1
|
Kinney KR, Hanlon CA. Changing Cerebral Blood Flow, Glucose Metabolism, and Dopamine Binding Through Transcranial Magnetic Stimulation: A Systematic Review of Transcranial Magnetic Stimulation-Positron Emission Tomography Literature. Pharmacol Rev 2022; 74:918-932. [PMID: 36779330 PMCID: PMC9580100 DOI: 10.1124/pharmrev.122.000579] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation tool currently used as a treatment in multiple psychiatric and neurologic disorders. Despite its widespread use, we have an incomplete understanding of the way in which acute and chronic sessions of TMS affect various neural and vascular systems. This systematic review summarizes the state of our knowledge regarding the effects TMS may be having on cerebral blood flow, glucose metabolism, and neurotransmitter release. Forty-five studies were identified. Several key themes emerged: 1) TMS transiently increases cerebral blood flow in the area under the coil; 2) TMS to the prefrontal cortex increases glucose metabolism in the anterior cingulate cortex of patients with depression; and 3) TMS to the motor cortex and prefrontal cortex decreases dopamine receptor availability in the ipsilateral putamen and caudate respectively. There is, however, a paucity of literature regarding the effects TMS may have on other neurotransmitter and neuropeptide systems of interest, all of which may shed vital light on existing biologic mechanisms and future therapeutic development. SIGNIFICANCE STATEMENT: Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation tool currently used as a treatment in multiple psychiatric and neurologic disorders. This systematic review summarizes the state of our knowledge regarding the effects TMS on cerebral blood flow, glucose metabolism, and neurotransmitter release.
Collapse
Affiliation(s)
- Kaitlin R Kinney
- Department of Cancer Biology (K.R.K., C.A.H.) and Department of Physiology and Pharmacology (C.A.H.), Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Colleen A Hanlon
- Department of Cancer Biology (K.R.K., C.A.H.) and Department of Physiology and Pharmacology (C.A.H.), Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
2
|
Alkhasli I, Mottaghy FM, Binkofski F, Sakreida K. Preconditioning prefrontal connectivity using transcranial direct current stimulation and transcranial magnetic stimulation. Front Hum Neurosci 2022; 16:929917. [PMID: 36034122 PMCID: PMC9403141 DOI: 10.3389/fnhum.2022.929917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) have been shown to modulate functional connectivity. Their specific effects seem to be dependent on the pre-existing neuronal state. We aimed to precondition frontal networks using tDCS and subsequently stimulate the left dorsolateral prefrontal cortex (lDLPFC) using TMS. Thirty healthy participants underwent excitatory, inhibitory, or sham tDCS for 10 min, as well as an excitatory intermittent theta-burst (iTBS) protocol (600 pulses, 190 s, 20 × 2-s trains), applied over the lDLPFC at 90% of the individual resting motor threshold. Functional connectivity was measured in three task-free resting state fMRI sessions, immediately before and after tDCS, as well as after iTBS. Testing the whole design did not yield any significant results. Analysis of the connectivity between the stimulation site and all other brain voxels, contrasting only the interaction effect between the experimental groups (excitatory vs. inhibitory) and the repeated measure (post-tDCS vs. post-TMS), revealed significantly affected voxels bilaterally in the anterior cingulate and paracingulate gyri, the caudate nuclei, the insula and operculum cortices, as well as the Heschl’s gyrus. Post-hoc ROI-to-ROI analyses between the significant clusters and the striatum showed post-tDCS, temporo-parietal-to-striatal and temporo-parietal-to-fronto-cingulate differences between the anodal and cathodal tDCSgroup, as well as post-TMS, striatal-to-temporo-parietal differences between the anodal and cathodal groups and frontostriatal and interhemispheric temporo-parietal cathodal-sham group differences. Excitatory iTBS to a tDCS-inhibited lDLPFC thus yielded more robust functional connectivity to various areas as compared to excitatory iTBS to a tDCS-enhanced DLPFC. Even considering reduced statistical power due to low subject numbers, results demonstrate complex, whole-brain stimulation effects. They are possibly facilitated by cortical homeostatic control mechanisms and show the feasibility of using tDCS to modulate subsequent TMS effects. This proof-of-principle study might stimulate further research into the principle of preconditioning that might be useful in the development of protocols using DLPFC as a stimulation site for the treatment of depression.
