1
|
Phan F, Bourron O, Foufelle F, Le Stunff H, Hajduch E. Sphingosine-1-phosphate signalling in the heart: exploring emerging perspectives in cardiopathology. FEBS Lett 2024. [PMID: 38965662 DOI: 10.1002/1873-3468.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
Cardiometabolic disorders contribute to the global burden of cardiovascular diseases. Emerging sphingolipid metabolites like sphingosine-1-phosphate (S1P) and its receptors, S1PRs, present a dynamic signalling axis significantly impacting cardiac homeostasis. S1P's intricate mechanisms extend to its transportation in the bloodstream by two specific carriers: high-density lipoprotein particles and albumin. This intricate transport system ensures the accessibility of S1P to distant target tissues, influencing several physiological processes critical for cardiovascular health. This review delves into the diverse functions of S1P and S1PRs in both physiological and pathophysiological conditions of the heart. Emphasis is placed on their diverse roles in modulating cardiac health, spanning from cardiac contractility, angiogenesis, inflammation, atherosclerosis and myocardial infarction. The intricate interplays involving S1P and its receptors are analysed concerning different cardiac cell types, shedding light on their respective roles in different heart diseases. We also review the therapeutic applications of targeting S1P/S1PRs in cardiac diseases, considering existing drugs like Fingolimod, as well as the prospects and challenges in developing novel therapies that selectively modulate S1PRs.
Collapse
Affiliation(s)
- Franck Phan
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Diabetology Department, Assistance Publique-Hôpitaux de Paris (APHP), La Pitié-Salpêtrière-Charles Foix University Hospital, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Olivier Bourron
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Diabetology Department, Assistance Publique-Hôpitaux de Paris (APHP), La Pitié-Salpêtrière-Charles Foix University Hospital, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Fabienne Foufelle
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Université Paris-Saclay, France
| | - Eric Hajduch
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| |
Collapse
|
2
|
Berezin OO, Berezina TA, Hoppe UC, Lichtenauer M, Berezin AE. Diagnostic and predictive abilities of myokines in patients with heart failure. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:45-98. [PMID: 39059994 DOI: 10.1016/bs.apcsb.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Myokines are defined as a heterogenic group of numerous cytokines, peptides and metabolic derivates, which are expressed, synthesized, produced, and released by skeletal myocytes and myocardial cells and exert either auto- and paracrine, or endocrine effects. Previous studies revealed that myokines play a pivotal role in mutual communications between skeletal muscles, myocardium and remote organs, such as brain, vasculature, bone, liver, pancreas, white adipose tissue, gut, and skin. Despite several myokines exert complete divorced biological effects mainly in regulation of skeletal muscle hypertrophy, residential cells differentiation, neovascularization/angiogenesis, vascular integrity, endothelial function, inflammation and apoptosis/necrosis, attenuating ischemia/hypoxia and tissue protection, tumor growth and malignance, for other occasions, their predominant effects affect energy homeostasis, glucose and lipid metabolism, adiposity, muscle training adaptation and food behavior. Last decade had been identified 250 more myokines, which have been investigating for many years further as either biomarkers or targets for heart failure management. However, only few myokines have been allocated to a promising tool for monitoring adverse cardiac remodeling, ischemia/hypoxia-related target-organ dysfunction, microvascular inflammation, sarcopenia/myopathy and prediction for poor clinical outcomes among patients with HF. This we concentrate on some most plausible myokines, such as myostatin, myonectin, brain-derived neurotrophic factor, muslin, fibroblast growth factor 21, irisin, leukemia inhibitory factor, developmental endothelial locus-1, interleukin-6, nerve growth factor and insulin-like growth factor-1, which are suggested to be useful biomarkers for HF development and progression.
Collapse
Affiliation(s)
- Oleksandr O Berezin
- Luzerner Psychiatrie AG, Department of Senior Psychiatrie, St. Urban, Switzerland
| | - Tetiana A Berezina
- Department of Internal Medicine and Nephrology, VitaCenter, Zaporozhye, Ukraine
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
3
|
Zhang M, Zhang Z, Li H, Xia Y, Xing M, Xiao C, Cai W, Bu L, Li Y, Park TE, Tang Y, Ye X, Lin WJ. Blockage of VEGF function by bevacizumab alleviates early-stage cerebrovascular dysfunction and improves cognitive function in a mouse model of Alzheimer's disease. Transl Neurodegener 2024; 13:1. [PMID: 38173017 PMCID: PMC10763201 DOI: 10.1186/s40035-023-00388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder and the predominant type of dementia worldwide. It is characterized by the progressive and irreversible decline of cognitive functions. In addition to the pathological beta-amyloid (Aβ) deposition, glial activation, and neuronal injury in the postmortem brains of AD patients, increasing evidence suggests that the often overlooked vascular dysfunction is an important early event in AD pathophysiology. Vascular endothelial growth factor (VEGF) plays a critical role in regulating physiological functions and pathological changes in blood vessels, but whether VEGF is involved in the early stage of vascular pathology in AD remains unclear. METHODS We used an antiangiogenic agent for clinical cancer treatment, the humanized monoclonal anti-VEGF antibody bevacizumab, to block VEGF binding to its receptors in the 5×FAD mouse model at an early age. After treatment, memory performance was evaluated by a novel object recognition test, and cerebral vascular permeability and perfusion were examined by an Evans blue assay and blood flow scanning imaging analysis. Immunofluorescence staining was used to measure glial activation and Aβ deposits. VEGF and its receptors were analyzed by enzyme-linked immunosorbent assay and immunoblotting. RNA sequencing was performed to elucidate bevacizumab-associated transcriptional signatures in the hippocampus of 5×FAD mice. RESULTS Bevacizumab treatment administered from 4 months of age dramatically improved cerebrovascular functions, reduced glial activation, and restored long-term memory in both sexes of 5×FAD mice. Notably, a sex-specific change in different VEGF receptors was identified in the cortex and hippocampus of 5×FAD mice. Soluble VEGFR1 was decreased in female mice, while full-length VEGFR2 was increased in male mice. Bevacizumab treatment reversed the altered expression of receptors to be comparable to the level in the wild-type mice. Gene Set Enrichment Analysis of transcriptomic changes revealed that bevacizumab effectively reversed the changes in the gene sets associated with blood-brain barrier integrity and vascular smooth muscle contraction in 5×FAD mice. CONCLUSIONS Our study demonstrated the mechanistic roles of VEGF at the early stage of amyloidopathy and the protective effects of bevacizumab on cerebrovascular function and memory performance in 5×FAD mice. These findings also suggest the therapeutic potential of bevacizumab for the early intervention of AD.
Collapse
Affiliation(s)
- Min Zhang
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhan Zhang
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Honghong Li
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuting Xia
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Mengdan Xing
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Chuan Xiao
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Wenbao Cai
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
| | - Lulu Bu
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yi Li
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yamei Tang
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
4
|
Chen F, Sarver DC, Saqib M, Zhou M, Aja S, Seldin MM, Wong GW. CTRP13 ablation improves systemic glucose and lipid metabolism. Mol Metab 2023; 78:101824. [PMID: 37844630 PMCID: PMC10598410 DOI: 10.1016/j.molmet.2023.101824] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023] Open
Abstract
OBJECTIVE Tissue crosstalk mediated by secreted hormones underlies the integrative control of metabolism. We previously showed that CTRP13/C1QL3, a secreted protein of the C1q family, can improve glucose metabolism and insulin action in vitro and reduce food intake and body weight in mice when centrally delivered. A role for CTRP13 in regulating insulin secretion in isolated islets has also been demonstrated. It remains unclear, however, whether the effects of CTRP13 on cultured cells and in mice reflect the physiological function of the protein. Here, we use a loss-of-function mouse model to address whether CTRP13 is required for metabolic homeostasis. METHODS WT and Ctrp13 knockout (KO) mice fed a standard chow or a high-fat diet were subjected to comprehensive metabolic phenotyping. Transcriptomic analyses were carried out on visceral and subcutaneous fat, liver, and skeletal muscle to identify pathways altered by CTRP13 deficiency. RNA-seq data was further integrated with the Metabolic Syndrome in Man (METSIM) cohort data. Adjusted regression analysis was used to demonstrate that genetic variation of CTRP13 expression accounts for a significant proportion of variance between differentially expressed genes (DEGs) in adipose tissue and metabolic traits in humans. RESULTS Contrary to expectation, chow-fed Ctrp13-KO male mice had elevated physical activity, lower body weight, and improved lipid handling. On a high-fat diet (HFD), Ctrp13-KO mice of either sex were consistently more active and leaner. Loss of CTRP13 reduced hepatic glucose output and improved glucose tolerance, insulin sensitivity, and triglyceride clearance, though with notable sex differences. Consistent with the lean phenotype, transcriptomic analyses revealed a lower inflammatory profile in visceral fat and liver. Reduced hepatic steatosis was correlated with the suppression of lipid synthesis and enhanced lipid catabolism gene expression. Visceral fat had the largest number of DEGs and mediation analyses on the human orthologs of the DEGs suggested the potential causal contribution of CTRP13 to human metabolic syndrome. CONCLUSIONS Our results suggest that CTRP13 is a negative metabolic regulator, and its deficiency improves systemic metabolic profiles. Our data also suggest the reduction in circulating human CTRP13 levels seen in obesity and diabetes may reflect a compensatory physiologic response to counteract insulin resistance.
Collapse
Affiliation(s)
- Fangluo Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mingqi Zhou
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA; Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA; Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Chen F, Sarver DC, Saqib M, Velez LM, Aja S, Seldin MM, Wong GW. Loss of CTRP10 results in female obesity with preserved metabolic health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565163. [PMID: 37961647 PMCID: PMC10635050 DOI: 10.1101/2023.11.01.565163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologous in humans also show sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.
Collapse
Affiliation(s)
- Fangluo Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dylan C. Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leandro M Velez
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marcus M. Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Nicolaus HF, Klonisch T, Paulsen F, Garreis F. C1q/TNF-Related Proteins 1, 6 and 8 Are Involved in Corneal Epithelial Wound Closure by Targeting Relaxin Receptor RXFP1 In Vitro. Int J Mol Sci 2023; 24:ijms24076839. [PMID: 37047812 PMCID: PMC10095411 DOI: 10.3390/ijms24076839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Inadequate wound healing of ocular surface injuries can lead to permanent visual impairment. The relaxin ligand-receptor system has been demonstrated to promote corneal wound healing through increased cell migration and modulation of extracellular matrix formation. Recently, C1q/tumor necrosis factor-related protein (CTRP) 8 was identified as a novel interaction partner of relaxin receptor RXFP1. Additional data also suggest a role for CTRP1 and CTRP6 in RXFP1-mediated cAMP signaling. However, the role of CTRP1, CTRP6 and CTRP8 at the ocular surface remains unclear. In this study, we investigated the effects of CTRP1, CTRP6, and CTRP8 on epithelial ocular surface wound closure and their dependence on the RXFP1 receptor pathway. CTRP1, CTRP6, and CTRP8 expression was analyzed by RT-PCR and immunohistochemistry in human tissues and cell lines derived from the ocular surface and lacrimal apparatus. In vitro ocular surface wound modeling was performed using scratch assays. We analyzed the effects of recombinant CTRP1, CTRP6, and CTRP8 on cell proliferation and migration in human corneal and conjunctival epithelial cell lines. Dependence on RXFP1 signaling was established by inhibiting ligand binding to RXFP1 using a specific anti-RXFP1 antibody. We detected the expression of CTRP1, CTRP6, and CTRP8 in human tissue samples of the cornea, conjunctiva, meibomian gland, efferent tear ducts, and lacrimal gland, as well as in human corneal, conjunctival, and meibomian gland epithelial cell lines. Scratch assays revealed a dose-dependent increase in the closure rate of surface defects in human corneal epithelial cells after treatment with CTRP1, CTRP6, and CTRP8, but not in conjunctival epithelial cells. Inhibition of RXFP1 fully attenuated the effect of CTRP8 on the closure rate of surface defects in human corneal epithelial cells, whereas the CTRP1 and CTRP6 effects were not completely suppressed. Conclusions: Our findings demonstrate a novel role for CTRP1, CTRP6, and CTRP8 in corneal epithelial wound closure and suggest an involvement of the relaxin receptor RXFP1 signaling pathway. This could be a first step toward new approaches for pharmacological and therapeutic intervention.
