1
|
Sandoval H, Ibañez B, Contreras M, Troncoso F, Castro FO, Caamaño D, Mendez L, Escudero-Guevara E, Nualart F, Mistry HD, Kurlak LO, Vatish M, Acurio J, Escudero C. Extracellular Vesicles From Preeclampsia Disrupt the Blood-Brain Barrier by Reducing CLDN5. Arterioscler Thromb Vasc Biol 2024. [PMID: 39665142 DOI: 10.1161/atvbaha.124.321077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND The physiopathology of life-threatening cerebrovascular complications in preeclampsia is unknown. We investigated whether disruption of the blood-brain barrier, generated using circulating small extracellular vesicles (sEVs) from women with preeclampsia or placentae cultured under hypoxic conditions, impairs the expression of tight junction proteins, such as CLDN5 (claudin-5), mediated by VEGF (vascular endothelial growth factor), and activation of KDR (VEGFR2 [VEGF receptor 2]). METHODS We perform a preclinical mechanistic study using sEVs isolated from plasma of pregnant women with normal pregnancy (sEVs-NP; n=9), sEVs isolated from plasma of women with preeclampsia (sEVs-PE; n=9), or sEVs isolated from placentas cultured in normoxia (sEVs-Nor; n=10) or sEVs isolated from placentas cultured in hypoxia (sEVs-Hyp; n=10). The integrity of the blood-brain barrier was evaluated using in vitro (human [hCMEC/D3] and mouse [BEND/3] brain endothelial cell lines) and in vivo (nonpregnant C57BL/6J mice [4-5 months old; n=13] injected with sEVs-Hyp) models. RESULTS sEVs-PE and sEVs-Hyp reduced total and membrane-associated protein CLDN5 levels (P<0.05). These results were negated with sEVs-PE sonication. sEVs-Hyp injected into nonpregnant mice generated neurological deficits and blood-brain barrier disruption, specifically in the posterior area of the brain, associated with brain endothelial cell uptake of sEVs, sEVs-Hyp high extravasation, and reduction in CLDN5 levels in the brain cortex. Furthermore, sEVs-PE and sEVs-sHyp had higher VEGF levels than sEVs-NP and sEVs-Nor. Human brain endothelial cells exposed to sEVs-PE exhibited a reduction in the activation of KDR. Reduction in CLDN5 observed in cells treated with sEVs-Hyp was further enhanced in cells treated with KDR selective inhibitor. CONCLUSIONS sEVs-PE disrupts the blood-brain barrier, an effect replicated with sEVs-Hyp, and involves reduced CLDN5 and elevated VEGF contained within these vesicles. However, our results do not support the participation of KDR activation in the downregulation of CLDN5 observed with sEVs-Hyp. These findings will improve our understanding of the pathophysiology of cerebrovascular alterations in women with preeclampsia.
Collapse
Affiliation(s)
- Hermes Sandoval
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
| | - Belén Ibañez
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
| | - Moisés Contreras
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
| | - Felipe Troncoso
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
| | - Fidel O Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan, Chile (F.O.C., D.C., L.M.)
| | - Diego Caamaño
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan, Chile (F.O.C., D.C., L.M.)
| | - Lidice Mendez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan, Chile (F.O.C., D.C., L.M.)
| | - Estefanny Escudero-Guevara
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
| | - Francisco Nualart
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile (F.N.)
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA Bio-Bio, Faculty of Biological Sciences, University of Concepción, Chile (F.N.)
| | - Hiten D Mistry
- Division of Women and Children's Health, School of Life Course and Population Sciences, King's College London, United Kingdom (H.D.M.)
| | - Lesia O Kurlak
- Stroke Trials Unit (School of Medicine), University of Nottingham, United Kingdom (L.O.K.)
| | - Manu Vatish
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, United Kingdom (M.V., C.E.)
| | - Jesenia Acurio
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
| | - Carlos Escudero
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.)
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, United Kingdom (M.V., C.E.)
- Group of Research and Innovation in Vascular Health, Chillan, Chile (C.E.)
| |
Collapse
|
2
|
Suzuki H, Ohkuchi A, Horie K, Ogoyama M, Usui R, Takahashi H, Fujiwara H. Clinical relevance of reversible cerebral vasoconstriction syndrome in pregnant women with posterior reversible encephalopathy syndrome: review of case reports in Japan. Hypertens Res 2024; 47:1288-1297. [PMID: 38383893 DOI: 10.1038/s41440-024-01619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
We systematically reviewed case reports of posterior reversible encephalopathy syndrome (PRES), and investigated the characteristics of PRES in pregnant Japanese women and the clinical relevance of reversible cerebral vasoconstriction syndrome (RCVS) in pregnant women with PRES. Articles were collected using the PubMed/Medline and Ichushi-Web databases. This review was ultimately conducted on 121 articles (162 patients). The clinical characteristics of PRES, individual sites of PRES lesions, edema types, and clinical characteristics of RCVS in PRES cases were examined. The most common individual site of PRES lesion was the occipital lobe (83.3%), followed by the basal ganglia, parietal lobe, frontal lobe, brain stem, cerebellum, temporal lobe, thalamus, and splenium corpus callosum (47.5, 42.6, 24.7, 16.1, 9.3, 5.6, 4.3, and 0.0%, respectively). Edema types in 79 cases with PRES were mainly the vasogenic edema type (91.1%), with very few cases of the cytotoxic edema type (3.8%) and mixed type (5.1%). Among 25 PRES cases with RCVS, RCVS was not strongly suspected in 17 (68.0%) before magnetic resonance angiography. RCVS was observed at the same time as PRES in 13 cases (approximately 50%), and between days 1 and 14 after the onset of PRES in the other 12. These results suggest that the basal ganglia is a frequent site of PRES lesions in pregnant women. RCVS may occur at or after the onset of PRES, even if there are no symptoms to suggest RCVS.
Collapse
Affiliation(s)
- Hirotada Suzuki
- Departments of Obstetrics and Gynecology, Jichi Medical University School of Medicine, 3111-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan.
| | - Akihide Ohkuchi
- Departments of Obstetrics and Gynecology, Jichi Medical University School of Medicine, 3111-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Kenji Horie
- Departments of Obstetrics and Gynecology, Jichi Medical University School of Medicine, 3111-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Manabu Ogoyama
- Departments of Obstetrics and Gynecology, Jichi Medical University School of Medicine, 3111-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Rie Usui
- Departments of Obstetrics and Gynecology, Jichi Medical University School of Medicine, 3111-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Hironori Takahashi
- Departments of Obstetrics and Gynecology, Jichi Medical University School of Medicine, 3111-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Hiroyuki Fujiwara
- Departments of Obstetrics and Gynecology, Jichi Medical University School of Medicine, 3111-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| |
Collapse
|
3
|
Le Guennec L, Weiss N. Blood-brain barrier dysfunction in intensive care unit. JOURNAL OF INTENSIVE MEDICINE 2023; 3:303-312. [PMID: 38028637 PMCID: PMC10658046 DOI: 10.1016/j.jointm.2023.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 12/01/2023]
Abstract
The central nervous system is characterized by a peculiar vascularization termed blood-brain barrier (BBB), which regulates the exchange of cells and molecules between the cerebral tissue and the whole body. BBB dysfunction is a life-threatening condition since its presence corresponds to a marker of severity in most diseases encountered in the intensive care unit (ICU). During critical illness, inflammatory response, cytokine release, and other phenomena activating the brain endothelium contribute to alterations in the BBB and increase its permeability to solutes, cells, nutrients, and xenobiotics. Moreover, patients in the ICU are often old, with underlying acute or chronic diseases, and overly medicated due to their critical condition; these factors could also contribute to the development of BBB dysfunction. An accurate diagnostic approach is critical for the identification of the mechanisms underlying BBB alterations, which should be rapidly managed by intensivists. Several methods were developed to investigate the BBB and assess its permeability. Nevertheless, in humans, exploration of the BBB requires the use of indirect methods. Imaging and biochemical methods can be used to study the abnormal passage of molecules through the BBB. In this review, we describe the structural and functional characteristics of the BBB, present tools and methods for probing this interface, and provide examples of the main diseases managed in the ICU that are related to BBB dysfunction.
Collapse
Affiliation(s)
- Loic Le Guennec
- Département de neurologie, Sorbonne Université, AP-HP Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Unité de Médecine Intensive Réanimation àorientation neurologique, Paris 75013, France
- Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Paris 75013, France
| | - Nicolas Weiss
- Département de neurologie, Sorbonne Université, AP-HP Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Unité de Médecine Intensive Réanimation àorientation neurologique, Paris 75013, France
- Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Paris 75013, France
- Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de recherche Saint-Antoine, Maladies métaboliques, Biliaires et fibro-inflammatoire du foie, Institute of Cardiometabolism and Nutrition (ICAN), Paris 75013, France
| |
Collapse
|
4
|
Hunt RD, Sedighi O, Clark WM, Doiron AL, Cipolla M. Differential effect of gold nanoparticles on cerebrovascular function and biomechanical properties. Physiol Rep 2023; 11:e15789. [PMID: 37604668 PMCID: PMC10442527 DOI: 10.14814/phy2.15789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023] Open
Abstract
Human stroke serum (HSS) has been shown to impair cerebrovascular function, likely by factors released into the circulation after ischemia. 20 nm gold nanoparticles (GNPs) have demonstrated anti-inflammatory properties, with evidence that they decrease pathologic markers of ischemic severity. Whether GNPs affect cerebrovascular function, and potentially protect against the damaging effects of HSS on the cerebral circulation remains unclear. HSS obtained 24 h poststroke was perfused through the lumen of isolated and pressurized third-order posterior cerebral arteries (PCAs) from male Wistar rats with and without GNPs (~2 × 109 GNP/ml), or GNPs in vehicle, in an arteriograph chamber (n = 8/group). All vessels were myogenically reactive ≥60 mmHg intravascular pressure; however, vessels containing GNPs had significantly less myogenic tone. GNPs increased vasoreactivity to small and intermediate conductance calcium activated potassium channel activation via NS309; however, reduced vasoconstriction to nitric oxide synthase inhibition. Hydraulic conductivity and transvascular filtration, were decreased by GNPs, suggesting a protective effect on the blood-brain barrier. The stress-strain curves of PCAs exposed to GNPs were shifted leftward, indicating increased vessel stiffness. This study provides the first evidence that GNPs affect the structure and function of the cerebrovasculature, which may be important for their development and use in biomedical applications.
