1
|
Murgia M, Rittweger J, Reggiani C, Bottinelli R, Mann M, Schiaffino S, Narici MV. Spaceflight on the ISS changed the skeletal muscle proteome of two astronauts. NPJ Microgravity 2024; 10:60. [PMID: 38839773 PMCID: PMC11153545 DOI: 10.1038/s41526-024-00406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Skeletal muscle undergoes atrophy and loss of force during long space missions, when astronauts are persistently exposed to altered gravity and increased ionizing radiation. We previously carried out mass spectrometry-based proteomics from skeletal muscle biopsies of two astronauts, taken before and after a mission on the International Space Station. The experiments were part of an effort to find similarities between spaceflight and bed rest, a ground-based model of unloading, focused on proteins located at the costameres. We here extend the data analysis of the astronaut dataset and show compartment-resolved changes in the mitochondrial proteome, remodeling of the extracellular matrix and of the antioxidant response. The astronauts differed in their level of onboard physical exercise, which correlated with their respective preservation of muscle mass and force at landing in previous analyses. We show that the mitochondrial proteome downregulation during spaceflight, particularly the inner membrane and matrix, was dramatic for both astronauts. The expression of autophagy regulators and reactive oxygen species scavengers, however, showed partially opposite expression trends in the two subjects, possibly correlating with their level of onboard exercise. As mitochondria are primarily affected in many different tissues during spaceflight, we hypothesize that reactive oxygen species (ROS) rather than mechanical unloading per se could be the primary cause of skeletal muscle mitochondrial damage in space. Onboard physical exercise might have a strong direct effect on the prevention of muscle atrophy through mechanotransduction and a subsidiary effect on mitochondrial quality control, possibly through upregulation of autophagy and anti-oxidant responses.
Collapse
Affiliation(s)
- Marta Murgia
- Department of Biomedical Sciences, University of Padova, 35131, Padua, Italy.
- Max-Planck-Institute of Biochemistry, 82152, Martinsried, Germany.
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University Hospital Cologne, Cologne, Germany
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, 35131, Padua, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, 6000, Koper, Slovenia
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Matthias Mann
- Department of Biomedical Sciences, University of Padova, 35131, Padua, Italy
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, 35131, Padua, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, 6000, Koper, Slovenia
- CIR-MYO Myology Center, 35121, Padua, Italy
| |
Collapse
|
2
|
Campisi M, Cannella L, Pavanello S. Cosmic chronometers: Is spaceflight a catalyst for biological ageing? Ageing Res Rev 2024; 95:102227. [PMID: 38346506 DOI: 10.1016/j.arr.2024.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/05/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Astronauts returning from space missions often exhibit health issues mirroring age-related conditions, suggesting spaceflight as a potential driver of biological ageing and age-related diseases. To unravel the underlying mechanisms of these conditions, this comprehensive review explores the impact of the space "exposome" on the twelve hallmarks of ageing. Through a meticulous analysis encompassing both space environments and terrestrial analogs, we aim to decipher how different conditions influence ageing hallmarks. Utilizing PubMed, we identified 189 studies and 60 meet screening criteria. Research on biological ageing in space has focused on genomic instability, chronic inflammation, and deregulated nutrient sensing. Spaceflight consistently induces genomic instability, linked to prolonged exposure to ionizing radiation, triggers pro-inflammatory and immune alterations, resembling conditions in isolated simulations. Nutrient sensing pathways reveal increased systemic insulin-like growth-factor-1. Microbiome studies indicate imbalances favoring opportunistic species during spaceflight. Telomere dynamics present intriguing patterns, with lengthening during missions and rapid shortening upon return. Despite a pro-ageing trend, some protective mechanisms emerge. Countermeasures, encompassing dietary adjustments, prebiotics, postbiotics, symbiotics, tailored exercises, meditation, and anti-inflammatory supplements, exhibit potential. Spaceflight's impact on ageing is intricate, with diverse findings challenging established beliefs. Multidisciplinary studies provide guidance for future research in this field.
Collapse
Affiliation(s)
- Manuela Campisi
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Luana Cannella
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy.
| |
Collapse
|
3
|
Neikirk K, Stephens DC, Beasley HK, Marshall AG, Gaddy JA, Damo SM, Hinton A. Is space the final frontier for mitochondrial study? Biotechniques 2024; 76:46-51. [PMID: 38084381 DOI: 10.2144/btn-2023-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Tweetable abstract This perspective considers several avenues for future research on mitochondrial dynamics, stress, and DNA in outer space.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Dominique C Stephens
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Department of Life & Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Heather K Beasley
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Andrea G Marshall
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Steven M Damo
- Department of Life & Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Antentor Hinton
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Roggan MD, Kronenberg J, Wollert E, Hoffmann S, Nisar H, Konda B, Diegeler S, Liemersdorf C, Hellweg CE. Unraveling astrocyte behavior in the space brain: Radiation response of primary astrocytes. Front Public Health 2023; 11:1063250. [PMID: 37089489 PMCID: PMC10116417 DOI: 10.3389/fpubh.2023.1063250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/06/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionExposure to space conditions during crewed long-term exploration missions can cause several health risks for astronauts. Space radiation, isolation and microgravity are major limiting factors. The role of astrocytes in cognitive disturbances by space radiation is unknown. Astrocytes' response toward low linear energy transfer (LET) X-rays and high-LET carbon (12C) and iron (56Fe) ions was compared to reveal possible effects of space-relevant high-LET radiation. Since astronauts are exposed to ionizing radiation and microgravity during space missions, the effect of simulated microgravity on DNA damage induction and repair was investigated.MethodsPrimary murine cortical astrocytes were irradiated with different doses of X-rays, 12C and 56Fe ions at the heavy ion accelerator GSI. DNA damage and repair (γH2AX, 53BP1), cell proliferation (Ki-67), astrocytes' reactivity (GFAP) and NF-κB pathway activation (p65) were analyzed by immunofluorescence microscopy. Cell cycle progression was investigated by flow cytometry of DNA content. Gene expression changes after exposure to X- rays were investigated by mRNA-sequencing. RT-qPCR for several genes of interest was performed with RNA from X-rays- and heavy-ion-irradiated astrocytes: Cdkn1a, Cdkn2a, Gfap, Tnf, Il1β, Il6, and Tgfβ1. Levels of the pro inflammatory cytokine IL-6 were determined using ELISA. DNA damage response was investigated after exposure to X-rays followed by incubation on a 2D clinostat to simulate the conditions of microgravity.ResultsAstrocytes showed distinct responses toward the three different radiation qualities. Induction of radiation-induced DNA double strand breaks (DSBs) and the respective repair was dose-, LET- and time-dependent. Simulated microgravity had no significant influence on DNA DSB repair. Proliferation and cell cycle progression was not affected by radiation qualities examined in this study. Astrocytes expressed IL-6 and GFAP with constitutive NF-κB activity independent of radiation exposure. mRNA sequencing of X-irradiated astrocytes revealed downregulation of 66 genes involved in DNA damage response and repair, mitosis, proliferation and cell cycle regulation.DiscussionIn conclusion, primary murine astrocytes are DNA repair proficient irrespective of radiation quality. Only minor gene expression changes were observed after X-ray exposure and reactivity was not induced. Co-culture of astrocytes with microglial cells, brain organoids or organotypic brain slice culture experiments might reveal whether astrocytes show a more pronounced radiation response in more complex network architectures in the presence of other neuronal cell types.
