1
|
Hernández-Gallardo AK, Arcos-López T, Bahena-Lopez JM, Tejeda-Guzmán C, Gallardo-Hernández S, Webb SM, Kroll T, Solari PL, Sánchez-López C, Den Auwer C, Quintanar L, Missirlis F. In situ detection of ferric reductase activity in the intestinal lumen of an insect. J Biol Inorg Chem 2024; 29:773-784. [PMID: 39617837 PMCID: PMC11638316 DOI: 10.1007/s00775-024-02080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/16/2024] [Indexed: 12/14/2024]
Abstract
The rise of atmospheric oxygen as a result of photosynthesis in cyanobacteria and chloroplasts has transformed most environmental iron into the ferric state. In contrast, cells within organisms maintain a reducing internal milieu and utilize predominantly ferrous iron. Ferric reductases are enzymes that transfer electrons to ferric ions, either extracellularly or within endocytic vesicles, enabling cellular ferrous iron uptake through Divalent Metal Transporter 1. In mammals, duodenal cytochrome b is a ferric reductase of the intestinal epithelium, but how insects reduce and absorb dietary iron remains unknown. Here we provide indirect evidence of extracellular ferric reductase activity in a small subset of Drosophila melanogaster intestinal epithelial cells, positioned at the neck of the midgut's anterior region. Dietary-supplemented bathophenanthroline sulphate (BPS) captures locally generated ferrous iron and precipitates into pink granules, whose chemical identity was probed combining in situ X-ray absorption near edge structure and electron paramagnetic resonance spectroscopies. An increased presence of manganese ions upon BPS feeding was also found. Control animals were fed with ferric ammonium citrate, which is accumulated into ferritin iron in distinct intestinal subregions suggesting iron trafficking between different cells inside the animal. Spectroscopic signals from the biological samples were compared to purified Drosophila and horse spleen ferritin and to chemically synthesized BPS-iron and BPS-manganese complexes. The results corroborated the presence of BPS-iron in a newly identified ferric iron reductase region of the intestine, which we propose constitutes the major site of iron absorption in this organism.
Collapse
Affiliation(s)
| | | | | | - Carlos Tejeda-Guzmán
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, 07360, Mexico City, Mexico
| | | | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Pier Lorenzo Solari
- Synchrotron Soleil, L'Orme des Merisiers, Départementale 128, 91190, Saint-Aubin, France
| | | | | | - Liliana Quintanar
- Departamento de Química, Cinvestav, 07360, Mexico City, Mexico
- Centro de Investigación sobre el Envejecimiento, Cinvestav, 14330, Mexico City, Mexico
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, 07360, Mexico City, Mexico.
| |
Collapse
|
2
|
Gřešková A, Petřivalský M. Thioredoxin System in Insects: Uncovering the Roles of Thioredoxins and Thioredoxin Reductase beyond the Antioxidant Defences. INSECTS 2024; 15:797. [PMID: 39452373 PMCID: PMC11508645 DOI: 10.3390/insects15100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Increased levels of reactive oxygen species (ROS) produced during aerobic metabolism in animals can negatively affect the intracellular redox status, cause oxidative stress and interfere with physiological processes in the cells. The antioxidant defence regulates ROS levels by interplaying diverse enzymes and non-enzymatic metabolites. The thioredoxin system, consisting of the enzyme thioredoxin reductase (TrxR), the redox-active protein thioredoxin (Trx) and NADPH, represent a crucial component of antioxidant defence. It is involved in the signalling and regulation of multiple developmental processes, such as cell proliferation or apoptotic death. Insects have evolved unique variations of TrxR, which resemble mammalian enzymes in overall structure and catalytic mechanisms, but the selenocysteine-cysteine pair in the active site is replaced by a cysteine-cysteine pair typical of bacteria. Moreover, the role of the thioredoxin system in insects is indispensable due to the absence of glutathione reductase, an essential enzyme of the glutathione system. However, the functions of the Trx system in insects are still poorly characterised. In the present review, we provide a critical overview of the current knowledge on the insect Trx system, focusing mainly on TrxR's role in the antioxidant and immune system of model insect species.
Collapse
Affiliation(s)
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| |
Collapse
|
3
|
Ma Z, Wang W, Yang X, Rui M, Wang S. Glial ferritin maintains neural stem cells via transporting iron required for self-renewal in Drosophila. eLife 2024; 13:RP93604. [PMID: 39255019 PMCID: PMC11386955 DOI: 10.7554/elife.93604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Stem cell niche is critical for regulating the behavior of stem cells. Drosophila neural stem cells (Neuroblasts, NBs) are encased by glial niche cells closely, but it still remains unclear whether glial niche cells can regulate the self-renewal and differentiation of NBs. Here, we show that ferritin produced by glia, cooperates with Zip13 to transport iron into NBs for the energy production, which is essential to the self-renewal and proliferation of NBs. The knockdown of glial ferritin encoding genes causes energy shortage in NBs via downregulating aconitase activity and NAD+ level, which leads to the low proliferation and premature differentiation of NBs mediated by Prospero entering nuclei. More importantly, ferritin is a potential target for tumor suppression. In addition, the level of glial ferritin production is affected by the status of NBs, establishing a bicellular iron homeostasis. In this study, we demonstrate that glial cells are indispensable to maintain the self-renewal of NBs, unveiling a novel role of the NB glial niche during brain development.
Collapse
Affiliation(s)
- Zhixin Ma
- School of Life Science and Technology, Department of Neurosurgery, Zhongda Hospital, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast UniversityNanjingChina
| | - Wenshu Wang
- School of Life Science and Technology, Department of Neurosurgery, Zhongda Hospital, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast UniversityNanjingChina
| | - Xiaojing Yang
- School of Life Science and Technology, Department of Neurosurgery, Zhongda Hospital, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast UniversityNanjingChina
| | - Menglong Rui
- School of Life Science and Technology, Department of Neurosurgery, Zhongda Hospital, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast UniversityNanjingChina
| | - Su Wang
- School of Life Science and Technology, Department of Neurosurgery, Zhongda Hospital, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast UniversityNanjingChina
- Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| |
Collapse
|
4
|
Soltani S, Webb SM, Kroll T, King-Jones K. Drosophila Evi5 is a critical regulator of intracellular iron transport via transferrin and ferritin interactions. Nat Commun 2024; 15:4045. [PMID: 38744835 PMCID: PMC11094094 DOI: 10.1038/s41467-024-48165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Vesicular transport is essential for delivering cargo to intracellular destinations. Evi5 is a Rab11-GTPase-activating protein involved in endosome recycling. In humans, Evi5 is a high-risk locus for multiple sclerosis, a debilitating disease that also presents with excess iron in the CNS. In insects, the prothoracic gland (PG) requires entry of extracellular iron to synthesize steroidogenic enzyme cofactors. The mechanism of peripheral iron uptake in insect cells remains controversial. We show that Evi5-depletion in the Drosophila PG affected vesicle morphology and density, blocked endosome recycling and impaired trafficking of transferrin-1, thus disrupting heme synthesis due to reduced cellular iron concentrations. We show that ferritin delivers iron to the PG as well, and interacts physically with Evi5. Further, ferritin-injection rescued developmental delays associated with Evi5-depletion. To summarize, our findings show that Evi5 is critical for intracellular iron trafficking via transferrin-1 and ferritin, and implicate altered iron homeostasis in the etiology of multiple sclerosis.
Collapse
Affiliation(s)
- Sattar Soltani
- University of Alberta, Faculty of Science, Edmonton, Alberta, T6G 2E9, Canada
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Kirst King-Jones
- University of Alberta, Faculty of Science, Edmonton, Alberta, T6G 2E9, Canada.
| |
Collapse
|
5
|
Xia Y, Wang H, Xie Z, Liu ZH, Wang HL. Inhibition of ferroptosis underlies EGCG mediated protection against Parkinson's disease in a Drosophila model. Free Radic Biol Med 2024; 211:63-76. [PMID: 38092273 DOI: 10.1016/j.freeradbiomed.2023.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
Ferroptosis, a new type of cell death accompanied by iron accumulation and lipid peroxidation, is implicated in the pathology of Parkinson's disease (PD), which is a prevalent neurodegenerative disorder that primarily occurred in the elderly population. Epigallocatechin-3-gallate (EGCG) is the major polyphenol in green tea with known neuroprotective effects in PD patients. But whether EGCG-mediated neuroprotection against PD involves regulation of ferroptosis has not been elucidated. In this study, we established a PD model using PINK1 mutant Drosophila. Iron accumulation, lipid peroxidation and decreased activity of GPX, were detected in the brains of PD flies. Additionally, phenotypes of PD, including behavioral defects and dopaminergic neurons loss, were ameliorated by ferroptosis inhibitor ferrostatin-1 (Fer-1). Notably, the increased iron level, lipid peroxidation and decreased GPX activity in the brains of PD flies were relieved by EGCG. We found that EGCG exerted neuroprotection mainly by restoring iron homeostasis in the PD flies. EGCG inhibited iron influx by suppressing Malvolio (Mvl) expression and simultaneously promoted the upregulation of ferritin, the intracellular iron storage protein, leading to a reduction in free iron ions. Additionally, EGCG downregulated the expression of Duox and Nox, two NADPH oxidases that produce reactive oxygen species (ROS) and increased SOD enzyme activity. Finally, modulation of intracellular iron levels or regulation of oxidative stress by genetic means exerted great influence on PD phenotypes. As such, the results demonstrated that ferroptosis has a role in the established PD model. Altogether, EGCG has therapeutic potentials for treating PD by targeting the ferroptosis pathway, providing new strategies for the prevention and treatment of PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yanzhou Xia
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, PR China
| | - Hongyan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, PR China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, PR China
| | - Zhi-Hua Liu
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, PR China.