Collapse
Affiliation(s)
- Hagen Fabian Nicolaus
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute in Oncology and Hematology (RIOH), Cancer Care Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Fabian Garreis
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
7
|
Zhang H, Zhang-Sun ZY, Xue CX, Li XY, Ren J, Jiang YT, Liu T, Yao HR, Zhang J, Gou TT, Tian Y, Lei WR, Yang Y. CTRP family in diseases associated with inflammation and metabolism: molecular mechanisms and clinical implication. Acta Pharmacol Sin 2023; 44:710-725. [PMID: 36207402 PMCID: PMC10042840 DOI: 10.1038/s41401-022-00991-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/27/2022] [Indexed: 11/08/2022] Open
Abstract
C1q/tumor necrosis factor (TNF) related proteins (CTRPs) is a newly discovered adipokine family with conservative structure and ubiquitous distribution and is secreted by adipose tissues. Recently, CTRPs have attracted increasing attention due to the its wide-ranging effects upon inflammation and metabolism. To-date, 15 members of CTRPs (CTRP1-15) with the characteristic C1q domain have been characterized. Earlier in-depth phenotypic analyses of mouse models of CTRPs deficiency have also unveiled ample function of CTRPs in inflammation and metabolism. This review focuses on the rise of CTRPs, with a special emphasis on the latest discoveries with regards to the effects of the CTRP family on inflammation and metabolism as well as related diseases. We first introduced the structure of characteristic domain and polymerization of CTRPs to reveal its pleiotropic biological functions. Next, intimate association of CTRP family with inflammation and metabolism, as well as the involvement of CTRPs as nodes in complex molecular networks, were elaborated. With expanding membership of CTRP family, the information presented here provides new perspectives for therapeutic strategies to improve inflammatory and metabolic abnormalities.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Zi-Yin Zhang-Sun
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Cheng-Xu Xue
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Xi-Yang Li
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yu-Ting Jiang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Tong Liu
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Hai-Rong Yao
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Juan Zhang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Tian-Tian Gou
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Ye Tian
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Wang-Rui Lei
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
8
|
Wang Y, Li H, Yu XH, Tang CK. CTRP1: A novel player in cardiovascular and metabolic diseases. Cytokine 2023; 164:156162. [PMID: 36812667 DOI: 10.1016/j.cyto.2023.156162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023]
Abstract
Cardiovascular diseases (CVDs) are a series of diseases induced by inflammation and lipid metabolism disorders, among others. Metabolic diseases can cause inflammation and abnormal lipid metabolism. C1q/TNF-related proteins 1 (CTRP1) is a paralog of adiponectin that belongs to the CTRP subfamily. CTRP1 is expressed and secreted in adipocytes, macrophages, cardiomyocytes, and other cells. It promotes lipid and glucose metabolism but has bidirectional effects on the regulation of inflammation. Inflammation can also inversely stimulate CTRP1 production. A vicious circle may exist between the two. This article introduces CTRP1 from the structure, expression, and different roles of CTRP1 in CVDs and metabolic diseases, to summarize the role of CTRP1 pleiotropy. Moreover, the proteins which may interact with CTRP1 are predicted through GeneCards and STRING, speculating their effects, to provide new ideas for the study of CTRP1.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of clinical medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
9
|
Complement 1q/Tumor Necrosis Factor-Related Proteins (CTRPs): Structure, Receptors and Signaling. Biomedicines 2023; 11:biomedicines11020559. [PMID: 36831095 PMCID: PMC9952994 DOI: 10.3390/biomedicines11020559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Adiponectin and the other 15 members of the complement 1q (C1q)/tumor necrosis factor (TNF)-related protein (CTRP) family are secreted proteins composed of an N-terminal variable domain followed by a stalk region and a characteristic C-terminal trimerizing globular C1q (gC1q) domain originally identified in the subunits of the complement protein C1q. We performed a basic PubMed literature search for articles mentioning the various CTRPs or their receptors in the abstract or title. In this narrative review, we briefly summarize the biology of CTRPs and focus then on the structure, receptors and major signaling pathways of CTRPs. Analyses of CTRP knockout mice and CTRP transgenic mice gave overwhelming evidence for the relevance of the anti-inflammatory and insulin-sensitizing effects of CTRPs in autoimmune diseases, obesity, atherosclerosis and cardiac dysfunction. CTRPs form homo- and heterotypic trimers and oligomers which can have different activities. The receptors of some CTRPs are unknown and some receptors are redundantly targeted by several CTRPs. The way in which CTRPs activate their receptors to trigger downstream signaling pathways is largely unknown. CTRPs and their receptors are considered as promising therapeutic targets but their translational usage is still hampered by the limited knowledge of CTRP redundancy and CTRP signal transduction.
Collapse
|
10
|
Ren M, Pan J, Yu X, Chang K, Yuan X, Zhang C. CTRP1 prevents high fat diet-induced obesity and improves glucose homeostasis in obese and STZ-induced diabetic mice. J Transl Med 2022; 20:449. [PMID: 36195912 PMCID: PMC9533627 DOI: 10.1186/s12967-022-03672-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/25/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND C1q/tumor necrosis factor-related protein 1 (CTRP1) is an adipokine secreted by adipose tissue, related to chondrocyte proliferation, inflammation, and glucose homeostasis. However, the therapeutic effects on metabolic disorders and the underlying mechanism were unclear. Here, we investigated the functions and mechanisms of CTRP1 in treating obesity and diabetes. METHODS The plasmid containing human CTRP1 was delivered to mice by hydrodynamic injection, which sustained expression of CTRP1 in the liver and high protein level in the blood. High-fat diet (HFD) fed mice and STZ-induced diabetes model were used to study the effects of CTRP1 on obesity, glucose homeostasis, insulin resistance, and hepatic lipid accumulation. The lipid accumulation in liver and adipose tissue, glucose tolerance, insulin sensitivity, food intake, and energy expenditure were detected by H&E staining, Oil-Red O staining, glucose tolerance test, insulin tolerance test, and metabolic cage, respectively. The metabolic-related genes and signal pathways were determined using qPCR and western blotting. RESULTS With high blood circulation, CTRP1 prevented obesity, hyperglycemia, insulin resistance, and fatty liver in HFD-fed mice. CTRP1 also improved glucose metabolism and insulin resistance in obese and STZ-induced diabetic mice. The metabolic cage study revealed that CTRP1 reduced food intake and enhanced energy expenditure. The mechanistic study demonstrated that CTRP1 upregulated the protein level of leptin in blood, thermogenic gene expression in brown adipose tissue, and the gene expression responsible for lipolysis and glycolysis in white adipose tissue (WAT). CTRP1 also downregulated the expression of inflammatory genes in WAT. Overexpression of CTRP1 activated AMPK and PI3K/Akt signaling pathways and inhibited ERK signaling pathway. CONCLUSION These results demonstrate that CTRP1 could improve glucose homeostasis and prevent HFD-induced obesity and fatty liver through upregulating the energy expenditure and reducing food intake, suggesting CTRP1 may serve as a promising target for treating metabolic diseases.
Collapse
Affiliation(s)
- Mingzhi Ren
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jianfei Pan
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xueying Yu
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Kaile Chang
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaopeng Yuan
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Chunbo Zhang
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
11
|
Sadat-Ebrahimi SR, Amini H, Rahbarghazi R, Habibollahi P, Ghaderi S, Rajabi H, Rezabakhsh A. Putative therapeutic impacts of cardiac CTRP9 in ischaemia/reperfusion injury. J Cell Mol Med 2022; 26:3120-3132. [PMID: 35535510 PMCID: PMC9170823 DOI: 10.1111/jcmm.17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Recently, cytokines belonging to C1q/tumour necrosis factor‐related proteins (CTRPs) superfamily have attracted increasing attention due to multiple metabolic functions and desirable anti‐inflammatory effects. These various molecular effectors exhibit key roles upon the onset of cardiovascular diseases, making them novel adipo/cardiokines. This review article aimed to highlight recent findings correlated with therapeutic effects and additional mechanisms specific to the CTRP9, particularly in cardiac ischaemia/reperfusion injury (IRI). Besides, the network of the CTPR9 signalling pathway and its possible relationship with IRI were discussed. Together, the discovery of all involved underlying mechanisms could shed light to alleviate the pathological sequelae after the occurrence of IRI.
Collapse
Affiliation(s)
| | - Hassan Amini
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paria Habibollahi
- Department of Pharmacology and Toxicology, Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahrouz Ghaderi
- Institute of Molecular Medicine III, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Hadi Rajabi
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, School of Medicine, Istanbul, Turkey
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Emergency Medicine & Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Teng Y, Li N, Wang Y, Sun S, Hou J, Chen Y, Pan H. NRF2 Inhibits Cardiomyocyte Pyroptosis Via Regulating CTRP1 in Sepsis-Induced Myocardial Injury. Shock 2022; 57:590-599. [PMID: 34907120 DOI: 10.1097/shk.0000000000001901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT C1q/tumor necrosis factor-related protein 1 (CTRP1) has been demonstrated as a crucial regulator in myocardial injury (MI). The present study aims to evaluate the mechanism of CTRP1 in sepsis-induced MI. The septic mouse model was established via cecal ligation and puncture and the in vitro cell model was established via lipopolysaccharide treatment. The mouse survival rate within 96 h was recorded. Morphologic changes of cardiomyocytes were observed and cell viability and cardiac functions were detected. CTRP1 and nuclear factor erythroid 2-related factor (Nrf2) expressions, creatine troponin-T, and creatine phosphokinase isoenzyme levels, and expressions of pyroptotic markers were determined. The binding relationship between Nrf2 and the CTRP1 promotor was predicted and verified. Rescue experiments were designed to confirm the role of CTRP1. CTRP1 was poorly expressed in septic mice. CTRP1 overexpression inhibited cardiomyocyte pyroptosis and improved cardiac functions, MI, and survival rate in septic mice. Nrf2was decreased in cecal ligation and puncture -treated mice. Nrf2 overexpression promoted CTRP1 expression via binding to the CTRP1 promotor and suppressed cardiomyocyte pyroptosis. CTRP1 downregulation abolished the inhibitory effect of Nrf2 overexpression on cardiomyocyte pyroptosis. Overall, Nrf2 promoted CTRP1 expression via binding to the CTRP1 promotor to inhibit cardiomyocyte pyroptosis, thereby alleviating MI in septic mice.
Collapse
Affiliation(s)
- Yan Teng
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, PR China
| | - Ningjun Li
- Department of Intensive Care Unit, The Fifth Affiliated Hospital of SUN YAT-SEN University, Zhuhai City, Guangdong Province, PR China
| | - Yi Wang
- Department of Intensive Care Unit, The Fifth Affiliated Hospital of SUN YAT-SEN University, Zhuhai City, Guangdong Province, PR China
| | - Shuling Sun
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, PR China
| | - Junxia Hou
- Department of Critical Care Medicine, Chang'an District Hospital of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, PR China
| | - Yahui Chen
- Department of Critical Care Medicine, Chang'an District Hospital of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, PR China
| | - Haiyan Pan
- Department of Intensive Care Unit, The Fifth Affiliated Hospital of SUN YAT-SEN University, Zhuhai City, Guangdong Province, PR China
| |
Collapse
|
13
|
Signaling pathways of inflammation in myocardial ischemia/reperfusion injury. CARDIOLOGY PLUS 2022. [DOI: 10.1097/cp9.0000000000000008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Vladimirsky VE, Vladimirsky EV, Lunina AN, Fesyun AD, Rachin AP, Lebedeva OD, Yakovlev MY, Tubekova MA. [Molecular mechanisms of adaptive and therapeutic effects of physical activity in patients with cardiovascular diseases]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2022; 99:69-77. [PMID: 35485663 DOI: 10.17116/kurort20229902169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Physical activity is one of the main components of the rehabilitation of patients with cardiovascular disease (CVD). As shown by practice and the results of evidence-based studies, the beneficial effects of physical activity on disease outcomes in a number of cardiac nosologies are comparable to drug treatment. This gives the doctor another tool to influence the unfavorable epidemiological situation in developed countries with the spread of diseases of the cardiovascular system and CVD mortality. Reliable positive results of cardiorehabilitation (CR) were obtained using various methods. The goal of CR is to restore the optimal physiological, psychological and professional status, reduce the risk of CVD and mortality. In most current CVD guidelines worldwide, cardiac rehabilitation is a Class I recommendation. The molecular mechanisms described in the review, initiated by physical activity, underlie the multifactorial effect of the latter on the function of the cardiovascular system and the course of cardiac diseases. Physical exercise is an important component of the therapeutic management of patients with CVD, which is supported by the results of a meta-analysis of 63 studies associated with various forms of aerobic exercise of varying intensity (from 50 to 95% VO2) for 1 to 47 months, which showed that CR based on physical exercise improves cardiorespiratory endurance. Knowledge of the molecular basis of the influence of physical activity makes it possible to use biochemical markers to assess the effectiveness of rehabilitation programs.