Collapse
Affiliation(s)
- Marie Denise Roggan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jessica Kronenberg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Microgravity User Support Center (MUSC), German Aerospace Center (DLR), Cologne, Germany
| | - Esther Wollert
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sven Hoffmann
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sebastian Diegeler
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Christian Liemersdorf
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Christine E. Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- *Correspondence: Christine E. Hellweg
| |
Collapse
|
5
|
Iordachescu A, Eisenstein N, Appleby-Thomas G. Space habitats for bioengineering and surgical repair: addressing the requirement for reconstructive and research tissues during deep-space missions. NPJ Microgravity 2023; 9:23. [PMID: 36966158 PMCID: PMC10039948 DOI: 10.1038/s41526-023-00266-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/13/2023] [Indexed: 03/27/2023] Open
Abstract
Numerous technical scenarios have been developed to facilitate a human return to the Moon, and as a testbed for a subsequent mission to Mars. Crews appointed with constructing and establishing planetary bases will require a superior level of physical ability to cope with the operational demands. However, the challenging environments of nearby planets (e.g. geological, atmospheric, gravitational conditions) as well as the lengthy journeys through microgravity, will lead to progressive tissue degradation and an increased susceptibility to injury. The isolation, distance and inability to evacuate in an emergency will require autonomous medical support, as well as a range of facilities and specialised equipment to repair tissue damage on-site. Here, we discuss the design requirements of such a facility, in the form of a habitat that would concomitantly allow tissue substitute production, maintenance and surgical implantation, with an emphasis on connective tissues. The requirements for the individual modules and their operation are identified. Several concepts are assessed, including the presence of adjacent wet lab and medical modules supporting the gradual implementation of regenerative biomaterials and acellular tissue substitutes, leading to eventual tissue grafts and, in subsequent decades, potential tissues/organ-like structures. The latter, currently in early phases of development, are assessed particularly for researching the effects of extreme conditions on representative analogues for astronaut health support. Technical solutions are discussed for bioengineering in an isolated planetary environment with hypogravity, from fluid-gel bath suspended manufacture to cryostorage, cell sourcing and on-site resource utilisation for laboratory infrastructure. Surgical considerations are also discussed.
Collapse
Affiliation(s)
- Alexandra Iordachescu
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
- Consortium for organotypic research on ageing and microgravity, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
- Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
- Cranfield Defence and Security, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, SN6 8LA, United Kingdom.
| | - Neil Eisenstein
- Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Gareth Appleby-Thomas
- Consortium for organotypic research on ageing and microgravity, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
- Cranfield Defence and Security, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, SN6 8LA, United Kingdom
| |
Collapse
|
6
|
Capri M, Conte M, Ciurca E, Pirazzini C, Garagnani P, Santoro A, Longo F, Salvioli S, Lau P, Moeller R, Jordan J, Illig T, Villanueva MM, Gruber M, Bürkle A, Franceschi C, Rittweger J. Long-term human spaceflight and inflammaging: Does it promote aging? Ageing Res Rev 2023; 87:101909. [PMID: 36918115 DOI: 10.1016/j.arr.2023.101909] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Spaceflight and its associated stressors, such as microgravity, radiation exposure, confinement, circadian derailment and disruptive workloads represent an unprecedented type of exposome that is entirely novel from an evolutionary stand point. Within this perspective, we aimed to review the effects of prolonged spaceflight on immune-neuroendocrine systems, brain and brain-gut axis, cardiovascular system and musculoskeletal apparatus, highlighting in particular the similarities with an accelerated aging process. In particular, spaceflight-induced muscle atrophy/sarcopenia and bone loss, vascular and metabolic changes, hyper and hypo reaction of innate and adaptive immune system appear to be modifications shared with the aging process. Most of these modifications are mediated by molecular events that include oxidative and mitochondrial stress, autophagy, DNA damage repair and telomere length alteration, among others, which directly or indirectly converge on the activation of an inflammatory response. According to the inflammaging theory of aging, such an inflammatory response could be a driver of an acceleration of the normal, physiological rate of aging and it is likely that all the systemic modifications in turn lead to an increase of inflammaging in a sort of vicious cycle. The most updated countermeasures to fight these modifications will be also discussed in the light of their possible application not only for astronauts' benefit, but also for older adults on the ground.