Collapse
Affiliation(s)
- Ryan D. Hunt
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Omid Sedighi
- Department of Electrical and Biomedical EngineeringUniversity of Vermont College of Engineering and Mathematical SciencesBurlingtonVermontUSA
| | - Wayne M. Clark
- Oregon Stroke Center, Department of NeurologyOregon Health, and Science UniversityPortlandUSA
| | - Amber L. Doiron
- Department of Electrical and Biomedical EngineeringUniversity of Vermont College of Engineering and Mathematical SciencesBurlingtonVermontUSA
| | - Marilyn J. Cipolla
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Department of Electrical and Biomedical EngineeringUniversity of Vermont College of Engineering and Mathematical SciencesBurlingtonVermontUSA
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Department of PharmacologyUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| |
Collapse
|
5
|
Tsompanidis A, Blanken L, Broere-Brown ZA, van Rijn BB, Baron-Cohen S, Tiemeier H. Sex differences in placenta-derived markers and later autistic traits in children. Transl Psychiatry 2023; 13:256. [PMID: 37443170 DOI: 10.1038/s41398-023-02552-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Autism is more prevalent in males and males on average score higher on measures of autistic traits. Placental function is affected significantly by the sex of the fetus. It is unclear if sex differences in placental function are associated with sex differences in the occurrence of autistic traits postnatally. To assess this, concentrations of angiogenesis-related markers, placental growth factor (PlGF) and soluble fms-like tyrosine kinase (sFlt-1) were assessed in maternal plasma of expectant women in the late 1st (mean= 13.5 [SD = 2.0] weeks gestation) and 2nd trimesters (mean=20.6 [SD = 1.2] weeks gestation), as part of the Generation R Study, Rotterdam, the Netherlands. Subsequent assessment of autistic traits in the offspring at age 6 was performed with the 18-item version of the Social Responsiveness Scale (SRS). Associations of placental protein concentrations with autistic traits were tested in sex-stratified and cohort-wide regression models. Cases with pregnancy complications or a later autism diagnosis (n = 64) were also assessed for differences in placenta-derived markers. sFlt-1 levels were significantly lower in males in both trimesters but showed no association with autistic traits. PlGF was significantly lower in male pregnancies in the 1st trimester, and significantly higher in the 2nd trimester, compared to female pregnancies. Higher PlGF levels in the 2nd trimester and the rate of PlGF increase were both associated with the occurrence of higher autistic traits (PlGF-2nd: n = 3469,b = 0.24 [SE = 0.11], p = 0.03) in both unadjusted and adjusted linear regression models that controlled for age, sex, placental weight and maternal characteristics. Mediation analyses showed that higher autistic traits in males compared to females were partly explained by higher PlGF or a faster rate of PlGF increase in the second trimester (PlGF-2nd: n = 3469, ACME: b = 0.005, [SE = 0.002], p = 0.004). In conclusion, higher PlGF levels in the 2nd trimester and a higher rate of PlGF increase are associated with both being male, and with a higher number of autistic traits in the general population.
Collapse
Affiliation(s)
- A Tsompanidis
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
| | - L Blanken
- The Generation R Study Group, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Z A Broere-Brown
- The Generation R Study Group, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - B B van Rijn
- The Generation R Study Group, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - S Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - H Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| |
Collapse
|
6
|
Escudero C, Kupka E, Ibañez B, Sandoval H, Troncoso F, Wikström AK, López-Espíndola D, Acurio J, Torres-Vergara P, Bergman L. Brain Vascular Dysfunction in Mothers and Their Children Exposed to Preeclampsia. Hypertension 2023; 80:242-256. [PMID: 35920147 DOI: 10.1161/hypertensionaha.122.19408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Preeclampsia is a maternal syndrome characterized by the new onset of hypertension and proteinuria after 20 weeks of gestation associated with multisystemic complications, including brain alterations. Indeed, brain complications associated with preeclampsia are the leading direct causes of fetal and maternal morbidity and mortality, especially in low- and middle-income countries. In addition to the well-recognized long-term adverse cardiovascular effects of preeclampsia, women who have had preeclampsia have higher risk of stroke, dementia, intracerebral white matter lesions, epilepsy, and perhaps also cognitive decline postpartum. Furthermore, increasing evidence has also associated preeclampsia with similar cognitive and cerebral disorders in the offspring. However, the mechanistic links between these associations remain unresolved. This article summarizes the current knowledge about the cerebrovascular complications elicited by preeclampsia and the potential pathophysiological mechanisms involved, emphasizing the impaired brain vascular function in the mother and their offspring.
Collapse
Affiliation(s)
- Carlos Escudero
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, University of Bío-Bío, Chillán, Chile (C.E., B.I., H.S., F.T., J.A.).,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile (C.E., J.A., P.T.-V.)
| | - Ellen Kupka
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Sweden (E.K.)
| | - Belen Ibañez
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, University of Bío-Bío, Chillán, Chile (C.E., B.I., H.S., F.T., J.A.)
| | - Hermes Sandoval
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, University of Bío-Bío, Chillán, Chile (C.E., B.I., H.S., F.T., J.A.)
| | - Felipe Troncoso
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, University of Bío-Bío, Chillán, Chile (C.E., B.I., H.S., F.T., J.A.)
| | - Anna-Karin Wikström
- Department of Women's and Children's Health, Uppsala University, Sweden (A.K.W., L.B.)
| | - Daniela López-Espíndola
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Valparaíso, Chile (D.L.-E.)
| | - Jesenia Acurio
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, University of Bío-Bío, Chillán, Chile (C.E., B.I., H.S., F.T., J.A.).,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile (C.E., J.A., P.T.-V.)
| | - Pablo Torres-Vergara
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile (C.E., J.A., P.T.-V.).,Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Chile (P.T.-V.)
| | - Lina Bergman
- Department of Women's and Children's Health, Uppsala University, Sweden (A.K.W., L.B.).,Department of Obstetrics and Gynecology, Stellenbosch University, South Africa (L.B.).,Department of clinical sciences, Sahlgrenska Academy, Gothenburg University, Sweden (L.B.)
| |
Collapse
|
7
|
Chaiworapongsa T, Romero R, Gotsch F, Gomez-Lopez N, Suksai M, Gallo DM, Jung E, Levenson D, Tarca AL. One-third of patients with eclampsia at term do not have an abnormal angiogenic profile. J Perinat Med 2022:jpm-2022-0474. [PMID: 36567427 DOI: 10.1515/jpm-2022-0474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/04/2022] [Indexed: 12/27/2022]
Abstract
OBJECTIVES An abnormal angiogenic profile is present in about one-half of women with preeclampsia at term. Few studies examined the roles of angiogenic biomarkers in eclampsia. The aims of this study were to determine (1) whether the degree of an anti-angiogenic state, reflected by a low placental growth factor (PlGF) to soluble fms-like tyrosine kinase-1 (sFlt-1) ratio, in women with eclampsia differed from that of women with severe preeclampsia; and (2) the prevalence of women who had an abnormal angiogenic profile at the diagnoses of preterm and term eclampsia. METHODS A cross-sectional study was conducted to include women in the following groups: (1) uncomplicated pregnancy (n=40); (2) severe preeclampsia (n=50); and (3) eclampsia (n=35). Maternal serum concentrations of PlGF and sFlt-1 were determined by immunoassays. RESULTS Women with preterm, but not term, eclampsia had a more severe anti-angiogenic state than those with severe preeclampsia (lower PlGF and PlGF/sFlt-1 ratio, each p<0.05). However, the difference diminished in magnitude with increasing gestational age (interaction, p=0.005). An abnormal angiogenic profile was present in 95% (19/20) of women with preterm eclampsia but in only 67% (10/15) of women with eclampsia at term. CONCLUSIONS Angiogenic biomarkers can be used for risk assessment of preterm eclampsia. By contrast, a normal profile of angiogenic biomarkers cannot reliably exclude patients at risk for eclampsia at term. This observation has major clinical implications given that angiogenic biomarkers are frequently used in the triage area as a test to rule out preeclampsia.
Collapse
Affiliation(s)
- Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, U. S. Department of Health and Human Services, National Institutes of Health, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, U. S. Department of Health and Human Services, National Institutes of Health, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Detroit Medical Center, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, U. S. Department of Health and Human Services, National Institutes of Health, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, U. S. Department of Health and Human Services, National Institutes of Health, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, U. S. Department of Health and Human Services, National Institutes of Health, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dahiana M Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, U. S. Department of Health and Human Services, National Institutes of Health, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Valle, Cali, Colombia
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, U. S. Department of Health and Human Services, National Institutes of Health, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dustyn Levenson
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, U. S. Department of Health and Human Services, National Institutes of Health, Bethesda, MD, and Detroit, MI, USA.,Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, U. S. Department of Health and Human Services, National Institutes of Health, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| |
Collapse
|
8
|
The Soluble Fms-like Tyrosine Kinase-1 Contributes to Structural and Functional Changes in Endothelial Cells in Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms232416059. [PMID: 36555698 PMCID: PMC9787493 DOI: 10.3390/ijms232416059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Endothelial cells are a critical target of the soluble Fms-like tyrosine kinase-1 (sFlt-1), a soluble factor increased in different diseases with varying degrees of renal impairment and endothelial dysfunction, including chronic kidney disease (CKD). Although the mechanisms underlying endothelial dysfunction are multifactorial and complex, herein, we investigated the damaging effects of sFlt-1 on structural and functional changes in endothelial cells. Our results evidenced that sera from patients with CKD stiffen the endothelial cell cortex in vitro, an effect correlated with sFlt-1 levels and prevented by sFlt-1 neutralization. Besides, we could show that recombinant sFlt-1 leads to endothelial stiffening in vitro and in vivo. This was accompanied by cytoskeleton reorganization and changes in the endothelial barrier function, as observed by increased actin polymerization and endothelial cell permeability, respectively. These results depended on the activation of the p38 MAPK and were blocked by the specific inhibitor SB203580. However, sFlt-1 only minimally affected the expression of stiffness-sensitive genes. These findings bring new insight into the mechanism of action of sFlt-1 and its biological effects that cannot be exclusively ascribed to the regulation of angiogenesis.
Collapse
|
9
|
Placental dysfunction: The core mechanism for poor neurodevelopmental outcomes in the offspring of preeclampsia pregnancies. Placenta 2022; 126:224-232. [PMID: 35872512 DOI: 10.1016/j.placenta.2022.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
Preeclampsia (PE) is a leading condition threatening pregnant women and their offspring. The offspring of PE pregnancies have a high risk of poor neurodevelopmental outcomes and neuropsychological diseases later in life. However, the pathophysiology and pathogenesis of poor neurodevelopment remain undetermined. Abnormal placental functions are at the core of most PE cases, and recent research evidence supports that the placenta plays an important role in fetal brain development. Here, we summarize the relationship between abnormal fetal brain development and placental dysfunction in PE conditions, which include the dysfunction of nutrient and gas-waste exchange, impaired angiogenesis stimulation, abnormal neurotransmitter regulation, disrupted special protectors, and immune disorders. All these factors could lead to poor neurodevelopmental outcomes.
Collapse
|
10
|
Timur B, Guney G. The role of serum ADAMTS-1 levels in Hyperemesis Gravidarum. BMC Pregnancy Childbirth 2022; 22:499. [PMID: 35725415 PMCID: PMC9208199 DOI: 10.1186/s12884-022-04832-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022] Open
Abstract
Background We aimed to investigate the levels of ADAMTS-1, which is secreted from the extracellular matrix during trophoblastic invasion in hyperemesis gravidarum (HEG). Methods In this cross-sectional study, we compared 45 HEG patients aged between 21 and 34 in terms of ADAMTS-1 levels with a control group consisting of 44 healthy pregnant women. The demographic characteristics and several laboratory parameters of the patients were recorded. Both groups were also compared in terms of ketonuria. We evaluated the correlation between ADAMTS-1 levels and ketonuria. Results The 2 groups were matched in terms of age, gestational age, gravidity, parity, and body mass index. Some inflammatory markers, such as neutrophil count, MPV, PDW, and PCT levels, were significantly higher in the HEG groups compared to the control group (all p < 0.05). However, mean MCV and serum TSH levels were statistically significantly lower in this group (both p < 0.001). ADAMTS-1 levels were 12.6 ± 1.4 ng/ml in the HEG group and 6.2 ± 1.6 ng/ml in the control group (p < 0.001). It was significantly and positively correlated with urine ketone, neutrophil count, and PDW, whereas negatively correlated with MCV and TSH value in the HEG group. ROC analysis showed that a threshold value of 11.275 ng/ml for ADAMTS-1 predicted HEG patients with a sensitivity of 60% and specificity of 95.5%. Conclusion ADAMTS-1 serum levels are increased in HEG patients, and there is a positive correlation between ADAMTS-1 levels and ketonuria.
