1
|
Li X, Ding H, Feng G, Huang Y. Role of angiotensin converting enzyme in pathogenesis associated with immunity in cardiovascular diseases. Life Sci 2024; 352:122903. [PMID: 38986897 DOI: 10.1016/j.lfs.2024.122903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Angiotensin converting enzyme (ACE) is not only a critical component in the renin-angiotensin system (RAS), but also suggested as an important mediator for immune response and activity, such as immune cell mobilization, metabolism, biogenesis of immunoregulatory molecules, etc. The chronic duration of cardiovascular diseases (CVD) has been increasingly considered to be triggered by uncontrolled pathologic immune reactions from myeloid cells and lymphocytes. Considering the potential anti-inflammatory effect of the traditional antihypertensive ACE inhibitor (ACEi), we attempt to elucidate whether ACE and its catalytically relevant substances as well as signaling pathways play a role in the immunity-related pathogenesis of common CVD, such as arterial hypertension, atherosclerosis and arrythmias. ACEi was also reported to benefit the prognoses of COVID-19-positive patients with CVD, and COVID-19 disease with preexisting CVD or subsequent cardiovascular damage is featured by a significant influx of immune cells and proinflammatory molecules, suggesting that ACE may also participate in COVID-19 induced cardiovascular injury, because COVID-19 disease basically triggers an overactive pathologic immune response. Hopefully, the ACE inhibition and manipulation of those associated bioactive signals could supplement the current medicinal management of various CVD and bring greater benefit to patients' cardiovascular health.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Huasheng Ding
- Department of Emergency, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Gaoke Feng
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Yan Huang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Williamson AE, Liyanage S, Hassanshahi M, Dona MSI, Toledo-Flores D, Tran DXA, Dimasi C, Schwarz N, Fernando S, Salagaras T, Long A, Kazenwadel J, Harvey NL, Drummond GR, Vinh A, Chandrakanthan V, Misra A, Neufeld Z, Tan JTM, Martelotto L, Polo JM, Bonder CS, Pinto AR, Sharma S, Nicholls SJ, Bursill CA, Psaltis PJ. Discovery of an embryonically derived bipotent population of endothelial-macrophage progenitor cells in postnatal aorta. Nat Commun 2024; 15:7097. [PMID: 39154007 PMCID: PMC11330468 DOI: 10.1038/s41467-024-51637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Converging evidence indicates that extra-embryonic yolk sac is the source of both macrophages and endothelial cells in adult mouse tissues. Prevailing views are that these embryonically derived cells are maintained after birth by proliferative self-renewal in their differentiated states. Here we identify clonogenic endothelial-macrophage (EndoMac) progenitor cells in the adventitia of embryonic and postnatal mouse aorta, that are independent of Flt3-mediated bone marrow hematopoiesis and derive from an early embryonic CX3CR1+ and CSF1R+ source. These bipotent progenitors are proliferative and vasculogenic, contributing to adventitial neovascularization and formation of perfused blood vessels after transfer into ischemic tissue. We establish a regulatory role for angiotensin II, which enhances their clonogenic and differentiation properties and rapidly stimulates their proliferative expansion in vivo. Our findings demonstrate that embryonically derived EndoMac progenitors participate in local vasculogenic responses in the aortic wall by contributing to the expansion of endothelial cells and macrophages postnatally.
Collapse
Affiliation(s)
- Anna E Williamson
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sanuri Liyanage
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Mohammadhossein Hassanshahi
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Malathi S I Dona
- Cardiac Cellular Systems Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Deborah Toledo-Flores
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Dang X A Tran
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Catherine Dimasi
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Nisha Schwarz
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sanuja Fernando
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Thalia Salagaras
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Aaron Long
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Department of Cardiology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Jan Kazenwadel
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Natasha L Harvey
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Grant R Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Antony Vinh
- Department of Microbiology, Anatomy, Physiology and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Vashe Chandrakanthan
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Ashish Misra
- Faculty of Medicine and Health, University of Sydney and Heart Research Institute, Newtown, NSW, Australia
| | - Zoltan Neufeld
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, Australia
| | - Joanne T M Tan
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Luciano Martelotto
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jose M Polo
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Alexander R Pinto
- Cardiac Cellular Systems Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology and Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Shiwani Sharma
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Flinders Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, VIC, Australia
| | - Christina A Bursill
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
- Department of Cardiology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia.
| |
Collapse
|
3
|
Schaich CL, Leisman DE, Goldberg MB, Filbin MR, Khanna AK, Chappell MC. Dysfunction of the renin-angiotensin-aldosterone system in human septic shock. Peptides 2024; 176:171201. [PMID: 38555976 PMCID: PMC11060897 DOI: 10.1016/j.peptides.2024.171201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Sepsis and septic shock are global healthcare problems associated with mortality rates of up to 40% despite optimal standard-of-care therapy and constitute the primary cause of death in intensive care units worldwide. Circulating biomarkers of septic shock severity may represent a clinically relevant approach to individualize those patients at risk for worse outcomes early in the course of the disease, which may facilitate early and more precise interventions to improve the clinical course. However, currently used septic shock biomarkers, including lactate, may be non-specific and have variable impact on prognosis and/or disease management. Activation of the renin-angiotensin-aldosterone system (RAAS) is likely an early event in septic shock, and studies suggest that an elevated level of renin, the early and committed step in the RAAS cascade, is a better predictor of worse outcomes in septic shock, including mortality, than the current standard-of-care measure of lactate. Despite a robust increase in renin, other elements of the RAAS, including endogenous levels of Ang II, may fail to sufficiently increase to maintain blood pressure, tissue perfusion, and protective immune responses in septic shock patients. We review the current clinical literature regarding the dysfunction of the RAAS in septic shock and potential therapeutic approaches to improve clinical outcomes.
Collapse
Affiliation(s)
- Christopher L Schaich
- Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel E Leisman
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marcia B Goldberg
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Micheal R Filbin
- Department of Emergency Medicine, Massachusetts General Hospital,Boston, MA, USA
| | - Ashish K Khanna
- Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Anesthesiology, Section on Critical Care Medicine, Atrium Health Wake Forest Baptist Medical Center, USA; Outcomes Research Consortium, Cleveland, OH, USA
| | - Mark C Chappell
- Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
4
|
Rao A, Bhat SA, Shibata T, Giani JF, Rader F, Bernstein KE, Khan Z. Diverse biological functions of the renin-angiotensin system. Med Res Rev 2024; 44:587-605. [PMID: 37947345 DOI: 10.1002/med.21996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/30/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
The renin-angiotensin system (RAS) has been widely known as a circulating endocrine system involved in the control of blood pressure. However, components of RAS have been found to be localized in rather unexpected sites in the body including the kidneys, brain, bone marrow, immune cells, and reproductive system. These discoveries have led to steady, growing evidence of the existence of independent tissue RAS specific to several parts of the body. It is important to understand how RAS regulates these systems for a variety of reasons: It gives a better overall picture of human physiology, helps to understand and mitigate the unintended consequences of RAS-inhibiting or activating drugs, and sets the stage for potential new therapies for a variety of ailments. This review fulfills the need for an updated overview of knowledge about local tissue RAS in several bodily systems, including their components, functions, and medical implications.
Collapse
Affiliation(s)
- Adithi Rao
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Shabir A Bhat
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tomohiro Shibata
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jorge F Giani
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Florian Rader
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kenneth E Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zakir Khan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
5
|
Sharma GP, Frei A, Fish B, Gasperetti T, Veley D, Szalewski N, Nissen A, Himburg HA. Biological sex differences in renin angiotensin system enzymes ACE and ACE2 regulate normal tissue response to radiation injury. Front Physiol 2023; 14:1191237. [PMID: 37275232 PMCID: PMC10235526 DOI: 10.3389/fphys.2023.1191237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction: In experimental animal models, biological sex-differences in the manifestation and severity of normal tissue radiation injury have been well-documented. Previously we demonstrated male and female rats have differential and highly reproducible responses to high-dose partial body irradiation (PBI) with male rats having greater susceptibility to both gastrointestinal acute radiation syndrome (GI-ARS) and radiation pneumonitis than female rats. Methods: In the current study, we have investigated whether differential expression of the renin-angiotensin system (RAS) enzymes angiotensin converting enzyme (ACE) and ACE2 contribute to the observed sex-related differences in radiation response. Results: During the period of symptomatic pneumonitis, the relative ratio of ACE to ACE2 (ACE/ACE2) protein in the whole lung was significantly increased by radiation in male rats alone. Systemic treatment with small molecule ACE2 agonist diminazene aceturate (DIZE) increased lung ACE2 activity and reduced morbidity during radiation pneumonitis in both sexes. Notably DIZE treatment also abrogated morbidity in male rats during GI-ARS. We then evaluated the contribution of the irradiated bone marrow (BM) compartment on lung immune cell infiltration and ACE imbalance during pneumonitis. Transplantation of bone marrow from irradiated donors increased both ACE-expressing myeloid cell infiltration and immune ACE activity in the lung during pneumonitis compared to non-irradiated donors. Discussion: Together, these data demonstrate radiation induces a sex-dependent imbalance in the renin-angiotensin system enzymes ACE and ACE2. Additionally, these data suggest a role for ACE-expressing myeloid cells in the pathogenesis of radiation pneumonitis. Finally, the observed sex-differences underscore the need for consideration of sex as a biological variable in the development of medical countermeasures for radiation exposure.
Collapse
Affiliation(s)
- Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Dana Veley
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Nathan Szalewski
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Austen Nissen
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Heather A. Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
6
|
Leong M, Li X, Chaum M. Pocket ACEs: Discovering new function within an old player. Front Physiol 2023; 14:1151908. [PMID: 36969603 PMCID: PMC10036365 DOI: 10.3389/fphys.2023.1151908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Angiotensin-converting enzyme (ACE) is canonically known for its role in the renin-angiotensin system (RAS) where its conversion of angiotensin I (Ang I) to the bioactive peptide angiotensin II (Ang II) helps to regulate blood pressure, electrolyte, and volume homeostasis. Further studies on ACE have shown that its enzymatic activity is relatively non-specific and functions outside of the RAS axis. Of the multiple systems it has been implicated in, ACE has been found to play an important role in the development and modulation of hematopoiesis and the immune system, both through the RAS and independently of the RAS axis.
Collapse
Affiliation(s)
| | - Xiaomo Li
- Cedars Sinai Medical Center, Los Angeles, CA, United States
| | | |
Collapse
|
7
|
Cozier GE, Newby EC, Schwager SLU, Isaac RE, Sturrock ED, Acharya KR. Structural basis for the inhibition of human angiotensin-1 converting enzyme by fosinoprilat. FEBS J 2022; 289:6659-6671. [PMID: 35653492 PMCID: PMC9796954 DOI: 10.1111/febs.16543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 01/07/2023]
Abstract
Human angiotensin I-converting enzyme (ACE) has two isoforms, somatic ACE (sACE) and testis ACE (tACE). The functions of sACE are widespread, with its involvement in blood pressure regulation most extensively studied. sACE is composed of an N-domain (nACE) and a C-domain (cACE), both catalytically active but have significant structural differences, resulting in different substrate specificities. Even though ACE inhibitors are used clinically, they need much improvement because of serious side effects seen in patients (~ 25-30%) with long-term treatment due to nonselective inhibition of nACE and cACE. Investigation into the distinguishing structural features of each domain is therefore of vital importance for the development of domain-specific inhibitors with minimal side effects. Here, we report kinetic data and high-resolution crystal structures of both nACE (1.75 Å) and cACE (1.85 Å) in complex with fosinoprilat, a clinically used inhibitor. These structures allowed detailed analysis of the molecular features conferring domain selectivity by fosinoprilat. Particularly, altered hydrophobic interactions were observed to be a contributing factor. These experimental data contribute to improved understanding of the structural features that dictate ACE inhibitor domain selectivity, allowing further progress towards designing novel 2nd-generation domain-specific potent ACE inhibitors suitable for clinical administration, with a variety of potential future therapeutic benefits. DATABASE: The atomic coordinates and structure factors for nACE-fosinoprilat and cACE-fosinoprilat structures have been deposited with codes 7Z6Z and 7Z70, respectively, in the RCSB Protein Data Bank, www.pdb.org.