Collapse
Affiliation(s)
- Isabel Alkhasli
- Section Clinical Cognitive Sciences, Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4), Jülich, Germany
- JARA—BRAIN (Translational Brain Medicine), Jülich and Aachen, Germany
| | - Ferdinand Binkofski
- Section Clinical Cognitive Sciences, Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4), Jülich, Germany
- JARA—BRAIN (Translational Brain Medicine), Jülich and Aachen, Germany
- *Correspondence: Ferdinand Binkofski
| | - Katrin Sakreida
- Department of Neurosurgery, University Hospital, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Siebner HR, Funke K, Aberra AS, Antal A, Bestmann S, Chen R, Classen J, Davare M, Di Lazzaro V, Fox PT, Hallett M, Karabanov AN, Kesselheim J, Beck MM, Koch G, Liebetanz D, Meunier S, Miniussi C, Paulus W, Peterchev AV, Popa T, Ridding MC, Thielscher A, Ziemann U, Rothwell JC, Ugawa Y. Transcranial magnetic stimulation of the brain: What is stimulated? - A consensus and critical position paper. Clin Neurophysiol 2022; 140:59-97. [PMID: 35738037 PMCID: PMC9753778 DOI: 10.1016/j.clinph.2022.04.022] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 03/14/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022]
Abstract
Transcranial (electro)magnetic stimulation (TMS) is currently the method of choice to non-invasively induce neural activity in the human brain. A single transcranial stimulus induces a time-varying electric field in the brain that may evoke action potentials in cortical neurons. The spatial relationship between the locally induced electric field and the stimulated neurons determines axonal depolarization. The induced electric field is influenced by the conductive properties of the tissue compartments and is strongest in the superficial parts of the targeted cortical gyri and underlying white matter. TMS likely targets axons of both excitatory and inhibitory neurons. The propensity of individual axons to fire an action potential in response to TMS depends on their geometry, myelination and spatial relation to the imposed electric field and the physiological state of the neuron. The latter is determined by its transsynaptic dendritic and somatic inputs, intrinsic membrane potential and firing rate. Modeling work suggests that the primary target of TMS is axonal terminals in the crown top and lip regions of cortical gyri. The induced electric field may additionally excite bends of myelinated axons in the juxtacortical white matter below the gyral crown. Neuronal excitation spreads ortho- and antidromically along the stimulated axons and causes secondary excitation of connected neuronal populations within local intracortical microcircuits in the target area. Axonal and transsynaptic spread of excitation also occurs along cortico-cortical and cortico-subcortical connections, impacting on neuronal activity in the targeted network. Both local and remote neural excitation depend critically on the functional state of the stimulated target area and network. TMS also causes substantial direct co-stimulation of the peripheral nervous system. Peripheral co-excitation propagates centrally in auditory and somatosensory networks, but also produces brain responses in other networks subserving multisensory integration, orienting or arousal. The complexity of the response to TMS warrants cautious interpretation of its physiological and behavioural consequences, and a deeper understanding of the mechanistic underpinnings of TMS will be critical for advancing it as a scientific and therapeutic tool.
Collapse
Affiliation(s)
- Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Klaus Funke
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Aman S Aberra
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sven Bestmann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Robert Chen
- Krembil Brain Institute, University Health Network and Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Marco Davare
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anke N Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Nutrition and Exercise, University of Copenhagen, Copenhagen, Denmark
| | - Janine Kesselheim
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Mikkel M Beck
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Non-invasive Brain Stimulation Unit, Laboratorio di NeurologiaClinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - David Liebetanz
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sabine Meunier
- Sorbonne Université, Faculté de Médecine, INSERM U 1127, CNRS 4 UMR 7225, Institut du Cerveau, F-75013, Paris, France
| | - Carlo Miniussi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di DioFatebenefratelli, Brescia, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Angel V Peterchev
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA; Department of Electrical & Computer Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, USA
| | - Traian Popa
- Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Michael C Ridding
- University of South Australia, IIMPACT in Health, Adelaide, Australia
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, University Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yoshikazu Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Fukushima Global Medical Science Centre, Advanced Clinical Research Centre, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
4
|
Tremblay S, Tuominen L, Zayed V, Pascual-Leone A, Joutsa J. The study of noninvasive brain stimulation using molecular brain imaging: A systematic review. Neuroimage 2020; 219:117023. [DOI: 10.1016/j.neuroimage.2020.117023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
|
5
|
Holmes NP, Tamè L. Locating primary somatosensory cortex in human brain stimulation studies: systematic review and meta-analytic evidence. J Neurophysiol 2019; 121:152-162. [DOI: 10.1152/jn.00614.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) over human primary somatosensory cortex (S1), unlike over primary motor cortex (M1), does not produce an immediate, objective output. Researchers must therefore rely on one or more indirect methods to position the TMS coil over S1. The “gold standard” method of TMS coil positioning is to use individual functional and structural magnetic resonance imaging (f/sMRI) alongside a stereotactic navigation system. In the absence of these facilities, however, one common method used to locate S1 is to find the scalp location that produces twitches in a hand muscle (e.g., the first dorsal interosseus, M1-FDI) and then move the coil posteriorly to target S1. There has been no systematic assessment of whether this commonly reported method of finding the hand area of S1 is optimal. To do this, we systematically reviewed 124 TMS studies targeting the S1 hand area and 95 fMRI studies involving passive finger and hand stimulation. Ninety-six TMS studies reported the scalp location assumed to correspond to S1-hand, which was on average 1.5–2 cm posterior to the functionally defined M1-hand area. Using our own scalp measurements combined with similar data from MRI and TMS studies of M1-hand, we provide the estimated scalp locations targeted in these TMS studies of the S1-hand. We also provide a summary of reported S1 coordinates for passive finger and hand stimulation in fMRI studies. We conclude that S1-hand is more lateral to M1-hand than assumed by the majority of TMS studies.
