved in this action. Moreover, possible roles of glutathione peroxidase (GP) and melanocortin receptor 4 (MC4R) were also examined. Rats were given AMPH daily for 4 days. Hypothalamic NPY, PKCλ, GP and MC4R were determined and compared. Pretreatment with α-methyl-para-tyrosine could block AMPH-induced anorexia, revealing that endogenous catecholamine was involved in regulating AMPH anorexia. PKCλ, GP and MC4R were increased with maximal response on Day 2 during AMPH treatment, which were concomitant with the decreases in NPY. cAMP response element binding protein (CREB) DNA binding activity was increased during AMPH treatment, revealing the involvement of CREB-dependent gene transcription. An interruption of cerebral PKCλ transcript could partly block AMPH-induced anorexia and partly reverse NPY, MC4R and GP mRNA levels to normal. These results suggest that PKCλ participates in regulating AMPH-induced anorexia via a modulation of hypothalamic NPY gene expression and that increases of GP and MC4R may contribute to this modulation. Our results provided molecular evidence for the regulation of AMPH-induced behavioral response.
Collapse
Affiliation(s)
- Yih-Shou Hsieh
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University Hospital, Taiwan, R.O.C
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
It is unclear whether elevated spontaneous physical activity (SPA, very low-intensity physical activity) positively influences body composition long-term.
Collapse
|
40
|
Belarbi K, Burnouf S, Fernandez-Gomez FJ, Laurent C, Lestavel S, Figeac M, Sultan A, Troquier L, Leboucher A, Caillierez R, Grosjean ME, Demeyer D, Obriot H, Brion I, Barbot B, Galas MC, Staels B, Humez S, Sergeant N, Schraen-Maschke S, Muhr-Tailleux A, Hamdane M, Buée L, Blum D. Beneficial effects of exercise in a transgenic mouse model of Alzheimer's disease-like Tau pathology. Neurobiol Dis 2011; 43:486-94. [PMID: 21569847 DOI: 10.1016/j.nbd.2011.04.022] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/21/2011] [Accepted: 04/25/2011] [Indexed: 01/31/2023] Open
Abstract
Tau pathology is encountered in many neurodegenerative disorders known as tauopathies, including Alzheimer's disease. Physical activity is a lifestyle factor affecting processes crucial for memory and synaptic plasticity. Whether long-term voluntary exercise has an impact on Tau pathology and its pathophysiological consequences is currently unknown. To address this question, we investigated the effects of long-term voluntary exercise in the THY-Tau22 transgenic model of Alzheimer's disease-like Tau pathology, characterized by the progressive development of Tau pathology, cholinergic alterations and subsequent memory impairments. Three-month-old THY-Tau22 mice and wild-type littermates were assigned to standard housing or housing supplemented with a running wheel. After 9 months of exercise, mice were evaluated for memory performance and examined for hippocampal Tau pathology, cholinergic defects, inflammation and genes related to cholesterol metabolism. Exercise prevented memory alterations in THY-Tau22 mice. This was accompanied by a decrease in hippocampal Tau pathology and a prevention of the loss of expression of choline acetyltransferase within the medial septum. Whereas the expression of most cholesterol-related genes remained unchanged in the hippocampus of running THY-Tau22 mice, we observed a significant upregulation in mRNA levels of NPC1 and NPC2, genes involved in cholesterol trafficking from the lysosomes. Our data support the view that long-term voluntary physical exercise is an effective strategy capable of mitigating Tau pathology and its pathophysiological consequences.