Collapse
Affiliation(s)
| | | | - A N Lunina
- Wagner Perm State Medical University, Perm, Russia
| | - A D Fesyun
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - A P Rachin
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - O D Lebedeva
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - M Yu Yakovlev
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - M A Tubekova
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| |
Collapse
|
15
|
C1q tumor necrosis factor-related protein 1: a promising therapeutic target for atherosclerosis. J Cardiovasc Pharmacol 2021; 79:273-280. [PMID: 34840267 DOI: 10.1097/fjc.0000000000001186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Atherosclerosis serves as the pathological basis of most cardiovascular and cerebrovascular diseases. C1q tumor necrosis factor-related protein (CTRP1) is a 35-kDa glycoprotein synthesized by various tissues and cells, such as adipose tissue and macrophages. As an adiponectin paralog, CTRP1 signals through adiponectin receptor 1 (AdipoR1) and participates in a variety of pathophysiological processes. Circulating CTRP1 levels are significantly increased in patients with coronary artery disease. Importantly, CTRP1 was shown to accelerate the development of atherosclerosis by promoting vascular inflammation, macrophage foam cell formation and endothelial barrier dysfunction. This review focused on recent advances regarding the role of CTRP1 in atherogenesis with an emphasis on its potential as a novel biomarker and a promising therapeutic target for atherosclerosis-related diseases.
Collapse
|
16
|
Sonn SK, Seo S, Yang J, Oh KS, Chen H, Chan DC, Rhee K, Lee KS, Yang Y, Oh GT. ER-associated CTRP1 regulates mitochondrial fission via interaction with DRP1. Exp Mol Med 2021; 53:1769-1780. [PMID: 34837016 PMCID: PMC8639813 DOI: 10.1038/s12276-021-00701-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
C1q/TNF-related protein 1 (CTRP1) is a CTRP family member that has collagenous and globular C1q-like domains. The secreted form of CTRP1 is known to be associated with cardiovascular and metabolic diseases, but its cellular roles have not yet been elucidated. Here, we showed that cytosolic CTRP1 localizes to the endoplasmic reticulum (ER) membrane and that knockout or depletion of CTRP1 leads to mitochondrial fission defects, as demonstrated by mitochondrial elongation. Mitochondrial fission events are known to occur through an interaction between mitochondria and the ER, but we do not know whether the ER and/or its associated proteins participate directly in the entire mitochondrial fission event. Interestingly, we herein showed that ablation of CTRP1 suppresses the recruitment of DRP1 to mitochondria and provided evidence suggesting that the ER-mitochondrion interaction is required for the proper regulation of mitochondrial morphology. We further report that CTRP1 inactivation-induced mitochondrial fission defects induce apoptotic resistance and neuronal degeneration, which are also associated with ablation of DRP1. These results demonstrate for the first time that cytosolic CTRP1 is an ER transmembrane protein that acts as a key regulator of mitochondrial fission, providing new insight into the etiology of metabolic and neurodegenerative disorders.
Collapse
Affiliation(s)
- Seong Keun Sonn
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Woman's University, Seoul, 03760, Republic of Korea
| | - Seungwoon Seo
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Woman's University, Seoul, 03760, Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, Yonsei University, Seoul, 120-752, Republic of Korea
| | - Ki Sook Oh
- Department of Life Science, Research Center for Women's Disease, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hsiuchen Chen
- Division of Biology, California Institute of Technology, Pasadena, CA, 91125, USA
| | - David C Chan
- Division of Biology, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung S Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, 20892, USA
| | - Young Yang
- Department of Life Science, Research Center for Women's Disease, Sookmyung Women's University, Seoul, Republic of Korea.
| | - Goo Taeg Oh
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Woman's University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
17
|
Fei H, Xiang P, Luo W, Tan X, Gu C, Liu M, Chen M, Wang Q, Yang J. CTRP1 Attenuates Cerebral Ischemia/Reperfusion Injury via the PERK Signaling Pathway. Front Cell Dev Biol 2021; 9:700854. [PMID: 34422821 PMCID: PMC8371340 DOI: 10.3389/fcell.2021.700854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemic stroke is one of the leading causes of death worldwide. Previous studies have shown that circulating levels of CTRP1 are upregulated in patients with acute ischemic stroke. However, the function of CTRP1 in neurons remains unclear. The purpose of this study was to explore the role of CTRP1 in cerebral ischemia reperfusion injury (CIRI) and to elucidate the underlying mechanism. Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) models were used to simulate cerebral ischemic stroke in vivo and in vitro, respectively. CTRP1 overexpression lentivirus and CTRP1 siRNA were used to observe the effect of CTRP1 expression, and the PERK selective activator CCT020312 was used to activate the PERK signaling pathway. We found the decreased expression of CTRP1 in the cortex of MCAO/R-treated rats and OGD/R-treated primary cortical neurons. CTRP1 overexpression attenuated CIRI, accompanied by the reduction of apoptosis and suppression of the PERK signaling pathway. Interference with CTRP1 expression in vitro aggravated apoptotic activity and increased the expression of proteins involved in the PERK signaling pathway. Moreover, activating the PERK signaling pathway abolished the protective effects of CTRP1 on neuron injury induced by CIRI in vivo and in vitro. In conclusion, CTRP1 protects against CIRI by reducing apoptosis and endoplasmic reticulum stress (ERS) through inhibiting the PERK-dependent signaling pathway, suggesting that CTRP1 plays a crucial role in the pathogenesis of CIRI.
Collapse
Affiliation(s)
- Huizhi Fei
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Three Gorges Medical College, Chongqing, China
| | - Pu Xiang
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wen Luo
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiaodan Tan
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Chao Gu
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Maozhu Liu
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Mengyuan Chen
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qiong Wang
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Junqing Yang
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Yan J, Song K, Zhou S, Ge RL. Long-Term High-Fat Diet Inhibits the Recovery of Myocardial Mitochondrial Function After Chronic Hypoxia Reoxygenation in Rats. High Alt Med Biol 2021; 22:327-334. [PMID: 34191588 DOI: 10.1089/ham.2021.0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Yan, Jun, Kang Song, Sisi Zhou, and Ri-Li Ge. Long-term high-fat diet inhibits the recovery of myocardial mitochondrial function after chronic hypoxia reoxygenation in rats. High Alt Med Biol. 16:000-000, 2021. Aims: A high-fat diet (HFD) is associated with cardiovascular diseases and mitochondrial dysfunction. Obesity incidence is low at high altitudes, but the impact of HFD, which is closely associated with obesity at high altitudes, and the effects of reoxygenation on the heart are unclear. In this study, we investigated the effects of long-term HFD consumption on mitochondrial function in the myocardium after chronic hypoxia reoxygenation. Main Methods: Sprague-Dawley rats were randomized into the following six groups: normoxia groups, including a control group and HFD group; chronic hypoxia groups, including a normal chow diet (CH-CD) group and an HFD (CH-HFD) group; and hypoxic-reoxygenated (HR) groups, including a hypoxia-reoxygenation normal chow diet (HR-CD) group and a hypoxia-reoxygenation HFD (HR-HFD) group. All rats were euthanized in this study. Results: We found that chronic hypoxia aggravated myocardial mitochondrial dysfunction. The Flameng score (in which the higher the score, the more severe the mitochondrial damage) was used to assess the extent of mitochondrial structural damage. Compared with the control group and HFD group, the Flameng scores of the CH-CD and CH-HFD groups were significantly increased, respectively [1.260 ± 0.063 vs. 0.68 ± 0.05 (p < 0.05); 2.03 ± 0.07 vs. 1.48 ± 0.05 (p < 0.05)]. Moreover, progressive reoxygenation facilitated the recovery of myocardial mitochondrial function; this process was inhibited by long-term HFD. After reoxygenation, the Flameng scores in the HR-CD group became comparable to those in the CH-CD group [0.86 ± 0.05 vs. 1.26 ± 0.06 (p < 0.05)]. However, no significant changes were observed in the Flameng score between the HR-HFD and CH-HFD groups. Significance: Long-term HFD consumption inhibits myocardial mitochondrial function after reoxygenation. This finding may be helpful for the prevention and control of risk factors related to cardiovascular diseases in plateau residents.
Collapse
Affiliation(s)
- Jun Yan
- Research Center for High Altitude Medicine, Qinghai University, Xining, P.R. China.,Key Laboratory of High-Altitude Medicine (Qinghai University), Ministry of Education, Xining, P.R. China.,Key Laboratory for Application of High-Altitude Medicine in Qinghai Province, Xining, P.R. China.,Cardiovascular Medicine Department, Xuzhou Medical University Affiliated Hospital, Xuzhou, P.R. China
| | - Kang Song
- Endocrinology Department, Qinghai Provincial People's Hospital, Xining, P.R. China
| | - Sisi Zhou
- Research Center for High Altitude Medicine, Qinghai University, Xining, P.R. China.,Key Laboratory of High-Altitude Medicine (Qinghai University), Ministry of Education, Xining, P.R. China.,Key Laboratory for Application of High-Altitude Medicine in Qinghai Province, Xining, P.R. China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, P.R. China.,Key Laboratory of High-Altitude Medicine (Qinghai University), Ministry of Education, Xining, P.R. China.,Key Laboratory for Application of High-Altitude Medicine in Qinghai Province, Xining, P.R. China
| |
Collapse
|
19
|
C1q Complement/Tumor Necrosis Factor-Associated Proteins in Cardiovascular Disease and COVID-19. Proteomes 2021; 9:proteomes9010012. [PMID: 33804408 PMCID: PMC7931048 DOI: 10.3390/proteomes9010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023] Open
Abstract
With continually improving treatment strategies and patient care, the overall mortality of cardiovascular disease (CVD) has been significantly reduced. However, this success is a double-edged sword, as many patients who survive cardiovascular complications will progress towards a chronic disorder over time. A family of adiponectin paralogs designated as C1q complement/tumor necrosis factor (TNF)-associated proteins (CTRPs) has been found to play a role in the development of CVD. CTRPs, which are comprised of 15 members, CTRP1 to CTRP15, are secreted from different organs/tissues and exhibit diverse functions, have attracted increasing attention because of their roles in maintaining inner homeostasis by regulating metabolism, inflammation, and immune surveillance. In particular, studies indicate that CTRPs participate in the progression of CVD, influencing its prognosis. This review aims to improve understanding of the role of CTRPs in the cardiovascular system by analyzing current knowledge. In particular, we examine the association of CTRPs with endothelial cell dysfunction, inflammation, and diabetes, which are the basis for development of CVD. Additionally, the recently emerged novel coronavirus (COVID-19), officially known as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), has been found to trigger severe cardiovascular injury in some patients, and evidence indicates that the mortality of COVID-19 is much higher in patients with CVD than without CVD. Understanding the relationship of CTRPs and the SARS-CoV-2-related damage to the cardiovascular system, as well as the potential mechanisms, will achieve a profound insight into a therapeutic strategy to effectively control CVD and reduce the mortality rate.
Collapse
|
20
|
Majidi Z, Emamgholipour S, Omidifar A, Rahmani Fard S, Poustchi H, Shanaki M. The circulating levels of CTRP1 and CTRP5 are associated with obesity indices and carotid intima-media thickness (cIMT) value in patients with type 2 diabetes: a preliminary study. Diabetol Metab Syndr 2021; 13:14. [PMID: 33499897 PMCID: PMC7836446 DOI: 10.1186/s13098-021-00631-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND There is growing evidence that the C1qTNF-related protein (CTRP) family has a crucial role in the pathophysiology of metabolic disorders such as type 2 diabetes (T2D) and obesity. We sought to identify the association of CTRP1 and CTRP5 circulating levels with various obesity parameters such as visceral adipose tissue (VAT) thickness, visceral adiposity index (VAI), and with carotid intima-media thickness (cIMT) in patients with T2D and controls. METHODS This preliminary study consisted of men with T2D (n = 42) and men without T2D (n = 42). The measurement of cIMT and VAT thickness was performed using an Accuvix XQ ultrasound. Circulating levels of CTRP1, CTRP5, and adiponectin were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS CTRP-1 and CTRP1/CTRP5 ratio were markedly higher in patients with T2D compared to controls (p < 0001 and p = 0004 respectively). Interestingly, binominal logistic regression revealed that a higher circulating level of CTRP1 was associated with the presence of T2D (odds ratio [OR]: 1.009 [95% CI: 1.004-1.015]; P = .001). CTRP1 circulating levels were correlated with WHR, VAT, and HOMA-IR in the whole population study. Also, we observed that the ratio of CTRP1 to CTRP5 in plasma (β = 0.648, P = 0.005) and CTRP5 circulating levels (β = 0.444, P = 0.049) are independently associated with cIMT value. CONCLUSIONS Our results indicated that CTRP1 and CTRP5 concentrations were correlated with atherosclerosis in men with T2D and these adipokines might have a causal role for cardiometabolic risk in T2D.However, more studies in large sample sizes are required to clarify the role of CTRPs in T2D pathogenesis.