Collapse
Affiliation(s)
- Miriam Capri
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy.
| | - Erika Ciurca
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Chiara Pirazzini
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy; Clinical Chemistry Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden; CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy; Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Aurelia Santoro
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Federica Longo
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrick Lau
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Ralf Moeller
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Maria-Moreno Villanueva
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claudio Franceschi
- Department of Applied Mathematics of the Institute of ITMM, National Research Lobachevsky State University of Nizhny Novgorod, the Russian Federation
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Blottner D, Moriggi M, Trautmann G, Hastermann M, Capitanio D, Torretta E, Block K, Rittweger J, Limper U, Gelfi C, Salanova M. Space Omics and Tissue Response in Astronaut Skeletal Muscle after Short and Long Duration Missions. Int J Mol Sci 2023; 24:ijms24044095. [PMID: 36835504 PMCID: PMC9962627 DOI: 10.3390/ijms24044095] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The molecular mechanisms of skeletal muscle adaptation to spaceflight are as yet not fully investigated and well understood. The MUSCLE BIOPSY study analyzed pre and postflight deep calf muscle biopsies (m. soleus) obtained from five male International Space Station (ISS) astronauts. Moderate rates of myofiber atrophy were found in long-duration mission (LDM) astronauts (~180 days in space) performing routine inflight exercise as countermeasure (CM) compared to a short-duration mission (SDM) astronaut (11 days in space, little or no inflight CM) for reference control. Conventional H&E scout histology showed enlarged intramuscular connective tissue gaps between myofiber groups in LDM post vs. preflight. Immunoexpression signals of extracellular matrix (ECM) molecules, collagen 4 and 6, COL4 and 6, and perlecan were reduced while matrix-metalloproteinase, MMP2, biomarker remained unchanged in LDM post vs. preflight suggesting connective tissue remodeling. Large scale proteomics (space omics) identified two canonical protein pathways associated to muscle weakness (necroptosis, GP6 signaling/COL6) in SDM and four key pathways (Fatty acid β-oxidation, integrin-linked kinase ILK, Rho A GTPase RHO, dilated cardiomyopathy signaling) explicitly in LDM. The levels of structural ECM organization proteins COL6A1/A3, fibrillin 1, FBN1, and lumican, LUM, increased in postflight SDM vs. LDM. Proteins from tricarboxylic acid, TCA cycle, mitochondrial respiratory chain, and lipid metabolism mostly recovered in LDM vs. SDM. High levels of calcium signaling proteins, ryanodine receptor 1, RyR1, calsequestrin 1/2, CASQ1/2, annexin A2, ANXA2, and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA1) pump, ATP2A, were signatures of SDM, and decreased levels of oxidative stress peroxiredoxin 1, PRDX1, thioredoxin-dependent peroxide reductase, PRDX3, or superoxide dismutase [Mn] 2, SOD2, signatures of LDM postflight. Results help to better understand the spatiotemporal molecular adaptation of skeletal muscle and provide a large scale database of skeletal muscle from human spaceflight for the better design of effective CM protocols in future human deep space exploration.
Collapse
Affiliation(s)
- Dieter Blottner
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
- NeuroMuscular System & Signaling Group, Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-528-347
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Gabor Trautmann
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Maria Hastermann
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
- NeuroMuscular System & Signaling Group, Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | | | - Katharina Block
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Joern Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Department of Pediatrics and Adolescence Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Ulrich Limper
- Department of Anaesthesiology and Intensive Care Medicine, Merheim Medical Center, Witten/Herdecke University, 51109 Cologne, Germany
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy
| | - Michele Salanova
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
- NeuroMuscular System & Signaling Group, Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany
| |
Collapse
|
8
|
Biosensor integrated tissue chips and their applications on Earth and in space. Biosens Bioelectron 2023; 222:114820. [PMID: 36527831 PMCID: PMC10143284 DOI: 10.1016/j.bios.2022.114820] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/24/2022] [Accepted: 10/13/2022] [Indexed: 12/27/2022]
Abstract
The development of space exploration technologies has positively impacted everyday life on Earth in terms of communication, environmental, social, and economic perspectives. The human body constantly fluctuates during spaceflight, even for a short-term mission. Unfortunately, technology is evolving faster than humans' ability to adapt, and many therapeutics entering clinical trials fail even after being subjected to vigorous in vivo testing due to toxicity and lack of efficacy. Therefore, tissue chips (also mentioned as organ-on-a-chip) with biosensors are being developed to compensate for the lack of relevant models to help improve the drug development process. There has been a push to monitor cell and tissue functions, based on their biological signals and utilize the integration of biosensors into tissue chips in space to monitor and assess cell microenvironment in real-time. With the collaboration between the Center for the Advancement of Science in Space (CASIS), the National Aeronautics and Space Administration (NASA) and other partners, they are providing the opportunities to study the effects of microgravity environment has on the human body. Institutions such as the National Institute of Health (NIH) and National Science Foundation (NSF) are partnering with CASIS and NASA to utilize tissue chips onboard the International Space Station (ISS). This article reviews the endless benefits of space technology, the development of integrated biosensors in tissue chips and their applications to better understand human biology, physiology, and diseases in space and on Earth, followed by future perspectives of tissue chip applications on Earth and in space.