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
6
|
Usman D, Abubakar MB, Ibrahim KG, Imam MU. Iron chelation and supplementation: A comparison in the management of inflammatory bowel disease using drosophila. Life Sci 2024; 336:122328. [PMID: 38061132 DOI: 10.1016/j.lfs.2023.122328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
AIMS Inflammatory Bowel Disease (IBD) is associated with systemic iron deficiency and has been managed with iron supplements which cause adverse side effects. Conversely, some reports highlight iron depletion to ameliorate IBD. The underlying intestinal response and comparative benefit of iron depletion and supplementation in IBD is unknown. The aims of this work were to characterize and compare the effects of iron supplementation and iron depletion in IBD. MAIN METHODS IBD was induced in Drosophila melanogaster using 3 % dextran sodium sulfate (DSS) in diet for 7 days. Using this model, we investigated the impacts of acute iron depletion (using bathophenanthroline disulfonate, BPS) and supplementation (using ferrous sulphate, FS), before and after IBD induction, on gut iron homeostasis, cell death, gut permeability, inflammation, antioxidant defence, antimicrobial response and several fly phenotypes. KEY FINDINGS DSS decreased fly mass (p < 0.001), increased gut permeability (p < 0.001) and shortened lifespan (p = 0.035) compared to control. The DSS-fed flies also showed significantly elevated lipid peroxidation (p < 0.001), and the upregulated expression of apoptotic marker- drice (p < 0.001), tight junction protein - bbg (p < 0.001), antimicrobial peptide - dpta (p = 0.002) and proinflammatory cytokine - upd2 (p < 0.001). BPS significantly (p < 0.05) increased fly mass and lifespan, decreased gut permeability, decreased lipid peroxidation and decreased levels of drice, bbg, dpta and upd2 in IBD flies. This iron chelation (using BPS) showed better protection from DSS-induced IBD than iron supplementation (using FS). Preventive and curative interventions, by BPS or FS, also differed in outcomes. SIGNIFICANCE This may inform precise management strategies aimed at tackling IBD and its recurrence.
Collapse
Affiliation(s)
- Dawoud Usman
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria; Department of Physiology, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria; Department of Physiology, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria; Department of Physiology, College of Medicine and Health Sciences, Baze University, Abuja, Nigeria
| | - Kasimu Ghandi Ibrahim
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria; Department of Physiology, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria; Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P. O. Box 2000, Zarqa 13110, Jordan; School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria; Department of Medical Biochemistry, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria.
| |
Collapse
|
7
|
Lüersen K, Jöckel T, Chin D, Demetrowitsch T, Schwarz K, Rimbach G. Reduced iron and cobalt levels in response to curcumin supplementation are not responsible for the prolonged larval development and do not affect the oxidative stress tolerance and polyamine status of D. melanogaster. Biofactors 2024; 50:161-180. [PMID: 37597249 DOI: 10.1002/biof.2000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/23/2023] [Indexed: 08/21/2023]
Abstract
Recent reports indicated that the phytochemical curcumin possesses iron-chelating activity. Here, by employing the fruit fly Drosophila melanogaster, we conducted feeding studies supplementing curcumin or, as a control, the iron chelator bathophenanthroline (BPA). First, the absorption and further metabolization of dietary curcuminoids were proved by metabolomics analyses. Next, we found that 0.2% dietary curcumin, similar to BPA, lowered the iron but also the cobalt content, and to a lesser extent affected the manganese and zinc status. Supplementation during larval stages was required and sufficient for both compounds to elicit these alterations in adult animals. However, curcumin-induced retarded larval development was not attributable to the changed trace metal status. In addition, a reduction in the iron content of up to 70% by curcumin or BPA supplementation did not reduce heme-dependent catalase activity and tolerance toward H2 O2 in D. melanogaster. Moreover, polyamines were not influenced by curcumin treatment and decreased iron levels. This was confirmed for selected organs from 0.2% curcumin-treated mice, except for the spleen. Here, elevated spermidine level and concomitant upregulation of genes involved in polyamine production were associated with a putatively anemia-derived increased spleen mass. Our data underline that the metal-chelating property of curcumin needs to be considered in feeding studies.
Collapse
Affiliation(s)
- Kai Lüersen
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Tobias Jöckel
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Dawn Chin
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Tobias Demetrowitsch
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Karin Schwarz
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
8
|
Ullah I, Lang M. Key players in the regulation of iron homeostasis at the host-pathogen interface. Front Immunol 2023; 14:1279826. [PMID: 37942316 PMCID: PMC10627961 DOI: 10.3389/fimmu.2023.1279826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Iron plays a crucial role in the biochemistry and development of nearly all living organisms. Iron starvation of pathogens during infection is a striking feature utilized by a host to quell infection. In mammals and some other animals, iron is essentially obtained from diet and recycled from erythrocytes. Free iron is cytotoxic and is readily available to invading pathogens. During infection, most pathogens utilize host iron for their survival. Therefore, to ensure limited free iron, the host's natural system denies this metal in a process termed nutritional immunity. In this fierce battle for iron, hosts win over some pathogens, but others have evolved mechanisms to overdrive the host barriers. Production of siderophores, heme iron thievery, and direct binding of transferrin and lactoferrin to bacterial receptors are some of the pathogens' successful strategies which are highlighted in this review. The intricate interplay between hosts and pathogens in iron alteration systems is crucial for understanding host defense mechanisms and pathogen virulence. This review aims to elucidate the current understanding of host and pathogen iron alteration systems and propose future research directions to enhance our knowledge in this field.
Collapse
Affiliation(s)
- Inam Ullah
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- College of Life Science, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
9
|
Yu H, Wang K, Yang Z, Li X, Liu S, Wang L, Zhang H. A ferritin protein is involved in the development and reproduction of the whitefly, Bemisia tabaci. ENVIRONMENTAL ENTOMOLOGY 2023; 52:750-758. [PMID: 37318359 DOI: 10.1093/ee/nvad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/06/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
Ferritins are conserved iron-binding proteins that exist in most living organisms and play an essential role in the maintenance of cellular iron homeostasis. Although ferritin has been studied in many species, little is known about its role in the whitefly, Bemisia tabaci. In this study, we identified an iron-binding protein from B. tabaci and named it BtabFer1. The full-length cDNA of BtabFer1 is 1,043 bp and encodes a protein consisting of 224 amino acids with a deduced molecular weight of 25.26 kDa, and phylogenetic analysis shows that BtabFer1 is conserved among Hemiptera insects. The expression levels of BtabFer1 in different developmental stages and tissues were analyzed by real-time PCR, and results showed that BtabFer1 was ubiquitously expressed at all developmental stages and in all examined tissues. The RNAi-mediated knockdown of BtabFer1 caused a significant reduction in survival rate, egg production, and egg hatching rate of whiteflies. Knockdown of BtabFer1 also inhibited the transcription of genes in the juvenile hormone signal transduction pathway. Taken together, these results suggest that BtabFer1 plays a critical role in the development and reproduction of whiteflies. This study can broaden our understanding of ferritin in insect fecundity and development, as well as provide baseline data for future studies.
Collapse
Affiliation(s)
- Hao Yu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Kui Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Zhifang Yang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Xiang Li
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Shunxiao Liu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
- College of Agrarian Technology and Natural Resources, Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Liuhao Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Hongwei Zhang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| |
Collapse
|
10
|
Xiao G, Li H, Zhao M, Zhou B. Assessing metal ion transporting activity of ZIPs: Intracellular zinc and iron detection. Methods Enzymol 2023; 687:157-184. [PMID: 37666631 DOI: 10.1016/bs.mie.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Zrt/Irt-like proteins (ZIPs or SLC39A) are a large family of metal ion transporters mainly responsible for zinc uptake. Some ZIPs have been shown to specifically transport zinc, whereas others have broader substrate specificity in divalent metal ion trafficking, notably those of zinc and iron ions. Measuring intracellular zinc and iron levels helps assess their molecular and physiological activities. This chapter presents step-by-step methods for evaluating intracellular metal ion concentrations, including direct measurement using inductively coupled plasma-mass spectrometry (ICP-MS), chemical staining, fluorescent probes, and indirect reporter assays such as activity analysis of enzymes whose activities are dependent on metal ion availability.
Collapse
Affiliation(s)
- Guiran Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P.R. China
| | - Huihui Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
| | - Mengran Zhao
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Bing Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China.
| |
Collapse
|
11
|
Huang B, Liu Q, Bai C, Li C, Wang C, Xin L. A Putative Receptor for Ferritin in Mollusks: Characterization of the Insulin-like Growth Factor Type 1 Receptor. Int J Mol Sci 2023; 24:ijms24076175. [PMID: 37047145 PMCID: PMC10094261 DOI: 10.3390/ijms24076175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 04/14/2023] Open
Abstract
The ferritin secreted by mammals has been well documented, with the protein capable of localizing to cell membranes and facilitating the delivery of iron to cells through endocytosis. However, the presence of ferritin in the circulatory fluid of mollusks and its functions remain largely unknown. In this study, we aimed to investigate the potential interacting proteins of ferritin in the ark clam (SbFn) through the use of a pull-down assay. Our findings revealed the presence of an insulin-like growth factor type 1 receptor (IGF-1R) in ark clams, which was capable of binding to SbFn and was named SbIGF-1R. SbIGF-1R was found to be composed of two leucine-rich repeat domains (L domain), a cysteine-rich domain, three fibronectin type III domains, a transmembrane domain, and a tyrosine kinase domain. The ectodomain of SbIGF-1R was observed to form a symmetrical antiparallel homodimer in the shape of the letter 'A', with the fibronectin type III domains serving as its 'legs'. The mRNA expression of SbIGF-1R gene was detected ubiquitously in various tissues of the ark clam, with the highest expression levels found in hemocytes, as determined by qRT-PCR. Using a confocal microscopic and yeast two-hybrid assays, the interaction between SbIGF-1R and SbFn was further verified. The results showed that SbFn co-localized with SbIGF-1R on the cell membrane, and their interaction was expected to occur on the FNIII domains of the SbIGF-1R. In conclusion, our findings highlight the identification of a putative receptor, SbIGF-1R, for SbFn, demonstrating the versatility of IGF-1R in ark clams.