Collapse
Affiliation(s)
| | - Emma C. Newby
- Department of Biology and BiochemistryUniversity of BathUK
| | - Sylva L. U. Schwager
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownSouth Africa
| | | | - Edward D. Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownSouth Africa
| | | |
Collapse
|
8
|
The immunomodulatory effects of antihypertensive therapy: A review. Biomed Pharmacother 2022; 153:113287. [PMID: 35728352 DOI: 10.1016/j.biopha.2022.113287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Hypertension remains the leading preventable risk factor for stroke and coronary artery disease, significantly contributing to all-cause global mortality and predisposing patients to renal and heart failure, as well as peripheral vascular disease. Due to the widespread usage of antihypertensive drugs, global mean blood pressure has remained unchanged or even slightly decreased over the past four decades. However, considering the broad spectrum of mechanisms involved in the action of antihypertensive drugs and the prevalence of their target receptors on immune cells, possible immunomodulatory effects which may exert beneficial effects of lowering blood pressure but also potentially alter immune function should be considered. In this review, we attempt to assess the consequences to immune system function of administering the five most commonly prescribed groups of antihypertensive drugs and to explain the mechanisms behind those interactions. Finally, we show potential gaps in our understanding of the effects of antihypertensive drugs on patient health. With regard to the widespread use of these drugs in the adult population worldwide, the discussed results may be of vital importance to evidence-based decision-making in daily clinical practice.
Collapse
|
9
|
Sharma GP, Fish BL, Frei AC, Narayanan J, Gasperetti T, Scholler D, Pierce L, Szalewski N, Blue N, Medhora M, Himburg HA. Pharmacological ACE-inhibition Mitigates Radiation-Induced Pneumonitis by Suppressing ACE-expressing Lung Myeloid Cells. Int J Radiat Oncol Biol Phys 2022; 113:177-191. [PMID: 35093482 PMCID: PMC9018504 DOI: 10.1016/j.ijrobp.2022.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE Radiation-induced lung injury is a major dose-limiting toxicity for thoracic radiotherapy patients. In experimental models, treatment with angiotensin converting enzyme (ACE) inhibitors mitigates radiation pneumonitis; however, the mechanism of action is not well understood. Here, we evaluate the direct role of ACE inhibition on lung immune cells. METHODS AND MATERIALS ACE expression and activity were determined in the lung immune cell compartment of irradiated adult rats following either high dose fractionated radiation therapy (RT) to the right lung (5 fractions x 9 Gy) or a single dose of 13.5 Gy partial body irradiation (PBI). Mitigation of radiation-induced pneumonitis with the ACE-inhibitor lisinopril was evaluated in the 13.5 Gy rat PBI model. During pneumonitis, we characterized inflammation and immune cell content in the lungs and bronchoalveolar lavage fluid (BALF). In vitro mechanistic studies were performed using primary human monocytes and the human monocytic THP-1 cell line. RESULTS In both the PBI and fractionated RT models, radiation increased ACE activity in lung immune cells. Treatment with lisinopril improved survival during radiation pneumonitis (p=0.0004). Lisinopril abrogated radiation-induced increases in BALF MCP-1 (CCL2) and MIP-1α cytokine levels (p < 0.0001). Treatment with lisinopril reduced both ACE expression (p=0.006) and frequency of CD45+CD11b+ lung myeloid cells (p=0.004). In vitro, radiation injury acutely increased ACE activity (p=0.045) and reactive oxygen species (ROS) generation (p=0.004) in human monocytes, whereas treatment with lisinopril blocked radiation-induced increases in both ACE and ROS. Interestingly, radiation-induced ROS generation was blocked by pharmacological inhibition of either NADPH oxidase 2 (NOX2) (p=0.012) or the type 1 angiotensin receptor (AGTR1) (p=0.013). CONCLUSIONS These data demonstrate radiation-induced ACE activation within the immune compartment promotes the pathogenesis of radiation pneumonitis, while ACE inhibition suppresses activation of pro-inflammatory immune cell subsets. Mechanistically, our in vitro data demonstrate radiation directly activates the ACE/AGTR1 pathway in immune cells and promotes generation of ROS via Nox2.
Collapse
Affiliation(s)
- Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Anne C Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Dana Scholler
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Lauren Pierce
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Nathan Szalewski
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Noah Blue
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin.
| |
Collapse
|
10
|
Which ones, when and why should renin-angiotensin system inhibitors work against COVID-19? Adv Biol Regul 2021; 81:100820. [PMID: 34419773 PMCID: PMC8359569 DOI: 10.1016/j.jbior.2021.100820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022]
Abstract
The article describes the possible pathophysiological origin of COVID-19 and the crucial role of renin-angiotensin system (RAS), providing several “converging” evidence in support of this hypothesis. SARS-CoV-2 has been shown to initially upregulate ACE2 systemic activity (early phase), which can subsequently induce compensatory responses leading to upregulation of both arms of the RAS (late phase) and consequently to critical, advanced and untreatable stages of COVID-19 disease. The main and initial actors of the process are ACE2 and ADAM17 zinc-metalloproteases, which, initially triggered by SARS-CoV-2 spike proteins, work together in increasing circulating Ang 1–7 and Ang 1–9 peptides and downstream (Mas and Angiotensin type 2 receptors) pathways with anti-inflammatory, hypotensive and antithrombotic activities. During the late phase of severe COVID-19, compensatory secretion of renin and ACE enzymes are subsequently upregulated, leading to inflammation, hypertension and thrombosis, which further sustain ACE2 and ADAM17 upregulation. Based on this hypothesis, COVID-19-phase-specific inhibition of different RAS enzymes is proposed as a pharmacological strategy against COVID-19 and vaccine-induced adverse effects. The aim is to prevent the establishment of positive feedback-loops, which can sustain hyperactivity of both arms of the RAS independently of viral trigger and, in some cases, may lead to Long-COVID syndrome.
Collapse
|
11
|
Cao DY, Giani JF, Veiras LC, Bernstein EA, Okwan-Duodu D, Ahmed F, Bresee C, Tourtellotte WG, Karumanchi SA, Bernstein KE, Khan Z. An ACE inhibitor reduces bactericidal activity of human neutrophils in vitro and impairs mouse neutrophil activity in vivo. Sci Transl Med 2021; 13:13/604/eabj2138. [PMID: 34321319 PMCID: PMC10370421 DOI: 10.1126/scitranslmed.abj2138] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022]
Abstract
Angiotensin-converting enzyme inhibitors (ACEIs) are used by millions of patients to treat hypertension, diabetic kidney disease, and heart failure. However, these patients are often at increased risk of infection. To evaluate the impact of ACEIs on immune responses to infection, we compared the effect of an ACEI versus an angiotensin receptor blocker (ARB) on neutrophil antibacterial activity. ACEI exposure reduced the ability of murine neutrophils to kill methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Klebsiella pneumoniae in vitro. In vivo, ACEI-treated mice infected with MRSA had increased bacteremia and tissue bacteria counts compared to mice treated with an ARB or with no drug. Similarly, ACEIs, but not ARBs, increased the incidence of MRSA-induced infective endocarditis in mice with aortic valve injury. Neutrophils from ACE knockout (KO) mice or mice treated with an ACEI produced less leukotriene B4 (LTB4) upon stimulation with MRSA or lipopolysaccharide, whereas neutrophils overexpressing ACE produced more LTB4 compared to wild-type neutrophils. As a result of reduced LTB4 production, ACE KO neutrophils showed decreased survival signaling and increased apoptosis. In contrast, neutrophils overexpressing ACE had an enhanced survival phenotype. Last, in a cohort of human volunteers receiving the ACEI ramipril for 1 week, ACEI administration reduced neutrophil superoxide and reactive oxygen species production and neutrophils isolated from volunteers during ramipril treatment had reduced bactericidal activity. Together, these data demonstrate that ACEI treatment, but not ARB treatment, can reduce the bacterial killing ability of neutrophils.
Collapse
Affiliation(s)
- Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Luciana C Veiras
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Derick Okwan-Duodu
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Faizan Ahmed
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Catherine Bresee
- Biostatistics and Bioinformatics Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Warren G Tourtellotte
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.,Department of Neurology, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - S Ananth Karumanchi
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Zakir Khan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA. .,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| |
Collapse
|
12
|
Varayathu H, Sarathy V, Thomas BE, Mufti SS, Naik R. Combination Strategies to Augment Immune Check Point Inhibitors Efficacy - Implications for Translational Research. Front Oncol 2021; 11:559161. [PMID: 34123767 PMCID: PMC8193928 DOI: 10.3389/fonc.2021.559161] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Immune checkpoint inhibitor therapy has revolutionized the field of cancer immunotherapy. Even though it has shown a durable response in some solid tumors, several patients do not respond to these agents, irrespective of predictive biomarker (PD-L1, MSI, TMB) status. Multiple preclinical, as well as early-phase clinical studies are ongoing for combining immune checkpoint inhibitors with anti-cancer and/or non-anti-cancer drugs for beneficial therapeutic interactions. In this review, we discuss the mechanistic basis behind the combination of immune checkpoint inhibitors with other drugs currently being studied in early phase clinical studies including conventional chemotherapy drugs, metronomic chemotherapy, thalidomide and its derivatives, epigenetic therapy, targeted therapy, inhibitors of DNA damage repair, other small molecule inhibitors, anti-tumor antibodies hormonal therapy, multiple checkpoint Inhibitors, microbiome therapeutics, oncolytic viruses, radiotherapy, drugs targeting myeloid-derived suppressor cells, drugs targeting Tregs, drugs targeting renin-angiotensin system, drugs targeting the autonomic nervous system, metformin, etc. We also highlight how translational research strategies can help better understand the true therapeutic potential of such combinations.
Collapse
Affiliation(s)
- Hrishi Varayathu
- Department of Translational Medicine and Therapeutics, HealthCare Global Enterprises Limited, Bangalore, India
| | - Vinu Sarathy
- Department of Medical Oncology, HealthCare Global Enterprises Limited, Bangalore, India
| | - Beulah Elsa Thomas
- Department of Clinical Pharmacology, HealthCare Global Enterprises Limited, Bangalore, India
| | - Suhail Sayeed Mufti
- Department of Translational Medicine and Therapeutics, HealthCare Global Enterprises Limited, Bangalore, India
| | - Radheshyam Naik
- Department of Medical Oncology, HealthCare Global Enterprises Limited, Bangalore, India
| |
Collapse
|
13
|
Costa MM, Stilhano RS, Oliveira CR, Barbosa CMV, Pereira GJS, Paredes-Gamero EJ, Nakaie CR, Smaili SS, Bincoletto C. Angiotensin II modulates the murine hematopoietic stem cell and progenitors cocultured with stromal S17 cells. Cell Biol Int 2021; 45:1459-1467. [PMID: 33675269 DOI: 10.1002/cbin.11584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/07/2021] [Accepted: 02/27/2021] [Indexed: 01/18/2023]
Abstract
Although the existence of the renin-angiotensin system (RAS) in the bone marrow is clear, the exact role of this system in hematopoiesis has not yet been fully characterized. Here the direct role of angiotensin II (AngII) in hematopoietic stem cells (HSCs), common myeloid progenitors (CMPs), granulocyte/monocyte progenitors (GMPs), and megakaryocytes/erythroid progenitors (MEPs), using a system of coculture with stromal S17 cells. Flow cytometry analysis showed that AngII increases the percentage of HSC and GMP, while reducing CMP with no effect on MEP. According to these data, AngII increased the total number of mature Gr-1+ /Mac-1+ cells without changes in Terr119+ cells. AngII does not induce cell death in the population of LSK cells. In these populations, treatment with AngII decreases the expression of Ki67+ protein with no changes in the Notch1 expression, suggesting a role for AngII on the quiescence of immature cells. In addition, exposure to AngII from murine bone marrow cells increased the number of CFU-GM and BFU-E in a clonogenic assay. In conclusion, our data showed that AngII is involved in the regulation of hematopoiesis with a special role in HSC, suggesting that AngII should be evaluated in coculture systems, especially in cases that require the expansion of these cells in vitro, still a significant challenge for therapeutic applications in humans.