Collapse
|
9
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
10
|
Raffin J, de Souto Barreto P, Le Traon AP, Vellas B, Aubertin-Leheudre M, Rolland Y. Sedentary behavior and the biological hallmarks of aging. Ageing Res Rev 2023; 83:101807. [PMID: 36423885 DOI: 10.1016/j.arr.2022.101807] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
While the benefits of physical exercise for a healthy aging are well-recognized, a growing body of evidence shows that sedentary behavior has deleterious health effects independently, to some extent, of physical activity levels. Yet, the increasing prevalence of sedentariness constitutes a major public health issue that contributes to premature aging but the potential cellular mechanisms through which prolonged immobilization may accelerate biological aging remain unestablished. This narrative review summarizes the impact of sedentary behavior using different models of extreme sedentary behaviors including bedrest, unilateral limb suspension and space travel studies, on the hallmarks of aging such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. We further highlight the remaining knowledge gaps that need more research in order to promote healthspan extension and to provide future contributions to the field of geroscience.
Collapse
Affiliation(s)
- Jérémy Raffin
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France.
| | - Philipe de Souto Barreto
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Anne Pavy Le Traon
- Institute for Space Medicine and Physiology (MEDES), Neurology Department CHU Toulouse, INSERM U 1297, Toulouse, France
| | - Bruno Vellas
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Mylène Aubertin-Leheudre
- Département des Sciences de l'activité physique, Faculté des sciences, Université du Québec à Montréal, Montreal, Canada; Centre de recherche, Institut universitaire de gériatrie de Montréal (IUGM), CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Canada, Faculté des sciences, Université du Québec à Montréal, Montreal, Canada
| | - Yves Rolland
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| |
Collapse
|
11
|
Stalmach A, Boehm I, Fernandes M, Rutter A, Skipworth RJE, Husi H. Gene Ontology (GO)-Driven Inference of Candidate Proteomic Markers Associated with Muscle Atrophy Conditions. Molecules 2022; 27:5514. [PMID: 36080280 PMCID: PMC9457532 DOI: 10.3390/molecules27175514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle homeostasis is essential for the maintenance of a healthy and active lifestyle. Imbalance in muscle homeostasis has significant consequences such as atrophy, loss of muscle mass, and progressive loss of functions. Aging-related muscle wasting, sarcopenia, and atrophy as a consequence of disease, such as cachexia, reduce the quality of life, increase morbidity and result in an overall poor prognosis. Investigating the muscle proteome related to muscle atrophy diseases has a great potential for diagnostic medicine to identify (i) potential protein biomarkers, and (ii) biological processes and functions common or unique to muscle wasting, cachexia, sarcopenia, and aging alone. We conducted a meta-analysis using gene ontology (GO) analysis of 24 human proteomic studies using tissue samples (skeletal muscle and adipose biopsies) and/or biofluids (serum, plasma, urine). Whilst there were few similarities in protein directionality across studies, biological processes common to conditions were identified. Here we demonstrate that the GO analysis of published human proteomics data can identify processes not revealed by single studies. We recommend the integration of proteomics data from tissue samples and biofluids to yield a comprehensive overview of the human skeletal muscle proteome. This will facilitate the identification of biomarkers and potential pathways of muscle-wasting conditions for use in clinics.
Collapse
Affiliation(s)
- Angelique Stalmach
- Centre for Health Science, Division of Biomedical Sciences, Institute of Health Research and Innovation, School of Health, Social Care and Life Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | - Ines Boehm
- Edinburgh Cancer Research UK Tissue Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marco Fernandes
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Alison Rutter
- Centre for Health Science, Division of Biomedical Sciences, Institute of Health Research and Innovation, School of Health, Social Care and Life Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | - Richard J. E. Skipworth
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Holger Husi
- Centre for Health Science, Division of Biomedical Sciences, Institute of Health Research and Innovation, School of Health, Social Care and Life Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
12
|
Richter C, Braunstein B, Staeudle B, Attias J, Suess A, Weber T, Mileva KN, Rittweger J, Green DA, Albracht K. Contractile behavior of the gastrocnemius medialis muscle during running in simulated hypogravity. NPJ Microgravity 2021; 7:32. [PMID: 34373462 PMCID: PMC8352871 DOI: 10.1038/s41526-021-00155-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Vigorous exercise countermeasures in microgravity can largely attenuate muscular degeneration, albeit the extent of applied loading is key for the extent of muscle wasting. Running on the International Space Station is usually performed with maximum loads of 70% body weight (0.7 g). However, it has not been investigated how the reduced musculoskeletal loading affects muscle and series elastic element dynamics, and thereby force and power generation. Therefore, this study examined the effects of running on the vertical treadmill facility, a ground-based analog, at simulated 0.7 g on gastrocnemius medialis contractile behavior. The results reveal that fascicle-series elastic element behavior differs between simulated hypogravity and 1 g running. Whilst shorter peak series elastic element lengths at simulated 0.7 g appear to be the result of lower muscular and gravitational forces acting on it, increased fascicle lengths and decreased velocities could not be anticipated, but may inform the development of optimized running training in hypogravity. However, whether the alterations in contractile behavior precipitate musculoskeletal degeneration warrants further study.
Collapse
Affiliation(s)
- Charlotte Richter
- Department of Medical Engineering and Technomathematics, University of Applied Sciences Aachen, Aachen, Germany.