Collapse
Affiliation(s)
- Bowen Huang
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qin Liu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin 537000, China
| | - Changming Bai
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Chen Li
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Chongming Wang
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Lusheng Xin
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin 537000, China
| |
Collapse
|
12
|
Liu Y, Li Y, Yang L, Shen J, Zhao H, Dong W, Chang Y, Qiao T, Li K. Stimulation of Hepatic Ferritinophagy Mitigates Irp2 Depletion-Induced Anemia. Antioxidants (Basel) 2023; 12:antiox12030566. [PMID: 36978814 PMCID: PMC10044941 DOI: 10.3390/antiox12030566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
Background: Iron regulatory proteins (IRPs) maintain cellular iron homeostasis. Due to aberrant tissue-iron distribution, Irp2-deficient mice suffer microcytic anemia and neurodegeneration, while iron overload occurs in the liver and intestine. We previously found that Irp2 deficiency-induced Hif2 plays an important role in neurodegeneration. Methods: To test the role of Hif2 in Irp2 deficiency-induced anemia, we used Irp2 global knockout mice. Following Hif2 inhibition, routine blood tests, iron availability in bone marrow, histological assays, and biochemical analysis were performed to assess anemia improvement and tissue iron distribution. Results: We found that Hif2 inhibition improved anemia. The increased iron bioavailability for erythropoiesis was mainly derived from hepatic iron release, and secondly from enhanced intestinal absorption. We further demonstrate that nuclear receptor coactivator 4 (Ncoa4) was upregulated for iron release via the process of ferritinophagy. The released iron was utilized not only for intracellular Fe-S biogenesis but also for erythropoiesis after being exported from the liver to circulation. The hepatic iron export reduced hepcidin expression to further support iron absorption through the hepcidin-ferroportin axis to alleviate intestinal iron overload. Conclusion: Irp2 not only regulates cellular iron homeostasis but also tissue iron distribution by managing the involvement of Hif2-Ncoa4.
Collapse
Affiliation(s)
- Yutong Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Department of Vascular Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Yuxuan Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Liu Yang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Jiaqi Shen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Hongting Zhao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Weichen Dong
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Yanzhong Chang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Tong Qiao
- Department of Vascular Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Department of Vascular Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
- Correspondence:
| |
Collapse
|
13
|
α-Synuclein Toxicity in Drosophila melanogaster Is Enhanced by the Presence of Iron: Implications for Parkinson's Disease. Antioxidants (Basel) 2023; 12:antiox12020261. [PMID: 36829820 PMCID: PMC9952566 DOI: 10.3390/antiox12020261] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, characterized by the preferential loss of dopaminergic neurons and by the accumulation of intracellular inclusions mainly composed of α-synuclein (α-Syn). While the etiopathogenesis of the disorder is still elusive, recent experimental evidence supports the involvement of ferroptosis, an iron-dependent cell death pathway, in the pathogenesis of PD. In the present work, using different ferroptosis inducers and inhibitors, we evaluated, in vivo, the involvement of iron in the α-Syn-mediated toxicity. Using a Drosophila melanogaster model of PD based on the selective over-expression of α-Syn within dopaminergic neurons, we demonstrated that the over-expression of α-Syn promotes the accumulation of protein aggregates, which is accompanied by dopaminergic neurodegeneration, locomotor impairment, and lifespan reduction. These pathological phenotypes were further exacerbated by reduced intracellular levels of glutathione or increased concentrations of iron. Coherently, both the use of an iron chelator and the presence of the antioxidant compound N-acetylcysteine exerted protective effects. Overall, our results support the involvement of ferroptosis in the α-Syn-mediated toxicity.
Collapse
|
14
|
Abstract
Iron is an essential micronutrient for all types of organisms; however, iron has chemical properties that can be harmful to cells. Because iron is both necessary and potentially damaging, insects have homeostatic processes that control the redox state, quantity, and location of iron in the body. These processes include uptake of iron from the diet, intracellular and extracellular iron transport, and iron storage. Early studies of iron-binding proteins in insects suggested that insects and mammals have surprisingly different mechanisms of iron homeostasis, including different primary mechanisms for exporting iron from cells and for transporting iron from one cell to another, and subsequent studies have continued to support this view. This review summarizes current knowledge about iron homeostasis in insects, compares insect and mammalian iron homeostasis mechanisms, and calls attention to key remaining knowledge gaps.
Collapse
Affiliation(s)
- Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA;
| |
Collapse
|
15
|
Weber JJ, Brummett LM, Coca ME, Tabunoki H, Kanost MR, Ragan EJ, Park Y, Gorman MJ. Phenotypic analyses, protein localization, and bacteriostatic activity of Drosophila melanogaster transferrin-1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 147:103811. [PMID: 35781032 PMCID: PMC9869689 DOI: 10.1016/j.ibmb.2022.103811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila melanogaster Tsf1 has been shown to influence iron distribution in the fly body and to protect flies against some infections. The goal of this study was to better understand the physiological functions of Tsf1 in D. melanogaster by 1) investigating Tsf1 null phenotypes, 2) determining tissue-specific localization of Tsf1, 3) measuring the concentration of Tsf1 in hemolymph, 4) testing Tsf1 for bacteriostatic activity, and 5) evaluating the effect of metal and paraquat treatments on Tsf1 abundance. Flies lacking Tsf1 had more iron than wild-type flies in specialized midgut cells that take up iron from the diet; however, the absence of Tsf1 had no effect on the iron content of whole midguts, fat body, hemolymph, or heads. Thus, as previous studies have suggested, Tsf1 appears to have a minor role in iron transport. Tsf1 was abundant in hemolymph from larvae (0.4 μM), pupae (1.4 μM), adult females (4.4 μM) and adult males (22 μM). Apo-Tsf1 at 1 μM had bacteriostatic activity whereas holo-Tsf1 did not, suggesting that Tsf1 can inhibit microbial growth by sequestering iron in hemolymph and other extracellular environments. This hypothesis was supported by detection of secreted Tsf1 in tracheae, testes and seminal vesicles. Colocalization of Tsf1 with an endosome marker in oocytes suggested that Tsf1 may provide iron to developing eggs; however, eggs from mothers lacking Tsf1 had the same amount of iron as control eggs, and they hatched at a wild-type rate. Thus, the primary function of Tsf1 uptake by oocytes may be to defend against infection rather than to provide eggs with iron. In beetles, Tsf1 plays a role in protection against oxidative stress. In contrast, we found that flies lacking Tsf1 had a typical life span and greater resistance to paraquat-induced oxidative stress. In addition, Tsf1 abundance remained unchanged in response to ingestion of iron, cadmium or paraquat or to injection of iron. These results suggest that Tsf1 has a limited role in protection against oxidative stress in D. melanogaster.
Collapse
Affiliation(s)
- Jacob J Weber
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Lisa M Brummett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Michelle E Coca
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Hiroko Tabunoki
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Emily J Ragan
- Department of Chemistry and Biochemistry, Metropolitan State University of Denver, Denver, CO, 80217, USA.
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
16
|
Liu YX, Zhu LB, Guo ZX, Zhu HD, Huang ZH, Cao HH, Yu HZ, Liu SH, Xu JP. Bombyx mori ferritin heavy-chain homolog facilitates BmNPV proliferation by inhibiting reactive oxygen species-mediated apoptosis. Int J Biol Macromol 2022; 217:842-852. [PMID: 35905762 DOI: 10.1016/j.ijbiomac.2022.07.169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022]
Abstract
Ferritin heavy-chain homolog (FerHCH), an iron-binding protein, plays an important role in the host defense against oxidative stress and pathogen infections. In our previous research, Bombyx mori native ferritin had an interaction with B. mori nucleopolyhedrovirus (BmNPV). However, the underlying molecular mechanism of single ferritin homolog responses to BmNPV infection remains unclear. In this study, we found that BmNPV titer and B. mori FerHCH (BmFerHCH) expression were positively correlated with the ferric iron concentration. We performed RNA interference (RNAi) and overexpression experiments to investigate the effects of BmFerHCH on BmNPV proliferation. BmFerHCH knockdown suppressed BmNPV proliferation in vivo and in vitro, whereas BmFerHCH overexpression facilitated BmNPV proliferation. In addition, the oxidative stress level was increased significantly in BmN cells after budded virus infection, while BmFerHCH could neutralize the increased ROS production induced by BmNPV. Of note, we found that ROS was involved in BmNPV-induced apoptosis. Through inhibiting ROS, apoptosis was suppressed by BmFerHCH, whereas BmFerHCH knockdown facilitated apoptosis. Therefore, we hypothesize that BmFerHCH-mediated inhibition of virus-induced apoptosis depends on suppressing ROS accumulation and, thereby, facilitates virus replication. These results suggest that BmFerHCH plays an important role in facilitating BmNPV proliferation and modulating BmFerHCH is potential strategy for studying host-pathogen interactions.
Collapse
Affiliation(s)
- Ying-Xue Liu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Lin-Bao Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Zhe-Xiao Guo
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Han-Dan Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Zhi-Hao Huang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Hui-Hua Cao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Hai-Zhong Yu
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Shi-Huo Liu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China.