Collapse
Affiliation(s)
- Nicholas Paul Holmes
- School of Psychology, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Luigi Tamè
- Department of Psychological Sciences, Birkbeck University of London, London, United Kingdom
| |
Collapse
|
6
|
Laborde S, Mosley E, Mertgen A. A unifying conceptual framework of factors associated to cardiac vagal control. Heliyon 2018; 4:e01002. [PMID: 30623126 PMCID: PMC6313821 DOI: 10.1016/j.heliyon.2018.e01002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/20/2018] [Accepted: 11/29/2018] [Indexed: 11/30/2022] Open
Abstract
Cardiac vagal control (CVC) reflects the activity of the vagus nerve regulating cardiac functioning. CVC can be inferred via heart rate variability measurement, and it has been positively associated to a broad range of cognitive, emotional, social, and health outcomes. It could then be considered as an indicator for effective self-regulation, and given this role, one should understand the factors increasing and decreasing CVC. The aim of this paper is to review the broad range of factors influencing CVC, and to provide a unifying conceptual framework to integrate comprehensively those factors. The structure of the unifying conceptual framework is based on the theory of ecological rationality, while its functional aspects are based on the neurovisceral integration model. The structure of this framework distinguishes two broad areas of associations: person and environment, as this reflects adequately the role played by CVC regarding adaptation. The added value of this framework lies at different levels: theoretically, it allows integrating findings from a variety of scientific disciplines and refining the predictions of the neurovisceral integration model; methodologically, it helps identifying factors that increase and decrease CVC; and lastly at the applied level, it can play an important role for society regarding health policies and for the individual to empower one's flourishing.
Collapse
Affiliation(s)
- Sylvain Laborde
- German Sport University Cologne, Institute of Psychology, Department of Performance Psychology, Germany
- Normandie Université Caen, UFR STAPS, EA 4260, Germany
| | | | | |
Collapse
|
7
|
Non-invasive brain stimulation in the modulation of cerebral blood flow after stroke: A systematic review of Transcranial Doppler studies. Clin Neurophysiol 2018; 129:2544-2551. [PMID: 30384025 DOI: 10.1016/j.clinph.2018.09.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Non-invasive brain stimulation (NIBS), such as repetitive TMS (rTMS) and transcranial direct current stimulation (tDCS), are promising neuromodulatory priming techniques to promote task-specific functional recovery after stroke. Despite promising results, clinical application of NIBS has been limited by high inter-individual variability. We propose that there is a possible influence of neuromodulation on cerebral blood flow (CBF), as neurons are spatially and temporally related to blood vessels. Transcranial Doppler (TCD), a clinically available non-invasive diagnostic tool, allows for evaluation of CBF velocity (CBFv). However, little is known about the role of neuromodulation on CBFv. METHODS A systematic review of literature to understand the effects of NIBS on CBFv using TCD in stroke was conducted. RESULTS Twelve studies fit our inclusion criteria and are included in this review. Our review suggested that CBFv and/or vasomotor reactivity maybe influenced by rTMS dosage (intensity and frequency) and the type of tDCS electrode montage. CONCLUSION There is limited evidence regarding the effects of NIBS on cerebral hemodynamics using TCD and the usefulness of TCD to capture changes in CBFv after NIBS is not evident from this review. We highlight the variability in the experimental protocols, differences in the applied neurostimulation protocols and discuss open questions that remain regarding CBF and neuromodulation. SIGNIFICANCE TCD, a clinically accessible tool, may potentially be useful to understand the interaction between cortical neuromodulation and CBFv.
Collapse
|
8
|
Duan X, Yao G, Liu Z, Cui R, Yang W. Mechanisms of Transcranial Magnetic Stimulation Treating on Post-stroke Depression. Front Hum Neurosci 2018; 12:215. [PMID: 29899693 PMCID: PMC5988869 DOI: 10.3389/fnhum.2018.00215] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
Post-stroke depression (PSD) is a neuropsychiatric affective disorder that can develop after stroke. Patients with PSD show poorer functional and recovery outcomes than patients with stroke who do not suffer from depression. The risk of suicide is also higher in patients with PSD. PSD appears to be associated with complex pathophysiological mechanisms involving both psychological and psychiatric problems that are associated with functional deficits and neurochemical changes secondary to brain damage. Transcranial magnetic stimulation (TMS) is a non-invasive way to investigate cortical excitability via magnetic stimulation of the brain. TMS is currently a valuable tool that can help us understand the pathophysiology of PSD. Although repetitive TMS (rTMS) is an effective treatment for patients with PSD, its mechanism of action remains unknown. Here, we review the known mechanisms underlying rTMS as a tool for better understanding PSD pathophysiology. It should be helpful when considering using rTMS as a therapeutic strategy for PSD.