- German Sport University Cologne, Institute of Movement and Neurosciences, Cologne, Germany.
| | - Bjoern Braunstein
- German Sport University Cologne, Institute of Movement and Neurosciences, Cologne, Germany
- German Sport University Cologne, Institute of Biomechanics and Orthopaedics, Cologne, Germany
- Centre for Health and Integrative Physiology in Space (CHIPS), Cologne, Germany
- German Research Centre of Elite Sport, Cologne, Germany
| | - Benjamin Staeudle
- Department of Medical Engineering and Technomathematics, University of Applied Sciences Aachen, Aachen, Germany
- German Sport University Cologne, Institute of Movement and Neurosciences, Cologne, Germany
| | - Julia Attias
- King's College London, Centre of Human and Applied Physiological Sciences, London, UK
| | - Alexander Suess
- European Astronaut Centre (EAC), European Space Agency, Space Medicine Team (HRE-OM), Cologne, Germany
| | - Tobias Weber
- European Astronaut Centre (EAC), European Space Agency, Space Medicine Team (HRE-OM), Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Katya N Mileva
- London South Bank University, School of Applied Sciences, London, UK
| | - Joern Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - David A Green
- King's College London, Centre of Human and Applied Physiological Sciences, London, UK
- European Astronaut Centre (EAC), European Space Agency, Space Medicine Team (HRE-OM), Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Kirsten Albracht
- Department of Medical Engineering and Technomathematics, University of Applied Sciences Aachen, Aachen, Germany
- German Sport University Cologne, Institute of Movement and Neurosciences, Cologne, Germany
- Institute for Bioengineering, University of Applied Sciences Aachen, Aachen, Germany
| |
Collapse
|
13
|
Paul AM, Overbey EG, da Silveira WA, Szewczyk N, Nishiyama NC, Pecaut MJ, Anand S, Galazka JM, Mao XW. Immunological and hematological outcomes following protracted low dose/low dose rate ionizing radiation and simulated microgravity. Sci Rep 2021; 11:11452. [PMID: 34075076 PMCID: PMC8169688 DOI: 10.1038/s41598-021-90439-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022] Open
Abstract
Using a ground-based model to simulate spaceflight [21-days of single-housed, hindlimb unloading (HLU) combined with continuous low-dose gamma irradiation (LDR, total dose of 0.04 Gy)], an in-depth survey of the immune and hematological systems of mice at 7-days post-exposure was performed. Collected blood was profiled with a hematology analyzer and spleens were analyzed by whole transcriptome shotgun sequencing (RNA-sequencing). The results revealed negligible differences in immune differentials. However, hematological system analyses of whole blood indicated large disparities in red blood cell differentials and morphology, suggestive of anemia. Murine Reactome networks indicated majority of spleen cells displayed differentially expressed genes (DEG) involved in signal transduction, metabolism, cell cycle, chromatin organization, and DNA repair. Although immune differentials were not changed, DEG analysis of the spleen revealed expression profiles associated with inflammation and dysregulated immune function persist to 1-week post-simulated spaceflight. Additionally, specific regulation pathways associated with human blood disease gene orthologs, such as blood pressure regulation, transforming growth factor-β receptor signaling, and B cell differentiation were noted. Collectively, this study revealed differential immune and hematological outcomes 1-week post-simulated spaceflight conditions, suggesting recovery from spaceflight is an unremitting process.
Collapse
Affiliation(s)
- Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA. .,Universities Space Research Association, Columbia, MD, 21046, USA. .,Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA.
| | - Eliah G Overbey
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Willian A da Silveira
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Institute for Global Food Security (IGFS), Queen's University, Belfast, BT9 5DL, Northern Ireland, UK
| | - Nathaniel Szewczyk
- Ohio Musculoskeletal and Neurological Institute and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Nina C Nishiyama
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Michael J Pecaut
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Sulekha Anand
- Department of Biological Sciences, San Jose University, San Jose, CA, 95192, USA
| | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| |
Collapse
|
14
|
Limper U, Tank J, Ahnert T, Maegele M, Grottke O, Hein M, Jordan J. The thrombotic risk of spaceflight: has a serious problem been overlooked for more than half of a century? Eur Heart J 2021; 42:97-100. [PMID: 32428936 DOI: 10.1093/eurheartj/ehaa359] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
The first ever venous thrombotic condition associated with spaceflight, an internal jugular vein thrombus requiring anticoagulation, has recently been reported. Systematic investigation of space travel-associated thrombotic risk has not been conducted. Cellular, animal, and human studies performed in ground-based models and in actual weightlessness revealed influences of weightlessness and gravity on the blood coagulation system. However, human study populations were small and limited to highly selected participants. Evidence in individuals with medical conditions and older persons is lacking. Evidence for thrombotic risk in spaceflight is unsatisfactory. This issue deserves further study in heterogeneous, high risk populations to find prevention strategies and to enable safe governmental and touristic human spaceflight.