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China.
| |
Collapse
|
17
|
Perner J, Hajdusek O, Kopacek P. Independent somatic distribution of heme and iron in ticks. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100916. [PMID: 35346896 DOI: 10.1016/j.cois.2022.100916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 05/27/2023]
Abstract
Ticks are blood-feeding ectoparasites with distinct genomic reductions, inevitably linking them to a parasitic lifestyle. Ticks have lost the genomic coding and, thus, biochemical capacity to synthesize heme, an essential metabolic cofactor, de novo. Instead, they are equipped with acquisition and distribution pathways for reuse of host heme. Unlike insects or mammals, ticks and mites cannot cleave the porphyrin ring of heme to release iron. Bioavailable iron is thus acquired by ticks from the host serum transferrin. Somatic trafficking of iron, however, is independent of heme and is mediated by a secretory type of ferritin. Heme and iron systemic homeostasis in ticks represents, therefore, key adaptive traits enabling successful feeding and reproduction.
Collapse
Affiliation(s)
- Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Ondrej Hajdusek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
18
|
Li Z, Ma R, Wang L, Wang Y, Qin Q, Chen L, Dang X, Zhou Z. Starvation stress affects iron metabolism in honeybee Apis mellifera. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Wu S, Yin S, Zhou B. Molecular physiology of iron trafficking in Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100888. [PMID: 35158107 DOI: 10.1016/j.cois.2022.100888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Iron homeostasis in insects is less-well understood comparatively to mammals. The classic model organism Drosophila melanogaster has been recently employed to explore how iron is trafficked between and within cells. An outline for iron absorption, systemic delivery, and efflux is thus beginning to emerge. The proteins Malvolio, ZIP13, mitoferrin, ferritin, transferrin, and IRP-1A are key players in these processes. While many features are shared with those in mammals, some physiological differences may also exist. Notable remaining questions include the existence and identification of functional transferrin and ferritin receptors, and of an iron exporter like ferroportin, how systemic iron homeostasis is controlled, and the roles of different tissues in regulating iron physiology. By focusing on aspects of iron trafficking, this review updates on presently known complexities of iron homeostasis in Drosophila.
Collapse
Affiliation(s)
- Shitao Wu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sai Yin
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
20
|
Rani J, De TD, Chauhan C, Kumari S, Sharma P, Tevatiya S, Chakraborti S, Pandey KC, Singh N, Dixit R. Functional disruption of transferrin expression alters reproductive physiology in Anopheles culicifacies. PLoS One 2022; 17:e0264523. [PMID: 35245324 PMCID: PMC8896695 DOI: 10.1371/journal.pone.0264523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Iron metabolism is crucial to maintain optimal physiological homeostasis of every organism and any alteration of the iron concentration (i.e. deficit or excess) can have adverse consequences. Transferrins are glycoproteins that play important role in iron transportation and have been widely characterized in vertebrates and insects, but poorly studied in blood-feeding mosquitoes. RESULTS We characterized a 2102 bp long transcript AcTrf1a with complete CDS of 1872bp, and 226bp UTR region, encoding putative transferrin homolog protein from mosquito An. culicifacies. A detailed in silico analysis predicts AcTrf1a encodes 624 amino acid (aa) long polypeptide that carries transferrin domain. AcTrf1a also showed a putative N-linked glycosylation site, a characteristic feature of most of the mammalian transferrins and certain non-blood feeding insects. Structure modelling prediction confirms the presence of an iron-binding site at the N-terminal lobe of the transferrin. Our spatial and temporal expression analysis under altered pathophysiological conditions showed that AcTrf1a is abundantly expressed in the fat-body, ovary, and its response is significantly altered (enhanced) after blood meal uptake, and exogenous bacterial challenge. Additionally, non-heme iron supplementation of FeCl3 at 1 mM concentration not only augmented the AcTrf1a transcript expression in fat-body but also enhanced the reproductive fecundity of gravid adult female mosquitoes. RNAi-mediated knockdown of AcTrf1a causes a significant reduction in fecundity, confirming the important role of transferrin in oocyte maturation. CONCLUSION All together our results advocate that detailed characterization of newly identified AcTrf1a transcript may help to select it as a unique target to impair the mosquito reproductive outcome.
Collapse
Affiliation(s)
- Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Soumyananda Chakraborti
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Kailash C. Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Namita Singh
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
21
|
Xue J, Li G, Ji X, Liu ZH, Wang HL, Xiao G. Drosophila ZIP13 overexpression or transferrin1 RNAi influences the muscle degeneration of Pink1 RNAi by elevating iron levels in mitochondria. J Neurochem 2022; 160:540-555. [PMID: 35038358 DOI: 10.1111/jnc.15574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/01/2022]
Abstract
Disruption of iron homeostasis in the brain of Parkinson's disease (PD) patients has been reported for many years, but the underlying mechanisms remain unclear. To investigate iron metabolism genes related to PTEN-induced kinase 1 (Pink1) and parkin (E3 ubiquitin ligase), two PD-associated proteins that function to coordinate mitochondrial turnover via induction of selective mitophagy, we conducted a genetic screen in Drosophila and found that altered expression of genes involved in iron metabolism, such as Drosophila ZIP13 (dZIP13) or transferrin1 (Tsf1), significantly influences the disease progression related to Pink1 but not parkin. Several phenotypes of Pink1 mutant and Pink1 RNAi but not parkin mutant were significantly rescued by overexpression (OE) of dZIP13 (dZIP13 OE) or silencing of Tsf1 (Tsf1 RNAi) in the flight muscles. The rescue effects of dZIP13 OE or Tsf1 RNAi were not exerted through mitochondrial disruption or mitophagy, instead, the iron levels in mitochondira were significantly increased, resulting in enhanced activity of enzymes participating in respiration and increased ATP synthesis. Consistently, the rescue effects of dZIP13 OE or Tsf1 RNAi on Pink1 RNAi can be inhibited by decreasing the iron levels in mitochondria through mitoferrin (dmfrn) RNAi. This study suggests that dZIP13, Tsf1 and dmfrn might act independently of parkin in a parallel pathway downstream of Pink1 by modulating respiration and indicates that manipulation of iron levels in mitochondria may provide a novel therapeutic strategy for PD associated with Pink1.
Collapse
Affiliation(s)
- Jinsong Xue
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Guangying Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Xiaowen Ji
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Zhi-Hua Liu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Hui-Li Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Guiran Xiao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
22
|
Marra A, Masson F, Lemaitre B. The iron transporter Transferrin 1 mediates homeostasis of the endosymbiotic relationship between Drosophila melanogaster and Spiroplasma poulsonii. MICROLIFE 2021; 2:uqab008. [PMID: 37223258 PMCID: PMC10117857 DOI: 10.1093/femsml/uqab008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/23/2021] [Indexed: 05/25/2023]
Abstract
Iron is involved in numerous biological processes in both prokaryotes and eukaryotes and is therefore subject to a tug-of-war between host and microbes upon pathogenic infections. In the fruit fly Drosophila melanogaster, the iron transporter Transferrin 1 (Tsf1) mediates iron relocation from the hemolymph to the fat body upon infection as part of the nutritional immune response. The sequestration of iron in the fat body renders it less available for pathogens, hence limiting their proliferation and enhancing the host ability to fight the infection. Here we investigate the interaction between host iron homeostasis and Spiroplasma poulsonii, a facultative, vertically transmitted, endosymbiont of Drosophila. This low-pathogenicity bacterium is devoid of cell wall and is able to thrive in the host hemolymph without triggering pathogen-responsive canonical immune pathways. However, hemolymph proteomics revealed an enrichment of Tsf1 in infected flies. We find that S. poulsonii induces tsf1 expression and triggers an iron sequestration response similarly to pathogenic bacteria. We next demonstrate that free iron cannot be used by Spiroplasma while Tsf1-bound iron promotes bacterial growth, underlining the adaptation of Spiroplasma to the intra-host lifestyle where iron is mostly protein-bound. Our results show that Tsf1 is used both by the fly to sequester iron and by Spiroplasma to forage host iron, making it a central protein in endosymbiotic homeostasis.
Collapse
Affiliation(s)
- Alice Marra
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Florent Masson
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
23
|
Abstract
Trace metal elements, such as zinc, iron, copper, and manganese, play catalytic or structural roles in many enzymes and numerous proteins, and accordingly, contribute to a variety of fundamental biological processes. During the past decade, the fruit fly (Drosophila melanogaster) has become an important model organism for elucidating metal homeostasis in metazoan. We have been using Drosophila as a model to study metal metabolism for many years and have optimized simple and robust assays for determining the metal content in Drosophila, such as inductively coupled plasma mass spectrometry (ICP-MS), the activity assay of enzymes dependent on metals, and staining metal ions in tissues of Drosophila. In this chapter, we present the step-by-step detailed methods for detecting the metal content in Drosophila melanogaster during metal toxicity study.
Collapse
|
24
|
Yu X, Tian X, Wang Y, Zhu C. Metal-metal interaction and metal toxicity: a comparison between mammalian and D. melanogaster. Xenobiotica 2021; 51:842-851. [PMID: 33929283 DOI: 10.1080/00498254.2021.1922781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Non-essential heavy metals such as mercury (Hg), arsenic (As), cadmium (Cd), and aluminium (Al) are useless to organisms and have shown extensive toxic effects. Previous studies show that two main molecular mechanisms of metal toxicity are oxidative stress and metal-metal interaction which can disrupt metal homeostasis.2. In this paper, we mainly illustrate metal toxicity and metal-metal interaction through examples in mammalians and D. melanogaster (fruit fly).3. We describe the interference of metal homeostasis by metal-metal interactions in three aspects including replacement, cellular transporter competition, and disruption of the regulation mechanism, and elaborate the mechanisms of metal toxicity to better deal with the challenges of heavy metal pollution and related health problems.