Collapse
Affiliation(s)
- Ziba Majidi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Omidifar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheil Rahmani Fard
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Poustchi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehrnoosh Shanaki
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Xu W, Chao Y, Liang M, Huang K, Wang C. CTRP13 Mitigates Abdominal Aortic Aneurysm Formation via NAMPT1. Mol Ther 2021; 29:324-337. [PMID: 32966772 DOI: 10.1016/j.ymthe.2020.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease characterized by localized dilation of the abdominal aorta. C1q/tumor necrosis factor (TNF)-related protein-13 (CTRP13) is a secreted adipokine that plays important roles in the cardiovascular system. However, the functional role of CTRP13 in the formation and development of AAA has yet to be explored. In this study, we determined that serum CTRP13 levels were significantly downregulated in blood samples from patients with AAA and in rodent AAA models induced by Angiotensin II (Ang II) in ApoE-/- mice or by CaCl2 in C57BL/6J mice. Using two distinct murine models of AAA, CTRP13 was shown to effectively reduce the incidence and severity of AAA in conjunction with reduced aortic macrophage infiltration, expression of proinflammatory cytokines (interleukin-6 [IL-6], TNF-α, and monocyte chemoattractant protein 1 [MCP-1]), and vascular smooth muscle cell (SMC) apoptosis. Mechanistically, nicotinamide phosphoribosyl-transferase 1 (NAMPT1) was identified as a new target of CTRP13. The decreased in vivo and in vitro expression of NAMPT1 was markedly reversed by CTRP13 supplementation in a ubiquitination-proteasome-dependent manner. NAMPT1 knockdown further blocked the beneficial effects of CTRP13 on vascular inflammation and SMC apoptosis. Overall, our study reveals that CTRP13 management may be an effective treatment for preventing AAA formation.
Collapse
Affiliation(s)
- Wenjing Xu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuelin Chao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Cheng Wang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
22
|
Rodriguez S, Little HC, Daneshpajouhnejad P, Fenaroli P, Tan SY, Sarver DC, Delannoy M, Talbot CC, Jandu S, Berkowitz DE, Pluznick JL, Rosenberg AZ, Wong GW. Aging and chronic high-fat feeding negatively affect kidney size, function, and gene expression in CTRP1-deficient mice. Am J Physiol Regul Integr Comp Physiol 2021; 320:R19-R35. [PMID: 33085906 PMCID: PMC7847058 DOI: 10.1152/ajpregu.00139.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022]
Abstract
C1q/TNF-related protein 1 (CTRP1) is an endocrine factor with metabolic, cardiovascular, and renal functions. We previously showed that aged Ctrp1-knockout (KO) mice fed a control low-fat diet develop renal hypertrophy and dysfunction. Since aging and obesity adversely affect various organ systems, we hypothesized that aging, in combination with obesity induced by chronic high-fat feeding, would further exacerbate renal dysfunction in CTRP1-deficient animals. To test this, we fed wild-type and Ctrp1-KO mice a high-fat diet for 8 mo or longer. Contrary to our expectation, no differences were observed in blood pressure, heart function, or vascular stiffness between genotypes. Loss of CTRP1, however, resulted in an approximately twofold renal enlargement (relative to body weight), ∼60% increase in urinary total protein content, and elevated pH, and changes in renal gene expression affecting metabolism, signaling, transcription, cell adhesion, solute and metabolite transport, and inflammation. Assessment of glomerular integrity, the extent of podocyte foot process effacement, as well as renal response to water restriction and salt loading did not reveal significant differences between genotypes. Interestingly, blood platelet, white blood cell, neutrophil, lymphocyte, and eosinophil counts were significantly elevated, whereas mean corpuscular volume and hemoglobin were reduced in Ctrp1-KO mice. Cytokine profiling revealed increased circulating levels of CCL17 and TIMP-1 in KO mice. Compared with our previous study, current data suggest that chronic high-fat feeding affects renal phenotypes differently than similarly aged mice fed a control low-fat diet, highlighting a diet-dependent contribution of CTRP1 deficiency to age-related changes in renal structure and function.
Collapse
Affiliation(s)
- Susana Rodriguez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hannah C Little
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Paride Fenaroli
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stefanie Y Tan
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Delannoy
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sandeep Jandu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dan E Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
23
|
Takikawa T, Ohashi K, Ogawa H, Otaka N, Kawanishi H, Fang L, Ozaki Y, Eguchi S, Tatsumi M, Takefuji M, Murohara T, Ouchi N. Adipolin/C1q/Tnf-related protein 12 prevents adverse cardiac remodeling after myocardial infarction. PLoS One 2020; 15:e0243483. [PMID: 33275602 PMCID: PMC7717554 DOI: 10.1371/journal.pone.0243483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/21/2020] [Indexed: 11/19/2022] Open
Abstract
Background Myocardial infarction (MI) is a leading cause of death worldwide. We previously identified adipolin, also known as C1q/Tnf-related protein 12, as an anti-inflammatory adipokine with protective features against metabolic and vascular disorders. Here, we investigated the effect of adipolin on myocardial remodeling in a mouse model of MI. Methods Male adipolin-knockout (APL-KO) and wild-type (WT) mice were subjected to the permanent ligation of the left anterior descending coronary artery to create MI. Results APL-KO mice exhibited increased ratios of heart weight/body weight and lung weight/body weight after MI compared with WT mice. APL-KO mice showed increased left ventricular diastolic diameter and decreased fractional shortening after MI compared with WT mice. APL-KO mice exhibited increased expression of pro-inflammatory mediators and enhanced cardiomyocyte apoptosis in the post-MI hearts compared with WT mice. Systemic administration of adenoviral vectors expressing adipolin to WT mice after MI surgery improved left ventricular contractile dysfunction and reduced cardiac expression of pro-inflammatory genes. Treatment of cultured cardiomyocytes with adipolin protein reduced lipopolysaccharide-induced expression of pro-inflammatory mediators and hypoxia-induced apoptosis. Treatment with adipolin protein increased Akt phosphorylation in cardiomyocytes. Inhibition of PI3 kinase/Akt signaling reversed the anti-inflammatory and anti-apoptotic effects of adipolin in cardiomyocytes. Conclusion Our data indicate that adipolin ameliorates pathological remodeling of myocardium after MI, at least in part, by its ability to reduce myocardial inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Tomonobu Takikawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Ohashi
- Department of Molecular Medicine and Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail: (KO); (NO)
| | - Hayato Ogawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoya Otaka
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kawanishi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Lixin Fang
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuta Ozaki
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shunsuke Eguchi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Minako Tatsumi
- Department of Molecular Medicine and Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikito Takefuji
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noriyuki Ouchi
- Department of Molecular Medicine and Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail: (KO); (NO)
| |
Collapse
|
24
|
Zhao Q, Zhang CL, Xiang RL, Wu LL, Li L. CTRP15 derived from cardiac myocytes attenuates TGFβ1-induced fibrotic response in cardiac fibroblasts. Cardiovasc Drugs Ther 2020; 34:591-604. [PMID: 32424654 DOI: 10.1007/s10557-020-06970-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Cardiac fibrosis is characterized by net accumulation of extracellular matrix (ECM) components in the myocardium and facilitates the development of heart failure. C1q/tumor necrosis factor-related protein 15 (CTRP15) is a novel member of the CTRP family, and its gene expression is detected in adult mouse hearts. The present study was performed to determine the effect of CTRP15 on pressure overload-induced fibrotic remodeling. METHODS Mice were subjected to transverse aortic constriction (TAC) surgery, and adeno-associated virus serotype 9 (AAV9)-carrying mouse CTRP15 gene was injected into mice to achieve CTRP15 overexpression in the myocardium. Adenovirus carrying the gene encoding CTRP15 or small interfering RNA (siRNA) of interest was infected into cultured neonatal mouse ventricular cardiomyocytes (NMVCs) or cardiac fibroblasts (CFs). Gene expression was measured by quantitative real-time PCR, and protein expression and distribution were determined by Western blotting, immunocytochemistry, and immunofluorescence staining. RESULTS CTRP15 was predominantly produced by cardiac myocytes. CTRP15 expression in the left ventricles was downregulated in mice that underwent TAC. AAV9-mediated CTRP15 overexpression alleviated ventricular remodeling and dysfunction in the pressure-overloaded mice. Treatment of CFs with recombinant CTRP15 or the conditioned medium containing CTRP15 inhibited transforming growth factor (TGF)-β1-induced Smad3 activation and myofibroblast differentiation. CTRP15 increased phosphorylation of insulin receptor (IR), insulin receptor substrate-1 (IRS-1), and Akt. Blockade of IR/IRS-1/Akt pathway reversed the inhibitory effect of CTRP15 on TGF-β1-induced Smad3 activation. CONCLUSION CTRP15 exerts an anti-fibrotic effect on pressure overload-induced cardiac remodeling. The activation of IR/IRS-1/Akt pathway contributes to the anti-fibrotic effect of CTRP15 through targeting Smad3.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Cheng-Lin Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Li Li
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
25
|
Recinella L, Orlando G, Ferrante C, Chiavaroli A, Brunetti L, Leone S. Adipokines: New Potential Therapeutic Target for Obesity and Metabolic, Rheumatic, and Cardiovascular Diseases. Front Physiol 2020; 11:578966. [PMID: 33192583 PMCID: PMC7662468 DOI: 10.3389/fphys.2020.578966] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Besides its role as an energy storage organ, adipose tissue can be viewed as a dynamic and complex endocrine organ, which produces and secretes several adipokines, including hormones, cytokines, extracellular matrix (ECM) proteins, and growth and vasoactive factors. A wide body of evidence showed that adipokines play a critical role in various biological and physiological functions, among which feeding modulation, inflammatory and immune function, glucose and lipid metabolism, and blood pressure control. The aim of this review is to summarize the effects of several adipokines, including leptin, diponectin, resistin, chemerin, lipocalin-2 (LCN2), vaspin, omentin, follistatin-like 1 (FSTL1), secreted protein acidic and rich in cysteine (SPARC), secreted frizzled-related protein 5 (SFRP5), C1q/TNF-related proteins (CTRPs), family with sequence similarity to 19 member A5 (FAM19A5), wingless-type inducible signaling pathway protein-1 (WISP1), progranulin (PGRN), nesfatin-1 (nesfatin), visfatin/PBEF/NAMPT, apelin, retinol binding protein 4 (RPB4), and plasminogen activator inhibitor-1 (PAI-1) in the regulation of insulin resistance and vascular function, as well as many aspects of inflammation and immunity and their potential role in managing obesity-associated diseases, including metabolic, osteoarticular, and cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Brunetti
- Department of Pharmacy, Gabriele d’Annunzio University, Chieti, Italy
| | | |
Collapse
|
26
|
Possible Susceptibility Genes for Intervention against Chemotherapy-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4894625. [PMID: 33110473 PMCID: PMC7578723 DOI: 10.1155/2020/4894625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Recent therapeutic advances have significantly improved the short- and long-term survival rates in patients with heart disease and cancer. Survival in cancer patients may, however, be accompanied by disadvantages, namely, increased rates of cardiovascular events. Chemotherapy-related cardiac dysfunction is an important side effect of anticancer therapy. While advances in cancer treatment have increased patient survival, treatments are associated with cardiovascular complications, including heart failure (HF), arrhythmias, cardiac ischemia, valve disease, pericarditis, and fibrosis of the pericardium and myocardium. The molecular mechanisms of cardiotoxicity caused by cancer treatment have not yet been elucidated, and they may be both varied and complex. By identifying the functional genetic variations responsible for this toxicity, we may be able to improve our understanding of the potential mechanisms and pathways of treatment, paving the way for the development of new therapies to target these toxicities. Data from studies on genetic defects and pharmacological interventions have suggested that many molecules, primarily those regulating oxidative stress, inflammation, autophagy, apoptosis, and metabolism, contribute to the pathogenesis of cardiotoxicity induced by cancer treatment. Here, we review the progress of genetic research in illuminating the molecular mechanisms of cancer treatment-mediated cardiotoxicity and provide insights for the research and development of new therapies to treat or even prevent cardiotoxicity in patients undergoing cancer treatment. The current evidence is not clear about the role of pharmacogenomic screening of susceptible genes. Further studies need to done in chemotherapy-induced cardiotoxicity.