Collapse
Affiliation(s)
- Xiaoqin Duan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Gang Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Zhongliang Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Hanafi MH, Kassim NK, Ibrahim AH, Adnan MM, Ahmad WMAW, Idris Z, Latif LA. Cortical Modulation After Two Different Repetitive Transcranial Magnetic Stimulation Protocols in Similar Ischemic Stroke Patients. Malays J Med Sci 2018; 25:116-125. [PMID: 30918461 PMCID: PMC6422591 DOI: 10.21315/mjms2018.25.2.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/25/2018] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Stroke is one of the leading causes of mortality and morbidity in Malaysia. Repetitive transcranial magnetic stimulation (rTMS) is one of the new non-invasive modality to enhance the motor recovery in stroke patients. OBJECTIVES This pilot study compared the motor evoked potential (MEP) changes using different settings of rTMS in the post-ischemic stroke patient. The goal of the study is to identify effect sizes for a further trial and evaluate safety aspects. METHODS Eight post-stroke patients with upper limb hemiparesis for at least six months duration were studied in a tertiary hospital in Northeast Malaysia. Quasi experimental design was applied and the participants were randomised into two groups using software generated random numbers. One of the two settings: i) inhibitory setting, or ii) facilitatory setting have been applied randomly during the first meeting. The motor evoked potential (MEP) were recorded before and after application of the rTMS setting. A week later, a similar procedure will be repeated but using different setting than the first intervention. Each patient will serve as their own control. Repeated measures ANOVA test was applied to determine the effect sizes for both intervention through the options of partial eta-squared (η2 p). RESULT The study observed large effect sizes (η2 p > 0.14) for both rTMS settings in the lesion and non-lesion sides. For safety aspects, no minor or major side effects associated with the rTMS was reported by the participants. CONCLUSIONS The partial eta square of MEP value for both rTMS settings (fascilitatory and inhibitory) in both lesion and non-lesion sides represents large effect sizes. We recommend further trial to increase number of sample in order to study the effectiveness of both settings in ischemic stroke patient. Our preliminary data showed both settings may improve the MEP of the upper extremity in the ischemic stroke patient. No significant improvement noted when comparing both settings.
Collapse
Affiliation(s)
- Muhammad Hafiz Hanafi
- School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- Center for Neuroscience Services and Research, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Nur Karyatee Kassim
- School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Al Hafiz Ibrahim
- School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Munirah Mohd Adnan
- School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | | | - Zamzuri Idris
- School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- Center for Neuroscience Services and Research, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Lydia Abdul Latif
- Department of Rehabilitation Medicine 2, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Shang YQ, Xie J, Peng W, Zhang J, Chang D, Wang Z. Network-wise cerebral blood flow redistribution after 20 Hz rTMS on left dorso-lateral prefrontal cortex. Eur J Radiol 2018; 101:144-148. [PMID: 29571788 DOI: 10.1016/j.ejrad.2018.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/24/2018] [Accepted: 02/13/2018] [Indexed: 12/17/2022]
Abstract
The repetitive application of transcranial magnetic stimulation (rTMS) on left dorsolateral prefrontal cortex (DLPFC) has been consistently shown to be beneficial for treating various neuropsychiatric or neuropsychological disorders, but its neural mechanisms still remain unclear. The purpose of this study was to measure the effects of high-frequency left DLPFC rTMS using cerebral blood flow (CBF) collected from 40 young healthy subjects before and after applying 20 Hz left DLPFC rTMS or SHAM stimulations. Relative CBF (rCBF) changes before and after 20 Hz rTMS or SHAM were assessed with paired-t test. The results show that 20 Hz DLPFC rTMS induced CBF redistribution in the default mode network, including increased rCBF in left medial temporal cortex (MTC)/hippocampus, but reduced rCBF in precuneus and cerebellum. Meanwhile, SHAM stimulation didn't produce any rCBF changes. After controlling SHAM effects, only the rCBF increase in MTC/hippocampus remained. Those data suggest that the beneficial effects of high-frequency rTMS may be through a within-network rCBF redistribution.