Collapse
Affiliation(s)
- Maíra M Costa
- Departamento de Farmacologia, Escola Paulista de Medicina, Instituto Nacional de Farmacologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Roberta S Stilhano
- Departamento de Biofísica, Centro de Terapia Celular e Molecular, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Carlos R Oliveira
- Departamento de Farmacologia, Escola Paulista de Medicina, Instituto Nacional de Farmacologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Chistiano M V Barbosa
- Departamento de Biofísica, Instituto Nacional de Farmacologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Gustavo J S Pereira
- Departamento de Farmacologia, Escola Paulista de Medicina, Instituto Nacional de Farmacologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Instituto Nacional de Farmacologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.,Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Clovis R Nakaie
- Departamento de Biofísica, Instituto Nacional de Farmacologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.,Departamento de Bioquímica, Instituto Nacional de Farmacologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Soraya S Smaili
- Departamento de Farmacologia, Escola Paulista de Medicina, Instituto Nacional de Farmacologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Claudia Bincoletto
- Departamento de Farmacologia, Escola Paulista de Medicina, Instituto Nacional de Farmacologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Julien E, Biasch K, El Omar R, Freund JN, Gachet C, Lanza F, Tavian M. Renin-angiotensin system is involved in embryonic emergence of hematopoietic stem/progenitor cells. Stem Cells 2021; 39:636-649. [PMID: 33480126 DOI: 10.1002/stem.3339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Angiotensin-converting enzyme (ACE), a key element of the renin-angiotensin system (RAS), has recently been identified as a new marker of both adult and embryonic human hematopoietic stem/progenitor cells (HSPCs). However, whether a full renin-angiotensin pathway is locally present during the hematopoietic emergence is still an open question. In the present study, we show that this enzyme is expressed by hematopoietic progenitors in the developing mouse embryo. Furthermore, ACE and the other elements of RAS-namely angiotensinogen, renin, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors-are expressed in the paraaortic splanchnopleura (P-Sp) and in its derivative, the aorta-gonad-mesonephros region, both in human and mouse embryos. Their localization is compatible with the existence of a local autocrine and/or paracrine RAS in these hemogenic sites. in vitro perturbation of the RAS by administration of a specific AT1 receptor antagonist inhibits almost totally the generation of blood CD45-positive cells from dissected P-Sp, implying that angiotensin II signaling is necessary for the emergence of hematopoietic cells. Conversely, addition of exogenous angiotensin II peptide stimulates hematopoiesis in culture, with an increase in the number of immature c-Kit+ CD41+ CD31+ CD45+ hematopoietic progenitors, compared to the control. These results highlight a novel role of local-RAS during embryogenesis, suggesting that angiotensin II, via activation of AT1 receptor, promotes the emergence of undifferentiated hematopoietic progenitors.
Collapse
Affiliation(s)
- Emmanuelle Julien
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
| | - Katia Biasch
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France.,University of Strasbourg, INSERM, IRFAC/UMR-S1113, ITI InnoVec, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Reine El Omar
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France.,IMoPA, UMR7365 CNRS-University of Lorraine, Vandœuvre Les Nancy, France
| | - Jean-Noël Freund
- University of Strasbourg, INSERM, IRFAC/UMR-S1113, ITI InnoVec, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Christian Gachet
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
| | - François Lanza
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
| | - Manuela Tavian
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France.,University of Strasbourg, INSERM, IRFAC/UMR-S1113, ITI InnoVec, FHU ARRIMAGE, FMTS, Strasbourg, France
| |
Collapse
|
15
|
Renin-Angiotensin System in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1277:105-114. [PMID: 33119868 DOI: 10.1007/978-3-030-50224-9_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For enhancing the antitumor effects of current immunotherapies including immune-checkpoint blockade, it is important to reverse cancer-induced immunosuppression. The renin-angiotensin system (RAS) controls systemic body fluid circulation; however, the presence of a local RAS in tumors has been reported. Furthermore, the local RAS in tumors influences various immune and interstitial cells and affects tumor immune response. RAS stimulation through the angiotensin II type 1 receptor has been reported to inhibit tumor immune response. Therefore, RAS inhibitors and combined treatment with immunotherapy are expected in the future. In this chapter, we provide a background on the RAS and describe the tumor environment with regard to the RAS and tumor immune response.
Collapse
|
16
|
Jarajapu YPR. Targeting Angiotensin-Converting Enzyme-2/Angiotensin-(1-7)/Mas Receptor Axis in the Vascular Progenitor Cells for Cardiovascular Diseases. Mol Pharmacol 2021; 99:29-38. [PMID: 32321734 PMCID: PMC7725063 DOI: 10.1124/mol.119.117580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Bone marrow-derived hematopoietic stem/progenitor cells are vasculogenic and play an important role in endothelial health and vascular homeostasis by participating in postnatal vasculogenesis. Progenitor cells are mobilized from bone marrow niches in response to remote ischemic injury and migrate to the areas of damage and stimulate revascularization largely by paracrine activation of angiogenic functions in the peri-ischemic vasculature. This innate vasoprotective mechanism is impaired in certain chronic clinical conditions, which leads to the development of cardiovascular complications. Members of the renin-angiotensin system-angiotensin-converting enzymes (ACEs) ACE and ACE2, angiotensin II (Ang II), Ang-(1-7), and receptors AT1 and Mas-are expressed in vasculogenic progenitor cells derived from humans and rodents. Ang-(1-7), generated by ACE2, is known to produce cardiovascular protective effects by acting on Mas receptor and is considered as a counter-regulatory mechanism to the detrimental effects of Ang II. Evidence has now been accumulating in support of the activation of the ACE2/Ang-(1-7)/Mas receptor pathway by pharmacologic or molecular maneuvers, which stimulates mobilization of progenitor cells from bone marrow, migration to areas of vascular damage, and revascularization of ischemic areas in pathologic conditions. This minireview summarizes recent studies that have enhanced our understanding of the physiology and pharmacology of vasoprotective axis in bone marrow-derived progenitor cells in health and disease. SIGNIFICANCE STATEMENT: Hematopoietic stem progenitor cells (HSPCs) stimulate revascularization of ischemic areas. However, the reparative potential is diminished in certain chronic clinical conditions, leading to the development of cardiovascular diseases. ACE2 and Mas receptor are key members of the alternative axis of the renin-angiotensin system and are expressed in HSPCs. Accumulating evidence points to activation of ACE2 or Mas receptor as a promising approach for restoring the reparative potential, thereby preventing the development of ischemic vascular diseases.
Collapse
Affiliation(s)
- Yagna P R Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
17
|
Renin angiotensin system genes are biomarkers for personalized treatment of acute myeloid leukemia with Doxorubicin as well as etoposide. PLoS One 2020; 15:e0242497. [PMID: 33237942 PMCID: PMC7688131 DOI: 10.1371/journal.pone.0242497] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the availability of various treatment protocols, response to therapy in patients with Acute Myeloid Leukemia (AML) remains largely unpredictable. Transcriptomic profiling studies have thus far revealed the presence of molecular subtypes of AML that are not accounted for by standard clinical parameters or by routinely used biomarkers. Such molecular subtypes of AML are predicted to vary in response to chemotherapy or targeted therapy. The Renin-Angiotensin System (RAS) is an important group of proteins that play a critical role in regulating blood pressure, vascular resistance and fluid/electrolyte balance. RAS pathway genes are also known to be present locally in tissues such as the bone marrow, where they play an important role in leukemic hematopoiesis. In this study, we asked if the RAS genes could be utilized to predict drug responses in patients with AML. We show that the combined in silico analysis of up to five RAS genes can reliably predict sensitivity to Doxorubicin as well as Etoposide in AML. The same genes could also predict sensitivity to Doxorubicin when tested in vitro. Additionally, gene set enrichment analysis revealed enrichment of TNF-alpha and type-I IFN response genes among sensitive, and TGF-beta and fibronectin related genes in resistant cancer cells. However, this does not seem to reflect an epithelial to mesenchymal transition per se. We also identified that RAS genes can stratify patients with AML into subtypes with distinct prognosis. Together, our results demonstrate that genes present in RAS are biomarkers for drug sensitivity and the prognostication of AML.
Collapse
|
18
|
Cozier GE, Lubbe L, Sturrock ED, Acharya KR. Angiotensin-converting enzyme open for business: structural insights into the subdomain dynamics. FEBS J 2020; 288:2238-2256. [PMID: 33067882 PMCID: PMC8048788 DOI: 10.1111/febs.15601] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022]
Abstract
Angiotensin‐1‐converting enzyme (ACE) is a key enzyme in the renin–angiotensin–aldosterone and kinin systems where it cleaves angiotensin I and bradykinin peptides, respectively. However, ACE also participates in numerous other physiological functions, can hydrolyse many peptide substrates and has various exo‐ and endopeptidase activities. ACE achieves this complexity by containing two homologous catalytic domains (N‐ and C‐domains), which exhibit different substrate specificities. Here, we present the first open conformation structures of ACE N‐domain and a unique closed C‐domain structure (2.0 Å) where the C terminus of a symmetry‐related molecule is observed inserted into the active‐site cavity and binding to the zinc ion. The open native N‐domain structure (1.85 Å) enables comparison with ACE2, a homologue previously observed in open and closed states. An open S2_S′‐mutant N‐domain structure (2.80 Å) includes mutated residues in the S2 and S′ subsites that effect ligand binding, but are distal to the binding site. Analysis of these structures provides important insights into how structural features of the ACE domains are able to accommodate the wide variety of substrates and allow different peptidase activities. Database The atomic coordinates and structure factors for Open nACE, Open S2_S′‐nACE and Native G13‐cACE structures have been deposited with codes 6ZPQ, 6ZPT and 6ZPU, respectively, in the RCSB Protein Data Bank, www.pdb.org
Collapse
Affiliation(s)
- Gyles E Cozier
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Lizelle Lubbe
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Edward D Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
19
|
Banu N, Panikar SS, Leal LR, Leal AR. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: Therapeutic implications. Life Sci 2020; 256:117905. [PMID: 32504757 PMCID: PMC7832382 DOI: 10.1016/j.lfs.2020.117905] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023]
Abstract
In light of the outbreak of the 2019 novel coronavirus disease (COVID-19), the international scientific community has joined forces to develop effective treatment strategies. The Angiotensin-Converting Enzyme (ACE) 2, is an essential receptor for cell fusion and engulfs the SARS coronavirus infections. ACE2 plays an important physiological role, practically in all the organs and systems. Also, ACE2 exerts protective functions in various models of pathologies with acute and chronic inflammation. While ACE2 downregulation by SARS-CoV-2 spike protein leads to an overactivation of Angiotensin (Ang) II/AT1R axis and the deleterious effects of Ang II may explain the multiorgan dysfunction seen in patients. Specifically, the role of Ang II leading to the appearance of Macrophage Activation Syndrome (MAS) and the cytokine storm in COVID-19 is discussed below. In this review, we summarized the latest research progress in the strategies of treatments that mainly focus on reducing the Ang II-induced deleterious effects rather than attenuating the virus replication. Protective role of ACE2 in the organs and system Downregulation of ACE2 expression by SARS-CoV-2 leads to Ang II-induced organ damage. The appearance of MAS in COVID-19 patient Suggested treatment to diminish the deleterious effect of Ang II or appearance of MAS
Collapse
Affiliation(s)
- Nehla Banu
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sandeep Surendra Panikar
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autonoma de México (UNAM), Apartado Postal 1-1010, Queretaro, Queretaro 76000, Mexico
| | - Lizbeth Riera Leal
- Hospital General Regional número 45, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Annie Riera Leal
- UC DAVIS Institute for Regenerative Cure, Department of Dermatology, University of California, 2921 Stockton Blvd, Rm 1630, 95817 Sacramento, CA, USA.
| |
Collapse
|
20
|
Cao DY, Saito S, Veiras LC, Okwan-Duodu D, Bernstein EA, Giani JF, Bernstein KE, Khan Z. Role of angiotensin-converting enzyme in myeloid cell immune responses. Cell Mol Biol Lett 2020; 25:31. [PMID: 32508938 PMCID: PMC7249647 DOI: 10.1186/s11658-020-00225-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Angiotensin-converting enzyme (ACE), a dicarboxypeptidase, plays a major role in the regulation of blood pressure by cleaving angiotensin I into angiotensin II (Ang II), a potent vasoconstrictor. Because of its wide substrate specificity and tissue distribution, ACE affects many diverse biological processes. In inflammatory diseases, including granuloma, atherosclerosis, chronic kidney disease and bacterial infection, ACE expression gets upregulated in immune cells, especially in myeloid cells. With increasing evidences connecting ACE functions to the pathogenesis of these acquired diseases, it is suggested that ACE plays a vital role in immune functions. Recent studies with mouse models of bacterial infection and tumor suggest that ACE plays an important role in the immune responses of myeloid cells. Inhibition of ACE suppresses neutrophil immune response to bacterial infection. In contrast, ACE overexpression in myeloid cells strongly induced bacterial and tumor resistance in mice. A detailed biochemical understanding of how ACE activates myeloid cells and which ACE peptide(s) (substrate or product) mediate these effects could lead to the development of novel therapies for boosting immunity against a variety of stimuli, including bacterial infection and tumor.