Collapse
Affiliation(s)
- Burcu Timur
- Department of Obstetrics and Gynecology, Ordu University Training and Research Hospital, Bucak District, Nefsi Bucak Street, Ordu, 52200, Turkey.
| | - Gurhan Guney
- Department of Obstetrics and Gynecology, Balikesir University Medical Faculty, Balıkesir, Turkey
| |
Collapse
|
11
|
Torres-Vergara P, Rivera R, Escudero C. How Soluble Fms-Like Tyrosine Kinase 1 Could Contribute to Blood-Brain Barrier Dysfunction in Preeclampsia? Front Physiol 2022; 12:805082. [PMID: 35211027 PMCID: PMC8862682 DOI: 10.3389/fphys.2021.805082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Preeclampsia is a pregnancy-related syndrome that courses with severe cerebrovascular complications if not properly managed. Findings from pre-clinical and clinical studies have proposed that the imbalance between pro- and anti-angiogenic factors exhibited in preeclampsia is a major component of its pathophysiology. In this regard, measurement of circulating levels of soluble tyrosine kinase-1 similar to fms (sFlt-1), a decoy receptor for vascular endothelial growth factor (VEGF), is a moderately reliable biomarker for the diagnosis of preeclampsia. However, few studies have established a mechanistic approach to determine how the high levels of sFlt-1 are responsible for the endothelial dysfunction, and even less is known about its effects at the blood-brain barrier (BBB). Since the expression pattern of VEGF receptors type 1 and 2 in brain endothelial cells differs from the observed in peripheral endothelial cells, and components of the neurovascular unit of the BBB provide paracrine secretion of VEGF, this compartmentalization of VEGF signaling could help to see in a different viewpoint the role of sFlt-1 in the development of endothelial dysfunction. In this article, we provide a hypothesis of how sFlt-1 could eventually be a protective factor for brain endothelial cells of the BBB under preeclampsia.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Department of Pharmacy, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Robin Rivera
- Department of Pharmacy, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.,Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| |
Collapse
|
12
|
Abstract
Women face a disproportionate burden of stroke mortality and disability. Biologic sex and sociocultural gender both contribute to differences in stroke risk factors, assessment, treatment, and outcomes. There are substantial differences in the strength of association of stroke risk factors, as well as female-specific risk factors. Moreover, there are differences in presentation, response to treatment, and stroke outcomes in women. This review outlines current knowledge of impact of sex and gender on stroke, as well as delineates research gaps and areas for future inquiry.
Collapse
Affiliation(s)
- Kathryn M. Rexrode
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Tracy E. Madsen
- Division of Sex and Gender in Emergency Medicine, Department of Emergency Medicine, Warren Alpert Medical School of Brown University, Providence, RI; Department of Epidemiology, Brown University School of Public Health, Providence RI
| | - Amy Y. X. Yu
- Department of Medicine (Neurology), University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Cheryl Carcel
- Neurology Program, The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Judith H. Lichtman
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT
| | - Eliza C. Miller
- Division of Stroke and Cerebrovascular Disease, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| |
Collapse
|
13
|
Miller EC. Maternal Stroke Associated With Pregnancy. Continuum (Minneap Minn) 2022; 28:93-121. [PMID: 35133313 PMCID: PMC10101187 DOI: 10.1212/con.0000000000001078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW This article summarizes current knowledge of the epidemiology, pathophysiology, prevention, and treatment of cerebrovascular disease in pregnant and postpartum women. RECENT FINDINGS Stroke is a leading cause of maternal morbidity and mortality, and most fatal strokes are preventable. Adaptive physiologic changes of pregnancy, including hemodynamic changes, venous stasis, hypercoagulability, and immunomodulation, contribute to increased maternal stroke risk. The highest-risk time period for maternal stroke is the immediate postpartum period. Migraine and hypertensive disorders of pregnancy, including gestational hypertension and preeclampsia, are major risk factors for maternal stroke. Adverse pregnancy outcomes, including gestational hypertension, preeclampsia, preterm delivery, and fetal growth restriction, are important risk factors for cerebrovascular disease later in life. SUMMARY Many catastrophic maternal strokes could be avoided with targeted prevention efforts, early recognition of warning signs, and rapid evaluation of neurologic symptoms. Neurologists play a central role in the care of pregnant patients with cerebrovascular disease, whether acute or chronic, and should be familiar with the unique and complex physiology of pregnancy and its complications, particularly hypertensive disorders of pregnancy.
Collapse
|
14
|
Fishel Bartal M, Sibai BM. Eclampsia in the 21st century. Am J Obstet Gynecol 2022; 226:S1237-S1253. [PMID: 32980358 DOI: 10.1016/j.ajog.2020.09.037] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
The reported incidence of eclampsia is 1.6 to 10 per 10,000 deliveries in developed countries, whereas it is 50 to 151 per 10,000 deliveries in developing countries. In addition, low-resource countries have substantially higher rates of maternal and perinatal mortalities and morbidities. This disparity in incidence and pregnancy outcomes may be related to universal access to prenatal care, early detection of preeclampsia, timely delivery, and availability of healthcare resources in developed countries compared to developing countries. Because of its infrequency in developed countries, many obstetrical providers and maternity units have minimal to no experience in the acute management of eclampsia and its complications. Therefore, clear protocols for prevention of eclampsia in those with severe preeclampsia and acute treatment of eclamptic seizures at all levels of healthcare are required for better maternal and neonatal outcomes. Eclamptic seizure will occur in 2% of women with preeclampsia with severe features who are not receiving magnesium sulfate and in <0.6% in those receiving magnesium sulfate. The pathogenesis of an eclamptic seizure is not well understood; however, the blood-brain barrier disruption with the passage of fluid, ions, and plasma protein into the brain parenchyma remains the leading theory. New data suggest that blood-brain barrier permeability may increase by circulating factors found in preeclamptic women plasma, such as vascular endothelial growth factor and placental growth factor. The management of an eclamptic seizure will include supportive care to prevent serious maternal injury, magnesium sulfate for prevention of recurrent seizures, and promoting delivery. Although routine imagining following an eclamptic seizure is not recommended, the classic finding is referred to as the posterior reversible encephalopathy syndrome. Most patients with posterior reversible encephalopathy syndrome will show complete resolution of the imaging finding within 1 to 2 weeks, but routine imaging follow-up is unnecessary unless there are findings of intracranial hemorrhage, infraction, or ongoing neurologic deficit. Eclampsia is associated with increased risk of maternal mortality and morbidity, such as placental abruption, disseminated intravascular coagulation, pulmonary edema, aspiration pneumonia, cardiopulmonary arrest, and acute renal failure. Furthermore, a history of eclamptic seizures may be related to long-term cardiovascular risk and cognitive difficulties related to memory and concentration years after the index pregnancy. Finally, limited data suggest that placental growth factor levels in women with preeclampsia are superior to clinical markers in prediction of adverse pregnancy outcomes. This data may be extrapolated to the prediction of eclampsia in future studies. This summary of available evidence provides data and expert opinion on possible pathogenesis of eclampsia, imaging findings, differential diagnosis, and stepwise approach regarding the management of eclampsia before delivery and after delivery as well as current recommendations for the prevention of eclamptic seizures in women with preeclampsia.
Collapse
Affiliation(s)
- Michal Fishel Bartal
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX.
| | - Baha M Sibai
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
15
|
The Blood-Brain Barrier: Much More Than a Selective Access to the Brain. Neurotox Res 2021; 39:2154-2174. [PMID: 34677787 DOI: 10.1007/s12640-021-00431-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022]
Abstract
The blood-brain barrier is a dynamic structure, collectively referred to as the neurovascular unit. It is responsible for the exchange of blood, oxygen, ions, and other molecules between the peripheral circulation and the brain compartment. It is the main entrance to the central nervous system and as such critical for the maintenance of its homeostasis. Dysfunction of the blood-brain barrier is a characteristic of several neurovascular pathologies. Moreover, physiological changes, environmental factors, nutritional habits, and psychological stress can modulate the tightness of the barrier. In this contribution, we summarize our current understanding of structure and function of this important component of the brain. We also describe the neurological deficits associated with its damage. A special emphasis is placed in the effect of the exposure to xenobiotics and pollutants in the permeability of the barrier. Finally, current protective strategies as well as the culture models to study this fascinating structure are discussed.
Collapse
|
16
|
León J, Acurio J, Bergman L, López J, Karin Wikström A, Torres-Vergara P, Troncoso F, Castro FO, Vatish M, Escudero C. Disruption of the Blood-Brain Barrier by Extracellular Vesicles From Preeclampsia Plasma and Hypoxic Placentae: Attenuation by Magnesium Sulfate. Hypertension 2021; 78:1423-1433. [PMID: 34601964 DOI: 10.1161/hypertensionaha.121.17744] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- José León
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (J. Leon, J.A., J. Lopez, F.T., C.E.)
- Escuela de Enfermería, Facultad de Salud, Universidad Santo Tomás, Los Ángeles, Chile (J. Leon,.)
| | - Jesenia Acurio
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (J. Leon, J.A., J. Lopez, F.T., C.E.)
- Group of Research and Innovation in Vascular Health (Group of Research and Innovation in Vascular Health), Chillan, Chile (J.A., F.T., C.E., P.T.-V.)
| | - Lina Bergman
- Department of Women's and Children's Health, Uppsala University, Sweden (L.B., A.K.W.)
- Department of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Sweden (L.B.)
- Department of Obstetrics and Gynecology, Stellenbosch University, South Africa (L.B.)
| | - Juán López
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (J. Leon, J.A., J. Lopez, F.T., C.E.)
| | - Anna Karin Wikström
- Department of Women's and Children's Health, Uppsala University, Sweden (L.B., A.K.W.)
| | - Pablo Torres-Vergara
- Group of Research and Innovation in Vascular Health (Group of Research and Innovation in Vascular Health), Chillan, Chile (J.A., F.T., C.E., P.T.-V.)
- Department of Pharmacy, Faculty of Pharmacy, University of Concepción, Chile (P.T.-V.)
| | - Felipe Troncoso
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (J. Leon, J.A., J. Lopez, F.T., C.E.)
- Group of Research and Innovation in Vascular Health (Group of Research and Innovation in Vascular Health), Chillan, Chile (J.A., F.T., C.E., P.T.-V.)
| | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillan, Chile (F.O.C.)
| | - Manu Vatish
- Nuffield Department of Women's & Reproductive Health. University of Oxford, Women's Centre, John Radcliffe Hospital, United Kingdom (M.V.)
| | - Carlos Escudero
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (J. Leon, J.A., J. Lopez, F.T., C.E.)