Collapse
Affiliation(s)
- Xiaoyu Yu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xianhan Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Chunfeng Zhu
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
25
|
Cattenoz PB, Monticelli S, Pavlidaki A, Giangrande A. Toward a Consensus in the Repertoire of Hemocytes Identified in Drosophila. Front Cell Dev Biol 2021; 9:643712. [PMID: 33748138 PMCID: PMC7969988 DOI: 10.3389/fcell.2021.643712] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/12/2021] [Indexed: 01/16/2023] Open
Abstract
The catalog of the Drosophila immune cells was until recently limited to three major cell types, based on morphology, function and few molecular markers. Three recent single cell studies highlight the presence of several subgroups, revealing a large diversity in the molecular signature of the larval immune cells. Since these studies rely on somewhat different experimental and analytical approaches, we here compare the datasets and identify eight common, robust subgroups associated to distinct functions such as proliferation, immune response, phagocytosis or secretion. Similar comparative analyses with datasets from different stages and tissues disclose the presence of larval immune cells resembling embryonic hemocyte progenitors and the expression of specific properties in larval immune cells associated with peripheral tissues.
Collapse
Affiliation(s)
- Pierre B. Cattenoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Sara Monticelli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Alexia Pavlidaki
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
26
|
Shen Y, Chen YZ, Zhang CX. RNAi-mediated silencing of ferritin genes in the brown planthopper Nilaparvata lugens affects survival, growth and female fecundity. PEST MANAGEMENT SCIENCE 2021; 77:365-377. [PMID: 32741141 DOI: 10.1002/ps.6026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/24/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The brown planthopper (BPH), Nilaparvata lugens, is the most destructive rice insect pest. To exploit potential target genes for applications in transgenic rice to control this sap-sucking insect pest, three ferritin genes were functionally characterized in this study. RESULTS In this study, three ferritin genes, that is, ferritin 1 Heavy Chain (NlFer1), ferritin 2 Light Chain (NlFer2) and soma ferritin (Nlsoma-Fer), were identified from BPH. Tissue-specific analyses showed that all three genes were highly expressed in the gut. Although double-stranded RNA injection-mediated RNA inference (RNAi) of Nlsoma-Fer expression resulted in only < 14% mortality in BPH, knockdown of NlFer1 or NlFer2 led to retarded growth and 100% mortality in young nymphs, and downregulation of NlFer1 and NlFer2 in newly emerged female adults caused undeveloped ovaries and severely inhibited oocyte growth, resulting in extremely low fecundity and a zero hatching rate. Knockdown of NlFer1 and NlFer2 caused similar phenotypes in BPH, indicating that they function together, as in many other animals. The results demonstrated that NlFer1 and NlFer2 were essential for BPH development and reproduction. BPHs showed high sensitivity to both dsNlFer1 and dsNlFer2, and injection of only 0.625 ng dsNlFer1 per BPH resulted in 100% mortality. Additionally, the effectiveness of feeding dsNlFer1 and dsNlFer2 to BPH nymphs was further proven. CONCLUSION NlFer1 and NlFer2 are essential for BPH development and reproduction, and the insect is highly sensitive to their depletion, suggesting that the two gut-highly-expressed genes are promising candidates for application in RNAi-based control of this destructive pest.
Collapse
Affiliation(s)
- Yan Shen
- Institute of Insect Science, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yuan-Zhi Chen
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
27
|
Andreani G, Ferlizza E, Cabbri R, Fabbri M, Bellei E, Isani G. Essential (Mg, Fe, Zn and Cu) and Non-Essential (Cd and Pb) Elements in Predatory Insects ( Vespa crabro and Vespa velutina): A Molecular Perspective. Int J Mol Sci 2020; 22:E228. [PMID: 33379365 PMCID: PMC7797950 DOI: 10.3390/ijms22010228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022] Open
Abstract
The recent introduction of the Asian yellow-legged hornet, Vespa velutina, into Europe has raised concern regarding the threat to honeybees and the competition with the European hornet, Vespa crabro. The aim of this study was to investigated essential (Mg, Fe, Zn, Cu) and non-essential (Cd and Pb) elements in these two species. Element concentrations were determined in the whole body and separately in the head, thorax and abdomen using atomic absorption spectrometry (AAS). The changes in essential element concentration and speciation during metamorphosis were also studied using size exclusion chromatography followed by AAS and proteomic analysis. In both species, the essential elements were more concentrated in the abdomen due to the presence of fat bodies. Magnesium, Fe and Zn concentrations were significantly higher in V. crabro than in V. velutina and could have been related to the higher aerobic energy demand of the former species required to sustain foraging flight. Low concentrations of Cd and Pb were indicative of low environmental exposure. The concentration and speciation of essential elements, particularly Fe, varied among the developmental stages, indicating a modification of ligand preferences during metamorphosis. Overall, the results in the present study provide a better understanding of the hornet metal metabolism and a foundation for additional studies.
Collapse
Affiliation(s)
- Giulia Andreani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, via Tolara di sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.A.); (R.C.); (M.F.); (G.I.)
| | - Enea Ferlizza
- Department of Experimental Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, via Belmeloro 8, 40126 Bologna, Italy
| | - Riccardo Cabbri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, via Tolara di sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.A.); (R.C.); (M.F.); (G.I.)
| | - Micaela Fabbri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, via Tolara di sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.A.); (R.C.); (M.F.); (G.I.)
| | - Elisa Bellei
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, Proteomic Lab, University of Modena and Reggio Emilia, via del pozzo 71, 41124 Modena, Italy;
| | - Gloria Isani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, via Tolara di sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.A.); (R.C.); (M.F.); (G.I.)
| |
Collapse
|
28
|
Wang Z, Li X, Zhou B. Drosophila ZnT1 is essential in the intestine for dietary zinc absorption. Biochem Biophys Res Commun 2020; 533:1004-1011. [PMID: 33012507 DOI: 10.1016/j.bbrc.2020.09.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
Abstract
Zinc is an essential trace element and participates in a variety of biological processes. ZnT (SLC30) family members are generally responsible for zinc efflux across the membrane regulating zinc homeostasis. In mammals, the only predominantly plasma membrane resident ZnT has been reported to be ZnT1, and ZnT1-/ZnT1- mice die at the embryonic stage. In Drosophila, knock down of ZnT1 homologue (dZnT1//ZnT63C/CG17723) results in growth arrest under zinc-limiting conditions. To investigate the essentiality of dZnT1 for zinc homeostasis, as well as its role in dietary zinc uptake especially under normal physiological conditions, we generated dZnT1 mutants by the CRISPER/Cas9 method. Homozygous mutant dZnT1 is lethal, with substantial zinc accumulation in the iron cell region, posterior midgut as well as gastric caeca. Expression of human ZnT1 (hZnT1), in the whole body or in the entire midgut, fully rescued the dZnT1 mutant lethality, whereas tissue-specific expression of hZnT1 in the iron cell region and posterior midgut partially rescued the developmental defect of the dZnT1 mutant. Supplementation of zinc together with clioquinol or hinokitiol conferred a limited but observable rescue upon dZnT1 loss. Our work demonstrated the absolute requirement of dZnT1 in Drosophila survival and indicated that the most essential role of dZnT1 is in the gut.
Collapse
Affiliation(s)
- Zhiqing Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xinxin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
29
|
Li F, Liu ZH, Tian X, Liu T, Wang HL, Xiao G. Black soybean seed coat extract protects Drosophila melanogaster against Pb toxicity by promoting iron absorption. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
30
|
Cardoso GA, Deszo MS, Torres TT. Evolution of coding sequence and gene expression of blowflies and botflies with contrasting feeding habits. Genomics 2020; 113:699-706. [PMID: 33022358 DOI: 10.1016/j.ygeno.2020.09.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/05/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
The Oestroidea superfamily is characterized by the diversity of feeding preferences among closely-related species; these flies are saprophagous, obligate parasites, or facultative parasites. We used gene expression and coding sequence data from five species (Cochliomyia hominivorax, Chrysomya megacephala, Lucilia cuprina, Dermatobia hominis, and Oestrus ovis) to identify underlying genetic differences involved in the diverse lifestyles. We tested whether 1287 orthologs have different expression and evolutionary constraints under different scenarios. We found two up-regulated genes; one in species causing cutaneous myiasis that is involved in iron transportation/metabolization (ferritin), and another in species causing traumatic myiasis that responds to reduced oxygen levels (anoxia up-regulated-like). Our evolutionary analysis showed a similar result. In the Co. hominivorax branch, we found one gene with the same function as ferritin that may be evolving under positive selection, spook. This is the first step towards understanding origins and evolution of parasitic strategy diversity in Oestroidea.