Collapse
|
27
|
Wang H, Liu Q, Zhang X. C1q/tumor necrosis factor-related protein-1 attenuates microglia autophagy and inflammatory response by regulating the Akt/mTOR pathway. Life Sci 2020; 256:117992. [DOI: 10.1016/j.lfs.2020.117992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022]
|
28
|
Ouyang J, Shu Z, Chen S, Xiang H, Lu H. The role of sphingosine 1-phosphate and its receptors in cardiovascular diseases. J Cell Mol Med 2020; 24:10290-10301. [PMID: 32803879 PMCID: PMC7521328 DOI: 10.1111/jcmm.15744] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/12/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
There are many different types of cardiovascular diseases, which impose a huge economic burden due to their extremely high mortality rates, so it is necessary to explore the underlying mechanisms to achieve better supportive and curative care outcomes. Sphingosine 1‐phosphate (S1P) is a bioactive lipid mediator with paracrine and autocrine activities that acts through its cell surface S1P receptors (S1PRs) and intracellular signals. In the circulatory system, S1P is indispensable for both normal and disease conditions; however, there are very different views on its diverse roles, and its specific relevance to cardiovascular pathogenesis remains elusive. Here, we review the synthesis, release and functions of S1P, specifically detail the roles of S1P and S1PRs in some common cardiovascular diseases, and then address several controversial points, finally, we focus on the development of S1P‐based therapeutic approaches in cardiovascular diseases, such as the selective S1PR1 modulator amiselimod (MT‐1303) and the non‐selective S1PR1 and S1PR3 agonist fingolimod, which may provide valuable insights into potential therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Ouyang
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhihao Shu
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Hongwei Lu
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
29
|
Aksin Ş, Andan C. Protein-9 (CTRP9) levels associated with C1q tumor necrosis factor in obese preeclamptic, non-obese preeclamptic, obese and normal pregnant women. J Matern Fetal Neonatal Med 2020; 34:2540-2547. [PMID: 32646256 DOI: 10.1080/14767058.2020.1789582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM The incidence of obesity and preeclampsia is increasing more and more all over the world. Inflammation and endovascular dysfunction play an important role in the etiopathogenesis of preeclampsia. Obesity has been reported to contribute to the development of preeclampsia by developing a low-grade inflammatory environment and adversely affecting maternal endothelial function. Studies on the relationship between obesity and preeclampsia and how this relationship contributes to endothelial dysfunction continue. The complement C1q tumor necrosis factor-associated protein (CTRP) family (CTRP1-15) secreted from the adipose tissue is a new generation adipokine family with important functions in the immunomodulatory, anti-inflammatory, apoptosis, autoimmunity, vascular system, glucose and lipid metabolism in the body. In recent years, CTRP9, a member of this family, has been shown to have a strong vasorelaxation effect with the Adiponectin Receptor-1/AMPK/eNOS/Nitric Oxide Signaling Pathway. The study aims to find out the role of CTRP9, an adipocytokine, in the pathogenesis of obesity and preeclampsia. MATERIAL AND METHOD The CTRP9 levels were measured by the enzyme-linked immunosorbent assay (ELISA) in 40 obese preeclamptic, 40 non-obese preeclamptic, 40 obese pregnant women and 40 normal BMI (Body mass index) pregnant women. RESULTS The CTRP9 level of the obese preeclampsia group was found to be lower compared to the non-obese preeclampsia, obese pregnant and normal BMI pregnant control groups (p < .001). The obese preeclampsia group had higher systolic and diastolic blood pressure values compared to the non-obese preeclampsia group (p < .001). There was no difference between the CTRP9 levels of the normal BMI and non-obese preeclampsia groups (p > .05). The serum CTRP9 levels were inversely correlated with age, BMI, blood pressure, and aspartate aminotransferase (AST) (p < .001). CONCLUSION Obesity causes a decrease in CTRP9 levels and contributes to the pathogenesis of preeclampsia with adverse effects on the vascular and placental system. Serum CTRP9 levels in pregnant women help identify pregnancies at risk in terms of obesity and preeclampsia.
Collapse
Affiliation(s)
- Şerif Aksin
- TC Ministry of Health, Gazi Yaşargil Diyarbakır Training and Research Hospital, Obstetrics and Gynecology, Health Sciences University, Diyarbakır, Turkey
| | - Cengiz Andan
- TC Ministry of Health, Gazi Yaşargil Diyarbakır Training and Research Hospital, Obstetrics and Gynecology, Health Sciences University, Diyarbakır, Turkey
| |
Collapse
|
30
|
Abstract
Purpose of Review In recent years, a family of adiponectin paralogs designated as C1q/TNF-related protein (CTRP) has attracted increasing attention. They are inflammatory adipocytokines mostly secreted from epicardial adipose tissue, which modulate the development and prognosis of coronary artery disease (CAD). This review summarizes the pathophysiological roles of individual members of the CTRP superfamily in the development of CAD. Recent Findings Recent studies have revealed how members of the CTRP family, CTRP1, CTRP3, CTRP5, CTRP9, CTRP12, and CTRP13, can influence both development and progression of CAD by modulating metabolic pathways, influencing immuno-inflammatory response, and regulating cardiovascular functions. Summary Research to date has not been sufficient to answer the specific mechanism of the CTRP family in the occurrence and development of CAD. This review explores the evidence of CTRP superfamily regulating different pathophysiology stages of CAD through the immuno-inflammation, glucose and lipid metabolism, and vascular endothelial function.
Collapse
Affiliation(s)
- Yueqiao Si
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Wenjun Fan
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Lixian Sun
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China.
| |
Collapse
|
31
|
Janowska JD. C1q/TNF-related Protein 1, a Multifunctional Adipokine: An Overview of Current Data. Am J Med Sci 2020; 360:222-228. [PMID: 32591091 DOI: 10.1016/j.amjms.2020.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/10/2020] [Accepted: 05/20/2020] [Indexed: 01/10/2023]
Abstract
The present review aimed to present the research highlights on C1q/TNF-related protein 1 (CTRP1), a member of the recently discovered family of highly conserved adiponectin paralog proteins, C1q tumor necrosis factor-related proteins. CTRP1 plays an important role in regulating body energy homeostasis and sensitivity to insulin. Studies on animal models have shown that it lowers the concentration of glucose. Elevated concentrations of CTRP1 reduce weight gain and diet-induced insulin resistance. CTRP1 limits the extent of ischemia-reperfusion injury in acute myocardial infarction. It inhibits platelet aggregation by blocking von Willebrand factor binding to collagen. In patients with chronic kidney disease, an increase in CTRP1 levels is associated with a lesser degree of disease progression. CTRP1 stimulates aldosterone synthesis in the adrenal cortex by affecting aldosterone synthase expression. In dehydration, an increase in CTRP1 concentration helps to maintain normotension. It participates in processes related to the proliferation and maturation of chondrocytes. It also promotes atherosclerosis, and a surge in its concentration is correlated with a higher cardiovascular risk in patients with coronary atherosclerosis. In vascular smooth muscle cells, it induces the expression of proinflammatory cytokines. An increase in CTRP1 levels is correlated with the progression of the neoplastic process in patients with glioblastoma.
Collapse
Affiliation(s)
- Joanna Dorota Janowska
- Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
32
|
Jiang W, Li W, Hu X, Hu R, Li B, Lan L. CTRP1 prevents sepsis-induced cardiomyopathy via Sirt1-dependent pathways. Free Radic Biol Med 2020; 152:810-820. [PMID: 31991227 DOI: 10.1016/j.freeradbiomed.2020.01.178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
C1q/tumor necrosis factor-related protein 1 (CTRP1) has recently been identified as a key regulator of cardio-metabolic diseases. It has been reported that CTRP1 could inhibit the hypertrophic response in mice. However, the effect of CTRP1 on sepsis-induced cardiomyopathy remains completely unknown. Cardiomyocyte-specific CTRP1 overexpression was achieved using an adeno associated virus system in mice. CTRP1 deficiency mice were also subjected to lipopolysaccharide (LPS) injection. We found that CTRP1 overexpression improved survival rate and cardiac function, and suppressed myocardial inflammation, oxidative damage and apoptosis without affecting metabolic disturbance in LPS-treated mice. CTRP1 depletion further decreased survival rate and cardiac function, and promoting myocardial inflammation, oxidative damage and apoptosis in sepsis mice. In addition, we showed that CTRP1 provided protection against LPS-induced cell injury in vitro. CTRP1 activated sirtuin 1 (Sirt1) signaling pathway, and Sirt1 inhibition or deficiency blocked CTRP1-mediated cardioprotective effects in vivo and in vitro. More importantly, our study found that recombinant human globular domain of CTRP1 infusion was also capable of blocking sepsis-induced cardiomyopathy in mice. In conclusion, CTRP1 improved survival rate and attenuated LPS-induced cardiac injury via activating Sirt1 signaling pathway.
Collapse
Affiliation(s)
- Wanli Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wen Li
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoping Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Rui Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bowen Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Linhui Lan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
33
|
Li Y, Sun J, Gu L, Gao X. Protective effect of CTRP6 on cerebral ischemia/reperfusion injury by attenuating inflammation, oxidative stress and apoptosis in PC12 cells. Mol Med Rep 2020; 22:344-352. [PMID: 32377750 PMCID: PMC7248524 DOI: 10.3892/mmr.2020.11108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
The newly identified C1q/tumor necrosis factor (TNF)-related protein-6 (CTRP6) is a highly conserved paralog of adiponectin with modulatory effects on metabolism and inflammation. However, the role of CTRP6 in cerebral ischemia/reperfusion (I/R) injury remains unknown. The aim of the present study was to explore the protective effects of CTRP6 against cerebral I/R injury and elucidate the possible underlying mechanisms. Oxygen-glucose deprivation and reperfusion (OGD/R) was used to induce an I/R injury model in vitro. Western blotting, reverse transcription-quantitative PCR, ELISA and flow cytometry analysis were used to measure the levels of CTRP6 along with those of inflammation-, oxidative stress- and apoptosis-related cytokines. The results indicated that CTRP6 expression was markedly downregulated following OGD/R. OGD/R also increased i) the activities of pro-inflammatory factors TNF-α, interleukin (IL)-1β, IL-6 and the levels of the oxidative products reactive oxygen species and malondialdehyde; ii) the ratio of apoptotic PC12 cells and iii) the expression of the pro-apoptotic proteins Bax, cleaved caspase-3 and cleaved caspase-9. In addition, the activities of the anti-inflammatory factors IL-10 and superoxide dismutase and the expression of the anti-apoptotic protein Bcl-2 were decreased. However, overexpression of CTRP6 rescued OGD/R-stimulated exacerbation of inflammation, oxidative stress and apoptosis. Mechanistically, OGD/R activated Ras homolog family member A (RhoA)/Rho-associated coiled-coil-containing protein kinase (Rock)/phosphatase and tensin homologue deleted on chromosome 10 (PTEN) signaling, whereas CTRP6 overexpression restored the expression of RhoA, Rock, PTEN, phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt). Furthermore, when CTRP6 and RhoA were overexpressed at the same time, RhoA abolished the protective effects of CTRP6 overexpression on OGD/R-induced inflammation, oxidative stress and apoptosis, while the presence of a PTEN inhibitor recovered the protective effects of CTRP6. Taken together, the findings of the present study indicate that CTRP6 attenuates cerebral ischemia/reperfusion-induced inflammation, oxidative stress and apoptosis via inhibiting the RhoA/Rock/PTEN pathway, thereby activating PI3K/Akt signaling.
Collapse
Affiliation(s)
- Ying Li
- Rehabilitation Centre, Beijing Xiaotangshan Hospital, Beijing 102211, P.R. China
| | - Jie Sun
- Rehabilitation Centre, Beijing Xiaotangshan Hospital, Beijing 102211, P.R. China
| | - Lei Gu
- Rehabilitation Centre, Beijing Xiaotangshan Hospital, Beijing 102211, P.R. China
| | - Xufang Gao
- Department of Neurology, General Hospital of The Yangtze River Shipping and Wuhan Brain Hospital, Wuhan, Hubei 430010, P.R. China
| |
Collapse
|
34
|
Weng H, Pei Q, Yang M, Zhang J, Cheng Z, Yi Q. Hypomethylation of C1q/tumor necrosis factor-related protein-1 promoter region in whole blood and risks for coronary artery aneurysms in Kawasaki disease. Int J Cardiol 2020; 307:159-163. [PMID: 32081468 DOI: 10.1016/j.ijcard.2020.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 02/02/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Kawasaki disease (KD) is characterized as a self-limited systemic vasculitis. C1q/tumor necrosis factor-related protein-1 (CTRP1) had been associated with the occurrence of vasculitis in KD. Methylation at the promoter region of certain genes was reported to be involved in the development process of KD. This study aims to investigate the methylation levels of CTRP1 in KD, as well as, its potential to predict coronary artery aneurysms (CAAs). METHODS 31 patients with KD and 14 healthy controls (HCs) were recruited into this study. The KD group was further divided into KD with CAA (KD-CAAs) group and KD without NCAAs (KD-NCAAs) group. Methylation levels of CpG sites were determined by MethylTarget sequencing, a method that uses multiple targeted CpG methylation analysis. RESULTS The methylation levels of CTRP1 promoter region in the KD group were lower than that in the HC group at all predicted CpG sites, especially at sites 34, 51, 69, 79, 176 and 206. Compared with KD-CAAs group, the methylation levels of almost every CpG sites of CTRP1 were increased in the KD-NCAAs group, with site 69 and 154 found to be strongly related to the occurrence of CAAs. CONCLUSIONS The difference in methylation levels of CTRP1 promoter may be involved in the development process of KD, and may be a potential predictive marker for the occurrence of CAAs.