- Group of Research and Innovation in Vascular Health (Group of Research and Innovation in Vascular Health), Chillan, Chile (J.A., F.T., C.E., P.T.-V.)
| |
Collapse
|
17
|
Physiology of the cerebrovascular adaptation to pregnancy. HANDBOOK OF CLINICAL NEUROLOGY 2021. [PMID: 32736760 DOI: 10.1016/b978-0-444-64239-4.00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The adaptation of the cerebral circulation to pregnancy is unique compared with other organs and circulatory systems, because the brain requires relatively constant blood flow and water and solute composition to maintain homeostasis. Thus, a major adaptation of the maternal cerebrovasculature to pregnancy is to maintain normalcy in the face of expanded plasma volume, increased cardiac output, and high levels of permeability factors. In this chapter, the effect of pregnancy on critical functions of the cerebral circulation is discussed, including changes occurring at the endothelium and blood-brain barrier (BBB), which protect the maternal brain from changes in BBB permeability. Further, pregnancy-induced changes in the structure and function of cerebral arteries, arterioles, and veins will be discussed as they relate to cerebral vascular resistance, hemodynamics, and cerebral blood flow autoregulation.
Collapse
|
18
|
McCormick PA, Higgins M, McCormick CA, Nolan N, Docherty JR. Hepatic infarction, hematoma, and rupture in HELLP syndrome: support for a vasospastic hypothesis. J Matern Fetal Neonatal Med 2021; 35:7942-7947. [PMID: 34130599 DOI: 10.1080/14767058.2021.1939299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose: HELLP syndrome is a relatively uncommon pregnancy-related condition characterized by hemolysis, elevated liver function tests, and low platelets. It can be accompanied by life-threatening hepatic complications including hepatic infarction, hematoma formation, and hepatic rupture. HELLP syndrome occurs in approximately 0.2% of pregnancies. Major hepatic complications occur in less than 1% of HELLP patients suggesting an incidence of 1/50,000. The pathogenesis is incompletely understood and in particular, it is difficult to understand a disorder with both major thrombotic and bleeding manifestations.Methods: Literature review.Results: On the basis of reports in the published literature, and our own clinical experience, we suggest that vasospasm is one of the principal drivers with hepatic ischemia, infarction, and hemorrhage as secondary events. It is known that vasoactive substances are released by the failing placenta. We suggest these cause severe vasospasm, most likely affecting the small post-sinusoidal hepatic venules. This leads to patchy or confluent hepatic ischemia and/or necrosis with a resultant increase in circulating liver enzymes. Reperfusion is associated with a fall in platelet count and microvascular hemorrhage if the microvasculature is infarcted. Blood tracks to the subcapsular space causing hematoma formation. If the hematoma ruptures the patient presents with severe abdominal pain, intra-abdominal hemorrhage, and shock.Conclusions: We suggest that hepatic and other complications associated with HELLP syndrome including placental abruption, acute renal failure, and posterior reversible encephalopathy syndrome (PRES) may also be due to regional vasospasm.
Collapse
Affiliation(s)
- P A McCormick
- Liver Unit, St Vincent's University Hospital, Dublin, Ireland
| | - M Higgins
- University College Dublin Perinatal Research Centre, National Maternity Hospital, Dublin, Ireland
| | - C A McCormick
- Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Melbourne, Australia
| | - N Nolan
- Histopathology Department, St Vincent's University Hospital, Dublin, Ireland
| | - J R Docherty
- Physiology Department, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
19
|
Bergman L, Acurio J, Leon J, Gatu E, Friis T, Nelander M, Wikström J, Larsson A, Lara E, Aguayo C, Torres-Vergara P, Wikström AK, Escudero C. Preeclampsia and Increased Permeability Over the Blood-Brain Barrier: A Role of Vascular Endothelial Growth Receptor 2. Am J Hypertens 2021; 34:73-81. [PMID: 32866228 DOI: 10.1093/ajh/hpaa142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/25/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cerebral complications in preeclampsia are leading causes of maternal mortality worldwide but pathophysiology is largely unknown and a challenge to study. Using an in vitro model of the human blood-brain barrier (BBB), we explored the role of vascular endothelial growth factor receptor 2 (VEGFR2) in preeclampsia. METHODS The human brain endothelial cell line (hCMEC/D3) cultured on Tranwells insert was exposed (12 hours) to plasma from women with preeclampsia (n = 28), normal pregnancy (n = 28), and nonpregnant (n = 16) controls. Transendothelial electrical resistance (TEER) and permeability to 70 kDa fluorescein isothiocyanate (FITC)-dextran were measured for the assessment of BBB integrity. We explored possible underlying mechanisms, with a focus on the expression of tight junction proteins and phosphorylation of 2 tyrosine residues of VEGFR2, associated with vascular permeability and migration (pY951) and cell proliferation (pY1175). Plasma concentrations of soluble FMS-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF) were also measured. RESULTS hCMEC/D3 exposed to plasma from women with preeclampsia exhibited reduced TEER and increased permeability to 70 kDa FITC-dextran. These cells upregulated the messenger ribonucleic acid (mRNA) levels of VEGFR2, and pY951-VEGFR2, but reduced pY1175-VEGFR2 (P < 0.05 in all cases). No difference in mRNA expression of tight junction protein was observed between groups. There was no correlation between angiogenic biomarkers and BBB permeability. CONCLUSIONS We present a promising in vitro model of the BBB in preeclampsia. Selective tyrosine phosphorylation of VEGFR2 may participate in the increased BBB permeability in preeclampsia irrespective of plasma concentrations of angiogenic biomarkers.
Collapse
Affiliation(s)
- Lina Bergman
- Department of Women’s and Children’s Health, Uppsala University, Uppsala,Sweden
- Department of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Stellenbosch University, Stellenbosch, South Africa
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Chillán, Chile
| | - Jesenia Acurio
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Chillán, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Jose Leon
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Chillán, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
- Escuela de Enfermería, Facultad de Salud, Universidad Santo Tomás, Los Ángeles, Chile
| | - Emily Gatu
- Department of Women’s and Children’s Health, Uppsala University, Uppsala,Sweden
| | - Therese Friis
- Department of Women’s and Children’s Health, Uppsala University, Uppsala,Sweden
| | - Maria Nelander
- Department of Women’s and Children’s Health, Uppsala University, Uppsala,Sweden
| | - Johan Wikström
- Department of Radiology, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Evelyn Lara
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Chillán, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Claudio Aguayo
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Pablo Torres-Vergara
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Anna-Karin Wikström
- Department of Women’s and Children’s Health, Uppsala University, Uppsala,Sweden
| | - Carlos Escudero
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Chillán, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| |
Collapse
|
20
|
Andersson M, Oras J, Thörn SE, Karlsson O, Kälebo P, Zetterberg H, Blennow K, Bergman L. Signs of neuroaxonal injury in preeclampsia-A case control study. PLoS One 2021; 16:e0246786. [PMID: 33556141 PMCID: PMC7869986 DOI: 10.1371/journal.pone.0246786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cerebral injury is a common cause of maternal mortality due to preeclampsia and is challenging to predict and diagnose. In addition, there are associations between previous preeclampsia and stroke, dementia and epilepsy later in life. The cerebral biomarkers S100B, neuron specific enolase, (NSE), tau protein and neurofilament light chain (NfL) have proven useful as predictors and diagnostic tools in other neurological disorders. This case-control study sought to determine whether cerebral biomarkers were increased in cerebrospinal fluid (CSF) as a marker of cerebral origin and potential cerebral injury in preeclampsia and if concentrations in CSF correlated to concentrations in plasma. METHODS CSF and blood at delivery from 15 women with preeclampsia and 15 women with normal pregnancies were analysed for the cerebral biomarkers S100B, NSE, tau protein and NfL by Simoa and ELISA based methods. MRI brain was performed after delivery and for women with preeclampsia also at six months postpartum. RESULTS Women with preeclampsia demonstrated increased CSF- and plasma concentrations of NfL and these concentrations correlated to each other. CSF concentrations of NSE and tau were decreased in preeclampsia and there were no differences in plasma concentrations of NSE and tau between groups. For S100B, serum concentrations in preeclampsia were increased but there was no difference in CSF concentrations of S100B between women with preeclampsia and normal pregnancy. CONCLUSION NfL emerges as a promising circulating cerebral biomarker in preeclampsia and increased CSF concentrations point to a neuroaxonal injury in preeclampsia, even in the absence of clinically evident neurological complications.
Collapse
Affiliation(s)
- Malin Andersson
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonatan Oras
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sven Egron Thörn
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ove Karlsson
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Kälebo
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Lina Bergman
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Department of Obstetrics and Gynecology, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
21
|
Segarra M, Aburto MR, Acker-Palmer A. Blood-Brain Barrier Dynamics to Maintain Brain Homeostasis. Trends Neurosci 2021; 44:393-405. [PMID: 33423792 DOI: 10.1016/j.tins.2020.12.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/03/2020] [Accepted: 12/07/2020] [Indexed: 01/18/2023]
Abstract
The blood-brain barrier (BBB) is a dynamic platform for exchange of substances between the blood and the brain parenchyma, and it is an essential functional gatekeeper for the central nervous system (CNS). While it is widely recognized that BBB disruption is a hallmark of several neurovascular pathologies, an aspect of the BBB that has received somewhat less attention is the dynamic modulation of BBB tightness to maintain brain homeostasis in response to extrinsic environmental factors and physiological changes. In this review, we summarize how BBB integrity adjusts in critical stages along the life span, as well as how BBB permeability can be altered by common stressors derived from nutritional habits, environmental factors and psychological stress.
Collapse
Affiliation(s)
- Marta Segarra
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany.
| | - Maria R Aburto
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany; Max Planck Institute for Brain Research, Max-von-Laue-Strasse 4, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Alomar-Dominguez C, Dostal L, Thaler J, Putz G, Humpel C, Lederer W. Beta-amyloid peptides(1-42) and (1-40) in the cerebrospinal fluid during pregnancy: a prospective observational study. Arch Womens Ment Health 2021; 24:455-461. [PMID: 33009578 PMCID: PMC8116303 DOI: 10.1007/s00737-020-01072-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/23/2020] [Indexed: 11/27/2022]
Abstract
To evaluate changes in concentrations of selected biomarkers, neurotrophic factors, and growth factors in the cerebrospinal fluid during pregnancy. A prospective observational study was conducted in 32 pregnant women undergoing gynecological and obstetrical surgery under spinal anesthesia in a university hospital. Beta-amyloid(1-42) and beta-amyloid(1-40) peptides, brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, and vascular endothelial growth factor were analyzed in cerebrospinal fluid using an enzyme-linked immunosorbent assay. Eight women in second trimester pregnancy who underwent spinal anesthesia for gynecological or obstetrical surgery were compared with 24 matched women in third trimester pregnancies. CSF concentrations of beta-amyloid(1-42) were significantly higher in third trimester pregnancies (p = 0.025). During third trimester, the beta-amyloid ratio correlated with the vascular endothelial growth factor (rs = 0.657; p = 0.008). Higher concentrations of beta-amyloid(1-42) in cerebrospinal fluid of third trimester pregnancies and correlations between the beta-amyloid ratio and the vascular endothelial growth factor support the hypothesis that beta-amyloid peptides are involved in complex adaptive brain alterations during pregnancy.