Collapse
Affiliation(s)
- Karim Belarbi
- Université Lille-Nord de France, UDSL, F-59000 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Boersma GJ, Benthem L, van Dijk G, Scheurink AJW. Individual variation in the (patho)physiology of energy balance. Physiol Behav 2011; 103:89-97. [PMID: 21237186 DOI: 10.1016/j.physbeh.2010.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/22/2010] [Accepted: 12/26/2010] [Indexed: 11/26/2022]
Abstract
There are large individual differences in the susceptibility for metabolic disorders such as obesity, the metabolic syndrome and type 2 diabetes. Unfortunately, most animal studies in this field ignore the importance of individual variation which limits the face validity of these studies for translation to the human situation. We have performed a series of studies that were particularly focused on the individual differences in the (patho)physiology of energy balance. The studies were performed with passive and proactive individuals of two different rat strains: the Roman High and Low Avoidance rats and the Wild type Groningen rat. The data reveal that passive and proactive individuals differ significantly on several parameters, i.e. body composition, Hypothalamic-Pituitary-Adrenal (HPA) axis activity, plasma levels of insulin and leptin, intestinal transit time, systolic blood pressure and meal patterns. We also found that the selection line of the Roman Low Avoidance rat may be considered as a non-obese animal model for the metabolic syndrome, since these rats display, under sedentary conditions, many of the related symptoms such as hypertension, visceral adiposity and insulin resistance during an intravenous glucose tolerance test. These symptoms disappeared when the animals were allowed to exercise voluntarily in a running wheel. We conclude that experiments with passive and proactive individuals are highly relevant for studying the (patho)physiology and behavior of energy balance and the related metabolic disorders.
Collapse
Affiliation(s)
- Gretha J Boersma
- Department of Neuroendocrinology, University of Groningen, The Netherlands.
| | | | | | | |
Collapse
|
42
|
Rowland NE, Schaub JW, Robertson KL, Andreasen A, Haskell-Luevano C. Effect of MTII on food intake and brain c-Fos in melanocortin-3, melanocortin-4, and double MC3 and MC4 receptor knockout mice. Peptides 2010; 31:2314-7. [PMID: 20800636 PMCID: PMC2967649 DOI: 10.1016/j.peptides.2010.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
Mice with genomic knockout of either melanocortin type 3 receptors (MC3R-/-), type 4 receptors (MC4R-/-) or knockout of both (double knockout, DKO) were tested for their anorectic response to the mixed MC3/4R agonist, MTII, injected into the anterior cerebral ventricle. Wild type (WT) mice showed a strong anorexia and, as expected, DKO were completely unresponsive to MTII. In contrast, both MC3R-/- and MC4R-/- showed a partial anorectic response. Induction of c-Fos immunoreactivity by MTII was examined in brain regions including paraventricular hypothalamus (PVN) and area postrema (AP). Compared with WT, MC4R-/- showed no activation in AP but showed normal activation in PVN, whereas MC3R-/- showed reduced activation in PVN but not in AP. RT-PCR analysis showed that hypothalamic mRNA for MC3R in MC4R-/- and for MC4R in MC3R-/- was unaltered from WT levels. These data suggest that both receptor subtypes are involved in the behavioral action of MTII, and that the critical receptors are in different brain regions.
Collapse
Affiliation(s)
- Neil E Rowland
- Department of Psychology, University of Florida, Gainesville, FL 32611-2250, United States.
| | | | | | | | | |
Collapse
|
43
|
Joseph CG, Yao H, Scott JW, Sorensen NB, Marnane RN, Mountjoy KG, Haskell-Luevano C. γ₂-Melanocyte stimulation hormone (γ₂-MSH) truncation studies results in the cautionary note that γ₂-MSH is not selective for the mouse MC3R over the mouse MC5R. Peptides 2010; 31:2304-13. [PMID: 20833220 PMCID: PMC2967600 DOI: 10.1016/j.peptides.2010.08.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 12/16/2022]
Abstract
The melanocortin system has been implicated in a multitude of physiological pathways including obesity, satiety, energy homeostasis, sexual behavior, pigmentation, sodium regulation, hypertension, and many others. Based upon studies of the endogenous melanocortin receptor agonists at the cloned human melanocortin receptor proteins, it was concluded that the γ-MSH related agonist ligands are selective for the MC3 versus the MC4 and MC5 receptors. In attempts to understand and identify the specific amino acids of γ₂-MSH important for MC3R selectivity, we have performed N- and C-terminal truncation studies and pharmacologically characterized twenty-eight ligands at the mouse MC1 and MC3-5 melanocortin receptors. The C-terminal Trp-Asp⁹-Arg¹⁰-Phe¹¹ residues are important for nM potency at the mMC3R and the Arg⁷-Trp⁸ residues are important for mMC5R nM potency. We observed the unanticipated results that several of the C-terminal truncated analogs possessed nM agonist potency at the mMC3 and mMC5Rs which lead us to perform a comparative side-by-side study of the mouse and human MC5R. These data resulted in μM γ₂-MSH analog potency at the hMC5R, consistent with previous reports, however at the mMC5R, nM γ₂-MSH analog potency was observed. Thus, these data support the hypothesis of important species specific differences in γ-MSH related ligand potency at the rodent versus human MC5R subtype that is critical for the interpretation of in vivo rodent physiological studies. These results prompted us to examine the affects of a peripherally administered melanocortin agonist on hypothalamic gene expression levels of the MC3R, MC4R, and MC5R. The super potent non-selective NDP-MSH agonist was administered i.p. and resulted in significantly decreased levels of mMC3R and mMC5R hypothalamic mRNA versus saline control. These data provide for the first time data demonstrating peripherally administered NDP-MSH can modify hypothalamic melanocortin receptor expression levels.