Collapse
Affiliation(s)
- Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Luciana C Veiras
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Derick Okwan-Duodu
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Davis Res. Bldg., Rm. 2014, 8700 Beverly Blvd, Los Angeles, CA 90048 USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Davis Res. Bldg., Rm. 2014, 8700 Beverly Blvd, Los Angeles, CA 90048 USA
| | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Davis Res. Bldg., Rm. 2014, 8700 Beverly Blvd, Los Angeles, CA 90048 USA
| | - Zakir Khan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Davis Res. Bldg., Rm. 2014, 8700 Beverly Blvd, Los Angeles, CA 90048 USA
| |
Collapse
|
21
|
Evaluating the benefits of renin-angiotensin system inhibitors as cancer treatments. Pharmacol Ther 2020; 211:107527. [PMID: 32173557 DOI: 10.1016/j.pharmthera.2020.107527] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/08/2020] [Indexed: 02/07/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the largest and most diverse group of cellular membrane receptors identified and characterized. It is estimated that 30 to 50% of marketed drugs target these receptors. The angiotensin II receptor type 1 (AT1R) is a GPCR which signals in response to systemic alterations of the peptide hormone angiotensin II (AngII) in circulation. The enzyme responsible for converting AngI to AngII is the angiotensin-converting enzyme (ACE). Specific inhibitors for the AT1R (more commonly known as AT1R blockers or antagonists) and ACE are well characterized for their effects on the cardiovascular system. Combined with the extensive clinical data available on patient tolerance of AT1R blockers (ARBs) and ACE inhibitors (ACEIs), as well as their non-classical roles in cancer, the notion of repurposing this class of medications as cancer treatment(s) is explored in the current review. Given that AngII-dependent AT1R activity directly regulates angiogenesis, remodeling of vasculature, pro-inflammatory responses, stem cell programming and hematopoiesis, and electrolyte balance; the modulation of these processes with pharmacologically well characterized medications could present a valuable complementary treatment option for cancer patients.
Collapse
|
22
|
Cao DY, Spivia WR, Veiras LC, Khan Z, Peng Z, Jones AE, Bernstein EA, Saito S, Okwan-Duodu D, Parker SJ, Giani JF, Divakaruni AS, Van Eyk JE, Bernstein KE. ACE overexpression in myeloid cells increases oxidative metabolism and cellular ATP. J Biol Chem 2020; 295:1369-1384. [PMID: 31871049 PMCID: PMC6996878 DOI: 10.1074/jbc.ra119.011244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/05/2019] [Indexed: 12/26/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) affects blood pressure. In addition, ACE overexpression in myeloid cells increases their immune function. Using MS and chemical analysis, we identified marked changes of intermediate metabolites in ACE-overexpressing macrophages and neutrophils, with increased cellular ATP (1.7-3.0-fold) and Krebs cycle intermediates, including citrate, isocitrate, succinate, and malate (1.4-3.9-fold). Increased ATP is due to ACE C-domain catalytic activity; it is reversed by an ACE inhibitor but not by an angiotensin II AT1 receptor antagonist. In contrast, macrophages from ACE knockout (null) mice averaged only 28% of the ATP levels found in WT mice. ACE overexpression does not change cell or mitochondrial size or number. However, expression levels of the electron transport chain proteins NDUFB8 (complex I), ATP5A, and ATP5β (complex V) are significantly increased in macrophages and neutrophils, and COX1 and COX2 (complex IV) are increased in macrophages overexpressing ACE. Macrophages overexpressing ACE have increased mitochondrial membrane potential (24% higher), ATP production rates (29% higher), and maximal respiratory rates (37% higher) compared with WT cells. Increased cellular ATP underpins increased myeloid cell superoxide production and phagocytosis associated with increased ACE expression. Myeloid cells overexpressing ACE indicate the existence of a novel pathway in which myeloid cell function can be enhanced, with a key feature being increased cellular ATP.
Collapse
Affiliation(s)
- Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Weston R Spivia
- Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Luciana C Veiras
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Zakir Khan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Zhenzi Peng
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California 90095
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Derick Okwan-Duodu
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Sarah J Parker
- Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California 90095
| | - Jennifer E Van Eyk
- Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| |
Collapse
|
23
|
Cao DY, Spivia WR, Veiras LC, Khan Z, Peng Z, Jones AE, Bernstein EA, Saito S, Okwan-Duodu D, Parker SJ, Giani JF, Divakaruni AS, Van Eyk JE, Bernstein KE. ACE overexpression in myeloid cells increases oxidative metabolism and cellular ATP. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49895-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
24
|
Ciftciler R, Haznedaroglu IC. Pathobiological Interactions of Local Bone Marrow Renin-Angiotensin System and Central Nervous System in Systemic Arterial Hypertension. Front Endocrinol (Lausanne) 2020; 11:425. [PMID: 32903745 PMCID: PMC7438890 DOI: 10.3389/fendo.2020.00425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/28/2020] [Indexed: 01/16/2023] Open
Abstract
Circulating renin-angiotensin system (RAS) and local paracrin-autocrin-intracrin tissue-based RAS participate in numerous pathobiological events. Pro-inflammatory, pro-fibrotic, and pro-thrombotic consequences associated with local RAS activation have been detected at cellular and molecular level. Regenerative progenitor cell therapy in response to RAS modulating pharmacotherapy has emerged as an adjunct in the context of endothelial cell injury and regeneration to improve regeneration of the vascular endothelium. Local hematopoietic bone marrow (BM) RAS symbolizes the place of cross-interaction between vascular biology and cellular events from embryogenesis to definitive hematopoiesis underlying vascular atherosclerosis. The BM microenvironment also contains Mas receptors, which control the proliferative role of Ang 1-7 on hematopoietic stem cells. Ang 1-7 is produced from Ang-II or Ang-I with the help of ACE2. Various tissues and organs also have an effect on the RAS system. The leukocytes contain and synthesize immunoreactive angiotensinogen species capable of producing angiotensin in the basal state or after incubation with renin. The significance of RAS employment in atherosclerosis and hypertension was indicated by novel bidirectional Central Nervous System (CNS) RAS-BM RAS communications. Myeloid cells generated within the context of hematopoietic BM RAS are considered as the initiators and decision shapers in atherosclerosis. Macrophages in the atherosclerotic lesions contain angiotensin peptides by which RAS blockers inhibit monocyte activation and adherence. Furthermore, vascular biology in relation to inflammation and neoplasia is also affected by local tissue RAS. The purpose of this article is to outline interactions of circulating and local angiotensin systems, especially local bone marrow RAS, in the vascular pathobiological microenvironment of CNS.
Collapse
|
25
|
Okwan-Duodu D, Weiss D, Peng Z, Veiras LC, Cao DY, Saito S, Khan Z, Bernstein EA, Giani JF, Taylor WR, Bernstein KE. Overexpression of myeloid angiotensin-converting enzyme (ACE) reduces atherosclerosis. Biochem Biophys Res Commun 2019; 520:573-579. [PMID: 31615657 DOI: 10.1016/j.bbrc.2019.10.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Macrophages are ubiquitous in all stages of atherosclerosis, exerting tremendous impact on lesion progression and plaque stability. Because macrophages in atherosclerotic plaques express angiotensin-converting enzyme (ACE), current dogma posits that local myeloid-mediated effects worsen the disease. In contrast, we previously reported that myeloid ACE overexpression augments macrophage resistance to various immune challenges, including tumors, bacterial infection and Alzheimer's plaque deposition. Here, we sought to assess the impact of myeloid ACE on atherosclerosis. METHODS A mouse model in which ACE is overexpressed in myelomonocytic lineage cells, called ACE10, was generated and sequentially crossed with ApoE-deficient mice to create ACE10/10ApoE-/- (ACE10/ApoE). Control mice were ACEWT/WTApoE-/- (WT/ApoE). Atherosclerosis was induced using an atherogenic diet alone, or in combination with unilateral nephrectomy plus deoxycorticosterone acetate (DOCA) salt for eight weeks. RESULTS With an atherogenic diet alone or in combination with DOCA, the ACE10/ApoE mice showed significantly less atherosclerotic plaques compared to their WT/ApoE counterparts (p < 0.01). When recipient ApoE-/- mice were reconstituted with ACE10/10 bone marrow, these mice showed significantly reduced lesion areas compared to recipients reconstituted with wild type bone marrow. Furthermore, transfer of ACE-deficient bone marrow had no impact on lesion area. CONCLUSION Our data indicate that while myeloid ACE may not be required for atherosclerosis, enhanced ACE expression paradoxically reduced disease progression.