Collapse
Affiliation(s)
- Cristina Alomar-Dominguez
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - L Dostal
- Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Innsbruck, Austria
| | - J Thaler
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - G Putz
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - C Humpel
- Psychiatric Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of Innsbruck, Innsbruck, Austria
| | - W Lederer
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
23
|
Maeda KJ, McClung DM, Showmaker KC, Warrington JP, Ryan MJ, Garrett MR, Sasser JM. Endothelial cell disruption drives increased blood-brain barrier permeability and cerebral edema in the Dahl SS/jr rat model of superimposed preeclampsia. Am J Physiol Heart Circ Physiol 2020; 320:H535-H548. [PMID: 33275518 DOI: 10.1152/ajpheart.00383.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Preeclampsia is characterized by increases in blood pressure and proteinuria in late pregnancy, and neurological symptoms can appear in the form of headaches, blurred vision, cerebral edema, and, in the most severe cases, seizures (eclampsia). The causes for these cerebral manifestations remain unknown, so the use of animal models that mimic preeclampsia is essential to understanding its pathogenesis. The Dahl salt-sensitive (Dahl SS/jr) rat model develops spontaneous preeclampsia superimposed on chronic hypertension; therefore, we hypothesized that the Dahl SS/jr rat would display cerebrovascular features similar to those seen in human preeclampsia. Furthermore, we predicted that this model would allow for the identification of mechanisms underlying these changes. The pregnant Dahl SS/jr rat displayed increased cerebral edema and blood-brain barrier disruption despite tighter control of cerebral blood flow autoregulation and vascular smooth muscle myogenic tone. Analysis of cerebral endothelial cell morphology revealed increased opening of tight junctions, basement membrane dissolution, and vesicle formation. RNAseq analysis identified that genes related to endothelial cell tight junctions and blood-brain barrier integrity were differentially expressed in cerebral vessels from pregnant Dahl SS/jr compared with healthy pregnant Sprague Dawley rats. Overall, our data reveal new insights into mechanisms involved in the cerebrovascular dysfunction of preeclampsia.NEW & NOTEWORTHY This study uses the Dahl SS/jr rat as a preclinical model of spontaneous superimposed preeclampsia to demonstrate uncoupling of cerebral vascular permeability and blood-brain barrier disruption from cerebral blood flow autoregulatory dysfunction and myogenic tone. Additionally, the data presented in this study lay the foundational framework on which future experiments assessing specific transcellular transport components such as individual transporter protein expression and components of the vesicular transport system (caveolae) can be built to help reveal a potential direct mechanistic insight into the causes of cerebrovascular complications during preeclamptic pregnancies.
Collapse
Affiliation(s)
- Kenji J Maeda
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Daniel M McClung
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Physiology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kurt C Showmaker
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Data Science, University of Mississippi Medical Center, Jackson, Mississippi
| | - Junie P Warrington
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J Ryan
- Department of Physiology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
24
|
Matenchuk BA, James M, Skow RJ, Wakefield P, MacKay C, Steinback CD, Davenport MH. Longitudinal study of cerebral blood flow regulation during exercise in pregnancy. J Cereb Blood Flow Metab 2020; 40:2278-2288. [PMID: 31752587 PMCID: PMC7585927 DOI: 10.1177/0271678x19889089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cerebrovascular adaptation to pregnancy is poorly understood. We sought to assess cerebrovascular regulation in response to visual stimulation, hypercapnia and exercise across the three trimesters of pregnancy. Using transcranial Doppler (TCD) ultrasound, middle and posterior cerebral artery mean blood velocities (MCAvmean and PCAvmean) were measured continuously at rest and in response to (1) visual stimulation to assess neurovascular coupling (NVC); (2) a modified Duffin hyperoxic CO2 rebreathe test, and (3) an incremental cycling exercise test to volitional fatigue in non-pregnant (n = 26; NP) and pregnant women (first trimester [n = 13; TM1], second trimester [n = 21; TM2], and third trimester [n = 20; TM3]) in total 47 women. At rest, MCAvmean and PETCO2 were lower in TM2 compared to NP. PCAvmean was lower in TM2 but not TM1 or TM3 compared to NP. Cerebrovascular reactivity in MCAvmean and PCAvmean during the hypercapnic rebreathing test was not different between pregnant and non-pregnant women. MCAvmean continued to increase over the second half of the exercise test in TM2 and TM3, while it decreased in NP due to differences in ΔPETCO2 between groups. Pregnant women experienced a delayed decrease in MCAvmean in response to maximal exercise compared to non-pregnant controls which was explained by CO2 reactivity and PETCO2 level.
Collapse
Affiliation(s)
- Brittany A Matenchuk
- Program for Pregnancy & Postpartum Health, Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport, and Recreation, Alberta Diabetes Institute, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Marina James
- Program for Pregnancy & Postpartum Health, Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport, and Recreation, Alberta Diabetes Institute, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Rachel J Skow
- Program for Pregnancy & Postpartum Health, Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport, and Recreation, Alberta Diabetes Institute, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Paige Wakefield
- Program for Pregnancy & Postpartum Health, Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport, and Recreation, Alberta Diabetes Institute, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Christina MacKay
- Program for Pregnancy & Postpartum Health, Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport, and Recreation, Alberta Diabetes Institute, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Craig D Steinback
- Program for Pregnancy & Postpartum Health, Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport, and Recreation, Alberta Diabetes Institute, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Margie H Davenport
- Program for Pregnancy & Postpartum Health, Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport, and Recreation, Alberta Diabetes Institute, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Barth C, de Lange AMG. Towards an understanding of women's brain aging: the immunology of pregnancy and menopause. Front Neuroendocrinol 2020; 58:100850. [PMID: 32504632 DOI: 10.1016/j.yfrne.2020.100850] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
Women are at significantly greater risk of developing Alzheimer's disease and show higher prevalence of autoimmune conditions relative to men. Women's brain health is historically understudied, and little is therefore known about the mechanisms underlying epidemiological sex differences in neurodegenerative diseases, and how female-specific factors may influence women's brain health across the lifespan. In this review, we summarize recent studies on the immunology of pregnancy and menopause, emphasizing that these major immunoendocrine transition phases may play a critical part in women's brain aging trajectories.
Collapse
Affiliation(s)
- Claudia Barth
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Ann-Marie G de Lange
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
| |
Collapse
|
26
|
Abstract
Maternal cardiovascular changes during pregnancy include an expansion of plasma volume, increased cardiac output, decreased peripheral resistance, and increased uteroplacental blood flow. These adaptations facilitate the progressive increase in uteroplacental perfusion that is required for normal fetal growth and development, prevent the development of hypertension, and provide a reserve of blood in anticipation of the significant blood loss associated with parturition. Each woman's genotype and phenotype determine her ability to adapt in response to molecular signals that emanate from the fetoplacental unit. Here, we provide an overview of the major hemodynamic and cardiac changes and then consider regional changes in the splanchnic, renal, cerebral, and uterine circulations in terms of endothelial and vascular smooth muscle cell plasticity. Although consideration of gestational disease is beyond the scope of this review, aberrant signaling and/or maternal responsiveness contribute to the etiology of several common gestational diseases such as preeclampsia, intrauterine growth restriction, and gestational diabetes.
Collapse
Affiliation(s)
- George Osol
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA;
| | - Nga Ling Ko
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA;
| | - Maurizio Mandalà
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|
27
|
Brockhaus K, Melkonyan H, Prokosch-Willing V, Liu H, Thanos S. Alterations in Tight- and Adherens-Junction Proteins Related to Glaucoma Mimicked in the Organotypically Cultivated Mouse Retina Under Elevated Pressure. Invest Ophthalmol Vis Sci 2020; 61:46. [PMID: 32207812 PMCID: PMC7401456 DOI: 10.1167/iovs.61.3.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To scrutinize alterations in cellular interactions and cell signaling in the glaucomatous retina, mouse retinal explants were exposed to elevated pressure. Methods Retinal explants were prepared from C57bl6 mice and cultivated in a pressure chamber under normotensive (atmospheric pressure + 0 mm Hg), moderately elevated (30 mm Hg), and highly elevated (60 mm Hg) pressure conditions. The expression levels of proteins involved in the formation of tight junctions (zonula occludens 1 [ZO-1], occludin, and claudin-5) and adherens junctions (VE-cadherin and β-catenin) and in cell-signaling cascades (Cdc42 and activated Cdc42 kinase 1 [ACK1]), as well as the expression levels of the growth-factor receptors platelet-derived growth factor receptor beta and vascular endothelial growth factor receptors 1 and 2 (VEGFR-1, VEGFR-2) and of diverse intracellular proteins (β-III-tubulin, glial fibrillary acidic protein transcript variant 1, α-smooth muscle actin, vimentin, and von Willebrand factor VIII), were analyzed using immunohistochemistry, western blotting, and quantitative real-time polymerase chain reactions. Results The retinal explants were well preserved when cultured in the pressure chambers used in this study. The responses to pressure elevation varied among diverse retinal cells. Under elevated pressure, the expression of ZO-1 increased in the large vessels, neuronal cells began to express VEGFR-1, and the Cdc42 expression in the optic nerve head was downregulated. Overall we found significant transcriptional downregulation of VE-cadherin, β-catenin, VEGFR-1, VEGFR-2, vimentin, Cdc42, and ACK1. Western blotting and immunohistochemistry indicated a loss of VE-cadherin with pressure elevation, whereas the protein levels of ZO-1, occludin, VEGFR-1, and ACK1 increased. Conclusions The pressure chamber used for cultivating mouse retinal explants can serve as an in vitro model system for investigating molecular alterations in glaucoma. In this system, responses of the entire retinal cells toward elevated pressure with conspicuous changes in the vasculature and the optic nerve head can be seen. In particular, our investigations indicate that changes in the blood–retina barrier and in cellular signaling are induced by pressure elevation.
Collapse
|
28
|
Arévalo L, Campbell P. Placental effects on the maternal brain revealed by disrupted placental gene expression in mouse hybrids. Proc Biol Sci 2020; 287:20192563. [PMID: 31937228 PMCID: PMC7003458 DOI: 10.1098/rspb.2019.2563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
The mammalian placenta is both the physical interface between mother and fetus, and the source of endocrine signals that target the maternal hypothalamus, priming females for parturition, lactation and motherhood. Despite the importance of this connection, the effects of altered placental signalling on the maternal brain are insufficiently studied. Here, we show that placental dysfunction alters gene expression in the maternal brain, with the potential to affect maternal behaviour. Using a cross between the house mouse and the Algerian mouse, in which hybrid placental development is abnormal, we sequenced late-gestation placental and maternal medial preoptic area transcriptomes and quantified differential expression and placenta-maternal brain co-expression between normal and hybrid pregnancies. The expression of Fmn1 and Drd3 was significantly altered in the brains of females exposed to hybrid placentas. Most strikingly, expression patterns of placenta-specific gene families and Drd3 in the brains of house mouse females carrying hybrid litters matched those of female Algerian mice, the paternal species in the cross. Our results indicate that the paternally derived placental genome can influence the expression of maternal-fetal communication genes, including placental hormones, suggesting an effect of the offspring's father on the mother's brain.
Collapse
|
29
|
Murali S, Miller K, McDermott M. Preeclampsia, eclampsia, and posterior reversible encephalopathy syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2020; 172:63-77. [PMID: 32768095 DOI: 10.1016/b978-0-444-64240-0.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Preeclampsia is a disorder of pregnancy associated with gestational hypertension and end-organ dysfunction. Patients with eclampsia, by definition, have seizures as part of the clinical syndrome. However, patients with preeclampsia can also have other neurologic symptoms and deficits. Both disorders can be associated with radiographic abnormalities similar to that of posterior reversible encephalopathy syndrome, suggesting a common pathophysiology or unified clinical spectrum of disorders. This chapter reviews the pathophysiology, clinical presentation, diagnostic findings, and prognosis of patients with neurologic complications associated with preeclampsia and eclampsia.