Collapse
Affiliation(s)
- Ulrich Limper
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany.,Department of Anaesthesiology and Intensive Care Medicine, Merheim Medical Center, Hospitals of Cologne, University of Witten/Herdecke, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| | - Jens Tank
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Tobias Ahnert
- Department of Orthopedic Surgery Traumatology and Sports Medicine, Merheim Medical Center, Hospitals of Cologne, University of Witten/Herdecke, Cologne, Germany
| | - Marc Maegele
- Department of Orthopedic Surgery Traumatology and Sports Medicine, Merheim Medical Center, Hospitals of Cologne, University of Witten/Herdecke, Cologne, Germany
| | - Oliver Grottke
- Department of Anaesthesiology, Medical Faculty, University Hospital RWTH Aachen, Aachen, Germany
| | - Marc Hein
- Department of Anaesthesiology, Medical Faculty, University Hospital RWTH Aachen, Aachen, Germany
| | - Jens Jordan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany.,Chair of Aerospace Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Cetisli-Korkmaz N, Bilek F, Can-Akman T, Baskan E, Keser I, Dogru-Huzmeli E, Duray M, Aras B, Kilinc B. Rehabilitation strategies and neurological consequences in patients with COVID-19: part II. PHYSICAL THERAPY REVIEWS 2021. [DOI: 10.1080/10833196.2021.1907939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Furkan Bilek
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Firat University, Elazig, Turkey
| | - Tuba Can-Akman
- School of Physiotherapy and Rehabilitation, Pamukkale University, Denizli, Turkey
| | - Emre Baskan
- School of Physiotherapy and Rehabilitation, Pamukkale University, Denizli, Turkey
| | - Ilke Keser
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Gazi University, Ankara, Turkey
| | - Esra Dogru-Huzmeli
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Mehmet Duray
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Suleyman Demirel University, Isparta, Turkey
| | - Bahar Aras
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Kutahya Health Sciences University, Kutahya, Turkey
| | - Buse Kilinc
- School of Health Sciences, Department of Physiotherapy and Rehabilitation, KTO Karatay University, Konya, Turkey
| |
Collapse
|
16
|
Malkani S, Chin CR, Cekanaviciute E, Mortreux M, Okinula H, Tarbier M, Schreurs AS, Shirazi-Fard Y, Tahimic CGT, Rodriguez DN, Sexton BS, Butler D, Verma A, Bezdan D, Durmaz C, MacKay M, Melnick A, Meydan C, Li S, Garrett-Bakelman F, Fromm B, Afshinnekoo E, Langhorst BW, Dimalanta ET, Cheng-Campbell M, Blaber E, Schisler JC, Vanderburg C, Friedländer MR, McDonald JT, Costes SV, Rutkove S, Grabham P, Mason CE, Beheshti A. Circulating miRNA Spaceflight Signature Reveals Targets for Countermeasure Development. Cell Rep 2020; 33:108448. [PMID: 33242410 PMCID: PMC8441986 DOI: 10.1016/j.celrep.2020.108448] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
We have identified and validated a spaceflight-associated microRNA (miRNA) signature that is shared by rodents and humans in response to simulated, short-duration and long-duration spaceflight. Previous studies have identified miRNAs that regulate rodent responses to spaceflight in low-Earth orbit, and we have confirmed the expression of these proposed spaceflight-associated miRNAs in rodents reacting to simulated spaceflight conditions. Moreover, astronaut samples from the NASA Twins Study confirmed these expression signatures in miRNA sequencing, single-cell RNA sequencing (scRNA-seq), and single-cell assay for transposase accessible chromatin (scATAC-seq) data. Additionally, a subset of these miRNAs (miR-125, miR-16, and let-7a) was found to regulate vascular damage caused by simulated deep space radiation. To demonstrate the physiological relevance of key spaceflight-associated miRNAs, we utilized antagomirs to inhibit their expression and successfully rescue simulated deep-space-radiation-mediated damage in human 3D vascular constructs.
Collapse
Affiliation(s)
- Sherina Malkani
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Christopher R Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Marie Mortreux
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hazeem Okinula
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Marcel Tarbier
- Science for Life Laboratory, Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ann-Sofie Schreurs
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Yasaman Shirazi-Fard
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Candice G T Tahimic
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | | | - Daniel Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Akanksha Verma
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniela Bezdan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital, Tubingen, Germany
| | - Ceyda Durmaz
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Sheng Li
- The Jackson Laboratories, Farmington, CT, USA
| | - Francine Garrett-Bakelman
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Bastian Fromm
- Science for Life Laboratory, Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Margareth Cheng-Campbell
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Elizabeth Blaber
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Universities Space Research Association, Space Biosciences Division, NASA Ames Research Center, Mountain View, CA 94035, USA
| | - Jonathan C Schisler
- McAllister Heart Institute, Department of Pharmacology, and Department of Pathology and Lab Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles Vanderburg
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - J Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington DC 20007, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Seward Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Peter Grabham
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA; The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
17
|
Capitanio D, Barbacini P, Arosio B, Guerini FR, Torretta E, Trecate F, Cesari M, Mari D, Clerici M, Gelfi C. Can Serum Nitrosoproteome Predict Longevity of Aged Women? Int J Mol Sci 2020; 21:ijms21239009. [PMID: 33260845 PMCID: PMC7731247 DOI: 10.3390/ijms21239009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Aging is characterized by increase in reactive oxygen (ROS) and nitrogen (RNS) species, key factors of cardiac failure and disuse-induced muscle atrophy. This study focused on serum nitroproteome as a trait of longevity by adopting two complementary gel-based techniques: two-dimensional differential in gel electrophoresis (2-D DIGE) and Nitro-DIGE coupled with mass spectrometry of albumin-depleted serum of aged (A, n = 15) and centenarian (C, n = 15) versus young females (Y, n = 15). Results indicate spots differently expressed in A and C compared to Y and spots changed in A vs. C. Nitro-DIGE revealed nitrosated protein spots in A and C compared to Y and spots changed in A vs. C only (p-value < 0.01). Nitro-proteoforms of alpha-1-antitripsin (SERPINA1), alpha-1-antichimotripsin (SERPINA3), ceruloplasmin (CP), 13 proteoforms of haptoglobin (HP), and inactive glycosyltransferase 25 family member 3 (CERCAM) increased in A vs. Y and C. Conversely, nitrosation levels decreased in C vs. Y and A, for immunoglobulin light chain 1 (IGLC1), serotransferrin (TF), transthyretin (TTR), and vitamin D-binding protein (VDBP). Immunoblottings of alcohol dehydrogenase 5/S-nitrosoglutathione reductase (ADH5/GSNOR) and thioredoxin reductase 1 (TRXR1) indicated lower levels of ADH5 in A vs. Y and C, whereas TRXR1 decreased in A and C in comparison to Y. In conclusion, the study identified putative markers in C of healthy aging and high levels of ADH5/GSNOR that can sustain the denitrosylase activity, promoting longevity.
Collapse
Affiliation(s)
- Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, 20090 Segrate (MI), Italy; (D.C.); (P.B.)
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20090 Segrate (MI), Italy; (D.C.); (P.B.)
| | - Beatrice Arosio
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy; (F.R.G.); (F.T.); (M.C.)
| | | | - Fabio Trecate
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy; (F.R.G.); (F.T.); (M.C.)