Collapse
Affiliation(s)
- Gisele Antoniazzi Cardoso
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo, SP 05508-090, Brazil
| | - Marina Santos Deszo
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo, SP 05508-090, Brazil
| | - Tatiana Teixeira Torres
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo, SP 05508-090, Brazil.
| |
Collapse
|
31
|
Proteome of larval metamorphosis induced by epinephrine in the Fujian oyster Crassostrea angulata. BMC Genomics 2020; 21:675. [PMID: 32993483 PMCID: PMC7525975 DOI: 10.1186/s12864-020-07066-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/10/2020] [Indexed: 01/10/2023] Open
Abstract
Background The Fujian oyster Crassostrea angulata is an economically important species that has typical settlement and metamorphosis stages. The development of the oyster involves complex morphological and physiological changes, the molecular mechanisms of which are as yet unclear. Results In this study, changes in proteins were investigated during larval settlement and metamorphosis of Crassostrea angulata using epinephrine induction. Protein abundance and identity were characterized using label-free quantitative proteomics, tandem mass spectrometry (MS/ MS), and Mascot methods. The results showed that more than 50% (764 out of 1471) of the quantified proteins were characterized as differentially expressed. Notably, more than two-thirds of the differentially expressed proteins were down-regulated in epinephrine-induced larvae. The results showed that “metabolic process” was closely related to the development of settlement and metamorphosis; 5 × 10− 4 M epinephrine induced direct metamorphosis of larvae and was non-toxic. Calmodulin and MAPK pathways were involved in the regulation of settlement of the oyster. Expression levels of immune-related proteins increased during metamorphosis. Hepatic lectin-like proteins, cadherins, calmodulin, calreticulin, and cytoskeletal proteins were involved in metamorphosis. The nervous system may be remodeled in larval metamorphosis induced by epinephrine. Expression levels of proteins that were enriched in the epinephrine signaling pathway may reflect the developmental stage of the larvae, that may reflect whether or not larvae were directly involved in metamorphosis when the larvae were treated with epinephrine. Conclusion The study provides insight into proteins that function in energy metabolism, immune responses, settlement and metamorphosis, and shell formation in C. angulata. The results contribute valuable information for further research on larval settlement and metamorphosis. Graphical abstract ![]()
Collapse
|
32
|
Cao X, Li Y, Li S, Tang T, Liu F. Two ferritin genes (MdFerH and MdFerL) are involved in iron homeostasis, antioxidation and immune defense in housefly Musca domestica. JOURNAL OF INSECT PHYSIOLOGY 2020; 124:104073. [PMID: 32526234 DOI: 10.1016/j.jinsphys.2020.104073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Ferritin is a ubiquitous multi-subunit iron storage protein, made up of heavy chain and light chain subunits. In recent years, invertebrate ferritins have emerged as an important, yet largely underappreciated, component of host defense and antioxidant system. Here, two alternatively spliced transcripts encoding for a unique ferritin heavy chain homolog (MdFerH), and a transcript encoding for a light chain homolog (MdFerL) are cloned and characterized from Musca domestica. Comparing with MdFerH1, a fragment is absent at the 5' untranslated region of MdFerH2, where a putative iron response element is present. Amino acid sequence analysis shows that MdFerH possesses a strictly conserved ferroxidase site, while MdFerL has a putative atypical active center. Tissue distribution analysis indicates that MdFers are enriched expressed in gut. When the larvae receive diverse stimulations, including challenge by bacteria, exposure to excess Fe2+, doxorubicin or ultraviolet, the expression of MdFers is positively up-regulated in different degrees and different temporal patterns, indicating their potential roles in oxidative stress. The two mRNA isoforms of MdFerH appear to be differentially expressed in different tissues, but seem to show the similar expression patterns under diverse stress conditions. Further investigation reveals that silencing MdFers can alter the redox homeostasis, leading elevated mortalities of larvae following bacterial infection. Inspiringly, recombinant MdFerL produced in Pichia pastoris shows significant iron-chelating activity in vitro. These results suggest a pivotal role of ferritins from housefly in iron homeostasis, antibacterial immunity and redox balance.
Collapse
Affiliation(s)
- Xinru Cao
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yongbao Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Shuangshuang Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China.
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
33
|
Xiao G, Liu ZH, Zhao M, Wang HL, Zhou B. Transferrin 1 Functions in Iron Trafficking and Genetically Interacts with Ferritin in Drosophila melanogaster. Cell Rep 2020; 26:748-758.e5. [PMID: 30650364 DOI: 10.1016/j.celrep.2018.12.053] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/31/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022] Open
Abstract
Iron metabolism is an essential process that when dysregulated causes disease. Mammalian serum transferrin (TF) plays a primary role in delivering iron to cells. To improve our understanding of the conservation of iron metabolism between species, we investigate here the function of the TF homolog in Drosophila melanogaster, transferrin 1 (Tsf1). Tsf1 knockdown results in iron accumulation in the gut and iron deficiency in the fat body (which is analogous to the mammalian liver). Fat body-derived Tsf1 localizes to the gut surface, suggesting that Tsf1 functions in trafficking iron between the gut and the fat body, similar to TF in mammals. Moreover, Tsf1 knockdown strongly suppresses the phenotypic effects of ferritin (Fer1HCH) RNAi, an established iron trafficker in Drosophila. We propose that Tsf1 and ferritin compete for iron in the Drosophila intestine and demonstrate the value of using Drosophila for investigating iron trafficking and the evolution of systemic iron regulation.
Collapse
Affiliation(s)
- Guiran Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Zhi-Hua Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Mengran Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
34
|
Liu ZH, Shang J, Yan L, Wei T, Xiang L, Wang HL, Cheng J, Xiao G. Oxidative stress caused by lead (Pb) induces iron deficiency in Drosophila melanogaster. CHEMOSPHERE 2020; 243:125428. [PMID: 31995880 DOI: 10.1016/j.chemosphere.2019.125428] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Toxic elements exposure disturbs the homeostasis of essential elements in organisms, but the mechanism remains elusive. In this study, we demonstrated that Drosophila melanogaster exposed to Lead (Pb, a pervasive environmental threat to human health) exhibited various health defects, including retarded development, decreased survival rate, impaired mobility and reduced egg production. These phenotypes could be significantly modulated by either intervention of dietary iron levels or altering expression of genes involved in iron metabolism. Further study revealed that Pb exposure leads to systemic iron deficiency. Strikingly, reactive oxygen species (ROS) clearance significantly increased iron uptake by restoring the expression of iron metabolism genes in the midgut and subsequently attenuated Pb toxicity. This study highlights the role of ROS in Pb induced iron dyshomeostasis and provides unique insights into understanding the mechanism of Pb toxicity and suggests ideal ways to attenuate Pb toxicity by iron supplementation therapy or ROS clearance.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Jin Shang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Beijing, 100191, China.
| | - Tian Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Ling Xiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Jigui Cheng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Guiran Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
35
|
|
36
|
Zhao M, Zhou B. A distinctive sequence motif in the fourth transmembrane domain confers ZIP13 iron function in Drosophila melanogaster. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118607. [PMID: 31733261 DOI: 10.1016/j.bbamcr.2019.118607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 01/17/2023]
Abstract
The zinc/iron permease (ZIP/SLC39A) family plays an important role in metal ion transport and is essential for diverse physiological processes. Members of the ZIP family function primarily in the influx of transition metal ions zinc and iron, into cytoplasm from extracellular space or intracellular organelles. The molecular determinants defining metal ion selectivity among ZIP family members remain unclear. Specifically, we reported before that the Drosophila ZIP family member ZIP13 (dZIP13), functions as an iron exporter and was responsible for pumping iron into the secretory pathway. ZIP13 protein is unique in that it differs from the other LIV-1 subfamily members at transmembrane domain IV (TM4), wherein relative positions of the conserved H and D residues in the HNXXD sequence motif are switched, generating a DNXXH motif. In this study, we undertook an in vivo approach to explore the significance of this D/H exchange. Comparative functional analysis of mutants revealed that the relative positions of D and H are critical for the physiological roles of dZIP13 and its close homologue dZIP7. Swapping D/H position of this DNXXH sequence in dZIP13 resulted in loss of iron activity; normal dZIP13 could not complement dZIP7 loss, but swapping the two relative amino acid positions D and H in dZIP13 was sufficient to make it functionally analogous to its close homologue dZIP7. This work provides the first in vivo functional analysis of a structural motif required to differentiate different transporting functions of ZIPs.
Collapse
Affiliation(s)
- Mengran Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
37
|
Drosophila ZIP13 is posttranslationally regulated by iron-mediated stabilization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1487-1497. [DOI: 10.1016/j.bbamcr.2019.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
|
38
|
Geiser DL, Thai TN, Love MB, Winzerling JJ. Iron and Ferritin Deposition in the Ovarian Tissues of the Yellow Fever Mosquito (Diptera: Culicidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5586715. [PMID: 31606748 PMCID: PMC6790249 DOI: 10.1093/jisesa/iez089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Indexed: 05/16/2023]
Abstract
Dengue, yellow fever, and Zika are viruses transmitted by yellow fever mosquito, Aedes aegypti [Linnaeus (Diptera: Culicidae)], to thousands of people each year. Mosquitoes transmit these viruses while consuming a blood meal that is required for oogenesis. Iron, an essential nutrient from the blood meal, is required for egg development. Mosquitoes receive a high iron load in the meal; although iron can be toxic, these animals have developed mechanisms for dealing with this load. Our previous research has shown iron from the blood meal is absorbed in the gut and transported by ferritin, the main iron transport and storage protein, to the ovaries. We now report the distribution of iron and ferritin in ovarian tissues before blood feeding and 24 and 72 h post-blood meal. Ovarian iron is observed in specific locations. Timing post-blood feeding influences the location and distribution of the ferritin heavy-chain homolog, light-chain homolog 1, and light-chain homolog 2 in ovaries. Understanding iron deposition in ovarian tissues is important to the potential use of interference in iron metabolism as a vector control strategy for reducing mosquito fecundity, decreasing mosquito populations, and thereby reducing transmission rates of vector-borne diseases.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| | - Theresa N Thai
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| | - Maria B Love
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| | - Joy J Winzerling
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| |
Collapse
|
39
|
Ghodke AB, Good RT, Golz JF, Russell DA, Edwards O, Robin C. Extracellular endonucleases in the midgut of Myzus persicae may limit the efficacy of orally delivered RNAi. Sci Rep 2019; 9:11898. [PMID: 31417162 PMCID: PMC6695413 DOI: 10.1038/s41598-019-47357-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 07/12/2019] [Indexed: 12/04/2022] Open
Abstract
Myzus persicae is a major pest of many crops including canola and Brassica vegetables, partly because it vectors plant viruses. Previously it has been reported that double-stranded RNA delivered to aphids by injection, artificial diet or transgenic plants has knocked down target genes and caused phenotypic effects. While these studies suggest that RNA interference (RNAi) might be used to suppress aphid populations, none have shown effects sufficient for field control. The current study analyses the efficacy of dsRNA directed against previously reported gene-targets on Green peach aphid (Myzus persicae) strains. No silencing effect was observed when dsRNA was delivered in artificial diet with or without transfection reagents. dsRNA produced in planta also failed to induce significant RNAi in M. persicae. Transcriptome analyses of the midgut suggested other potential targets including the Ferritin heavy chain transcripts, but they also could not be knocked down with dsRNA. Here we show that dsRNA is rapidly degraded by midgut secretions of Myzus persicae. Analysis of the transcriptome of the M. persicae midgut revealed that an ortholog of RNases from other insects was abundant.