Collapse
Affiliation(s)
- Sadhana Murali
- Department of Neurology, University of Michigan Stroke Program, Ann Arbor, MI, United States
| | - Kristin Miller
- Department of Neurology, University of Illinois at Chicago, Stroke Program, Chicago, IL, United States
| | - Mollie McDermott
- Department of Neurology, University of Michigan Stroke Program, Ann Arbor, MI, United States.
| |
Collapse
|
30
|
Evers KS, Huhn EA, Fouzas S, Barro C, Kuhle J, Fisch U, Bernasconi L, Lapaire O, Wellmann S. Impact of parturition on maternal cardiovascular and neuronal integrity in a high risk cohort - a prospective cohort study. BMC Pregnancy Childbirth 2019; 19:403. [PMID: 31690271 PMCID: PMC6833198 DOI: 10.1186/s12884-019-2570-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022] Open
Abstract
Background To better understand the profound multisystem changes in maternal physiology triggered by parturition, in particular in the underexplored neuronal system, by deploying a panel of pre- vs post-delivery maternal serum biomarkers, most notably the neuronal cytoskeleton constituent neurofilament light chain (NfL). This promising fluid biomarker is not only increasingly applied to investigate disease progression in numerous brain diseases, particularly in proteopathies, but also in detection of traumatic brain injury or monitoring neuroaxonal injury after ischemic stroke. Methods The study was nested within a prospective cohort study of pregnant women at risk of developing preeclampsia at the University Hospital of Basel. Paired ante- and postpartum levels of progesterone, soluble fms-like tyrosine kinase-1 (sFlt-1), placental growth factor (PlGF), mid-regional pro-atrial natriuretic peptide (MR-proANP), copeptin (CT-proAVP), and NfL were measured in 56 women with complete clinical data. Results Placental delivery significantly decreased all placental markers: progesterone 4.5-fold, PlGF 2.2-fold, and sFlt-1 1.7-fold. Copeptin and MR-proANP increased slightly (1.4- and 1.2-fold, respectively). Unexpectedly, NfL levels (median [interquartile range]) increased significantly post-partum: 49.4 (34.7–77.8) vs 27.7 (16.7–31.4) pg/ml (p < 0.0001). Antepartum NfL was the sole independent predictor of NfL peri-partum change; mode of delivery, duration of labor, clinical characteristics and other biomarkers were all unrelated. Antepartum NfL levels were themselves independently predicted only by maternal age. Conclusions Parturition per se increases maternal serum NfL levels, suggesting a possible impact of parturition on maternal neuronal integrity.
Collapse
Affiliation(s)
- Katrina Suzanne Evers
- Division of Neonatology, University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4056, Basel, Switzerland.
| | - Evelyn Annegret Huhn
- Division of Obstetrics and Gynecology, University Hospital Basel, Basel, Switzerland
| | - Sotirios Fouzas
- Paediatric Respiratory Unit and Department of Neonatology, University Hospital of Patras, Patras, Greece
| | - Christian Barro
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Urs Fisch
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Luca Bernasconi
- Institute of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Olav Lapaire
- Division of Obstetrics and Gynecology, University Hospital Basel, Basel, Switzerland
| | - Sven Wellmann
- Division of Neonatology, University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4056, Basel, Switzerland.,Division of Neonatology, University Children's Hospital Regensburg (KUNO), University of Regensburg, Regensburg, Germany
| |
Collapse
|
31
|
Affiliation(s)
- Eliza C Miller
- From the Department of Neurology, Division of Stroke and Cerebrovascular Disease, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
32
|
Pucci G, Milan A, Paini A, Salvetti M, Cerasari A, Vaudo G. Acute blood pressure elevation associated with biological therapies for cancer: a focus on VEGF signaling pathway inhibitors. Expert Opin Biol Ther 2019; 19:433-442. [PMID: 30888868 DOI: 10.1080/14712598.2019.1594770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Treatment with biological agents interfering with mechanisms of angiogenesis, such as vascular endothelial growth factor (VEGF) signaling pathway (VSP) inhibitors, was associated with an enhanced risk of acute and severe blood pressure (BP) increase and development of hypertensive emergencies. Areas covered: The present article will review the scientific literature reporting hypertensive emergencies as a complication of biological treatment with VSP inhibitors. Hypertensive emergency is a life-threatening condition characterized by very high BP values (>180/110 mmHg) associated with acute organ damage. The exact mechanism of action is still incompletely clarified. Endothelial dysfunction following reduced bioavailability of nitric oxide has been hypothesized to play an important role in promoting hypertension and the occurrence of acute organ damage. Expert opinion: Prevention, prompt recognition and treatment of hypertensive emergencies associated with treatment with VSP-inhibitors are essential to reduce the risk of adverse events. Not infrequently, the occurrence of hypertensive emergency led to VSP treatment discontinuation, with potential negative consequences on patient overall survival. The present review aims at providing detailed knowledge for the clinician regarding this specific issue, which could be of high impact in usual clinical practice, given the increasing burden of indications to treatment with biological agents targeted to the VEGF pathway.
Collapse
Affiliation(s)
- Giacomo Pucci
- a Department of Medicine , University of Perugia , Perugia , Italy.,b Unit of Internal Medicine , Terni University Hospital , Terni , Italy
| | - Alberto Milan
- c Department of Medical Sciences - Hypertension Center , University of Torino - AOU Città della Salute e della Scienza di Torino , Torino , Italy
| | - Anna Paini
- d Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Massimo Salvetti
- d Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Alberto Cerasari
- a Department of Medicine , University of Perugia , Perugia , Italy.,b Unit of Internal Medicine , Terni University Hospital , Terni , Italy
| | - Gaetano Vaudo
- a Department of Medicine , University of Perugia , Perugia , Italy.,b Unit of Internal Medicine , Terni University Hospital , Terni , Italy
| |
Collapse
|
33
|
Barros T, Moran G, Uberti B. Reactive Seizures After Vaccination in a Thoroughbred Broodmare. J Equine Vet Sci 2019. [DOI: 10.1016/j.jevs.2018.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Torres-Vergara P, Escudero C, Penny J. Drug Transport at the Brain and Endothelial Dysfunction in Preeclampsia: Implications and Perspectives. Front Physiol 2018; 9:1502. [PMID: 30459636 PMCID: PMC6232255 DOI: 10.3389/fphys.2018.01502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022] Open
Abstract
Transport of drugs across biological barriers has been a subject of study for decades. The discovery and characterization of proteins that confer the barrier properties of endothelia and epithelia, including tight junction proteins and membrane transporters belonging to the ATP-binding cassette (ABC) and Solute Carrier (SLC) families, represented a significant step forward into understanding the mechanisms that govern drug disposition. Subsequently, numerous studies, including both pre-clinical approaches and clinical investigations, have been carried out to determine the influence of physiological and pathological states on drug disposition. Importantly, there has been increasing interest in gaining a better understanding of drug disposition during pregnancy, since epidemiological and clinical studies have demonstrated that the use of medications by pregnant women is significant and this condition embodies a series of significant anatomical and physiological modifications, particularly at excretory organs and barrier sites (e.g., placenta, breast) expressing transporter proteins which influence pharmacokinetics. Currently, most of the research in this field has focused on the expression profiling of transporter proteins in trophoblasts and endothelial cells of the placenta, regulation of drug-resistance mechanisms in disease states and pharmacokinetic studies. However, little attention has been placed on the influence that the cerebrovascular dysfunction present in pregnancy-related disorders, such as preeclampsia, might exert on drug disposition in the mother’s brain. This issue is particularly important since recent findings have demonstrated that preeclamptic women suffer from long-term alterations in the integrity of the blood-brain barrier (BBB). In this review we aim to analyze the available evidence regarding the influence of pregnancy on the expression of transporters and TJ proteins in brain endothelial cells, as well the mechanisms that govern the pathophysiological alterations in the BBB of women who experience preeclampsia. Future research efforts should be focused not only on achieving a better understanding of the influence of preeclampsia-associated endothelial dysfunction on drug disposition, but also in optimizing the pharmacological treatments of women suffering pregnancy-related disorders, its comorbidities and to develop new therapies aiming to restore the integrity of the BBB.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Department of Pharmacy, Faculty of Pharmacy, University of Concepción, Concepción, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.,Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.,Red Iberoamericana de Alteraciones Vasculares Asociadas a Trastornos del Embarazo (RIVA-TREM), Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
35
|
Pinto SR, Helal-Neto E, Paumgartten F, Felzenswalb I, Araujo-Lima CF, Martínez-Máñez R, Santos-Oliveira R. Cytotoxicity, genotoxicity, transplacental transfer and tissue disposition in pregnant rats mediated by nanoparticles: the case of magnetic core mesoporous silica nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:527-538. [PMID: 29688037 DOI: 10.1080/21691401.2018.1460603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Whether in the cosmetic or as therapeutic, the use of nanoparticles has been increasing and taking on global proportion. However, there are few studies about the physical potential of long-term use or use in special conditions such as chronic, AIDS, pregnant women and other special health circumstances. In this context, the study of the mutagenicity and the transplacental passage represents an important and reliable model for the primary evaluation of potential health risks, especially maternal and child health. In this study we performed mutagenicity, cytotoxic and transplacental evaluation of magnetic core mesoporous silica nanoparticles, radiolabeled with 99mTc for determination of toxicogenic and embryonic/fetuses potential risk in animal model. Magnetic core mesoporous silica nanoparticles were produced and characterized by obtaining nanoparticles with a size of (58.9 ± 8.1 nm) in spherical shape and with intact magnetic core. The 99 m Tc radiolabeling process demonstrated high efficacy and stability in 98% yield over a period of 8 hours of stability. Mutagenicity assays were performed using Salmonella enteric serovar Typhimurium standard strains TA98, TA100 and TA102. Cytotoxicity assays were performed using WST-1. The transplacental evaluation assays were performed using the in vivo model with rats in two periods: embryonic and fetal stage. The results of both analyzes corroborate that the nanoparticles can i) generate DNA damage; ii) generate cytotoxic potential and iii) cross the transplantation barrier in both stages and bioaccumulates in both embryos and fetuses. The results suggest that complementary evaluations should be conducted in order to attest safety, efficacy and quality of nanoparticles before unrestricted approval of their use.