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Geriatric Unit, IRCCS Istituti Clinici Scientifici Maugeri, 20138 Milan, Italy
| | - Daniela Mari
- Laboratorio Sperimentale di Ricerche di Neuroendocrinologia Geriatrica ed Oncologica, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy;
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy; (F.R.G.); (F.T.); (M.C.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, 20090 Segrate (MI), Italy; (D.C.); (P.B.)
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Correspondence: ; Tel.: +39-02-5033-0475
| |
Collapse
|
18
|
Cicchella A, Carluccio M, Scoditti E, Kaltsatou A, Massaro M. Leptin and exercise: an update. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2020. [DOI: 10.23736/s0393-3660.19.04186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Jiang M, Wang H, Liu Z, Lin L, Wang L, Xie M, Li D, Zhang J, Zhang R. Endoplasmic reticulum stress-dependent activation of iNOS/NO-NF-κB signaling and NLRP3 inflammasome contributes to endothelial inflammation and apoptosis associated with microgravity. FASEB J 2020; 34:10835-10849. [PMID: 32592441 DOI: 10.1096/fj.202000734r] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Abstract
Exposure to microgravity results in vascular remodeling and cardiovascular dysfunction. To elucidate the mechanism involved in this condition, we investigated whether endoplasmic reticulum (ER) stress during simulated microgravity induced endothelial inflammation and apoptosis in human umbilical vein endothelial cells (HUVECs). Microgravity was simulated by clinorotation in the current study. We examined markers of ER stress, inducible nitric oxide (NO) synthase (iNOS)/NO content, proinflammatory cytokine production, nuclear factor kappa B (NF-κB)/IκB signaling, NLRP3 inflammasome, and detected apoptosis in HUVECs. We found that the levels of C/EBP homologous protein and glucose-regulated protein 78, pro-inflammatory cytokines (IL-6, TNF-α, IL-8, and IL-1β), and iNOS/NO content were upregulated by clinorotation. ER stress inhibition with tauroursodeoxycholic acid or 4-phenylbutyric acid and iNOS inhibition with 1400 W dramatically suppressed activation of the NF-κB/IκB pathway and the NLRP3 inflammasome, and decreased the production of pro-inflammatory cytokines. The increase of apoptosis in HUVECs during clinorotation was significantly suppressed by inhibiting ER stress, iNOS activity, NF-κB/IκB, and the NLRP3 inflammasome signaling pathway. Therefore, simulated microgravity causes ER stress in HUVECs, and subsequently activates iNOS/NO-NF-κB/IκB and the NLRP3 inflammasome signaling pathway, which have key roles in the induction of endothelial inflammation and apoptosis.
Collapse
Affiliation(s)
- Min Jiang
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Haiming Wang
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Zifan Liu
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Lejian Lin
- Department of Cardiology, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Wang
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Manjiang Xie
- Department of Aerospace Physiology & Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Danyang Li
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Jibin Zhang
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Ran Zhang
- Department of Cardiology, The First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
20
|
Sañudo B, Seixas A, Gloeckl R, Rittweger J, Rawer R, Taiar R, van der Zee EA, van Heuvelen MJ, Lacerda AC, Sartorio A, Bemben M, Cochrane D, Furness T, de Sá-Caputo D, Bernardo-Filho M. Potential Application of Whole Body Vibration Exercise For Improving The Clinical Conditions of COVID-19 Infected Individuals: A Narrative Review From the World Association of Vibration Exercise Experts (WAVex) Panel. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3650. [PMID: 32455961 PMCID: PMC7277771 DOI: 10.3390/ijerph17103650] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
COVID-19 is a highly infectious respiratory disease which leads to several clinical conditions related to the dysfunction of the respiratory system along with other physical and psychological complaints. Severely affected patients are referred to intensive care units (ICUs), limiting their possibilities for physical exercise. Whole body vibration (WBV) exercise is a non-invasive, physical therapy, that has been suggested as part of the procedures involved with pulmonary rehabilitation, even in ICU settings. Therefore, in the current review, the World Association of Vibration Exercise Experts (WAVEX) reviewed the potential of WBV exercise as a useful and safe intervention for the management of infected individuals with COVID-19 by mitigating the inactivity-related declines in physical condition and reducing the time in ICU. Recommendations regarding the reduction of fatigue and the risk of dyspnea, the improvement of the inflammatory and redox status favoring cellular homeostasis and the overall improvement in the quality of life are provided. Finally, practical applications for the use of this paradigm leading to a better prognosis in bed bound and ICU-bound subjects is proposed.
Collapse
Affiliation(s)
- Borja Sañudo
- Departamento de Educación Física y Deporte, Universidad de Sevilla, 41013 Seville, Spain;
| | - Adérito Seixas
- Escola Superior de Saúde, Universidade Fernando Pessoa, 4200-253 Porto, Portugal
| | - Rainer Gloeckl
- Institute for Pulmonary Rehabilitation Research, Schoen Klinik Berchtesgadener Land, 83471 Schoenau am Koenigssee, Germany;
- Department of Pulmonary Rehabilitation, Philipps–University of Marburg, German Center for Lung Research (DZL), 35037 Marburg, Germany
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany;
- Department of Pediatrics and Adolescent Medicine, University of Cologne, D50931 Cologne, Germany
| | - Rainer Rawer
- Head of Research & Development Department, Novotec Medical GmbH & Galileo Training, 75172 Pforzheim, Germany;
| | - Redha Taiar
- Université de Reims Champagne Ardenne, 51100 Grand Est, France;
| | - Eddy A. van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, The Netherlands;
| | - Marieke J.G. van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands;
| | - Ana Cristina Lacerda
- Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina 39100-000, MG, Brazil;
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research & Division of Metabolic Diseases, 20145 Milan, Italy;
| | - Michael Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK 73019, USA;
| | - Darryl Cochrane
- School of Sport, Exercise and Nutrition, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand;
| | - Trentham Furness
- Faculty of Health Sciences, Australian Catholic University, Fitzroy, VIC 3065, Australia;
| | - Danúbia de Sá-Caputo
- Laboratório de Vibrações Mecânicas, Policlínica Piquet Carneiro, Instituto de Biología Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil; (D.d.S.-C.); (M.B.-F.)