Collapse
MESH Headings
- Animals
- Brain/drug effects
- Brain/metabolism
- Cell Line
- Cyclic AMP/metabolism
- Humans
- Male
- Mice
- Receptor, Melanocortin, Type 1/chemistry
- Receptor, Melanocortin, Type 1/genetics
- Receptor, Melanocortin, Type 1/metabolism
- Receptor, Melanocortin, Type 3/chemistry
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/chemistry
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Receptors, Melanocortin/chemistry
- Receptors, Melanocortin/genetics
- Receptors, Melanocortin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Structure-Activity Relationship
- alpha-MSH/analogs & derivatives
- alpha-MSH/pharmacology
- gamma-MSH/pharmacology
Collapse
Affiliation(s)
- Christine G. Joseph
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610
| | - Hua Yao
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610
| | - Joseph W. Scott
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610
| | | | - Rebecca N. Marnane
- Department of Physiology, University of Auckland, Auckland 1, New Zealand
| | | | | |
Collapse
|
44
|
Myoung HJ, Kim G, Nam KW. Apigenin isolated from the seeds of Perilla frutescens britton var crispa (Benth.) inhibits food intake in C57BL/6J mice. Arch Pharm Res 2010; 33:1741-6. [DOI: 10.1007/s12272-010-1105-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 06/24/2010] [Accepted: 08/06/2010] [Indexed: 01/28/2023]
|
45
|
Abstract
Hypothalamic obesity (HyOb) was first defined as the significant polyphagia and weight gain that occurs after extensive suprasellar operations for excision of hypothalamic tumours. However, polyphagia and weight gain complicate other disorders related to the hypothalamus, including those that cause structural damage to the hypothalamus like tumours, trauma, radiotherapy; genetic disorders such as Prader-Willi syndrome; side effects of psychotropic drugs; and mutations in several genes involved in hypothalamic satiety signalling. Moreover, 'simple' obesity is associated with polymorphisms in several genes involved in hypothalamic weight-regulating pathways. Thus, understanding HyOb may enhance our understanding of 'simple' obesity. This review will claim that HyOb is a far wider phenomenon than hitherto understood by the narrow definition of post-surgical weight gain. It will emphasize the similarity in clinical characteristics and therapeutic approaches for HyOb, as well as its mechanisms. HyOb, regardless of its aetiology, is a result of impairment in hypothalamic regulatory centres of body weight and energy expenditure. The pathophysiology includes loss of sensitivity to afferent peripheral humoral signals, such as, leptin on the one hand and dysfunctional afferent signals, on the other hand. The most important afferent signals deranged are energy regulation by the sympathetic nervous system and regulation of insulin secretion. Dys-regulation of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity and melatonin may also have a role in the development of HyOb. The complexity of the syndrome requires simultaneous targeting of several mechanisms that are deranged in the HyOb patient. We review the studies evaluating possible treatment strategies, including sympathomimetics, somatostatin analogues, triiodothyronine, sibutramine, and surgery.