Collapse
Affiliation(s)
- Suyene Rocha Pinto
- a Nuclear Engineering Institute , Brazilian Nuclear Energy Commission , Rio de Janeiro , Brazil
| | - Edward Helal-Neto
- a Nuclear Engineering Institute , Brazilian Nuclear Energy Commission , Rio de Janeiro , Brazil
| | - Francisco Paumgartten
- b National School of Public Health , Oswaldo Cruz Foundation (FIOCRUZ) , Rio de Janeiro , Brazil
| | - Israel Felzenswalb
- c Departament of Biophysics and Biometrics, Environmental Mutagenesis Laboratory , Rio de Janeiro State University, Institute of Biology Roberto de Alcântara Gomes , Rio de Janeiro , Brazil
| | - Carlos Fernando Araujo-Lima
- c Departament of Biophysics and Biometrics, Environmental Mutagenesis Laboratory , Rio de Janeiro State University, Institute of Biology Roberto de Alcântara Gomes , Rio de Janeiro , Brazil
| | - Ramón Martínez-Máñez
- d Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) , Universitat Politècnica de València, Universitat de València , Valencia , Spain.,e Departamento de Química , Universidad Politécnica de Valencia , Valencia , Spain.,f CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , Valencia , Spain
| | - Ralph Santos-Oliveira
- a Nuclear Engineering Institute , Brazilian Nuclear Energy Commission , Rio de Janeiro , Brazil.,g Laboratory of Nanoradiopharmaceuticals and Radiopharmacy , Zona Oeste State University , Rio de Janeiro , Brazil
| |
Collapse
|
36
|
Accelerated growth of hemangioblastoma in pregnancy: the role of proangiogenic factors and upregulation of hypoxia-inducible factor (HIF) in a non-oxygen-dependent pathway. Neurosurg Rev 2017; 42:209-226. [DOI: 10.1007/s10143-017-0910-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/28/2022]
|
37
|
Ritzel RM, Patel AR, Spychala M, Verma R, Crapser J, Koellhoffer EC, Schrecengost A, Jellison ER, Zhu L, Venna VR, McCullough LD. Multiparity improves outcomes after cerebral ischemia in female mice despite features of increased metabovascular risk. Proc Natl Acad Sci U S A 2017; 114:E5673-E5682. [PMID: 28645895 PMCID: PMC5514696 DOI: 10.1073/pnas.1607002114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Females show a varying degree of ischemic sensitivity throughout their lifespan, which is not fully explained by hormonal or genetic factors. Epidemiological data suggest that sex-specific life experiences such as pregnancy increase stroke risk. This work evaluated the role of parity on stroke outcome. Age-matched virgin (i.e., nulliparous) and multiparous mice were subjected to 60 min of reversible middle cerebral artery occlusion and evaluated for infarct volume, behavioral recovery, and inflammation. Using an established mating paradigm, fetal microchimeric cells present in maternal mice were also tracked after parturition and stroke. Parity was associated with sedentary behavior, weight gain, and higher triglyceride and cholesterol levels. The multiparous brain exhibited features of immune suppression, with dampened baseline microglial activity. After acute stroke, multiparous mice had smaller infarcts, less glial activation, and less behavioral impairment in the critical recovery window of 72 h. Behavioral recovery was significantly better in multiparous females compared with nulliparous mice 1 mo after stroke. This recovery was accompanied by an increase in poststroke angiogenesis that was correlated with improved performance on sensorimotor and cognitive tests. Multiparous mice had higher levels of VEGF, both at baseline and after stroke. GFP+ fetal cells were detected in the blood and migrated to areas of tissue injury where they adopted endothelial morphology 30 d after injury. Reproductive experience has profound and complex effects on neurovascular health and disease. Inclusion of female mice with reproductive experience in preclinical studies may better reflect the life-long patterning of ischemic stroke risk in women.
Collapse
Affiliation(s)
- Rodney M Ritzel
- Department of Anesthesiology, Center for Shock, Trauma, and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Anita R Patel
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030
| | - Monica Spychala
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Rajkumar Verma
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030
| | - Joshua Crapser
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030
| | - Edward C Koellhoffer
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Anna Schrecengost
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030
| | - Evan R Jellison
- Immunology Department, University of Connecticut Health Center, Farmington, CT 06030
| | - Liang Zhu
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Venugopal Reddy Venna
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030;
| |
Collapse
|
38
|
Abstract
Cerebral blood flow (CBF) regulation is an indicator of cerebrovascular health increasingly recognized as being influenced by physical activity. Although regular exercise is recommended during healthy pregnancy, the effects of exercise on CBF regulation during this critical period of important blood flow increase and redistribution remain incompletely understood. Moreover, only a few studies have evaluated the effects of human pregnancy on CBF regulation. The present work summarizes current knowledge on CBF regulation in humans at rest and during aerobic exercise in relation to healthy pregnancy. Important gaps in the literature are highlighted, emphasizing the need to conduct well-designed studies assessing cerebrovascular function before, during and after this crucial life period to evaluate the potential cerebrovascular risks and benefits of exercise during pregnancy.
Collapse
|
39
|
A(H1N1) vaccination recruits T lymphocytes to the choroid plexus for the promotion of hippocampal neurogenesis and working memory in pregnant mice. Brain Behav Immun 2016; 53:72-83. [PMID: 26576725 DOI: 10.1016/j.bbi.2015.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 12/20/2022] Open
Abstract
We previously demonstrated that A(H1N1) influenza vaccine (AIV) promoted hippocampal neurogenesis and working memory in pregnant mice. However, the underlying mechanism of flu vaccination in neurogenesis and memory has remained unclear. In this study, we found that T lymphocytes were recruited from the periphery to the choroid plexus (CP) of the lateral and third (3rd) ventricles in pregnant mice vaccinated with AIV (Pre+AIV). Intracerebroventricular delivery of anti-TCR antibodies markedly decreased neurogenesis and the working memory of the Pre+AIV mice. Similarly, intravenous delivery of anti-CD4 antibodies to the periphery also down-regulated neurogenesis. Furthermore, AIV vaccination caused microglia to skew toward an M2-like phenotype (increased Arginase-1 and Ym1 mRNA levels), and elevated levels of brain-derived growth factor (BDNF) and insulin-like growth factor-1 (IGF-1) were found in the hippocampus, whereas these effects were offset by anti-TCR antibody treatment. Additionally, in the CP, the expression level of adhesion molecules and chemokines, which assist leukocytes in permeating into the brain, were also elevated after AIV vaccination of pregnant mice. Collectively, the results suggested that the infiltrative T lymphocytes in the CP contribute to the increase in hippocampal neurogenesis and working memory caused by flu vaccination, involving activation of the brain's CP, M2 microglial polarization and neurotrophic factor expression.
Collapse
|
40
|
Johnson AC, Cipolla MJ. The cerebral circulation during pregnancy: adapting to preserve normalcy. Physiology (Bethesda) 2015; 30:139-47. [PMID: 25729059 DOI: 10.1152/physiol.00048.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The adaptation of the brain and cerebral circulation to pregnancy are unique compared with other organs and circulatory systems, ultimately functioning to maintain brain homeostasis. In this review, the effect of pregnancy on critical functions of the cerebral circulation is discussed, including changes occurring at the endothelium and blood-brain barrier, and changes in the structure and function of cerebral arteries and arterioles, hemodynamics, and cerebral blood flow autoregulation.
Collapse
Affiliation(s)
- Abbie C Johnson
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| | - Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
41
|
Influenza A(H1N1) vaccination during early pregnancy transiently promotes hippocampal neurogenesis and working memory. Involvement of Th1/Th2 balance. Brain Res 2015; 1592:34-43. [PMID: 25307140 DOI: 10.1016/j.brainres.2014.09.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 01/21/2023]
Abstract
The 2009 influenza A(H1N1) pandemic led to a particularly high risk of morbidity and mortality among pregnant women. Therefore, inactivated influenza vaccines have been widely recommended for women in any period of gestation. Recent studies have shown that the peripheral adaptive immune system plays an important role in the function of the central nervous system (CNS). The present study was conducted to explore if influenza vaccination, aiming to induce protective immune activation, affects maternal neurogenesis and cognitive ability. The results showed that A(H1N1) pregnant mice (AIV+Pre) had superior spatial working memory performance compared with pregnant controls (Pre). At the cellular level, a transient increase in both cell proliferation and neuronal differentiation in the dentate gyrus (DG) was found in the AIV+Pre group compared with the Pre group when BrdU was injected on gestational day 14 (G14). However, there were no obvious differences between A(H1N1) virgin mice (AIV+Vir) and virgin controls (Vir) in both hippocampal neurogenesis and working memory. Our findings further indicated that prolactin (PRL) concentrations were not overtly different between the AIV+Pre group and the Pre group at any time. Interestingly, IL-4 and IFN-γ levels were obviously increased both in the serum and hippocampus of the AIV+Pre group (with a T helper-1 like response; Th1) compared with the Pre group (with a T helper-2 like response; Th2) at G14, whereas the expression of IL-6 and TNF-α, the proinflammatory factors, was significantly reduced. Altogether, the results suggest that A(H1N1) vaccination during early pregnancy may contribute to adult hippocampal neurogenesis and spatial working memory and that the improvements were, at least in part, associated with Th1/Th2 balance.
Collapse
|
42
|
Zhang L, Yuan LJ, Zhao S, Shan Y, Wu HM, Xue XD. The role of placenta growth factor in the hyperoxia-induced acute lung injury in an animal model. Cell Biochem Funct 2014; 33:44-9. [PMID: 25515701 DOI: 10.1002/cbf.3085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Liang Zhang
- Department of Neonatology; The First Affiliated Hospital of China Medical University; Shenyang Liaoning China
| | - Li-Jie Yuan
- Department of Biochemistry and Molecular Biology; Harbin Medical University Daqing Campus; Daqing China
| | - Shuang Zhao
- Department of Pediatrics; The Fourth People Hospital of Shenyang; Shenyang Liaoning China
| | - Yu Shan
- Department of Neonatology; The First Affiliated Hospital of China Medical University; Shenyang Liaoning China
| | - Hong-Min Wu
- Department of Neonatology; The First Affiliated Hospital of China Medical University; Shenyang Liaoning China
| | - Xin-Dong Xue
- Department of Pediatrics; Shengjing Hospital of China Medical University; Shenyang Liaoning China
| |
Collapse
|
43
|
Wallace K, Tremble SM, Owens MY, Morris R, Cipolla MJ. Plasma from patients with HELLP syndrome increases blood-brain barrier permeability. Reprod Sci 2014; 22:278-84. [PMID: 25194151 DOI: 10.1177/1933719114549844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circulating inflammatory factors and endothelial dysfunction have been proposed to contribute to the pathophysiology of hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome. To date, the occurrence of neurological complications in these women has been reported, but few studies have examined whether impairment in blood-brain barrier (BBB) permeability or cerebrovascular reactivity is present in women having HELLP syndrome. We hypothesized that plasma from women with HELLP syndrome causes increased BBB permeability and cerebrovascular dysfunction. Posterior cerebral arteries from female nonpregnant rats were perfused with 20% serum from women with normal pregnancies (n = 5) or women with HELLP syndrome (n = 5), and BBB permeability and vascular reactivity were compared. Plasma from women with HELLP syndrome increased BBB permeability while not changing myogenic tone and reactivity to pressure. Addition of the nitric oxide (NO) synthase inhibitor N(ω)-nitro-L-arginine methyl ester caused constriction of arteries that was not different with the different plasmas nor was dilation to the NO donor sodium nitroprusside different between the 2 groups. However, dilation to the small- and intermediate-conductance, calcium-activated potassium channel activator NS309 was decreased in vessels exposed to HELLP plasma. Thus, increased BBB permeability in response to HELLP plasma was associated with selective endothelial dysfunction.
Collapse
Affiliation(s)
- Kedra Wallace
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sarah M Tremble
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA Department of Obstetrics, Gynecology & Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT, USA Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT, USA
| | - Michelle Y Owens
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Rachael Morris
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA Department of Obstetrics, Gynecology & Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT, USA Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
44
|
Cerebrovascular dysfunction and blood-brain barrier permeability induced by oxidized LDL are prevented by apocynin and magnesium sulfate in female rats. J Cardiovasc Pharmacol 2014; 63:33-9. [PMID: 24084218 DOI: 10.1097/fjc.0000000000000021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Oxidized low-density lipoprotein (oxLDL) is elevated during several neurologic conditions that involve cerebral edema formation, including severe preeclampsia and eclampsia; however, our understanding of its effect on the cerebral vasculature is limited. We hypothesized that oxLDL induced blood-brain barrier (BBB) disruption and changes in cerebrovascular reactivity occur through NADPH oxidase-derived superoxide. We also investigated the effect of MgSO₄ on oxLDL-induced changes in the cerebral vasculature as this is commonly used in preventing cerebral edema formation. Posterior cerebral arteries from female rats were perfused with 5 µg/mL oxLDL in rat serum with or without 50 µM apocynin or 16 mM MgSO₄ and BBB permeability and vascular reactivity were compared. oxLDL increased BBB permeability and decreased myogenic tone that were prevented by apocynin. oxLDL increased constriction to the nitric oxide synthase inhibitor nitro-L-arginine that was unaffected by apocynin. oxLDL enhanced dilation to the NO donor sodium nitroprusside that was prevented by apocynin. MgSO₄ prevented oxLDL-induced BBB permeability without affecting oxLDL-induced changes in myogenic tone. Thus, oxLDL seems to cause BBB disruption and vascular tone dysregulation through NADPH oxidase-derived superoxide. These results highlight oxLDL and NADPH oxidase as potentially important therapeutic targets in neurologic conditions that involve elevated oxLDL.