Collapse
Affiliation(s)
- Amol Bharat Ghodke
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Robert Trygve Good
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - John F Golz
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Derek A Russell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Australia
| | | | - Charles Robin
- School of BioSciences, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
40
|
Molecular cloning, expression and characterization of secreted ferritin in the silkworm, Bombyx mori. Biometals 2019; 32:757-769. [PMID: 31363876 DOI: 10.1007/s10534-019-00208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/29/2019] [Indexed: 11/25/2022]
Abstract
Ferritin is a ubiquitous iron storage protein which plays key role in regulating iron homeostasis and metabolism. In this paper, the ferritin heavy chain homologs (HCH) and light chain homologs (LCH) from Bombyx mori (BmFerHCH and BmFerLCH) were amplified through PCR and cloned into the expression vector pET-30a(+). The recombinant BmFerHCH and BmFerLCH expressed in Escherichia coli were in the form of insoluble inclusion bodies, indicating that the two proteins were not in their natural structural conformation. In order to obtain refolded ferritin in vitro, the inclusion bodies (BmFerHCH and/or BmFerLCH) were dissolved in denaturing buffer (100 mM Tris, 50 mM Glycine, 8 M urea, 5 mM DTT, pH 8.0) and then refolded in refolding buffer (100 mM Tris, 400 mM L-arginine, 0.2 mM PMSF, 0.5 mM DTT). The result showed that it was only when both BmFerHCH and BmFerLCH were present together in the denaturing buffer that refolding was successful and resulted in the formation of heteropolymers (H-L chain dimers) over homopolymers (H-H chain or L-L chain dimers). Moreover, the molecules (NaCl, Triton and glycerol) were found to enhance protein refolding. The optimum temperature, pH and ratios of BmFerHCH/BmFerLCH required for refolding were found to be 10 °C, pH 7, 1:1 or 1:2, respectively. Finally, the refolded ferritin had the ability to store iron, exhibited ferroxidase activity, and could withstand high temperatures and pH treatment, which is consistent with ferritin in other species.
Collapse
|
41
|
Jacomin AC, Geraki K, Brooks J, Tjendana-Tjhin V, Collingwood JF, Nezis IP. Impact of Autophagy and Aging on Iron Load and Ferritin in Drosophila Brain. Front Cell Dev Biol 2019; 7:142. [PMID: 31404236 PMCID: PMC6669360 DOI: 10.3389/fcell.2019.00142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/10/2019] [Indexed: 01/22/2023] Open
Abstract
Biometals such as iron, copper, potassium, and zinc are essential regulatory elements of several biological processes. The homeostasis of biometals is often affected in age-related pathologies. Notably, impaired iron metabolism has been linked to several neurodegenerative disorders. Autophagy, an intracellular degradative process dependent on the lysosomes, is involved in the regulation of ferritin and iron levels. Impaired autophagy has been associated with normal pathological aging, and neurodegeneration. Non-mammalian model organisms such as Drosophila have proven to be appropriate for the investigation of age-related pathologies. Here, we show that ferritin is expressed in adult Drosophila brain and that iron and holoferritin accumulate with aging. At whole-brain level we found no direct relationship between the accumulation of holoferritin and a deficit in autophagy in aged Drosophila brain. However, synchrotron X-ray spectromicroscopy revealed an additional spectral feature in the iron-richest region of autophagy-deficient fly brains, consistent with iron-sulfur. This potentially arises from iron-sulfur clusters associated with altered mitochondrial iron homeostasis.
Collapse
Affiliation(s)
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Jake Brooks
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | | | | | - Ioannis P. Nezis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
42
|
Tang T, Yang Z, Li J, Yuan F, Xie S, Liu F. Identification of multiple ferritin genes in Macrobrachium nipponense and their involvement in redox homeostasis and innate immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 89:701-709. [PMID: 31004801 DOI: 10.1016/j.fsi.2019.04.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Based on the transcriptome database, we screened out four ferritin subunit genes (MnFer2-5) from the oriental river prawn Macrobrachium nipponense, which encode two non-secretory and two secretory peptides. MnFer2 and 4 possess a strictly conserved ferroxidase site, and MnFer3 has a non-typical ferroxidase site. MnFer5 seems to be a number of ferritin families, which has a distinct dinuclear metal binding motif, but lacks an iron ion channel, a ferroxidase site and a nucleation site. Diverse tissue-specific transcriptions of the four genes indicate their functional diversity in the prawn. Among them, MnFer2 is mainly expressed in hepatopancreas and intestines, MnFer3 and 4 are predominantly expressed in gills, and MnFer5 is widely expressed in various tissues with high presence in intestines, hepatopancreas and haemocytes. The transcription of all the four MnFer genes can be strongly induced by doxorubicin, indicating the involvement of these ferritin subunits in protection from oxidative stress. Upon Aeromonas hydrophila infection, only MnFer5 is persistently up-regulated, while other subunits including MnFer2-4 are down-regulated during the early stage, followed by recovery and even a slight increase at 48 h post bacterial challenge. Moreover, the iron binding capacity of recombinant MnFer2 is also demonstrated in vitro. The E. coli expressing MnFer2 displays increased resistance to hydrogen peroxidase cytotoxicity. These results suggest a protective role of ferritins from M. nipponense in iron homeostasis, redox biology and antibacterial immunity and shed light on the molecule evolution of crustacean ferritin subunits.
Collapse
Affiliation(s)
- Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zilan Yang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jing Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Fengyu Yuan
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Song Xie
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
43
|
Rudisill SS, Martin BR, Mankowski KM, Tessier CR. Iron Deficiency Reduces Synapse Formation in the Drosophila Clock Circuit. Biol Trace Elem Res 2019; 189:241-250. [PMID: 30022428 PMCID: PMC6338522 DOI: 10.1007/s12011-018-1442-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/10/2018] [Indexed: 01/18/2023]
Abstract
Iron serves as a critical cofactor for proteins involved in a host of biological processes. In most animals, dietary iron is absorbed in enterocytes and then disseminated for use in other tissues in the body. The brain is particularly dependent on iron. Altered iron status correlates with disorders ranging from cognitive dysfunction to disruptions in circadian activity. The exact role iron plays in producing these neurological defects, however, remains unclear. Invertebrates provide an attractive model to study the effects of iron on neuronal development since many of the genes involved in iron metabolism are conserved, and the organisms are amenable to genetic and cytological techniques. We have examined synapse growth specifically under conditions of iron deficiency in the Drosophila circadian clock circuit. We show that projections of the small ventrolateral clock neurons to the protocerebrum of the adult Drosophila brain are significantly reduced upon chelation of iron from the diet. This growth defect persists even when iron is restored to the diet. Genetic neuronal knockdown of ferritin 1 or ferritin 2, critical components of iron storage and transport, does not affect synapse growth in these cells. Together, these data indicate that dietary iron is necessary for central brain synapse formation in the fly and further validate the use of this model to study the function of iron homeostasis on brain development.
Collapse
Affiliation(s)
- Samuel S Rudisill
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, USA
| | - Bradley R Martin
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, USA
| | - Kevin M Mankowski
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend, Raclin Carmichael Hall 127, 1234 Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Charles R Tessier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend, Raclin Carmichael Hall 127, 1234 Notre Dame Avenue, South Bend, IN, 46617, USA.
| |
Collapse
|
44
|
Huang Y, Wan Z, Wang Z, Zhou B. Insulin signaling in Drosophila melanogaster mediates Aβ toxicity. Commun Biol 2019; 2:13. [PMID: 30652125 PMCID: PMC6325060 DOI: 10.1038/s42003-018-0253-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) and diabetes are clinically positively correlated. However, the connection between them is not clarified. Here, using Drosophila as a model system, we show that reducing insulin signaling can effectively suppress the toxicity from Aβ (Amyloid beta 42) expression. On the other hand, Aβ accumulation led to the elevation of fly insulin-like peptides (ILPs) and activation of insulin signaling in the brain. Mechanistically, these observations are attributed to a reciprocal competition between Drosophila insulin-like peptides and Aβ for the activity of insulin-degrading enzyme (IDE). Intriguingly, peripheral insulin signaling is decreased despite its heightened activity in the brain. While many upstream factors may modify Aβ toxicity, our results suggest that insulin signaling is the main downstream executor of Aβ damage, and thus may serve as a promising target for Alzheimer's treatment in non-diabetes patients. This study explains why more Alzheimer's cases are found in diabetes patients.