Collapse
Affiliation(s)
- Haobo Weng
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Qiongfei Pei
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Maoling Yang
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Jing Zhang
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, People's Republic of China
| | - Zhenli Cheng
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China.
| | - Qijian Yi
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China.
| |
Collapse
|
35
|
Rodriguez S, Little HC, Daneshpajouhnejad P, Shepard BD, Tan SY, Wolfe A, Cheema MU, Jandu S, Woodward OM, Talbot CC, Berkowitz DE, Rosenberg AZ, Pluznick JL, Wong GW. Late-onset renal hypertrophy and dysfunction in mice lacking CTRP1. FASEB J 2020; 34:2657-2676. [PMID: 31908037 PMCID: PMC7739198 DOI: 10.1096/fj.201900558rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022]
Abstract
Local and systemic factors that influence renal structure and function in aging are not well understood. The secretory protein C1q/TNF-related protein 1 (CTRP1) regulates systemic metabolism and cardiovascular function. We provide evidence here that CTRP1 also modulates renal physiology in an age- and sex-dependent manner. In mice lacking CTRP1, we observed significantly increased kidney weight and glomerular hypertrophy in aged male but not female or young mice. Although glomerular filtration rate, plasma renin and aldosterone levels, and renal response to water restriction did not differ between genotypes, CTRP1-deficient male mice had elevated blood pressure. Echocardiogram and pulse wave velocity measurements indicated normal heart function and vascular stiffness in CTRP1-deficient animals, and increased blood pressure was not due to greater salt retention. Paradoxically, CTRP1-deficient mice had elevated urinary sodium and potassium excretion, partially resulting from reduced expression of genes involved in renal sodium and potassium reabsorption. Despite renal hypertrophy, markers of inflammation, fibrosis, and oxidative stress were reduced in CTRP1-deficient mice. RNA sequencing revealed alterations and enrichments of genes in metabolic processes in CTRP1-deficient animals. These results highlight novel contributions of CTRP1 to aging-associated changes in renal physiology.
Collapse
Affiliation(s)
- Susana Rodriguez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hannah C. Little
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Blythe D. Shepard
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stefanie Y. Tan
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Muhammad Umar Cheema
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sandeep Jandu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Owen M. Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - C. Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dan E. Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jennifer L. Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
36
|
Otaka N, Shibata R, Ohashi K, Uemura Y, Kambara T, Enomoto T, Ogawa H, Ito M, Kawanishi H, Maruyama S, Joki Y, Fujikawa Y, Narita S, Unno K, Kawamoto Y, Murate T, Murohara T, Ouchi N. Myonectin Is an Exercise-Induced Myokine That Protects the Heart From Ischemia-Reperfusion Injury. Circ Res 2019; 123:1326-1338. [PMID: 30566056 DOI: 10.1161/circresaha.118.313777] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
RATIONALE Physical exercise provides benefits for various organ systems, and some of systemic effects of exercise are mediated through modulation of muscle-derived secreted factors, also known as myokines. Myonectin/C1q (complement component 1q)/TNF (tumor necrosis factor)-related protein 15/erythroferrone is a myokine that is upregulated in skeletal muscle and blood by exercise. OBJECTIVE We investigated the role of myonectin in myocardial ischemic injury. METHODS AND RESULTS Ischemia-reperfusion in myonectin-knockout mice led to enhancement of myocardial infarct size, cardiac dysfunction, apoptosis, and proinflammatory gene expression compared with wild-type mice. Conversely, transgenic overexpression of myonectin in skeletal muscle reduced myocardial damage after ischemia-reperfusion. Treadmill exercise increased circulating myonectin levels in wild-type mice, and it reduced infarct size after ischemia-reperfusion in wild-type mice, but not in myonectin-knockout mice. Treatment of cultured cardiomyocytes with myonectin protein attenuated hypoxia/reoxygenation-induced apoptosis via S1P (sphingosine-1-phosphate)-dependent activation of cAMP/Akt cascades. Similarly, myonectin suppressed inflammatory response to lipopolysaccharide in cultured macrophages through the S1P/cAMP/Akt-dependent signaling pathway. Moreover, blockade of S1P-dependent pathway reversed myonectin-mediated reduction of myocardial infarct size in mice after ischemia-reperfusion. CONCLUSIONS These data indicate that myonectin functions as an endurance exercise-induced myokine which ameliorates acute myocardial ischemic injury by suppressing apoptosis and inflammation in the heart, suggesting that myonectin mediates some of the beneficial actions of exercise on cardiovascular health.
Collapse
Affiliation(s)
- Naoya Otaka
- From the Department of Cardiology (N. Otaka, Y.U., T.K., H.O., M.I., H.K., S.M., Y.J., Y.F., S.N., K.U., T. Murohara), Nagoya University Graduate School of Medicine, Japan
| | - Rei Shibata
- Department of Advanced Cardiovascular Therapeutics (R.S.), Nagoya University Graduate School of Medicine, Japan
| | - Koji Ohashi
- Department of Molecular Medicine and Cardiology (K.O., T.E., N. Ouchi), Nagoya University Graduate School of Medicine, Japan
| | - Yusuke Uemura
- From the Department of Cardiology (N. Otaka, Y.U., T.K., H.O., M.I., H.K., S.M., Y.J., Y.F., S.N., K.U., T. Murohara), Nagoya University Graduate School of Medicine, Japan
| | - Takahiro Kambara
- From the Department of Cardiology (N. Otaka, Y.U., T.K., H.O., M.I., H.K., S.M., Y.J., Y.F., S.N., K.U., T. Murohara), Nagoya University Graduate School of Medicine, Japan
| | - Takashi Enomoto
- Department of Molecular Medicine and Cardiology (K.O., T.E., N. Ouchi), Nagoya University Graduate School of Medicine, Japan
| | - Hayato Ogawa
- From the Department of Cardiology (N. Otaka, Y.U., T.K., H.O., M.I., H.K., S.M., Y.J., Y.F., S.N., K.U., T. Murohara), Nagoya University Graduate School of Medicine, Japan
| | - Masanori Ito
- From the Department of Cardiology (N. Otaka, Y.U., T.K., H.O., M.I., H.K., S.M., Y.J., Y.F., S.N., K.U., T. Murohara), Nagoya University Graduate School of Medicine, Japan
| | - Hiroshi Kawanishi
- From the Department of Cardiology (N. Otaka, Y.U., T.K., H.O., M.I., H.K., S.M., Y.J., Y.F., S.N., K.U., T. Murohara), Nagoya University Graduate School of Medicine, Japan
| | - Sonomi Maruyama
- From the Department of Cardiology (N. Otaka, Y.U., T.K., H.O., M.I., H.K., S.M., Y.J., Y.F., S.N., K.U., T. Murohara), Nagoya University Graduate School of Medicine, Japan
| | - Yusuke Joki
- From the Department of Cardiology (N. Otaka, Y.U., T.K., H.O., M.I., H.K., S.M., Y.J., Y.F., S.N., K.U., T. Murohara), Nagoya University Graduate School of Medicine, Japan
| | - Yusuke Fujikawa
- From the Department of Cardiology (N. Otaka, Y.U., T.K., H.O., M.I., H.K., S.M., Y.J., Y.F., S.N., K.U., T. Murohara), Nagoya University Graduate School of Medicine, Japan
| | - Shingo Narita
- From the Department of Cardiology (N. Otaka, Y.U., T.K., H.O., M.I., H.K., S.M., Y.J., Y.F., S.N., K.U., T. Murohara), Nagoya University Graduate School of Medicine, Japan
| | - Kazumasa Unno
- From the Department of Cardiology (N. Otaka, Y.U., T.K., H.O., M.I., H.K., S.M., Y.J., Y.F., S.N., K.U., T. Murohara), Nagoya University Graduate School of Medicine, Japan
| | - Yoshiyuki Kawamoto
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan (Y.K., T. Murate)
| | - Takashi Murate
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan (Y.K., T. Murate)
| | - Toyoaki Murohara
- From the Department of Cardiology (N. Otaka, Y.U., T.K., H.O., M.I., H.K., S.M., Y.J., Y.F., S.N., K.U., T. Murohara), Nagoya University Graduate School of Medicine, Japan
| | - Noriyuki Ouchi
- Department of Molecular Medicine and Cardiology (K.O., T.E., N. Ouchi), Nagoya University Graduate School of Medicine, Japan
| |
Collapse
|
37
|
Liang W, Ye DD. The potential of adipokines as biomarkers and therapeutic agents for vascular complications in type 2 diabetes mellitus. Cytokine Growth Factor Rev 2019; 48:32-39. [PMID: 31229411 DOI: 10.1016/j.cytogfr.2019.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
Over the past decades, there has been a major increase in type 2 diabetes (T2D) prevalence in most regions of the world. Diabetic patients are more prone to cardiovascular complications. Accumulating evidence suggests that adipose tissue is not simply an energy storage tissue but it also functions as a secretory tissue producing a variety of bioactive substances, also referred to as adipokines. The balance between pro-inflammatory adipokines and protective adipokines is disturbed in type 2 diabetes, this can be regarded as adipose tissue dysfunction which partly promote the pathogenesis of diabetes complications. In this review, we not only discuss the favorable adipokines like adiponectin, omentin, C1q tumor necrosis factor-related proteins, but also unfavorable ones like resisitin and visfatin, in the aim of finding potential biomarkers recommended for the clinical use in the diagnosis, prognosis and follow up of patients with T2D at high risk of developing cardiovascular diseases as well as leading to new therapeutic approaches.
Collapse
Affiliation(s)
- Wei Liang
- Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China.
| | - Dong Dong Ye
- Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
38
|
Pinckard K, Baskin KK, Stanford KI. Effects of Exercise to Improve Cardiovascular Health. Front Cardiovasc Med 2019; 6:69. [PMID: 31214598 PMCID: PMC6557987 DOI: 10.3389/fcvm.2019.00069] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Obesity is a complex disease that affects whole body metabolism and is associated with an increased risk of cardiovascular disease (CVD) and Type 2 diabetes (T2D). Physical exercise results in numerous health benefits and is an important tool to combat obesity and its co-morbidities, including cardiovascular disease. Exercise prevents both the onset and development of cardiovascular disease and is an important therapeutic tool to improve outcomes for patients with cardiovascular disease. Some benefits of exercise include enhanced mitochondrial function, restoration and improvement of vasculature, and the release of myokines from skeletal muscle that preserve or augment cardiovascular function. In this review we will discuss the mechanisms through which exercise promotes cardiovascular health.
Collapse
Affiliation(s)
| | | | - Kristin I. Stanford
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
39
|
Circulating CTRP1 Levels Are Increased and Associated with the STOD in Essential Hypertension in Chinese Patients. Cardiovasc Ther 2019; 2019:4183781. [PMID: 31772610 PMCID: PMC6739797 DOI: 10.1155/2019/4183781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/22/2019] [Accepted: 04/28/2019] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate the correlation between complement C1q tumor necrosis factor-related protein 1 (CTRP1) and subclinical target organ damage (STOD) in essential hypertension (EH). 720 patients were enrolled in this study, including 360 healthy subjects and 360 patients with EH. The EH group included 183 patients complicated with STOD and 177 patients without STOD. In the STOD group, there were 87 patients with left ventricular hypertrophy (LVH), 32 patients with microalbuminuria (MAU), and 58 patients with complication of LVH and MAU. Enzyme-linked immunosorbent assay (ELISA) was used to detect the CTRP1, adiponectin (APN), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). We found that CTRP1 levels were higher in patients with EH than those in healthy subjects; moreover, the level of CTRP1 of patients in the group complicated with EH and STOD was increased compared with EH patients without STOD. CTRP1 levels in the group complicated with LVH and MAU were significantly higher than those in the LVH group and the MAU group. Furthermore, APN, CTRP1, and IL-6 were three factors that influenced the STOD of EH patients, among which CTRP1 and IL6 were positively related with the complication of hypertension and STOD. In conclusion, CTRP1 levels are increased and associated with the STOD (heart and kidney) in essential hypertension, which can be regarded as a novel biomarker in the prediction of prognosis for patients with essential hypertension.