Collapse
Affiliation(s)
- Derick Okwan-Duodu
- Department of Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Daiana Weiss
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhenzi Peng
- Department of Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Luciana C Veiras
- Department of Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Duo-Yao Cao
- Department of Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Suguru Saito
- Department of Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zakir Khan
- Department of Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jorge F Giani
- Department of Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - W Robert Taylor
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA; Division of Cardiology, Atlanta VA Medical Center, Decatur, GA, USA
| | - Kenneth E Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
26
|
de Carvalho Santuchi M, Dutra MF, Vago JP, Lima KM, Galvão I, de Souza-Neto FP, Morais e Silva M, Oliveira AC, de Oliveira FCB, Gonçalves R, Teixeira MM, Sousa LP, dos Santos RAS, da Silva RF. Angiotensin-(1-7) and Alamandine Promote Anti-inflammatory Response in Macrophages In Vitro and In Vivo. Mediators Inflamm 2019; 2019:2401081. [PMID: 30918468 PMCID: PMC6409041 DOI: 10.1155/2019/2401081] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/12/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
The renin-angiotensin system (RAS) peptides play an important role in inflammation. Resolution of inflammation contributes to restore tissue homeostasis, and it is characterized by neutrophil apoptosis and their subsequent removal by macrophages, which are remarkable plastic cells involved in the pathophysiology of diverse inflammatory diseases. However, the effects of RAS peptides on different macrophage phenotypes are still emerging. Here, we evaluated the effects of angiotensin-(1-7) (Ang-(1-7)) and the most novel RAS peptide, alamandine, on resting (M0), proinflammatory M(LPS+IFN-γ), and anti-inflammatory M(IL-4) macrophage phenotypes in vitro, as well as on specific immune cell populations and macrophage subsets into the pleural cavity of LPS-induced pleurisy in mice. Our results showed that Ang-(1-7) and alamandine, through Mas and MrgD receptors, respectively, do not affect M0 macrophages but reduce the proinflammatory TNF-α, CCL2, and IL-1β transcript expression levels in LPS+IFN-γ-stimulated macrophages. Therapeutic administration of these peptides in LPS-induced inflammation in mice decreased the number of neutrophils and M1 (F4/80lowGr1+CD11bmed) macrophage frequency without affecting the other investigated macrophage subsets. Our data suggested that both Ang-(1-7) and alamandine, through their respective receptors Mas and MrgD, promote an anti-inflammatory reprogramming of M(LPS+IFN-γ)/M1 macrophages under inflammatory circumstances and potentiate the reprogramming induced by IL-4. In conclusion, our work sheds light on the emerging proresolving properties of Ang-(1-7) and alamandine, opening new avenues for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Melissa de Carvalho Santuchi
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Miriane Fernandes Dutra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Priscila Vago
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Kátia Maciel Lima
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Galvão
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Pedro de Souza-Neto
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mario Morais e Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Aline Cristina Oliveira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Ricardo Gonçalves
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia Pires Sousa
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson Augusto Souza dos Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafaela Fernandes da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
27
|
Khan Z, Cao DY, Giani JF, Bernstein EA, Veiras LC, Fuchs S, Wang Y, Peng Z, Kalkum M, Liu GY, Bernstein KE. Overexpression of the C-domain of angiotensin-converting enzyme reduces melanoma growth by stimulating M1 macrophage polarization. J Biol Chem 2019; 294:4368-4380. [PMID: 30670595 DOI: 10.1074/jbc.ra118.006275] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/04/2019] [Indexed: 12/17/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) can hydrolyze many peptides and plays a central role in controlling blood pressure. Moreover, ACE overexpression in monocytes and macrophages increases resistance of mice to tumor growth. ACE is composed of two independent catalytic domains. Here, to investigate the specific role of each domain in tumor resistance, we overexpressed either WT ACE (Tg-ACE mice) or ACE lacking N- or C-domain catalytic activity (Tg-NKO and Tg-CKO mice) in the myeloid cells of mice. Tg-ACE and Tg-NKO mice exhibited strongly suppressed growth of B16-F10 melanoma because of increased ACE expression in macrophages, whereas Tg-CKO mice resisted melanoma no better than WT animals. The effect of ACE overexpression reverted to that of the WT enzyme with an ACE inhibitor but not with an angiotensin II type 1 (AT1) receptor antagonist. ACE C-domain overexpression in macrophages drove them toward a pronounced M1 phenotype upon tumor stimulation, with increased activation of NF-κB and signal transducer and activator of transcription 1 (STAT1) and decreased STAT3 and STAT6 activation. Tumor necrosis factor α (TNFα) is important for M1 activation, and TNFα blockade reverted Tg-NKO macrophages to a WT phenotype. Increased ACE C-domain expression increased the levels of reactive oxygen species (ROS) and of the transcription factor C/EBPβ in macrophages, important stimuli for TNFα expression, and decreased expression of several M2 markers, including interleukin-4Rα. Natural ACE C-domain-specific substrates are not well-described, and we propose that the peptide(s) responsible for the striking ACE-mediated enhancement of myeloid function are substrates/products of the ACE C-domain.
Collapse
Affiliation(s)
- Zakir Khan
- From the Departments of Biomedical Sciences and.,Pathology
| | - Duo-Yao Cao
- From the Departments of Biomedical Sciences and
| | | | | | | | - Sebastien Fuchs
- the Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, and
| | - Yizhou Wang
- From the Departments of Biomedical Sciences and.,the Genomic Core, and
| | - Zhenzi Peng
- From the Departments of Biomedical Sciences and
| | - Markus Kalkum
- the Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - George Y Liu
- From the Departments of Biomedical Sciences and.,the Division of Pediatric Infectious Diseases and Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | | |
Collapse
|
28
|
Corey SJ, Jha J, McCart EA, Rittase WB, George J, Mattapallil JJ, Mehta H, Ognoon M, Bylicky MA, Summers TA, Day RM. Captopril mitigates splenomegaly and myelofibrosis in the Gata1 low murine model of myelofibrosis. J Cell Mol Med 2018; 22:4274-4282. [PMID: 29971909 PMCID: PMC6111823 DOI: 10.1111/jcmm.13710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/05/2018] [Indexed: 01/06/2023] Open
Abstract
Allogeneic stem cell transplantation is currently the only curative therapy for primary myelofibrosis (MF), while the JAK2 inhibitor, ruxolitinib. Has been approved only for palliation. Other therapies are desperately needed to reverse life-threatening MF. However, the cell(s) and cytokine(s) that promote MF remain unclear. Several reports have demonstrated that captopril, an inhibitor of angiotensin-converting enzyme that blocks the production of angiotensin II (Ang II), mitigates fibrosis in heart, lung, skin and kidney. Here, we show that captopril can mitigate the development of MF in the Gata1low mouse model of primary MF. Gata1low mice were treated with 79 mg/kg/d captopril in the drinking water from 10 to 12 months of age. At 13 months of age, bone marrows were examined for fibrosis, megakaryocytosis and collagen expression; spleens were examined for megakaryocytosis, splenomegaly and collagen expression. Treatment of Gata1low mice with captopril in the drinking water was associated with normalization of the bone marrow cellularity; reduced reticulin fibres, splenomegaly and megakaryocytosis; and decreased collagen expression. Our findings suggest that treating with the ACE inhibitors captopril has a significant benefit in overcoming pathological changes associated with MF.
Collapse
Affiliation(s)
- Seth J. Corey
- Division of Pediatric Hematology, Oncology & Stem Cell TransplantationThe Massey Cancer Center at Virginia Commonwealth UniversityRichmondVAUSA
| | - Jyoti Jha
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Elizabeth A. McCart
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - William B. Rittase
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Jeffy George
- Department of MicrobiologyUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Joseph J. Mattapallil
- Department of MicrobiologyUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Hrishikesh Mehta
- Division of Pediatric Hematology, Oncology & Stem Cell TransplantationThe Massey Cancer Center at Virginia Commonwealth UniversityRichmondVAUSA
| | - Mungunsukh Ognoon
- Department of AnesthesiologyUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Michelle A. Bylicky
- Neuroscience Graduate ProgramUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Thomas A. Summers
- Department of PathologyUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Regina M. Day
- Department of Pharmacology and Molecular TherapeuticsUniformed Services University of the Health SciencesBethesdaMDUSA
| |
Collapse
|
29
|
Duan Y, Beli E, Li Calzi S, Quigley JL, Miller RC, Moldovan L, Feng D, Salazar TE, Hazra S, Al-Sabah J, Chalam KV, Phuong Trinh TL, Meroueh M, Markel TA, Murray MC, Vyas RJ, Boulton ME, Parsons-Wingerter P, Oudit GY, Obukhov AG, Grant MB. Loss of Angiotensin-Converting Enzyme 2 Exacerbates Diabetic Retinopathy by Promoting Bone Marrow Dysfunction. Stem Cells 2018; 36:1430-1440. [PMID: 29761600 DOI: 10.1002/stem.2848] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/01/2018] [Accepted: 04/22/2018] [Indexed: 01/20/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the primary enzyme of the vasoprotective axis of the renin angiotensin system (RAS). We tested the hypothesis that loss of ACE2 would exacerbate diabetic retinopathy by promoting bone marrow dysfunction. ACE2-/y were crossed with Akita mice, a model of type 1 diabetes. When comparing the bone marrow of the ACE2-/y -Akita mice to that of Akita mice, we observed a reduction of both short-term and long-term repopulating hematopoietic stem cells, a shift of hematopoiesis toward myelopoiesis, and an impairment of lineage- c-kit+ hematopoietic stem/progenitor cell (HS/PC) migration and proliferation. Migratory and proliferative dysfunction of these cells was corrected by exposure to angiotensin-1-7 (Ang-1-7), the protective peptide generated by ACE2. Over the duration of diabetes examined, ACE2 deficiency led to progressive reduction in electrical responses assessed by electroretinography and to increases in neural infarcts observed by fundus photography. Compared with Akita mice, ACE2-/y -Akita at 9-months of diabetes showed an increased number of acellular capillaries indicative of more severe diabetic retinopathy. In diabetic and control human subjects, CD34+ cells, a key bone marrow HS/PC population, were assessed for changes in mRNA levels for MAS, the receptor for Ang-1-7. Levels were highest in CD34+ cells from diabetics without retinopathy. Higher serum Ang-1-7 levels predicted protection from development of retinopathy in diabetics. Treatment with Ang-1-7 or alamandine restored the impaired migration function of CD34+ cells from subjects with retinopathy. These data support that activation of the protective RAS within HS/PCs may represents a therapeutic strategy for prevention of diabetic retinopathy. Stem Cells 2018;36:1430-1440.
Collapse
Affiliation(s)
- Yaqian Duan
- Department of Cellular and Integrative Physiology, Jacksonville, Florida, USA.,Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Eleni Beli
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Sergio Li Calzi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA.,Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Judith L Quigley
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Rehae C Miller
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Leni Moldovan
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Dongni Feng
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Tatiana E Salazar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Sugata Hazra
- Department of Biological Sciences and Bioengineering, IIT Kanpur, Kanpur, India
| | - Jude Al-Sabah
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Kakarla V Chalam
- Department of Ophthalmology, University of Florida, Jacksonville, Florida, USA
| | - Thao Le Phuong Trinh
- Department of Cellular and Integrative Physiology, Jacksonville, Florida, USA.,Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Marya Meroueh
- Department of Cellular and Integrative Physiology, Jacksonville, Florida, USA
| | - Troy A Markel
- Riley Hospital for Children, Pediatric Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthew C Murray
- Space Life Sciences Research Branch, NASA Ames Research Center, Moffett Field, California, USA
| | - Ruchi J Vyas
- Carl Zeiss Meditec, Inc., Dublin, California, USA
| | - Michael E Boulton
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA.,Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Gavin Y Oudit
- Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Alexander G Obukhov
- Department of Cellular and Integrative Physiology, Jacksonville, Florida, USA
| | - Maria B Grant
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA.,Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
30
|
Pinter M, Jain RK. Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy. Sci Transl Med 2018; 9:9/410/eaan5616. [PMID: 28978752 PMCID: PMC5928511 DOI: 10.1126/scitranslmed.aan5616] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022]
Abstract
Renin-angiotensin system (RAS) inhibitors (RASi)-widely prescribed for the treatment of cardiovascular diseases-have considerable potential in oncology. The RAS plays a crucial role in cancer biology and affects tumor growth and dissemination directly and indirectly by remodeling the tumor microenvironment. We review clinical data on the benefit of RASi in primary and metastatic tumors and propose that, by activating immunostimulatory pathways, these inhibitors can enhance immunotherapy of cancer.
Collapse
Affiliation(s)
- Matthias Pinter
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA.,Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, A-1090, Austria
| | - Rakesh K Jain
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
31
|
Kohlstedt K, Trouvain C, Frömel T, Mudersbach T, Henschler R, Fleming I. Role of the angiotensin-converting enzyme in the G-CSF-induced mobilization of progenitor cells. Basic Res Cardiol 2018; 113:18. [PMID: 29549541 DOI: 10.1007/s00395-018-0677-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/15/2018] [Indexed: 12/22/2022]
Abstract
In addition to being a peptidase, the angiotensin-converting enzyme (ACE) can be phosphorylated and involved in signal transduction. We evaluated the role of ACE in granulocyte-colony-stimulating factor (G-CSF)-induced hematopoietic progenitor cell (HPC) mobilization and detected a significant increase in mice-lacking ACE. Transplantation experiments revealed that the loss of ACE in the HPC microenvironment rather than in the HPCs increased mobilization. Indeed, although ACE was expressed by a small population of bone-marrow cells, it was more strongly expressed by endosteal bone. Interestingly, there was a physical association of ACE with the G-CSF receptor (CD114), and G-CSF elicited ACE phosphorylation on Ser1270 in vivo and in vitro. A transgenic mouse expressing a non-phosphorylatable ACE (ACES/A) mutant demonstrated increased G-CSF-induced HPC mobilization and decreased G-CSF-induced phosphorylation of STAT3 and STAT5. These results indicate that ACE expression/phosphorylation in the bone-marrow niche interface negatively regulates G-CSF-induced signaling and HPC mobilization.