Collapse
|
45
|
Shinozaki M, Nakamura M, Konomi T, Kobayashi Y, Takano M, Saito N, Toyama Y, Okano H. Distinct roles of endogenous vascular endothelial factor receptor 1 and 2 in neural protection after spinal cord injury. Neurosci Res 2013; 78:55-64. [PMID: 24107617 DOI: 10.1016/j.neures.2013.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/09/2013] [Accepted: 09/17/2013] [Indexed: 01/19/2023]
Abstract
Secondary degeneration after spinal cord injury (SCI) is caused by increased vascular permeability, infiltration of inflammatory cells, and subsequent focal edema. Therapeutic interventions using neurotrophic factors have focused on the prevention of such reactions to reduce cell death and promote tissue regeneration. Vascular endothelial growth factor (VEGF) is a potent angiogenic and vascular permeability factor. However, the effect of VEGF on SCI remains controversial. VEGF signaling is primarily regulated through two primary receptors, VEGF receptor 1 (VEGF-R1) and VEGF receptor 2 (VEGF-R2). The purpose of this study was to examine the effects of intraperitoneal administration of VEGF-R1- and VEGF-R2-neutralizing antibodies on a mouse model of SCI. VEGF-R1 blockade, but not VEGF-R2 blockade, decreased the permeability and infiltration of inflammatory cells, and VEGF-R2 blockade caused a significant increase in neuronal apoptosis in the acute phase of SCI. VEGF-R2 blockade decreased the residual tissue area and the number of neural fibers in the chronic phase of SCI. VEGF-R2 blockade worsened the functional recovery and prolonged the latency of motor evoked potentials. These data suggest that endogenous VEGF-R2 plays a crucial role in neuronal protection after SCI.
Collapse
Affiliation(s)
- Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Tsunehiko Konomi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshiomi Kobayashi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Morito Takano
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshiaki Toyama
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
46
|
Cipolla MJ. The adaptation of the cerebral circulation to pregnancy: mechanisms and consequences. J Cereb Blood Flow Metab 2013; 33:465-78. [PMID: 23321787 PMCID: PMC3618397 DOI: 10.1038/jcbfm.2012.210] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/02/2012] [Accepted: 12/08/2012] [Indexed: 12/21/2022]
Abstract
The adaptation of the cerebral circulation to pregnancy is unique from other vascular beds. Most notably, the growth and vasodilatory response to high levels of circulating growth factors and cytokines that promote substantial hemodynamic changes in other vascular beds is limited in the cerebral circulation. This is accomplished through several mechanisms, including downregulation of key receptors and transcription factors, and production of circulating factors that counteract the vasodilatory effects of vascular endothelial growth factor (VEGF) and placental growth factor. Pregnancy both prevents and reverses hypertensive inward remodeling of cerebral arteries, possibly through downregulation of the angiotensin type 1 receptor. The blood-brain barrier (BBB) importantly adapts to pregnancy by preventing the passage of seizure provoking serum into the brain and limiting the permeability effects of VEGF that is more highly expressed in cerebral vasculature during pregnancy. While the adaptation of the cerebral circulation to pregnancy provides for relatively normal cerebral blood flow and BBB properties in the face of substantial cardiovascular changes and high levels of circulating factors, under pathologic conditions, these adaptations appear to promote greater brain injury, including edema formation during acute hypertension, and greater sensitivity to bacterial endotoxin.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- Departments of Neurological Sciences, Obstetrics, Gynecology and Reproductive Sciences, Pharmacology, University of Vermont College of Medicine, Burlington, VT, USA.
| |
Collapse
|
47
|
Schreurs MPH, Hubel CA, Bernstein IM, Jeyabalan A, Cipolla MJ. Increased oxidized low-density lipoprotein causes blood-brain barrier disruption in early-onset preeclampsia through LOX-1. FASEB J 2013; 27:1254-63. [PMID: 23230281 PMCID: PMC3574277 DOI: 10.1096/fj.12-222216] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/19/2012] [Indexed: 11/11/2022]
Abstract
Early-onset preeclampsia (EPE) is a severe form of preeclampsia that involves life-threatening neurological complications. However, the underlying mechanism by which EPE affects the maternal brain is not known. We hypothesized that plasma from women with EPE increases blood-brain barrier (BBB) permeability vs. plasma from women with late-onset preeclampsia (LPE) or normal pregnancy (NP) and investigated its underlying mechanism by perfusing cerebral veins from nonpregnant rats (n=6-7/group) with human plasma from women with EPE, LPE, or NP and measuring permeability. We show that plasma from women with EPE significantly increased BBB permeability vs. plasma from women with LPE or NP (P<0.001). BBB disruption in response to EPE plasma was due to a 260% increase of circulating oxidized LDL (oxLDL) binding to its receptor, LOX-1, and subsequent generation of peroxynitrite (P<0.001). A rat model with pathologically high lipid levels in pregnancy showed symptoms of preeclampsia, including elevated blood pressure, growth-restricted fetuses, and LOX-1-dependent BBB disruption, similar to EPE (P<0.05). Thus, we have identified LOX-1 activation by oxLDL and subsequent peroxynitrite generation as a novel mechanism by which disruption of the BBB occurs in EPE. As increased BBB permeability is a primary means by which seizure and other neurological symptoms ensue, our findings highlight oxLDL, LOX-1, and peroxynitrite as important therapeutic targets in EPE.
Collapse
Affiliation(s)
| | - Carl A. Hubel
- Department of Obstetrics, Gynecology, and Reproductive Sciences and
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ira M. Bernstein
- Department of Obstetrics, Gynecology, and Reproductive Sciences, and
| | - Arun Jeyabalan
- Department of Obstetrics, Gynecology, and Reproductive Sciences and
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marilyn J. Cipolla
- Department of Neurology
- Department of Obstetrics, Gynecology, and Reproductive Sciences, and
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont, USA; and
| |
Collapse
|
48
|
Cipolla MJ, Bishop N, Chan SL. Effect of pregnancy on autoregulation of cerebral blood flow in anterior versus posterior cerebrum. Hypertension 2012; 60:705-11. [PMID: 22824983 DOI: 10.1161/hypertensionaha.112.198952] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Severe preeclampsia and eclampsia are associated with brain edema that forms preferentially in the posterior cerebral cortex possibly because of decreased sympathetic innervation of posterior cerebral arteries and less effective autoregulation during acute hypertension. In the present study, we examined the effect of pregnancy on the effectiveness of cerebral blood flow autoregulation using laser Doppler flowmetry and edema formation by wet:dry weight in acute hypertension induced by phenylephrine infusion in the anterior and posterior cerebrum from nonpregnant (n=8) and late-pregnant (n=6) Sprague-Dawley rats. In addition, we compared the effect of pregnancy on sympathetic innervation by tyrosine hydroxylase staining of posterior and middle cerebral arteries (n=5-6 per group) and endothelial and neuronal NO synthase expression using quantitative PCR (n=3 per group). In nonpregnant animals, there was no difference in autoregulation between the anterior and posterior cerebrum. However, in late-pregnant animals, the threshold of cerebral blood flow autoregulation was shifted to lower pressures in the posterior cerebrum, which was associated with increased neuronal NO synthase expression in the posterior cerebral cortex versus anterior. Compared with the nonpregnant state, pregnancy increased the threshold of autoregulation in both brain regions that was related to decreased expression of endothelial NO synthase. Lastly, acute hypertension during pregnancy caused greater edema formation in both brain cortices that was not attributed to changes in sympathetic innervation. These findings suggest that, although pregnancy shifted the cerebral blood flow autoregulatory curve to higher pressures in both the anterior and posterior cortices, it did not protect from edema during acute hypertension.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- Department of Neurology, University of Vermont, 149 Beaumont Ave, HSRF 416, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
49
|
Li B, Wang C, Zhang Y, Zhao XY, Huang B, Wu PF, Li Q, Li H, Liu YS, Cao LY, Dai WM, Fang WG, Shang DS, Cao L, Zhao WD, Chen YH. Elevated PLGF contributes to small-cell lung cancer brain metastasis. Oncogene 2012; 32:2952-62. [DOI: 10.1038/onc.2012.313] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Vandenhaute E, Culot M, Gosselet F, Dehouck L, Godfraind C, Franck M, Plouët J, Cecchelli R, Dehouck MP, Ruchoux MM. Brain pericytes from stress-susceptible pigs increase blood-brain barrier permeability in vitro. Fluids Barriers CNS 2012; 9:11. [PMID: 22569151 PMCID: PMC3386891 DOI: 10.1186/2045-8118-9-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 05/08/2012] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The function of pericytes remains questionable but with improved cultured technique and the use of genetically modified animals, it has become increasingly clear that pericytes are an integral part of blood-brain barrier (BBB) function, and the involvement of pericyte dysfunction in certain cerebrovascular diseases is now emerging. The porcine stress syndrome (PSS) is the only confirmed, homologous model of malignant hyperthermia (MH) in veterinary medicine. Affected animals can experience upon slaughter a range of symptoms, including skeletal muscle rigidity, metabolic acidosis, tachycardia and fever, similar to the human syndrome. Symptoms are due to an enhanced calcium release from intracellular stores. These conditions are associated with a point mutation in ryr1/hal gene, encoding the ryanodine receptor, a calcium channel. Important blood vessel wall muscle modifications have been described in PSS, but potential brain vessel changes have never been documented in this syndrome. METHODS In the present work, histological and ultrastructural analyses of brain capillaries from wild type and ryr1 mutated pigs were conducted to investigate the potential impairment of pericytes, in this pathology. In addition, brain pericytes were isolated from the three porcine genotypes (wild-type NN pigs; Nn and nn pigs, bearing one or two (n) mutant ryr1/hal alleles, respectively), and tested in vitro for their influence on the permeability of BBB endothelial monolayers. RESULTS Enlarged perivascular spaces were observed in ryr1-mutant samples, corresponding to a partial or total detachment of the astrocytic endfeet. These spaces were electron lucent and sometimes filled with lipid deposits and swollen astrocytic feet. At the ultrastructural level, brain pericytes did not seem to be affected because they showed regular morphology and characteristics, so we aimed to check their ability to maintain BBB properties in vitro. Our results indicated that pericytes from the three genotypes of pigs had differing influences on the BBB. Unlike pericytes from NN pigs, pericytes from Nn and nn pigs were not able to maintain low BBB permeability. CONCLUSIONS Electron microscopy observations demonstrated brain capillary modifications in PSS condition, but no change in pericyte morphology. Results from in vitro experiments suggest that brain pericytes from ryr1 mutated pigs, even if they are not affected by this condition at the ultrastructural level, are not able to maintain BBB integrity in comparison with pericytes from wild-type animals.
Collapse
|