Collapse
Affiliation(s)
- Yunpeng Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Zhihui Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Zhiqing Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
- Beijing Institute for Brain Disorders, 45 Changchun St, 100053 Beijing, China
| |
Collapse
|
45
|
Manjunathachar HV, Kumar B, Saravanan BC, Choudhary S, Mohanty AK, Nagar G, Chigure G, Ravi Kumar GVPPS, de la Fuente J, Ghosh S. Identification and characterization of vaccine candidates against Hyalomma anatolicum-Vector of Crimean-Congo haemorrhagic fever virus. Transbound Emerg Dis 2018; 66:422-434. [PMID: 30300470 DOI: 10.1111/tbed.13038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/27/2018] [Accepted: 09/30/2018] [Indexed: 12/24/2022]
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is a tick borne viral disease reported from different parts of the world. The distribution of the CCHF cases are linked with the distribution of the principal vector, Hyalomma anatolicum in the ecosystem. Presently, vector control is mainly dependent on repeated application of acaricides, results in partial efficacy and generated acaricide resistant tick strains. Amongst the different components of integrated management programme, immunization of hosts is considered as one of the sustainable component. To restrict CCHF virus spreading, use of anti-Hyalomma vaccines appears as a viable solution. Accordingly, present study was under taken to characterize and evaluate vaccine potential of two conserved molecules, ferritin2 (FER2) and tropomyosin (TPM). Silencing of the genes conferred a cumulative reduction (rejection + unable to engorge) of 61.3% in FER2 and 70.2% in TPM respectively. Furthermore, 44.2% and 72.7% reduction in engorgement weight, 63.6% and 94.9% reduction in egg masses in FER2 and TPM silenced ticks in comparison to LUC-control group was recorded. The recombinant protein, rHaFER2 was characterized as 35 kDa protein with pI of 5.84 and possesses iron binding domains. While rHaTPM is a 51kDa protein with pI of 4.94 having calcium binding domains. Immunization of cross-bred calves by rHaFER2 conferred 51.7% and 51.2% protection against larvae and adults of H. anatolicum challenge infestations. While rHaTPM conferred 63.7% and 66.4% protection against larvae and adults infestations, respectively. The results were comparable with the data generated by RNAi and it clearly showed the possibility for the development of anti-hyalomma vaccine to manage CCHF virus and Theileria annulata infection in human and animals.
Collapse
Affiliation(s)
| | - Binod Kumar
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, India
| | | | - Suman Choudhary
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Ashok K Mohanty
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Gaurav Nagar
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, India
| | - Gajanan Chigure
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, India
| | | | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Srikant Ghosh
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, India
| |
Collapse
|
46
|
Zhou Y, Wang Y, Li X, Peprah FA, Wang X, Liu H, Lin F, Gu J, Yu F, Shi H. Applying microarray-based technique to study and analyze silkworm (Bombyx mori) transcriptomic response to long-term high iron diet. Genomics 2018; 111:1504-1513. [PMID: 30391296 DOI: 10.1016/j.ygeno.2018.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022]
Abstract
To investigate the biological processes affected by long-term iron supplementation, newly hatched silkworms were exposed to high iron mulberry diet (10 and 100 ppm) and its effect on silkworm transcriptom was determined. The results showed that the silkworm was responsive to iron by increasing iron concentration and ferritin levels in the hemolymph and by regulating the expression of many other genes. A total of 523 and 326 differentially expressed genes were identified in 10 and 100 ppm Fe group compared to the control, respectively. Of these genes, 249 were shared between in both the 10 ppm and 100 ppm Fe group, including 152 up-regulated and 97 down-regulated genes. These shared genes included 19 known Fe regulated, 24 immune-related, 12 serine proteases and serine proteases homologs, 41 cuticular and cuticle genes. Ten genes (carboxypeptidases A, serine protease homologs 85, fibrohexamerin/P25, transferrin, sex-specific storage-protein 2, fungal protease inhibitor F, insect intestinal mucin, peptidoglycan recognition protein B, cuticle protein CPH45, unknown gene) were involved in the regulation of iron overload responses.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Yingying Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Xiaofeng Li
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Frank Addai Peprah
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Xiaochen Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Haitao Liu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, PR China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Feng Yu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China.
| |
Collapse
|
47
|
Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. Genetics 2018; 210:357-396. [PMID: 30287514 PMCID: PMC6216580 DOI: 10.1534/genetics.118.300224] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract has recently come to the forefront of multiple research fields. It is now recognized as a major source of signals modulating food intake, insulin secretion and energy balance. It is also a key player in immunity and, through its interaction with microbiota, can shape our physiology and behavior in complex and sometimes unexpected ways. The insect intestine had remained, by comparison, relatively unexplored until the identification of adult somatic stem cells in the Drosophila intestine over a decade ago. Since then, a growing scientific community has exploited the genetic amenability of this insect organ in powerful and creative ways. By doing so, we have shed light on a broad range of biological questions revolving around stem cells and their niches, interorgan signaling and immunity. Despite their relatively recent discovery, some of the mechanisms active in the intestine of flies have already been shown to be more widely applicable to other gastrointestinal systems, and may therefore become relevant in the context of human pathologies such as gastrointestinal cancers, aging, or obesity. This review summarizes our current knowledge of both the formation and function of the Drosophila melanogaster digestive tract, with a major focus on its main digestive/absorptive portion: the strikingly adaptable adult midgut.
Collapse
Affiliation(s)
- Irene Miguel-Aliaga
- Medical Research Council London Institute of Medical Sciences, Imperial College London, W12 0NN, United Kingdom
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, California 94945-1400
- Immunology Discovery, Genentech, Inc., San Francisco, California 94080
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
48
|
Wang X, Yin S, Yang Z, Zhou B. Drosophila multicopper oxidase 3 is a potential ferroxidase involved in iron homeostasis. Biochim Biophys Acta Gen Subj 2018; 1862:1826-1834. [PMID: 29684424 DOI: 10.1016/j.bbagen.2018.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/29/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022]
Abstract
Multicopper oxidases (MCOs) are a specific group of enzymes that contain multiple copper centers through which different substrates are oxidized. Main members of MCO family include ferroxidases, ascorbate oxidases, and laccases. MCO type of ferroxidases is key to iron transport across the plasma membrane. In Drosophila, there are four potential multicopper oxidases, MCO1-4. No convincing evidence has been presented so far to indicate any of these, or even any insect multicopper oxidase, to be a ferroxidase. Here we show Drosophila MCO3 (dMCO3) is highly likely a bona fide ferroxidase. In vitro activity assay with insect-cell-expressed dMCO3 demonstrated it has potent ferroxidase activity. Meanwhile, the ascorbate oxidase and laccase activities of dMCO3 are much less significant. dMCO3 expression in vivo, albeit at low levels, appears mostly extracellular, reminiscent of mammalian ceruloplasmin in the serum. A null dMCO3 mutant, generated by CRISPR/Cas9 technology, showed disrupted iron homeostasis, evidenced by increased iron level and reduced metal importer Mvl expression. Notably, dMCO3-null flies phenotypically are largely normal at normal or iron stressed-conditions. We speculate the likely existence of a similar iron efflux apparatus as the mammalian ferroportin/ferroxidase in Drosophila. However, its importance to fly iron homeostasis is greatly minimized, which is instead dominated by another iron efflux avenue mediated by the ZIP13-ferritin axis along the ER/Golgi secretion pathway.
Collapse
Affiliation(s)
- Xudong Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sai Yin
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhihao Yang
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
49
|
Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol 2018; 9:50. [PMID: 29491838 PMCID: PMC5817353 DOI: 10.3389/fphys.2018.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
50
|
Walter-Nuno AB, Taracena ML, Mesquita RD, Oliveira PL, Paiva-Silva GO. Silencing of Iron and Heme-Related Genes Revealed a Paramount Role of Iron in the Physiology of the Hematophagous Vector Rhodnius prolixus. Front Genet 2018; 9:19. [PMID: 29456553 PMCID: PMC5801409 DOI: 10.3389/fgene.2018.00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Iron is an essential element for most organisms However, free iron and heme, its complex with protoporphyrin IX, can be extremely cytotoxic, due to the production of reactive oxygen species, eventually leading to oxidative stress. Thus, eukaryotic cells control iron availability by regulating its transport, storage and excretion as well as the biosynthesis and degradation of heme. In the genome of Rhodnius prolixus, the vector of Chagas disease, we identified 36 genes related to iron and heme metabolism We performed a comprehensive analysis of these genes, including identification of homologous genes described in other insect genomes. We observed that blood-meal modulates the expression of ferritin, Iron Responsive protein (IRP), Heme Oxygenase (HO) and the heme exporter Feline Leukemia Virus C Receptor (FLVCR), components of major pathways involved in the regulation of iron and heme metabolism, particularly in the posterior midgut (PM), where an intense release of free heme occurs during the course of digestion. Knockdown of these genes impacted the survival of nymphs and adults, as well as molting, oogenesis and embryogenesis at different rates and time-courses. The silencing of FLVCR caused the highest levels of mortality in nymphs and adults and reduced nymph molting. The oogenesis was mildly affected by the diminished expression of all of the genes whereas embryogenesis was dramatically impaired by the knockdown of ferritin expression. Furthermore, an intense production of ROS in the midgut of blood-fed insects occurs when the expression of ferritin, but not HO, was inhibited. In this manner, the degradation of dietary heme inside the enterocytes may represent an oxidative challenge that is counteracted by ferritins, conferring to this protein a major antioxidant role. Taken together these results demonstrate that the regulation of iron and heme metabolism is of paramount importance for R. prolixus physiology and imbalances in the levels of these key proteins after a blood- meal can be extremely deleterious to the insects in their various stages of development.
Collapse
Affiliation(s)
- Ana B Walter-Nuno
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Mabel L Taracena
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Rafael D Mesquita
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|