Collapse
Affiliation(s)
- Yuan-Qi Shang
- Center for Cognition and Brain Disorders, Institutes of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310005, China
| | - Jun Xie
- Center for Cognition and Brain Disorders, Institutes of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310005, China
| | - Wei Peng
- Center for Cognition and Brain Disorders, Institutes of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310005, China
| | - Jian Zhang
- Center for Cognition and Brain Disorders, Institutes of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310005, China
| | - Da Chang
- Center for Cognition and Brain Disorders, Institutes of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310005, China
| | - Ze Wang
- Center for Cognition and Brain Disorders, Institutes of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310005, China; Department of Radiology, Temple University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
The optimal stimulation site for high-frequency repetitive transcranial magnetic stimulation in Parkinson’s disease: A double-blind crossover pilot study. J Clin Neurosci 2018; 47:72-78. [DOI: 10.1016/j.jocn.2017.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/30/2017] [Indexed: 11/17/2022]
|
12
|
Auriat AM, Neva JL, Peters S, Ferris JK, Boyd LA. A Review of Transcranial Magnetic Stimulation and Multimodal Neuroimaging to Characterize Post-Stroke Neuroplasticity. Front Neurol 2015; 6:226. [PMID: 26579069 PMCID: PMC4625082 DOI: 10.3389/fneur.2015.00226] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/12/2015] [Indexed: 01/09/2023] Open
Abstract
Following stroke, the brain undergoes various stages of recovery where the central nervous system can reorganize neural circuitry (neuroplasticity) both spontaneously and with the aid of behavioral rehabilitation and non-invasive brain stimulation. Multiple neuroimaging techniques can characterize common structural and functional stroke-related deficits, and importantly, help predict recovery of function. Diffusion tensor imaging (DTI) typically reveals increased overall diffusivity throughout the brain following stroke, and is capable of indexing the extent of white matter damage. Magnetic resonance spectroscopy (MRS) provides an index of metabolic changes in surviving neural tissue after stroke, serving as a marker of brain function. The neural correlates of altered brain activity after stroke have been demonstrated by abnormal activation of sensorimotor cortices during task performance, and at rest, using functional magnetic resonance imaging (fMRI). Electroencephalography (EEG) has been used to characterize motor dysfunction in terms of increased cortical amplitude in the sensorimotor regions when performing upper limb movement, indicating abnormally increased cognitive effort and planning in individuals with stroke. Transcranial magnetic stimulation (TMS) work reveals changes in ipsilesional and contralesional cortical excitability in the sensorimotor cortices. The severity of motor deficits indexed using TMS has been linked to the magnitude of activity imbalance between the sensorimotor cortices. In this paper, we will provide a narrative review of data from studies utilizing DTI, MRS, fMRI, EEG, and brain stimulation techniques focusing on TMS and its combination with uni- and multimodal neuroimaging methods to assess recovery after stroke. Approaches that delineate the best measures with which to predict or positively alter outcomes will be highlighted.
Collapse
Affiliation(s)
- Angela M Auriat
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| | - Jason L Neva
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| | - Sue Peters
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| | - Jennifer K Ferris
- Graduate Program in Neuroscience, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| | - Lara A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada ; Graduate Program in Neuroscience, Faculty of Medicine, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
13
|
Knöchel C, Alves G, Friedrichs B, Schneider B, Schmidt-Rechau A, Wenzlera S, Schneider A, Prvulovic D, Carvalho AF, Oertel-Knöchel V. Treatment-resistant Late-life Depression: Challenges and Perspectives. Curr Neuropharmacol 2015; 13:577-91. [PMID: 26467408 PMCID: PMC4761630 DOI: 10.2174/1570159x1305151013200032] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 12/28/2022] Open
Abstract
The current Review article provides a narrative review about the neurobiological underpinnings and treatment of treatment resistant late-life depression (TRLLD). The manuscript focuses on therapeutic targets of late-life depression, which include pharmacological, psychological, biophysical and exercise treatment approaches. Therefore, we summarize available evidences on that kind of therapies for patients suffering from late-life depression. The search for evidences of therapeutic options of late-life depression were done using searching websites as "pubmed", and using the searching terms "depression", "late-life depression", "treatment", "biophysical therapy", "exercise therapy", "pharmacological therapy" and "psychological therapy". To the end, we summarize and discuss current data, providing some directions for further research. Treatment recommendations for elderly depressive patients favour a multimodal approach, containing psychological, pharmacological and secondary biophysical therapeutic options. Particularly, a combination of psychotherapy and antidepressant medication reflects the best therapeutic option. However, mostly accepted and used is the pharmacological treatment although evidence suggests that the drug therapy is not as effective as it is in younger depressive patients. Further studies employing larger samples and longer follow-up periods are necessary and may focus on comparability of study designs and involve novel approaches to establish the validity and reliability of multimodal treatment programs.