Collapse
Affiliation(s)
- Karin Kohlstedt
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Caroline Trouvain
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Thomas Mudersbach
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Reinhard Henschler
- Blood Donor Services Zürich and Chur, Swiss Red Cross, Zurich, Switzerland
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany. .,German Centre for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany.
| |
Collapse
|
32
|
Nakamura K, Yaguchi T, Ohmura G, Kobayashi A, Kawamura N, Iwata T, Kiniwa Y, Okuyama R, Kawakami Y. Involvement of local renin-angiotensin system in immunosuppression of tumor microenvironment. Cancer Sci 2017; 109:54-64. [PMID: 29034589 PMCID: PMC5765296 DOI: 10.1111/cas.13423] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/07/2017] [Accepted: 10/10/2017] [Indexed: 12/16/2022] Open
Abstract
To improve current cancer immunotherapies, strategies to modulate various immunosuppressive cells including myeloid derived suppressor cells (MDSC) which were shown to be negative factors in immune‐checkpoint blockade therapy, need to be developed. In the present study, we evaluated the role of the local renin‐angiotensin system (RAS) in the tumor immune‐microenvironment using murine models bearing tumor cell lines in which RAS was not involved in their proliferation and angiogenetic ability. Giving angiotensin II receptor blockers (ARB) to C57BL/6 mice bearing murine colon cancer cell line MC38 resulted in significant enhancement of tumor antigen gp70 specific T cells. ARB administration did not change the numbers of CD11b+ myeloid cells in tumors, but significantly reduced their T‐cell inhibitory ability along with decreased production of various immunosuppressive factors including interleukin (IL)‐6, IL‐10, vascular endothelial growth factor (VEGF), and arginase by CD11b+ cells in tumors. ARB also decreased expression of immunosuppressive factors such as chemokine ligand 12 and nitric oxide synthase 2 in cancer‐associated fibroblasts (CAF). Last, combination of ARB and anti‐programmed death‐ligand 1 (PD‐L1) antibodies resulted in significant augmentation of anti‐tumor effects in a CD8+ T cell‐dependent way. These results showed that RAS is involved in the generation of an immunosuppressive tumor microenvironment caused by myeloid cells and fibroblasts, other than the previously shown proliferative and angiogenetic properties of cancer cells and macrophages, and that ARB can transform the immunosuppressive properties of MDSC and CAF and could be used in combination with PD‐1/PD‐L1 immune‐checkpoint blockade therapy.
Collapse
Affiliation(s)
- Kenta Nakamura
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Dermatology, Shinshu University School of Medicine, Nagano, Japan
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Gaku Ohmura
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Asuka Kobayashi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Naoshi Kawamura
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Iwata
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yukiko Kiniwa
- Department of Dermatology, Shinshu University School of Medicine, Nagano, Japan
| | - Ryuhei Okuyama
- Department of Dermatology, Shinshu University School of Medicine, Nagano, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
33
|
Sobczuk P, Szczylik C, Porta C, Czarnecka AM. Renin angiotensin system deregulation as renal cancer risk factor. Oncol Lett 2017; 14:5059-5068. [PMID: 29098020 PMCID: PMC5652144 DOI: 10.3892/ol.2017.6826] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022] Open
Abstract
For numerous years, the non-cardiovascular role of the renin-angiotensin system (RAS) was underestimated, but recent studies have advanced the understanding of its function in various processes, including carcinogenesis. Numerous evidence comes from preclinical and clinical studies on the use of antihypertensive agents targeting the RAS, including angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers. It has been demonstrated that the use of ACEIs can alter the incidence of renal cell carcinoma (RCC) and may have a positive effect by prolonging patient survival. It has an effect on the complex action of ACEI, resulting in decreased angiotensin II (Ang-II) production and altered levels of bradykinin or Ang 1-7. The present review discusses the existing knowledge on the effects of ACE and its inhibitors on RCC cell lines, xenograft models, and patient survival in clinical studies. A brief introduction to molecular pathways aids in understanding the non-cardiovascular effects of RAS inhibitors and enables the conduction of studies on combined cancer treatment with the application of ACEIs. Recent evidence regarding the treatment of hypertension associated with tyrosine kinase inhibitors, one of the most pronounced and common side effects in modern RCC treatment, are also outlined. Captopril, an ACEI, may be used to lower blood pressure in patients, particularly due to its additional renoprotective actions.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Oncology, Military Institute of Medicine, 04-141 Warsaw, Poland.,Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Cezary Szczylik
- Department of Oncology, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Camillo Porta
- Medical Oncology, I.R.C.C.S. San Matteo University Hospital Foundation, I-27100 Pavia, Italy.,Italian Group of Onco-Nephrology/Gruppo Italiano di Onco-Nefrologia (G.I.O.N.), I-27100 Pavia, Italy
| | - Anna M Czarnecka
- Department of Oncology, Military Institute of Medicine, 04-141 Warsaw, Poland
| |
Collapse
|
34
|
Angiotensin-converting enzyme enhances the oxidative response and bactericidal activity of neutrophils. Blood 2017; 130:328-339. [PMID: 28515091 DOI: 10.1182/blood-2016-11-752006] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/15/2017] [Indexed: 01/04/2023] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitors are widely used to reduce blood pressure. Here, we examined if an ACE is important for the antibacterial effectiveness of neutrophils. ACE knockout mice or mice treated with an ACE inhibitor were more susceptible to bacterial infection by methicillin-resistant Staphylococcus aureus (MRSA). In contrast, mice overexpressing ACE in neutrophils (NeuACE mice) have increased resistance to MRSA and better in vitro killing of MRSA, Pseudomonas aeruginosa, and Klebsiella pneumoniae ACE overexpression increased neutrophil production of reactive oxygen species (ROS) following MRSA challenge, an effect independent of the angiotensin II AT1 receptor. Specifically, as compared with wild-type (WT) mice, there was a marked increase of superoxide generation (>twofold, P < .0005) in NeuACE neutrophils following infection, whereas ACE knockout neutrophils decreased superoxide production. Analysis of membrane p47-phox and p67-phox indicates that ACE increases reduced NAD phosphate oxidase activity but does not increase expression of these subunits. Increased ROS generation mediates the enhanced bacterial resistance of NeuACE mice because the enhanced resistance is lost with DPI (an inhibitor of ROS production by flavoenzymes) inhibition. NeuACE granulocytes also have increased neutrophil extracellular trap formation and interleukin-1β release in response to MRSA. In a mouse model of chemotherapy-induced neutrophil depletion, transfusion of ACE-overexpressing neutrophils was superior to WT neutrophils in treating MRSA infection. These data indicate a previously unknown function of ACE in neutrophil antibacterial defenses and suggest caution in the treatment of certain individuals with ACE inhibitors. ACE overexpression in neutrophils may be useful in boosting the immune response to antibiotic-resistant bacterial infection.
Collapse
|
35
|
Julien E, El Omar R, Tavian M. Origin of the hematopoietic system in the human embryo. FEBS Lett 2016; 590:3987-4001. [DOI: 10.1002/1873-3468.12389] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/19/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Emmanuelle Julien
- Inserm UMR-S949; Etablissement Français du Sang-ALCA; University of Strasbourg; France
| | - Reine El Omar
- Inserm UMR-S949; Etablissement Français du Sang-ALCA; University of Strasbourg; France
| | - Manuela Tavian
- Inserm UMR-S949; Etablissement Français du Sang-ALCA; University of Strasbourg; France
| |
Collapse
|
36
|
Bernstein KE, Khan Z, Giani JF, Zhao T, Eriguchi M, Bernstein EA, Gonzalez-Villalobos RA, Shen XZ. Overexpression of angiotensin-converting enzyme in myelomonocytic cells enhances the immune response. F1000Res 2016; 5. [PMID: 27018193 PMCID: PMC4806706 DOI: 10.12688/f1000research.7508.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2016] [Indexed: 12/13/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) converts angiotensin I to the vasoconstrictor angiotensin II and thereby plays an important role in blood pressure control. However, ACE is relatively non-specific in its substrate specificity and cleaves many other peptides. Recent analysis of mice overexpressing ACE in monocytes, macrophages, and other myelomonocytic cells shows that these animals have a marked increase in resistance to experimental melanoma and to infection by Listeria monocytogenes or methicillin-resistant Staphylococcus aureus (MRSA). Several other measures of immune responsiveness, including antibody production, are enhanced in these animals. These studies complement a variety of studies indicating an important role of ACE in the immune response.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Department of Biomedical Sciences and the Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zakir Khan
- Department of Biomedical Sciences and the Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jorge F Giani
- Department of Biomedical Sciences and the Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tuantuan Zhao
- Department of Biomedical Sciences and the Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Masahiro Eriguchi
- Department of Biomedical Sciences and the Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences and the Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Romer A Gonzalez-Villalobos
- Department of Biomedical Sciences and the Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiao Z Shen
- Department of Biomedical Sciences and the Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
37
|
Kim S, Zingler M, Harrison JK, Scott EW, Cogle CR, Luo D, Raizada MK. Angiotensin II Regulation of Proliferation, Differentiation, and Engraftment of Hematopoietic Stem Cells. Hypertension 2016; 67:574-84. [PMID: 26781279 DOI: 10.1161/hypertensionaha.115.06474] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/22/2015] [Indexed: 12/28/2022]
Abstract
Emerging evidence indicates that differentiation and mobilization of hematopoietic cell are critical in the development and establishment of hypertension and hypertension-linked vascular pathophysiology. This, coupled with the intimate involvement of the hyperactive renin-angiotensin system in hypertension, led us to investigate the hypothesis that chronic angiotensin II (Ang II) infusion affects hematopoietic stem cell (HSC) regulation at the level of the bone marrow. Ang II infusion resulted in increases in hematopoietic stem/progenitor cells (83%) and long-term HSC (207%) in the bone marrow. Interestingly, increases of HSCs and long-term HSCs were more pronounced in the spleen (228% and 1117%, respectively). Furthermore, we observed higher expression of C-C chemokine receptor type 2 in these HSCs, indicating there was increased myeloid differentiation in Ang II-infused mice. This was associated with accumulation of C-C chemokine receptor type 2(+) proinflammatory monocytes in the spleen. In contrast, decreased engraftment efficiency of GFP(+) HSC was observed after Ang II infusion. Time-lapse in vivo imaging and in vitro Ang II pretreatment demonstrated that Ang II induces untimely proliferation and differentiation of the donor HSC resulting in diminished HSC engraftment and bone marrow reconstitution. We conclude that (1) chronic Ang II infusion regulates HSC proliferation, mediated by angiotensin receptor type 1a, (2) Ang II accelerates HSC to myeloid differentiation resulting in accumulation of C-C chemokine receptor type 2(+) HSCs and inflammatory monocytes in the spleen, and (3) Ang II impairs homing and reconstitution potentials of the donor HSCs. These observations highlight the important regulatory roles of Ang II on HSC proliferation, differentiation, and engraftment.