- Faculdade Bezerra de Araújo, Rio de Janeiro 23052-180, Brazil
| | - Mario Bernardo-Filho
- Laboratório de Vibrações Mecânicas, Policlínica Piquet Carneiro, Instituto de Biología Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil; (D.d.S.-C.); (M.B.-F.)
| |
Collapse
|
21
|
Bennett AM, Lawan A. Improving Obesity and Insulin Resistance by Targeting Skeletal Muscle MKP-1. JOURNAL OF CELLULAR SIGNALING 2020; 1:160-168. [PMID: 33179019 PMCID: PMC7654974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Obesity has reached a global epidemic and it predisposes to the development of insulin resistance, type 2 diabetes and related metabolic diseases. Current interventions against obesity and/or type 2 diabetes such as calorie restriction, exercise, genetic manipulations or established pharmacological treatments have not been successful for many patients with obesity and/or type 2 diabetes. There is an urgent need for new strategies to treat insulin resistance, T2D and obesity. Increased activity of stress-responsive pathways has been linked to the pathogenesis of insulin resistance in obesity. In this commentary, we argue that chronic upregulation of MKP-1 in skeletal muscle is part of a stress response that contributes to the development of insulin resistance, T2D and obesity. Therefore, inhibition of MKP-1 in skeletal muscle is a potential strategy for the treatment of T2D and obesity. We highlight therapeutic strategies for potential targeting of MKP-1 in skeletal muscle for the treatment of metabolic diseases as well as other diseases of skeletal muscle.
Collapse
Affiliation(s)
- Anton M. Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA,Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA,Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Ahmed Lawan
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA,Correspondence should be addressed to Ahmed Lawan;
| |
Collapse
|
22
|
Tissue Chips in Space: Modeling Human Diseases in Microgravity. Pharm Res 2019; 37:8. [PMID: 31848830 DOI: 10.1007/s11095-019-2742-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Microphysiological systems (MPS), also known as "organs-on-chips" or "tissue chips," leverage recent advances in cell biology, tissue engineering, and microfabrication to create in vitro models of human organs and tissues. These systems offer promising solutions for modeling human physiology and disease in vitro and have multiple applications in areas where traditional cell culture and animal models fall short. Recently, the National Center for Advancing Translational Sciences (NCATS) at the National Institutes of Health (NIH) and the International Space Station (ISS) U.S. National Laboratory have coordinated efforts to facilitate the launch and use of these MPS platforms onboard the ISS. Here, we provide an introduction to the NIH Tissue Chips in Space initiative and an overview of the coordinated efforts between NIH and the ISS National Laboratory. We also highlight the current progress in addressing the scientific and technical challenges encountered in the development of these ambitious projects. Finally, we describe the potential impact of the Tissue Chips in Space program for the MPS field as well as the wider biomedical and health research communities.
Collapse
|
23
|
Rusanova I, Fernández-Martínez J, Fernández-Ortiz M, Aranda-Martínez P, Escames G, García-García FJ, Mañas L, Acuña-Castroviejo D. Involvement of plasma miRNAs, muscle miRNAs and mitochondrial miRNAs in the pathophysiology of frailty. Exp Gerontol 2019; 124:110637. [PMID: 31199979 DOI: 10.1016/j.exger.2019.110637] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
Abstract
Frailty is a geriatric syndrome that leads not only to the loss of physical functions, but also to a generalized decline of the organism and a high risk of disability and dependency. Frailty's detection and management represent important goals for current gerontology. The advance in its rapid diagnosis could play a relevant role in taking measures to reduce the negative consequences it exerts on the body and to take preventive measures. microRNAs are the one of multiple epigenetic biomarkers that reflect functional changes in aged subject. In this review we analyze microRNAs as molecules involved in the control of the pathways leading to the development of frailty. miRNAs can be present in different body fluids, including plasma/serum and saliva, can be associated with organelles like the mitochondria, and can be expressed in tissues. Based on the multifactorial physiopathology of frailty, we analyzed here the microRNAs linked to "inflammaging" (inflamma-miRs), to musculoskeletal health (myomiRs), and microRNAs that can directly or indirectly affect the mitochondria (mitomiRs). Subsequently, we analyze those microRNAs that can be modified by physical exercise. In this review we will analyze the latest experimental studies carried out in animals, cell cultures, and human samples, with the aim to identify gaps in the research and in order to try to dazzle the information about the pathways regulated by each miRNA. Multiple studies revised here suggest that several miRs can be considered as possible markers of frailty, including miR-1, miR-21, miR-34a, miR-146a, miR-185, and miR-206, miR-223, among others. Normalization of miRNAs data and standardization of the protocols used for their measurement to avoid confounding variables influencing the results, are important to use miRNAs as disease biomarkers.
Collapse
Affiliation(s)
- Iryna Rusanova
- Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain; CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, Spain.
| | - José Fernández-Martínez
- Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
| | - Marisol Fernández-Ortiz
- Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
| | - Paula Aranda-Martínez
- Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
| | - Germaine Escames
- Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain; CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, Spain
| | - Francisco J García-García
- CIBERfes, División de Medicina Geriátrica, Hospital Virgen del Valle, Complejo Hospitalario de Toledo, Toledo, Spain
| | - Leocadio Mañas
- CIBERfes, Servicio de Geriatría, Hospital Universitario de Getafe, Madrid, Spain
| | - Darío Acuña-Castroviejo
- Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain; CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, Spain.
| |
Collapse
|