Collapse
Affiliation(s)
- Christian Knöchel
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| | - Gilberto Alves
- Center for Alzheimer’s Disease and Related Disorders, Universidade Federal, do Rio de Janeiro, Brazil
| | - Benedikt Friedrichs
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| | | | - Anna Schmidt-Rechau
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| | - Sofia Wenzlera
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| | - Angelina Schneider
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| | - David Prvulovic
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| | - André F. Carvalho
- Center for Alzheimer’s Disease and Related Disorders, Universidade Federal, do Rio de Janeiro, Brazil
| | - Viola Oertel-Knöchel
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| |
Collapse
|
14
|
Ko JH, Choi YY, Eidelberg D. Graph Theory-Guided Transcranial Magnetic Stimulation in Neurodegenerative Disorders. Bioelectron Med 2014. [DOI: 10.15424/bioelectronmed.2014.00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
15
|
Abstract
The use of functional brain imaging techniques, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), and functional magnetic resonance imaging (fMRI), has allowed for monitoring neuronal and neurochemical activities in the living human brain and identifying abnormal changes in various neurological and psychiatric diseases. Combining these methods with techniques such as deep brain stimulation (DBS) and transcranial magnetic stimulation (TMS) has greatly advanced our understanding of the effects of such treatment on brain activity at targeted regions as well as specific disease-related networks. Indeed, recent network-level analysis focusing on inter-regional covarying activities in data interpretation has unveiled several key mechanisms underlying the therapeutic effects of brain stimulation. However, non-negligible discrepancies have been reported in the literature, attributable in part to the heterogeneity of both imaging and brain stimulation techniques. This chapter summarizes recent studies that combine brain imaging and brain stimulation, and includes discussion of future direction in these lines of research.
Collapse
|
16
|
Yang FY, Chang WY, Chen JC, Lee LC, Hung YS. Quantitative assessment of cerebral glucose metabolic rates after blood–brain barrier disruption induced by focused ultrasound using FDG-MicroPET. Neuroimage 2014; 90:93-8. [DOI: 10.1016/j.neuroimage.2013.12.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/13/2013] [Accepted: 12/16/2013] [Indexed: 11/30/2022] Open
|
17
|
Kim H, Park MA, Wang S, Chiu A, Fischer K, Yoo SS. PET∕CT imaging evidence of FUS-mediated (18)F-FDG uptake changes in rat brain. Med Phys 2013; 40:033501. [PMID: 23464343 DOI: 10.1118/1.4789916] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Transcranial focused ultrasound (FUS) delivers highly focused acoustic energy to a small region of the brain in a noninvasive manner. Recent studies have revealed that FUS, which is administered either in pulsed or continuous waves, can elicit or suppress neural tissue excitability. This neuromodulatory property of FUS has been demonstrated via direct motion detection, electrophysiological recordings, functional magnetic resonance imaging (fMRI), confocal imaging, and microdialysis sampling of neurotransmitters. This study presents new evidence of local increase in glucose metabolism induced by FUS to the rat brain using FDG (18-fludeoxyglucose) positron emission tomography (PET). METHODS Sprague-Dawley rats underwent sonication to a unilateral hemispheric area of the brain prior to PET scan. The pulsed sonication (350 kHz, tone burst duration of 0.5 ms, pulse repetition frequency of 1 kHz, and duration of 300 ms) was applied in 2 s intervals for 40 min immediately after the FDG injection via tail vein. Subsequently, the PET was acquired in dynamic list-mode to image FDG activity for an hour, and reconstructed into a single volume representing standardized uptake value (SUV). The raw SUV as well as its asymmetry index (AI) were measured from five different volume-of-interests (VOIs) of the brain for both hemispheres, and compared between sonicated and unsonicated groups. RESULTS Statistically significant hemispheric changes in SUV were observed only at the center of sonication focus within the FUS group [paired t-test; t(7) = 3.57, p < 0.05]. There were no significant hemispheric differences in SUV within the control group in any of the VOIs. A statistically significant elevation in AI (t-test; t(7) = 3.40, p < 0.05) was observed at the center of sonication focus (7.9 ± 2.5%, the deviations are in standard error) among the FUS group when compared to the control group (-0.8 ± 1.2%). CONCLUSIONS Spatially distinct increases in the glucose metabolic activity in the rat brain is present only at the center of sonication focus, suggesting localized functional neuromodulation mediated by the sonication.