Collapse
Affiliation(s)
- Seungbum Kim
- From the Departments of Physiology and Functional Genomics (S.K., M.Z., M.K.R.), Pharmacology and Therapeutics (J.K.H., D.L.), Molecular Genetics and Microbiology (E.W.S.), and Medicine (C.R.C.), College of Medicine, University of Florida, Gainesville
| | - Michael Zingler
- From the Departments of Physiology and Functional Genomics (S.K., M.Z., M.K.R.), Pharmacology and Therapeutics (J.K.H., D.L.), Molecular Genetics and Microbiology (E.W.S.), and Medicine (C.R.C.), College of Medicine, University of Florida, Gainesville
| | - Jeffrey K Harrison
- From the Departments of Physiology and Functional Genomics (S.K., M.Z., M.K.R.), Pharmacology and Therapeutics (J.K.H., D.L.), Molecular Genetics and Microbiology (E.W.S.), and Medicine (C.R.C.), College of Medicine, University of Florida, Gainesville
| | - Edward W Scott
- From the Departments of Physiology and Functional Genomics (S.K., M.Z., M.K.R.), Pharmacology and Therapeutics (J.K.H., D.L.), Molecular Genetics and Microbiology (E.W.S.), and Medicine (C.R.C.), College of Medicine, University of Florida, Gainesville
| | - Christopher R Cogle
- From the Departments of Physiology and Functional Genomics (S.K., M.Z., M.K.R.), Pharmacology and Therapeutics (J.K.H., D.L.), Molecular Genetics and Microbiology (E.W.S.), and Medicine (C.R.C.), College of Medicine, University of Florida, Gainesville
| | - Defang Luo
- From the Departments of Physiology and Functional Genomics (S.K., M.Z., M.K.R.), Pharmacology and Therapeutics (J.K.H., D.L.), Molecular Genetics and Microbiology (E.W.S.), and Medicine (C.R.C.), College of Medicine, University of Florida, Gainesville
| | - Mohan K Raizada
- From the Departments of Physiology and Functional Genomics (S.K., M.Z., M.K.R.), Pharmacology and Therapeutics (J.K.H., D.L.), Molecular Genetics and Microbiology (E.W.S.), and Medicine (C.R.C.), College of Medicine, University of Florida, Gainesville.
| |
Collapse
|
38
|
The immunobiology of myeloid-derived suppressor cells in cancer. Tumour Biol 2015; 37:1387-406. [PMID: 26611648 DOI: 10.1007/s13277-015-4477-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/19/2015] [Indexed: 12/31/2022] Open
Abstract
The tumor microenvironment is a complex and heterogeneous milieu in which multiple interactions occur between tumor and host cells. Immunosuppressive cells which are present in this microenvironment, such as regulatory T (Treg) cells and myeloid-derived suppressor cells (MDSCs), play an important role in tumor progression, via down-regulation of antitumor responses. MDSCs represent a heterogeneous group of cells originated from the myeloid lineage that are in the immature state. These cells markedly accumulate under pathologic conditions, such as cancer, infection, and inflammation, and use various mechanisms to inhibit both adaptive and innate immune responses. These immunosuppressive mechanisms include deprivation of T cells from essential amino acids, induction of oxidative stress, interference with viability and trafficking of T cells, induction of immunosuppressive cells, and finally polarizing immunity toward a tumor-promoting type 2 phenotype. In addition to suppression of antitumor immune responses, MDSCs can also enhance the tumor metastasis and angiogenesis. Previous studies have shown that increased frequency of MDSCs is related to the tumor progression. Moreover, various drugs that directly target these cells or reverse their suppressive activity can improve antitumor immune responses as well as increase the efficacy of immunotherapeutic intervention. In this review, we will first discuss on the immunobiology of MDSCs in an attempt to find the role of these cells in tumor progression and then discuss about therapeutic approaches to target these cells.
Collapse
|
39
|
Bernstein KE, Gonzalez-Villalobos RA, Giani JF, Shah K, Bernstein E, Janjulia T, Koronyo Y, Shi PD, Koronyo-Hamaoui M, Fuchs S, Shen XZ. Angiotensin-converting enzyme overexpression in myelocytes enhances the immune response. Biol Chem 2015; 395:1173-8. [PMID: 24633750 DOI: 10.1515/hsz-2013-0295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/10/2014] [Indexed: 11/15/2022]
Abstract
Angiotensin-converting enzyme (ACE) plays an important role in blood pressure control. ACE also has effects on renal function, reproduction, hematopoiesis, and several aspects of the immune response. ACE 10/10 mice overexpress ACE in monocytic cells; macrophages from ACE 10/10 mice demonstrate increased polarization toward a proinflammatory phenotype. As a result, ACE 10/10 mice have a highly effective immune response following challenge with melanoma, bacterial infection, or Alzheimer disease. As shown in ACE 10/10 mice, enhanced monocytic function greatly contributes to the ability of the immune response to defend against a wide variety of antigenic and non-antigenic challenges.
Collapse
|
40
|
Koronyo-Hamaoui M, Shah K, Koronyo Y, Bernstein E, Giani JF, Janjulia T, Black KL, Shi PD, Gonzalez-Villalobos RA, Fuchs S, Shen XZ, Bernstein KE. ACE overexpression in myelomonocytic cells: effect on a mouse model of Alzheimer's disease. Curr Hypertens Rep 2015; 16:444. [PMID: 24792094 DOI: 10.1007/s11906-014-0444-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
While it is well known that angiotensin converting enzyme (ACE) plays an important role in blood pressure control, ACE also has effects on renal function, hematopoiesis, reproduction, and aspects of the immune response. ACE 10/10 mice overexpress ACE in myelomonocytic cells. Macrophages from these mice have an increased polarization towards a pro-inflammatory phenotype that results in a very effective immune response to challenge by tumors or bacterial infection. In a mouse model of Alzheimer's disease (AD), the ACE 10/10 phenotype provides significant protection against AD pathology, including reduced inflammation, reduced burden of the neurotoxic amyloid-β protein and preserved cognitive function. Taken together, these studies show that increased myelomonocytic ACE expression in mice alters the immune response to better defend against many different types of pathologic insult, including the cognitive decline observed in an animal model of AD.
Collapse
Affiliation(s)
- Maya Koronyo-Hamaoui
- Department of Neurosurgery and the Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Uz B, Tatonyan SÇ, Sayitoğlu M, Erbilgin Y, Hatırnaz O, Aksu S, Büyükaşık Y, Sayınalp N, Göker H, Ozcebe Oİ, Ozbek U, Haznedaroğlu IC. Local Renin-Angiotensin system in normal hematopoietic and multiple myeloma-related progenitor cells. Turk J Haematol 2014; 31:136-42. [PMID: 25035670 PMCID: PMC4102040 DOI: 10.4274/tjh.2013.0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/17/2013] [Indexed: 12/01/2022] Open
Abstract
Objective: The prominent functions of the local renin-angiotensin system (RAS) in primitive hematopoiesis further support the hypothesis that local autocrine bone marrow RAS could also be active in neoplastic hematopoiesis. The aim of this study is to examine critical RAS elements in normal CD34+ hematopoietic stem cells and multiple myeloma (MM)-related progenitor cells. Materials and Methods: The study group comprised the total bone marrow cells (CBM) of 10 hematologically normal people, the CD34+ stem cell samples (CD34+CBM) of 9 healthy donors for allogeneic peripheral stem cell transplantation, and the CD34+ stem cell samples (CD34+MM) of 9 MM patients undergoing autologous peripheral stem cell transplantation. We searched for the gene expression of the major RAS components in healthy hematopoietic cells and myeloma cells by quantitative real-time polymerase chain reaction analysis. Results: RENIN, angiotensinogen (ANGTS), and angiotensin converting enzyme-I (ACE I) mRNA expression levels of CBM were significantly higher than those in myeloma patients (p=0.03, p=0.002, and p=0.0008, respectively). Moreover, RENIN and ANGTS mRNA expression levels were significantly higher in CD34+ stem cell samples of healthy allogeneic donors compared to those in myeloma patients (p=0.001 and p=0.01). However, ACE I expression levels were similar in CD34+CBM and CD34+MM hematopoietic cells (p=0.89). Conclusion: Although found to be lower than in the CBM and CD34+CBM hematopoietic cells, the local RAS components were also expressed in CD34+MM hematopoietic cells. This point should be kept in mind while focusing on the immunobiology of MM and the processing of autologous cells during the formation of transplantation treatment protocols.
Collapse
Affiliation(s)
- Burak Uz
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey
| | - Suzin Çatal Tatonyan
- İstanbul University, Institute for Experimental Medicine Research, Department of Genetics, İstanbul, Turkey
| | - Müge Sayitoğlu
- İstanbul University, Institute for Experimental Medicine Research, Department of Genetics, İstanbul, Turkey
| | - Yücel Erbilgin
- İstanbul University, Institute for Experimental Medicine Research, Department of Genetics, İstanbul, Turkey
| | - Ozden Hatırnaz
- İstanbul University, Institute for Experimental Medicine Research, Department of Genetics, İstanbul, Turkey
| | - Salih Aksu
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey
| | - Yahya Büyükaşık
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey
| | - Nilgün Sayınalp
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey
| | - Hakan Göker
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey
| | - Osman İ Ozcebe
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey
| | - Uğur Ozbek
- İstanbul University, Institute for Experimental Medicine Research, Department of Genetics, İstanbul, Turkey
| | - Ibrahim C Haznedaroğlu
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey
| |
Collapse
|
42
|
Shen XZ, Okwan-Duodu D, Blackwell WL, Ong FS, Janjulia T, Bernstein EA, Fuchs S, Alkan S, Bernstein KE. Myeloid expression of angiotensin-converting enzyme facilitates myeloid maturation and inhibits the development of myeloid-derived suppressor cells. J Transl Med 2014; 94:536-44. [PMID: 24614194 PMCID: PMC4221240 DOI: 10.1038/labinvest.2014.41] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 12/30/2013] [Accepted: 01/21/2014] [Indexed: 12/19/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells which accumulate in cancer, infection and chronic inflammation. These cells suppress T-cell function and the immune response. Angiotensin-converting enzyme (ACE) is a peptidase that is now known to regulate aspects of myelopoiesis. Here, we show that ACE expression correlates with myeloid maturation in vitro. Forced ACE overexpression in monocytic cells reduces the generation of MDSCs. In vivo, mice with a genetic change resulting in myeloid cell ACE overexpression have reduced numbers of blood and splenic MDSCs in a tumor model and in a model of chronic inflammation induced by complete Freund's adjuvant. In contrast, ACE-null mice produce large numbers of MDSCs during chronic inflammation. Macrophages from mice with myeloid ACE overexpressing are more pro-inflammatory and have more tumor-killing activity than cells from wild-type mice. Thus, manipulating myeloid ACE activity can interfere with MDSC development and the maturation of myeloid cells.
Collapse
Affiliation(s)
- Xiao Z. Shen
- Division of Immunology, Department of Biomedical Science; Cedars-Sinai Medical Center, Los Angeles, CA, US ,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, US
| | - Derick Okwan-Duodu
- Division of Immunology, Department of Biomedical Science; Cedars-Sinai Medical Center, Los Angeles, CA, US ,School of Medicine, Emory University, Atlanta, GA, US
| | - Wendell-Lamar Blackwell
- Division of Immunology, Department of Biomedical Science; Cedars-Sinai Medical Center, Los Angeles, CA, US
| | - Frank S. Ong
- Division of Immunology, Department of Biomedical Science; Cedars-Sinai Medical Center, Los Angeles, CA, US
| | - Tea Janjulia
- Division of Immunology, Department of Biomedical Science; Cedars-Sinai Medical Center, Los Angeles, CA, US
| | - Ellen A. Bernstein
- Division of Immunology, Department of Biomedical Science; Cedars-Sinai Medical Center, Los Angeles, CA, US
| | - Sebastien Fuchs
- Division of Immunology, Department of Biomedical Science; Cedars-Sinai Medical Center, Los Angeles, CA, US ,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, US
| | - Serhan Alkan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, US
| | - Kenneth E. Bernstein
- Division of Immunology, Department of Biomedical Science; Cedars-Sinai Medical Center, Los Angeles, CA, US ,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, US
| |
Collapse
|
43
|
Rodgers KE, diZerega GS. Contribution of the Local RAS to Hematopoietic Function: A Novel Therapeutic Target. Front Endocrinol (Lausanne) 2013; 4:157. [PMID: 24167502 PMCID: PMC3805949 DOI: 10.3389/fendo.2013.00157] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/09/2013] [Indexed: 11/13/2022] Open
Abstract
The renin-angiotensin system (RAS) has long been a known endocrine system that is involved in regulation of blood pressure and fluid balance. Over the last two decades, evidence has accrued that shows that there are local RAS that can affect cellular activity, tissue injury, and tissue regeneration. There are locally active ligand peptides, mediators, receptors, and signaling pathways of the RAS in the bone marrow (BM). This system is fundamentally involved and controls the essential steps of primitive and definitive blood-cell production. Hematopoiesis, erythropoiesis, myelopoiesis, thrombopoiesis, formation of monocytic and lymphocytic lineages, as well as stromal elements are regulated by the local BM RAS. The expression of a local BM RAS has been shown in very early, primitive embryonic hematopoiesis. Angiotensin-converting enzyme (ACE-1, CD143) is expressed on the surface of hemangioblasts and isolation of the CD143 positive cells allows for recovery of all hemangioblast activity, the first endothelial and hematopoietic cells, forming the marrow cavity in the embryo. CD143 expression also marks long-term blood-forming CD34+ BM cells. Expression of receptors of the RAS is modified in the BM with cellular maturation and by injury. Ligation of the receptors of the RAS has been shown to modify the status of the BM resulting in accelerated hematopoiesis after injury. The aim of the present review is to outline the known functions of the local BM RAS within the context of primitive and definitive hematopoiesis as well as modification of BM recovery by administration of exogenous ligands of the RAS. Targeting the actions of local RAS molecules could represent a valuable therapeutic option for the management of BM recovery after injury as well as neoplastic disorders.