Collapse
Affiliation(s)
- I Hochberg
- Rambam Medical Center and Rappaport Family Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
46
|
Atalayer D, Robertson KL, Haskell-Luevano C, Andreasen A, Rowland NE. Food demand and meal size in mice with single or combined disruption of melanocortin type 3 and 4 receptors. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1667-74. [PMID: 20375267 DOI: 10.1152/ajpregu.00562.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mice with homozygous genetic disruption of the melanocortin-4 receptor gene (MC4R-/-) are known to be hyperphagic and become obese, while those with disruption of the melanocortin-3 receptor gene (MC3R-/-) do not become markedly obese. The contribution of MC3R signaling in energy homeostasis remains little studied. In the present work, we compare MC3R-/- mice with wild-type (WT), MC4R-/-, and mice bearing disruption of both genes (double knockout, DKO) on select feeding and neuroanatomical dimensions. DKO mice were significantly more obese than MC4R-/-, whereas MC3R-/- weighed the same as WT. In a food demand protocol, DKO and MC4R-/- were hyperphagic at low unit costs for food, due primarily to increased meal size. However, at higher costs, their intake dropped below that of WT and MC3R-/-, indicating increased elasticity of food demand. To determine whether this higher elasticity was due to either the genotype or to the obese phenotype, the same food demand protocol was conducted in dietary obese C57BL6 mice. They showed similar elasticity to lean mice, suggesting that the effect is of genotypic origin. To assess whether the increased meal size in MC4R-/- and DKO might be due to reduced CCK signaling, we examined the acute anorectic effect of peripherally administered CCK and subsequently the induction of c-Fos immunoreactivity in select brain regions. The anorectic effect of CCK was comparable in MC4R-/-, DKO, and WT, but it was unexpectedly absent in MC3R-/-. CCK-induced c-Fos was lower in the paraventricular nucleus in MC3R-/- than the other genotypes. These data are discussed in terms of demand functions for food intake, MC receptors involved in feeding, and their relation to actions of gut hormones, such as CCK, and to obesity.
Collapse
Affiliation(s)
- Deniz Atalayer
- Department of Psychology, University of Florida, Gainesville, Florida 32611-2250, USA
| | | | | | | | | |
Collapse
|
47
|
Kim Y, Park M, Boghossian S, York DA. Three weeks voluntary running wheel exercise increases endoplasmic reticulum stress in the brain of mice. Brain Res 2010; 1317:13-23. [DOI: 10.1016/j.brainres.2009.12.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 12/15/2009] [Accepted: 12/21/2009] [Indexed: 12/27/2022]
|
48
|
Booth FW, Laye MJ. Lack of adequate appreciation of physical exercise's complexities can pre-empt appropriate design and interpretation in scientific discovery. J Physiol 2009; 587:5527-39. [PMID: 19723782 PMCID: PMC2805365 DOI: 10.1113/jphysiol.2009.179507] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 09/01/2009] [Indexed: 12/19/2022] Open
Abstract
Two major issues are presented. First, a challenge is made by us that a misunderstanding of physiology has led to incomplete or wrong functional designations of genes in some cases. Normal physiological processes are dynamic, integrated and periodic, and, therefore, it is difficult to define normal physiological function by looking at a single time point or single process in a non-stressed subject. The ability of the organism to successfully respond to homeostatic disruptions defines normal physiology. Genes were selected for survival and to appropriately respond to stresses, such as physical activity. Omitting gene functions by restricting them to non-stressful conditions could lead to less than optimal primary preventions, treatments and cures for diseases. Physical exercise, as a stressor, should be used to better demonstrate the complete functional classifications of some genes. Second, the challenge from others of an 'exercise pill' as a mimetic of natural physical activity will be shown to be lacking a scientific basis. The concept of an 'exercise pill'/'exercise mimetic' demonstrates an inadequate appreciation of the complexities in integrating cell, tissue, organ and systems during both acute disruptions in homeostasis by a single bout of exercise, and longer-term chronic adaptations to different types of exercise such as resistance and endurance. It is our opinion that those promoting drugs targeting a single or few molecules should not redefine the term 'exercise' and exercise concepts in an attempt to sensationalize findings. Additionally, the scientific criteria that the authors demand to be met to legitimately use the terms 'exercise pill' and 'exercise mimetic' are presented.
Collapse
Affiliation(s)
- F W Booth
- Veterinary Medicine Bldg E102, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|