Collapse
Affiliation(s)
- Hyungmin Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
18
|
Maruo T, Hosomi K, Shimokawa T, Kishima H, Oshino S, Morris S, Kageyama Y, Yokoe M, Yoshimine T, Saitoh Y. High-frequency repetitive transcranial magnetic stimulation over the primary foot motor area in Parkinson's disease. Brain Stimul 2013; 6:884-91. [PMID: 23769414 DOI: 10.1016/j.brs.2013.05.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has been reported to be clinically effective for treating motor symptoms in Parkinson's disease (PD). Few studies have been performed reporting the effects of rTMS on non-motor symptoms such as depression and apathy in PD. OBJECTIVE We assessed the effects of high-frequency (HF) rTMS over the primary motor (M1) foot area on motor symptoms, depression and apathy scales, and sensory symptoms in PD. METHODS We investigated the efficacy of 3 consecutive days of HF-rTMS over the M1 foot area in 21 patients with PD using a randomized, double-blind cross-over trial compared with sham stimulation. Motor effects were evaluated using the Unified Parkinson's Disease Rating Scale part III (UPDRS-III), the self-assessment motor score, the visual analog scale (VAS), the 10-m walking test, and finger tapping. Non-motor effects were analyzed using the Montgomery Asberg Depression Rating Scale, the Apathy Scale, and quantitative sensory testing. RESULTS HF-rTMS significantly improved UPDRS-III (P < 0.001), VAS (P < 0.001), the walking test (P = 0.014), self-assessment motor score (P = 0.010), and finger tapping measurement (P < 0.05) compared to sham stimulation. In contrast, no significant improvement was observed in depression and apathy scales. Consecutive days of rTMS did not significantly increase the improvement in motor symptoms. There were no adverse effects following rTMS on patients with PD. CONCLUSIONS We confirmed that HF-rTMS over the M1 foot area significantly improved motor symptoms in patients with PD. In addition, daily repeated stimulation was not significantly more effective than a single session of stimulation, but may be effective for maintaining the improvement in motor symptoms in patients with PD.
Collapse
Affiliation(s)
- Tomoyuki Maruo
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Neuromodulation and Neurosurgery, Office for University-Industry Collaboration, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ahn HM, Kim SE, Kim SH. The Effects of High-Frequency rTMS Over the Left Dorsolateral Prefrontal Cortex on Reward Responsiveness. Brain Stimul 2013; 6:310-4. [DOI: 10.1016/j.brs.2012.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 04/11/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022] Open
|
20
|
Effects of prefrontal repetitive transcranial magnetic stimulation on the autonomic regulation of cardiovascular function. Exp Brain Res 2013; 226:265-71. [DOI: 10.1007/s00221-013-3431-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/25/2013] [Indexed: 10/27/2022]
|
21
|
Kim SH, Han HJ, Ahn HM, Kim SA, Kim SE. Effects of five daily high-frequency rTMS on Stroop task performance in aging individuals. Neurosci Res 2012; 74:256-60. [DOI: 10.1016/j.neures.2012.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/25/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
|
22
|
Arfeller C, Schwarzbach J, Ubaldi S, Ferrari P, Barchiesi G, Cattaneo L. Whole-brain haemodynamic after-effects of 1-Hz magnetic stimulation of the posterior superior temporal cortex during action observation. Brain Topogr 2012; 26:278-91. [PMID: 22772359 DOI: 10.1007/s10548-012-0239-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/19/2012] [Indexed: 11/28/2022]
Abstract
The posterior superior temporal sulcus (pSTS) is active when observing biological motion. We investigated the functional connections of the pSTS node within the action observation network by measuring the after-effect of focal repetitive transcranial magnetic stimulation (rTMS) with whole-brain functional magnetic resonance imaging (fMRI). Participants received 1-Hz rTMS over the pSTS region for 10 min and underwent fMRI immediately after. While scanned, they were shown short video clips of a hand grasping an object (grasp clips) or moving next to it (control clips). rTMS-fMRI was repeated for four consecutive blocks. In two blocks we stimulated the left pSTS region and in the other two the right pSTS region. For each side TMS was applied with an effective intensity (95 % of motor threshold) or with ineffective intensity (50 % of motor threshold). Brain regions showing interactive effects of (clip type) × (TMS intensity) were identified in the lateral temporo-occipital cortex, in the anterior intraparietal region and in the ventral premotor cortex. Remote effects of rTMS were mostly limited to the stimulated hemisphere and consisted in an increase of blood oxygen level-dependent responses to grasp clips compared to control clips. We show that the pSTS occupies a pivotal relay position during observation of goal-directed actions.
Collapse
Affiliation(s)
- Carola Arfeller
- Center for Mind-Brain Sciences (CIMeC), University of Trento, Via delle Regole, 101, 38123, Mattarello, TN, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Orosz A, Jann K, Wirth M, Wiest R, Dierks T, Federspiel A. Theta burst TMS increases cerebral blood flow in the primary motor cortex during motor performance as assessed by arterial spin labeling (ASL). Neuroimage 2012; 61:599-605. [DOI: 10.1016/j.neuroimage.2012.03.084] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 03/26/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022] Open
|
24
|
[Brain stimulation procedures. Transcranial magnetic stimulation, magnetic seizure therapy and deep brain stimulation]. DER NERVENARZT 2012; 83:95-103; quiz 104-5. [PMID: 22271310 DOI: 10.1007/s00115-011-3428-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Brain stimulation methods are promising treatment options in severe treatment-resistant psychiatric disorders. A safe and noninvasive method is transcranial magnetic stimulation, but the clinical application is not clear. Magnetic seizure therapy is a further development of transcranial magnetic stimulation, by which generalized seizures are induced under anaesthesia. Previous results with regard to the antidepressant effects and the fewer cognitive side effects were significant. Deep brain stimulation is an invasive procedure in which electrodes are stereotactically implanted in special brain areas. The effects in severe therapy-resistant obsessive-compulsive disorders and depressions are promising. However, the evaluation of ethical issues remains an important task.