Collapse
Affiliation(s)
- Kathleen E. Rodgers
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
- *Correspondence: Kathleen E. Rodgers, Department of Clinical Pharmacy and Pharmacoeconomics Policy, School of Pharmacy University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA e-mail:
| | - Gere S. diZerega
- US Biotest, Inc., San Luis Obispo, CA, USA
- Keck School of Medicine at USC, Los Angeles, CA, USA
| |
Collapse
|
44
|
Gonzalez-Villalobos RA, Shen XZ, Bernstein EA, Janjulia T, Taylor B, Giani JF, Blackwell WLB, Shah KH, Shi PD, Fuchs S, Bernstein KE. Rediscovering ACE: novel insights into the many roles of the angiotensin-converting enzyme. J Mol Med (Berl) 2013; 91:1143-54. [PMID: 23686164 PMCID: PMC3779503 DOI: 10.1007/s00109-013-1051-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/09/2013] [Accepted: 05/02/2013] [Indexed: 01/13/2023]
Abstract
Angiotensin-converting enzyme (ACE) is best known for the catalytic conversion of angiotensin I to angiotensin II. However, the use of gene-targeting techniques has led to mouse models highlighting many other biochemical properties and actions of this enzyme. This review discusses recent studies examining the functional significance of ACE tissue-specific expression and the presence in ACE of two independent catalytic sites with distinct substrates and biological effects. It is these features which explain why ACE makes important contributions to many different physiological processes including renal development, blood pressure control, inflammation, and immunity.
Collapse
|
45
|
Okwan-Duodu D, Landry J, Shen XZ, Diaz R. Angiotensin-converting enzyme and the tumor microenvironment: mechanisms beyond angiogenesis. Am J Physiol Regul Integr Comp Physiol 2013; 305:R205-15. [DOI: 10.1152/ajpregu.00544.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The renin angiotensin system (RAS) is a network of enzymes and peptides that coalesce primarily on the angiotensin II type 1 receptor (AT1R) to induce cell proliferation, angiogenesis, fibrosis, and blood pressure control. Angiotensin-converting enzyme (ACE), the key peptidase of the RAS, is promiscuous in that it cleaves other substrates such as substance P and bradykinin. Accumulating evidence implicates ACE in the pathophysiology of carcinogenesis. While the role of ACE and its peptide network in modulating angiogenesis via the AT1R is well documented, its involvement in shaping other aspects of the tumor microenvironment remains largely unknown. Here, we review the role of ACE in modulating the immune compartment of the tumor microenvironment, which encompasses the immunosuppressive, cancer-promoting myeloid-derived suppressor cells, alternatively activated tumor-associated macrophages, and T regulatory cells. We also discuss the potential roles of peptides that accumulate in the setting of chronic ACE inhibitor use, such as bradykinin, substance P, and N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), and how they may undercut the gains of anti-angiogenesis from ACE inhibition. These emerging mechanisms may harmonize the often-conflicting results on the role of ACE inhibitors and ACE polymorphisms in various cancers and call for further investigations into the potential benefit of ACE inhibitors in some neoplasms.
Collapse
Affiliation(s)
- Derick Okwan-Duodu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Jerome Landry
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Xiao Z. Shen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Roberto Diaz
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
46
|
Wen SW, Ager EI, Neo J, Christophi C. The renin angiotensin system regulates Kupffer cells in colorectal liver metastases. Cancer Biol Ther 2013; 14:720-7. [PMID: 23792575 DOI: 10.4161/cbt.25092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Blockade of the renin angiotensin system (RAS) can inhibit tumor growth and this may be mediated via undefined immunomodulatory actions. This study investigated the effects of RAS blockade on liver macrophages (Kupffer cells; KCs) in an orthotopic murine model of colorectal cancer (CRC) liver metastases. Here we showed that pharmacological targeting of the RAS [ANG II (31.25 µg/kg/h i.p.), ANG-(1-7) (24 µg/kg/h i.p.) or the ACE inhibitor; captopril (750 mg/kg/d i.p.)] altered endogenous KC numbers in the tumor-bearing liver throughout metastatic growth. Captopril, and to a lesser extent ANG-(1-7), increased KC numbers in the liver but not tumor. KCs were found to express the key RAS components: ACE and AT1R. Treatment with captopril and ANG II increased the number of AT1R-expressing KCs, although total KC numbers were not affected by ANG II. Captopril (0.1 µM) also increased macrophage invasion in vitro. Additionally, captopril was administered with KC depletion before tumor induction (day 0) or at established metastatic growth (day 18) using gadolinium chloride (GdCl 3; 20 mg/kg). Livers were collected at day 21 and quantitative stereology used as a measure of tumor burden. Captopril reduced growth of CRC liver metastases. However, when captopril was combined with early KC depletion (day 0) tumor growth was significantly increased compared with captopril alone. In contrast, late KC depletion (day 18) failed to influence the anti-tumor effects of captopril. The result of these studies suggests that manipulation of the RAS can alter KC numbers and may subsequently influence progression of CRC liver metastases.
Collapse
Affiliation(s)
- Shu Wen Wen
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
| | | | | | | |
Collapse
|
47
|
Local bone marrow renin-angiotensin system in primitive, definitive and neoplastic haematopoiesis. Clin Sci (Lond) 2013; 124:307-23. [PMID: 23157407 DOI: 10.1042/cs20120300] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The locally active ligand peptides, mediators, receptors and signalling pathways of the haematopoietic BM (bone marrow) autocrine/paracrine RAS (renin-angiotensin system) affect the essential steps of definitive blood cell production. Haematopoiesis, erythropoiesis, myelopoiesis, formation of monocytic and lymphocytic lineages, thrombopoiesis and other stromal cellular elements are regulated by the local BM RAS. The local BM RAS is present and active even in primitive embryonic haematopoiesis. ACE (angiotensin-converting enzyme) is expressed on the surface of the first endothelial and haematopoietic cells, forming the marrow cavity in the embryo. ACE marks early haematopoietic precursor cells and long-term blood-forming CD34(+) BM cells. The local autocrine tissue BM RAS may also be active in neoplastic haematopoiesis. Critical RAS mediators such as renin, ACE, AngII (angiotensin II) and angiotensinogen have been identified in leukaemic blast cells. The local tissue RAS influences tumour growth and metastases in an autocrine and paracrine fashion via the modulation of numerous carcinogenic events, such as angiogenesis, apoptosis, cellular proliferation, immune responses, cell signalling and extracellular matrix formation. The aim of the present review is to outline the known functions of the local BM RAS within the context of primitive, definitive and neoplastic haematopoiesis. Targeting the actions of local RAS molecules could represent a valuable therapeutic option for the management of neoplastic disorders.
Collapse
|
48
|
Cortez-Retamozo V, Etzrodt M, Newton A, Ryan R, Pucci F, Sio SW, Kuswanto W, Rauch PJ, Chudnovskiy A, Iwamoto Y, Kohler R, Marinelli B, Gorbatov R, Wojtkiewicz G, Panizzi P, Mino-Kenudson M, Forghani R, Figueiredo JL, Chen JW, Xavier R, Swirski FK, Nahrendorf M, Weissleder R, Pittet MJ. Angiotensin II drives the production of tumor-promoting macrophages. Immunity 2013; 38:296-308. [PMID: 23333075 DOI: 10.1016/j.immuni.2012.10.015] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/02/2012] [Indexed: 12/31/2022]
Abstract
Macrophages frequently infiltrate tumors and can enhance cancer growth, yet the origins of the macrophage response are not well understood. Here we address molecular mechanisms of macrophage production in a conditional mouse model of lung adenocarcinoma. We report that overproduction of the peptide hormone Angiotensin II (AngII) in tumor-bearing mice amplifies self-renewing hematopoietic stem cells (HSCs) and macrophage progenitors. The process occurred in the spleen but not the bone marrow, and was independent of hemodynamic changes. The effects of AngII required direct hormone ligation on HSCs, depended on S1P(1) signaling, and allowed the extramedullary tissue to supply new tumor-associated macrophages throughout cancer progression. Conversely, blocking AngII production prevented cancer-induced HSC and macrophage progenitor amplification and thus restrained the macrophage response at its source. These findings indicate that AngII acts upstream of a potent macrophage amplification program and that tumors can remotely exploit the hormone's pathway to stimulate cancer-promoting immunity.
Collapse
Affiliation(s)
- Virna Cortez-Retamozo
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bernstein KE, Ong FS, Blackwell WLB, Shah KH, Giani JF, Gonzalez-Villalobos RA, Shen XZ, Fuchs S, Touyz RM. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol Rev 2013; 65:1-46. [PMID: 23257181 PMCID: PMC3565918 DOI: 10.1124/pr.112.006809] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response. The defining feature of ACE is that it is composed of two homologous and independently catalytic domains, the result of an ancient gene duplication, and ACE-like genes are widely distributed in nature. The two ACE catalytic domains contribute to the wide substrate diversity of ACE and, by extension, the physiologic impact of the enzyme. Several studies suggest that the two catalytic domains have different biologic functions. Recently, the X-ray crystal structure of ACE has elucidated some of the structural differences between the two ACE domains. This is important now that ACE domain-specific inhibitors have been synthesized and characterized. Once widely available, these reagents will undoubtedly be powerful tools for probing the physiologic actions of each ACE domain. In turn, this knowledge should allow clinicians to envision new therapies for diseases not currently treated with ACE inhibitors.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis 2021, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Modulation of the RAS (renin–angiotensin system), in particular of the function of the hormones AngII (angiotensin II) and Ang-(1–7) [angiotensin-(1–7)], is an important target for pharmacotherapy in the cardiovascular system. In the classical view, such modulation affects cardiovascular cells to decrease hypertrophy, fibrosis and endothelial dysfunction, and improves diuresis. In this view, excessive stimulation of AT1 receptors (AngII type 1 receptors) fulfils a detrimental role, as it promotes cardiovascular pathogenesis, and this is opposed by stimulation of the AT2 receptor (angiotensin II type 2 receptor) and the Ang-(1–7) receptor encoded by the Mas proto-oncogene. In recent years, this view has been broadened with the observation that the RAS regulates bone marrow stromal cells and stem cells, thus involving haematopoiesis and tissue regeneration by progenitor cells. This change of paradigm has enlarged the field of perspectives for therapeutic application of existing as well as newly developed medicines that alter angiotensin signalling, which now stretches beyond cardiovascular therapy. In the present article, we review the role of AngII and Ang-(1–7) and their respective receptors in haematopoietic and mesenchymal stem cells, and discuss possible pharmacotherapeutical implications.
Collapse
|