Collapse
|
40
|
Shen L, Wang S, Ling Y, Liang W. Association of C1q/TNF-related protein-1 (CTRP1) serum levels with coronary artery disease. J Int Med Res 2019; 47:2571-2579. [PMID: 31081425 PMCID: PMC6567692 DOI: 10.1177/0300060519847372] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective Complement C1q tumor necrosis factor-related proteins (CTRPs), belonging to the CTRP superfamily, are extensively involved in regulating metabolism and the immune-inflammatory response. The inflammatory process is linked to the pathogenesis of coronary artery disease (CAD). Here, we investigated the association of serum levels of CTRP1 with CAD. Methods Study participants were divided into two groups according to the results of coronary angiography: a control group (n = 63) and a CAD group (n = 76). The concentrations of serum CTRP1 and inflammatory cytokines were determined by enzyme-linked immunosorbent assay. Further analysis of CTRP1 levels in individuals with different severities of CAD was conducted. The CAD severity was assessed by Gensini score. Results Serum levels of CTRP1 were significantly higher in CAD patients than in controls (17.24 ± 1.07 versus 9.31 ± 0.56 ng/mL), and CTRP1 levels increased with increasing severity of CAD. CTRP1 levels were positively correlated with concentrations of tumor necrosis factor-α and interleukin-6. Multiple logistic regression analysis showed that CTRP1 was significantly associated with CAD. Conclusions Our data showed close associations of serum CTRP1 levels with the prevalence and severity of CAD, indicating that CTRP1 can be regarded as a novel and valuable biomarker for CAD.
Collapse
Affiliation(s)
- Linhui Shen
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuhong Wang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Ling
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Yagmur E, Buergerhausen D, Koek GH, Weiskirchen R, Trautwein C, Koch A, Tacke F. Elevated CTRP1 Plasma Concentration Is Associated with Sepsis and Pre-Existing Type 2 Diabetes Mellitus in Critically Ill Patients. J Clin Med 2019; 8:jcm8050661. [PMID: 31083558 PMCID: PMC6572622 DOI: 10.3390/jcm8050661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
The adipokine family of C1q/TNF-like proteins (CTRP) plays a critical role in regulating systemic energy homeostasis and insulin sensitivity. It is involved in pathophysiological processes including inflammation and insulin-resistant obesity. Sepsis is associated with metabolic alterations and dysregulated adipokines, but the role of CTRP1 in critical illness and sepsis is unclear. We investigated CTRP1 plasma concentrations in 145 septic and 73 non-septic critically ill patients at admission to the medical intensive care unit (ICU) in comparison to 66 healthy controls. We also assessed associations of CTRP1 with clinical characteristics, adipokine levels, metabolic and inflammatory parameters. CTRP1 plasma concentration was significantly elevated in critically ill patients compared to healthy subjects. CTRP1 levels were significantly higher in ICU patients with sepsis. CTRP1 correlated strongly with markers of inflammatory response, renal function, liver damage and cholestasis. Furthermore, CTRP1 levels were higher in ICU patients with type 2 diabetes mellitus, and correlated with HbA1c and body mass index. This study demonstrates significantly elevated levels of CTRP1 in critically ill patients, particularly with sepsis, and links circulating CTRP1 to inflammatory and metabolic disturbances.
Collapse
Affiliation(s)
- Eray Yagmur
- Medical Care Center, Dr. Stein and Colleagues, D-41169 Mönchengladbach, Germany.
| | - David Buergerhausen
- Department of Medicine III, RWTH-University Hospital Aachen, D-52074 Aachen, Germany.
| | - Ger H Koek
- Section of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Medical Centre (MUMC), 6202AZ Maastricht, The Netherlands.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH-University Hospital Aachen, D-52074 Aachen, Germany.
| | - Christian Trautwein
- Department of Medicine III, RWTH-University Hospital Aachen, D-52074 Aachen, Germany.
| | - Alexander Koch
- Department of Medicine III, RWTH-University Hospital Aachen, D-52074 Aachen, Germany.
| | - Frank Tacke
- Department of Medicine III, RWTH-University Hospital Aachen, D-52074 Aachen, Germany.
- Department of Hepatology and Gastroenterology, Charité University Medical Center, D-10117 Berlin, Germany.
| |
Collapse
|
42
|
Little HC, Rodriguez S, Lei X, Tan SY, Stewart AN, Sahagun A, Sarver DC, Wong GW. Myonectin deletion promotes adipose fat storage and reduces liver steatosis. FASEB J 2019; 33:8666-8687. [PMID: 31002535 DOI: 10.1096/fj.201900520r] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We recently described myonectin (also known as erythroferrone) as a novel skeletal muscle-derived myokine with metabolic functions. Here, we use a genetic mouse model to determine myonectin's requirement for metabolic homeostasis. Female myonectin-deficient mice had larger gonadal fat pads and developed mild insulin resistance when fed a high-fat diet (HFD) and had reduced food intake during refeeding after an unfed period but were otherwise indistinguishable from wild-type littermates. Male mice lacking myonectin, however, had reduced physical activity when fed ad libitum and in the postprandial state but not during the unfed period. When stressed with an HFD, myonectin-knockout male mice had significantly elevated VLDL-triglyceride (TG) and strikingly impaired lipid clearance from circulation following an oral lipid load. Fat distribution between adipose and liver was also altered in myonectin-deficient male mice fed an HFD. Greater fat storage resulted in significantly enlarged adipocytes and was associated with increased postprandial lipoprotein lipase activity in adipose tissue. Parallel to this was a striking reduction in liver steatosis due to significantly reduced TG accumulation. Liver metabolite profiling revealed additional significant changes in bile acids and 1-carbon metabolism pathways. Combined, our data affirm the physiologic importance of myonectin in regulating local and systemic lipid metabolism.-Little, H. C., Rodriguez, S., Lei, X., Tan, S. Y., Stewart, A. N., Sahagun, A., Sarver, D. C., Wong, G. W. Myonectin deletion promotes adipose fat storage and reduces liver steatosis.
Collapse
Affiliation(s)
- Hannah C Little
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susana Rodriguez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xia Lei
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stefanie Y Tan
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ashley N Stewart
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ageline Sahagun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Ogawa H, Ohashi K, Ito M, Shibata R, Kanemura N, Yuasa D, Kambara T, Matsuo K, Hayakawa S, Hiramatsu-Ito M, Otaka N, Kawanishi H, Yamaguchi S, Enomoto T, Abe T, Kaneko M, Takefuji M, Murohara T, Ouchi N. Adipolin/CTRP12 protects against pathological vascular remodelling through suppression of smooth muscle cell growth and macrophage inflammatory response. Cardiovasc Res 2019; 116:237-249. [DOI: 10.1093/cvr/cvz074] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/23/2019] [Accepted: 03/14/2019] [Indexed: 01/06/2023] Open
Abstract
AbstractAimsSecreted factors produced by adipose tissue are involved in the pathogenesis of cardiovascular disease. We previously identified adipolin, also known as C1q/TNF-related protein 12, as an insulin-sensitizing adipokine. However, the role of adipolin in vascular disease remains unknown. Here, we investigated whether adipolin modulates pathological vascular remodelling.Methods and resultsAdipolin-knockout (APL-KO) and wild-type (WT) mice were subjected to wire-induced injury of the femoral artery. APL-KO mice showed increased neointimal thickening after vascular injury compared with WT mice, which was accompanied by an enhanced inflammatory response and vascular cell proliferation in injured arteries. Adipolin deficiency also led to a reduction in transforming growth factor-β (TGF-β) 1 protein levels in injured arteries. Treatment of cultured macrophages with adipolin protein led to a reduction in lipopolysaccharide-stimulated expression of inflammatory mediators, including tumour necrosis factor (TNF)-α, interleukin (IL) 6, and monocyte chemotactic protein (MCP)-1. These effects were reversed by inhibition of TGF-β receptor II (TGF-βRII)/Smad2 signalling. Adipolin also reduced platelet-derived growth factor (PDGF)-BB-stimulated proliferation of vascular smooth muscle cells (VSMCs) through a TGF-βRII/Smad2-dependent pathway. Furthermore, adipolin treatment significantly increased TGF-β1 concentration in media from cultured VSMCs and macrophages.ConclusionThese data indicate that adipolin protects against the development of pathological vascular remodelling by attenuating macrophage inflammatory responses and VSMC proliferation.
Collapse
Affiliation(s)
- Hayato Ogawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Ohashi
- Molecular Cardiovascular Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya 466-8550, Japan
| | - Masanori Ito
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rei Shibata
- Department of Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noriyoshi Kanemura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Yuasa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Kambara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Matsuo
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoko Hayakawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mizuho Hiramatsu-Ito
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoya Otaka
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kawanishi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shukuro Yamaguchi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Enomoto
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaya Abe
- Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Mari Kaneko
- Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Mikito Takefuji
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noriyuki Ouchi
- Molecular Cardiovascular Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
44
|
C1q and TNF related protein 1 regulates expression of inflammatory genes in vascular smooth muscle cells. Genes Genomics 2018; 41:397-406. [PMID: 30474828 DOI: 10.1007/s13258-018-0770-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND C1q and TNF related protein 1 (C1QTNF1) is known to be associated with coronary artery diseases. However, the molecular function of C1QTNF1 on the vascular smooth muscles remains to be investigated. OBJECTIVE This study was therefore undertaken to investigate the effect of C1QTNF1 on gene expression of human smooth muscle cells and to reveal potential molecular mechanisms mediated by C1QTNF1. METHODS Vascular smooth muscle cells were incubated with recombinant C1QTNF1 for 16 h, followed by determining any change in mRNA expressions by Affymetrix genechip. Gene ontology (GO), KEGG pathway, and protein-protein interaction (PPI) network were analyzed in differentially expressed genes. In addition, validation of microarray data was performed using quantitative real-time PCR. RESULTS The mRNA expressions of annotated 74 genes were significantly altered after incubation with recombinant C1QTNF1; 41 genes were up-regulated and 33 down-regulated. The differentially expressed genes were enriched in biological processes and KEGG pathways associated with inflammatory responses. In the PPI network analysis, IL-6, CCL2, and ICAM1 were identified as potential key genes with relatively high degree. The cluster analysis in the PPI network identified a significant module composed of upregulated genes, such as IL-6, CCL2, NFKBIA, SOD2, and ICAM1. The quantitative real-time PCR results of potential key genes were consistent with microarray data. CONCLUSION The results in the present study provide insights on the effects of C1QTNF1 on gene expression of smooth muscle cells. We believe our findings will help to elucidate the molecular mechanisms regarding the functions of C1QTNF1 on smooth muscle cells in inflammatory diseases.
Collapse
|
45
|
Chen R, Cai X, Liu J, Bai B, Li X. Sphingosine 1-phosphate promotes mesenchymal stem cell-mediated cardioprotection against myocardial infarction via ERK1/2-MMP-9 and Akt signaling axis. Life Sci 2018; 215:31-42. [PMID: 30367841 DOI: 10.1016/j.lfs.2018.10.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 01/03/2023]
Abstract
AIMS The sphingolipid metabolite sphingosine 1‑phosphate (S1P) has emerged as a potential cardioprotective molecule against ischemic heart disease. Moreover, S1P triggers mobilization and homing of bone marrow-derived stem/progenitor cells into the damaged heart. However, it remains elusive whether S1P promotes mesenchymal stem cells (MSCs)-mediated cardioprotection against ischemic heart diseases. MAIN METHODS Adipose tissue-derived MSCs (AT-MSCs) were obtained from GFP transgenic mice or C57BL/6J. Myocardial infarction (MI) was induced in C57BL/6J mice by ligation of the left anterior descending coronary artery (LAD). Subsequently, S1P-treated AT-MSCs or vehicle-treated AT-MSCs were intravenously administered for 24 h after induction of MI or sham procedure. KEY FINDINGS Pre-conditioning with S1P significantly enhanced the migratory and anti-apoptotic efficacies of AT-MSCs. In MI-induced mice, intravenous administration of S1P-treated AT-MSCs significantly augmented their homing and engraftment in ischemic area. Besides, AT-MSCs with S1P pre-treatment exhibited enhanced potencies to inhibit cardiomyocyte apoptosis and fibrosis, and stimulate angiogenesis and preserve cardiac function. Mechanistic studies revealed that S1P promoted AT-MSCs migration through activation of ERK1/2-MMP-9, and protected AT-MSCs against apoptosis via Akt activation. Further, S1P activated the ERK1/2 and Akt via S1P receptor 2 (S1PR2), but not through S1PR1. S1PR2 knockdown by siRNA, however, significantly attenuated S1P-mediated AT-MSCs migration and anti-apoptosis. SIGNIFICANCE The findings of the present study revealed the protective efficacies of S1P pretreatment on the survival/retention and cardioprotection of engrafted MSCs. Pre-conditioning of donor MSCs with S1P is an effective strategy to promote the therapeutic potential of MSCs for ischemic heart diseases.
Collapse
Affiliation(s)
- Ruirui Chen
- Department of Cardiology, Second Affiliated Hospital, Military Medical University of the Air Force, Xi'an 710038, China
| | - Xiqiang Cai
- Department of Cardiology, Second Affiliated Hospital, Military Medical University of the Air Force, Xi'an 710038, China
| | - Jing Liu
- Department of Cardiology, Second Affiliated Hospital, Military Medical University of the Air Force, Xi'an 710038, China
| | - Baobao Bai
- Department of Cardiology, Second Affiliated Hospital, Military Medical University of the Air Force, Xi'an 710038, China
| | - Xue Li
- Department of Cardiology, Second Affiliated Hospital, Military Medical University of the Air Force, Xi'an 710038, China.
| |
Collapse
|
46
|
Barbieri D, Goicoechea M, Sánchez-Niño MD, Ortiz A, Verde E, Verdalles U, Pérez de José A, Delgado A, Hurtado E, Sánchez-Cámara L, Lopez-Lazareno N, García-Prieto A, Luño J. Obesity and chronic kidney disease progression-the role of a new adipocytokine: C1q/tumour necrosis factor-related protein-1. Clin Kidney J 2018; 12:420-426. [PMID: 31198543 PMCID: PMC6543966 DOI: 10.1093/ckj/sfy095] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 01/09/2023] Open
Abstract
Background Obesity is a risk factor for incident chronic kidney disease (CKD) in the general population. C1q/tumour necrosis factor-related protein 1 (CTRP1) is a new adipokine with multiple vascular and metabolic effects and may modulate the association between obesity and vascular diseases. The aim of the study is to explore potential links between obesity, CTRP1 levels and CKD progression. Methods Patients with Stages 3 and 4 CKD without previous cardiovascular events were enrolled and divided into two groups according to body mass index (BMI). Demographic, clinical and analytical data and CTRP1 levels were collected at baseline. During follow-up, renal events [defined as dialysis initiation, serum creatinine doubling or a 50% decrease in estimated glomerular filtration rate (Modification of Diet in Renal Disease)] were registered. Results A total of 71 patients with CKD were divided into two groups: 25 obese (BMI >30 kg/m2) and 46 non-obese. CTRP1 in plasma at baseline was higher in obese patients [median (interquartile range) 360 (148) versus 288 (188) ng/mL, P = 0.041]. No significant association was found between CTRP1 levels and CKD stage, presence of diabetes, aldosterone and renin levels, or blood pressure. Obese patients had higher systolic blood pressure (P = 0.018) and higher high-sensitivity C-reactive protein (P = 0.019) and uric acid (P = 0.003) levels, without significant differences in the percentage of diabetic patients or albuminuria. During a mean follow-up of 65 months, 14 patients had a renal event. Patients with CTRP1 in the lowest tertile had more renal events, both in the overall sample (log rank: 5.810, P = 0.016) and among obese patients (log rank: 5.405, P = 0.020). Higher CTRP1 levels were associated with slower renal progression (hazard ratio 0.992, 95% confidence interval 0.986–0.998; P = 0.001) in a model adjusted for obesity, aspirin, albuminuria and renal function. Conclusions CTRP1 levels are higher in obese than in non-obese patients with CKD. High CTRP1 levels may have a renal protective role since they were associated with slower kidney disease progression. Interventional studies are needed to explore this hypothesis.
Collapse
Affiliation(s)
- Diego Barbieri
- Department of Nephrology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Marian Goicoechea
- Department of Nephrology, Hospital General Universitario Gregorio Marañon, Madrid, Spain.,Spanish Kidney Research Network (REDinREN), Madrid, Spain
| | - Maria Dolores Sánchez-Niño
- Spanish Kidney Research Network (REDinREN), Madrid, Spain.,Nephrology Department, IIS-Fundación Jimenez Diaz UAM, Madrid, Spain
| | - Alberto Ortiz
- Spanish Kidney Research Network (REDinREN), Madrid, Spain.,Nephrology Department, IIS-Fundación Jimenez Diaz UAM, Madrid, Spain
| | - Eduardo Verde
- Department of Nephrology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Ursula Verdalles
- Department of Nephrology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Ana Pérez de José
- Department of Nephrology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Andrés Delgado
- Department of Nephrology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Esther Hurtado
- Department of Nephrology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Luis Sánchez-Cámara
- Department of Nephrology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Nieves Lopez-Lazareno
- Biochemistry Department, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Ana García-Prieto
- Department of Nephrology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - José Luño
- Department of Nephrology, Hospital General Universitario Gregorio Marañon, Madrid, Spain.,Spanish Kidney Research Network (REDinREN), Madrid, Spain
| |
Collapse
|
47
|
Han S, Jeong AL, Lee S, Park JS, Buyanravjikh S, Kang W, Choi S, Park C, Han J, Son WC, Yoo KH, Cheong JH, Oh GT, Lee WY, Kim J, Suh SH, Lee SH, Lim JS, Lee MS, Yang Y. C1q/TNF-α–Related Protein 1 (CTRP1) Maintains Blood Pressure Under Dehydration Conditions. Circ Res 2018; 123:e5-e19. [DOI: 10.1161/circresaha.118.312871] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sora Han
- From the Research Institute of Women’s Health (S.H.)
| | - Ae Lee Jeong
- Sookmyung Women’s University, Seoul, Korea; New Drug Development Center, Osong Medical Innovation Foundation, Korea (A.L.J.)
| | - Sunyi Lee
- Research and Development Center, CJ HealthCare, Icheon, Korea (S.L.)
| | - Jeong Su Park
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute (J.S.P.)
| | | | - Wonku Kang
- Yonsei University College of Medicine, Seoul, Korea; College of Pharmacy, Chung-Ang University, Seoul, Korea (W.K., S.C., C.P.)
| | - Seungmok Choi
- Yonsei University College of Medicine, Seoul, Korea; College of Pharmacy, Chung-Ang University, Seoul, Korea (W.K., S.C., C.P.)
| | - Changmin Park
- Yonsei University College of Medicine, Seoul, Korea; College of Pharmacy, Chung-Ang University, Seoul, Korea (W.K., S.C., C.P.)
| | - Jin Han
- Department of Physiology, National Research Laboratory for Mitochondrial Signaling, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea (J.H.)
| | - Woo-Chan Son
- Pathology Department, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (W.-C.S.)
| | - Kyung Hyun Yoo
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| | - Jae Hoon Cheong
- Department of Pharmacy, Sahmyook University, Seoul, Korea (J.H.C.)
| | | | - Won-Young Lee
- Ewha Womans University, Seoul, Korea; Department of Endocrinology (W.-Y.L.)
- Department of Metabolism (W.-Y.L.)
| | - Jongwan Kim
- Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea; and Department of Laboratory Medicine, Dankook University School of Medicine, Cheonan, Korea (J.K.)
| | - Suk Hyo Suh
- Department of Physiology, Medical School (S.H.S.)
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital (S.-H.L.)
| | - Jong-Seok Lim
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| | - Myeong-Sok Lee
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| | - Young Yang
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| |
Collapse
|
48
|
Acar D, Tayyar A, Yuksel A, Atis Aydin A, Yıldırım G, Ekiz A, Dag I, Topcu G. Increased maternal C1q/TNF-related protein-1 (CTRP-1) serum levels in pregnancies with preeclampsia. J Matern Fetal Neonatal Med 2018; 33:639-644. [PMID: 30103635 DOI: 10.1080/14767058.2018.1498838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Objective: Metabolic changes and inflammation are involved in the pathogenesis of preeclampsia. Complement C1q tumor necrosis factor-related protein-1 (CTRP-1) is a pleiotropic molecule that possesses insulin-sensitizing effects and is also involved in lipid metabolism and inflammatory responses. The aim of the study was to investigate CTRP-1 levels in pregnancies with preeclampsia.Material and methods: Serum concentrations of CTRP-1 were measured in 29 pregnant women with early-onset preeclampsia (EOPE), 24 pregnant women with late-onset preeclampsia (LOPE), and 26 women with uncomplicated pregnancies using an enzyme-linked immunosorbent assay method.Results: Patients with both EOPE and LOPE had significantly higher serum concentrations of CTRP-1 compared to the healthy controls (p < .001). However, no significant difference was found between the EOPE and LOPE groups regarding CTRP-1 levels (p = 1.000). Correlation analysis showed that CTRP-1 levels were positively correlated with systolic blood pressure (p < .001), diastolic blood pressure (p < .001), and mean UtA PI (p < .001) but negatively correlated with gestational age at delivery (p = .001) and birth weight (p < .001).Conclusions: Serum CTRP-1 levels were significantly higher in patients with both EOPE and LOPE than in healthy pregnant women.
Collapse
Affiliation(s)
- Deniz Acar
- Maternal Fetal Medicine Unit, Health Sciences University Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | - Ahmet Tayyar
- Maternal Fetal Medicine Unit, Health Sciences University Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | - Aytac Yuksel
- Maternal Fetal Medicine Unit, Health Sciences University Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | - Alev Atis Aydin
- Maternal Fetal Medicine Unit, Health Sciences University Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | - Gokhan Yıldırım
- Maternal Fetal Medicine Unit, Health Sciences University Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | - Ali Ekiz
- Maternal Fetal Medicine Unit, Health Sciences University Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | | | - Goknur Topcu
- Department of Obstetrics and Gynecology, Health Sciences University Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
49
|
Chen H, Gao L, Huang Z, Liu Y, Guo S, Xing J, Meng Z, Liang C, Li Y, Yao R, Li L, Zhang Y, Gu H, Liu Y. C1qTNF-related protein 1 attenuates doxorubicin-induced cardiac injury via activation of AKT. Life Sci 2018; 207:492-498. [DOI: 10.1016/j.lfs.2018.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 11/15/2022]
|
50
|
Wu L, Gao L, Zhang D, Yao R, Huang Z, Du B, Wang Z, Xiao L, Li P, Li Y, Liang C, Zhang Y. C1QTNF1 attenuates angiotensin II-induced cardiac hypertrophy via activation of the AMPKa pathway. Free Radic Biol Med 2018; 121:215-230. [PMID: 29733904 DOI: 10.1016/j.freeradbiomed.2018.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/18/2018] [Accepted: 05/04/2018] [Indexed: 12/12/2022]
Abstract
RATIONALE Complement C1q tumor necrosis factor related proteins (C1QTNFs) have been reported to have diverse biological influence on the cardiovascular system. C1QTNF1 is a member of the CTRP superfamily. C1QTNF1 is expressed in the myocardium; however, its function in myocytes has not yet been investigated. OBJECTIVE To systematically investigate the roles of C1QTNF1 in angiotensin II (Ang II)-induced cardiac hypertrophy. METHODS AND RESULTS C1QTNF1 knock-out mice were used with the aim of determining the role of C1QTNF1 in cardiac hypertrophy in the adult heart. Data from experiments showed that C1QTNF1 was up-regulated during cardiac hypertrophic processes, which were triggered by increased reactive oxygen species. C1QTNF1 deficiency accelerated cardiac hypertrophy, fibrosis, inflammation responses, and oxidative stress with deteriorating cardiac dysfunction in the Ang II-induced cardiac hypertrophy mouse model. We identified C1QTNF1 as a negative regulator of cardiomyocyte hypertrophy in Ang II-stimulated neonatal rat cardiomyocytes using the recombinant human globular domain of C1QTNF1 and C1QTNF1 siRNA. Injection of the recombinant human globular domain of C1QTNF1 also suppressed the Ang II-induced cardiac hypertrophic response in vivo. The anti-hypertrophic effects of C1QTNF1 rely on AMPKa activation, which inhibits mTOR P70S6K phosphorylation. An AMPKa inhibitor abrogated the anti-hypertrophic effects of the recombinant human globular domain of C1QTNF1 both in vivo and vitro. Moreover, C1QTNF1-mediated AMPKa activation was triggered by the inhibition of PDE1-4, which subsequently activated the cAMP/PKA/LKB1 pathway. CONCLUSION Our results demonstrated that C1QTNF1 improves cardiac function and inhibits cardiac hypertrophy and fibrosis by increasing and activating AMPKa, suggesting that C1QTNF1 could be a therapeutic target for cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Leiming Wu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Dianhong Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Rui Yao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Zhen Huang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Binbin Du
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Zheng Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Lili Xiao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Pengcheng Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Yapeng Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Cui Liang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China
| | - Yanzhou Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450052, China.
| |
Collapse
|