Collapse
|
25
|
Reithler J, Peters J, Sack A. Multimodal transcranial magnetic stimulation: Using concurrent neuroimaging to reveal the neural network dynamics of noninvasive brain stimulation. Prog Neurobiol 2011; 94:149-65. [DOI: 10.1016/j.pneurobio.2011.04.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/31/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
|
26
|
González-García N, Armony JL, Soto J, Trejo D, Alegría MA, Drucker-Colín R. Effects of rTMS on Parkinson's disease: a longitudinal fMRI study. J Neurol 2011; 258:1268-80. [PMID: 21298283 DOI: 10.1007/s00415-011-5923-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/25/2010] [Accepted: 01/17/2011] [Indexed: 11/30/2022]
Abstract
Parkinson's disease is a movement disorder whose principal symptoms are tremor, rigidity, bradykinesia and postural instability. Initially, drugs like L: -dopa or dopaminergic agonists are able to control these symptoms, but with the progress of the disease these drugs become less effective. Previous studies have reported that repetitive transcranial magnetic stimulation (rTMS) can improve these motor symptoms. The objective of this study was to investigate the neural mechanisms through which 25 Hz rTMS may improve motor symptoms in Parkinson's disease. In a double-blind placebo-controlled study, we evaluated the effects of 25 Hz. rTMS in 10 Parkinson's disease patients. Fifteen rTMS sessions were performed over the primary cortex on both hemispheres (one after the other) during a 12-week period. The patients were studied using functional magnetic resonance imaging during performance of a simple tapping and a complex tapping task, 1 week before the administration of the first rTMS session and just after the last session. rTMS improved bradykinesia, while functional magnetic resonance imaging showed different cortical patterns in prefrontal cortex when patients performed the complex tapping test. Furthermore, the improvement in bradykinesia is associated with caudate nucleus activity increases in simple tapping. Finally, we observed a relative change in functional connectivity between the prefrontal areas and the supplementary motor area after rTMS. These results show a potential beneficial effect of repetitive transcranial magnetic stimulation on bradykinesia in Parkinson's disease which is substantiated by neural changes observed in functional magnetic resonance imaging.
Collapse
Affiliation(s)
- Nadia González-García
- Depto. de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apdo. Postal 70-600, 04510 Mexico, D.F., Mexico
| | | | | | | | | | | |
Collapse
|
27
|
Valero-Cabré A, Pascual-Leone A, Coubard OA. [Transcranial magnetic stimulation (TMS) in basic and clinical neuroscience research]. Rev Neurol (Paris) 2011; 167:291-316. [PMID: 21420698 PMCID: PMC3093091 DOI: 10.1016/j.neurol.2010.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 10/11/2010] [Accepted: 10/26/2010] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Non-invasive brain stimulation methods such as transcranial magnetic stimulation (TMS) are starting to be widely used to make causality-based inferences about brain-behavior interactions. Moreover, TMS-based clinical applications are under development to treat specific neurological or psychiatric conditions, such as depression, dystonia, pain, tinnitus and the sequels of stroke, among others. BACKGROUND TMS works by inducing non-invasively electric currents in localized cortical regions thus modulating their activity levels according to settings, such as frequency, number of pulses, train and regime duration and intertrain intervals. For instance, it is known for the motor cortex that low frequency or continuous patterns of TMS pulses tend to depress local activity whereas high frequency and discontinuous TMS patterns tend to enhance it. Additionally, local cortical effects of TMS can result in dramatic patterns in distant brain regions. These distant effects are mediated via anatomical connectivity in a magnitude that depends on the efficiency and sign of such connections. PERSPECTIVES An efficient use of TMS in both fields requires however, a deep understanding of its operational principles, its risks, its potential and limitations. In this article, we will briefly present the principles through which non-invasive brain stimulation methods, and in particular TMS, operate. CONCLUSION Readers will be provided with fundamental information needed to critically discuss TMS studies and design hypothesis-driven TMS applications for cognitive and clinical neuroscience research.
Collapse
Affiliation(s)
- A Valero-Cabré
- CNRS UMR 7225-Inserm S975-UPMC, groupe de dynamiques cérébrales plasticité et rééducation, centre de recherche de l'institut du cerveau et la moelle, 47, boulevard de l'Hôpital, 75013 Paris, France.
| | | | | |
Collapse
|
28
|
Shitara H, Shinozaki T, Takagishi K, Honda M, Hanakawa T. Time course and spatial distribution of fMRI signal changes during single-pulse transcranial magnetic stimulation to the primary motor cortex. Neuroimage 2011; 56:1469-79. [PMID: 21396457 DOI: 10.1016/j.neuroimage.2011.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 02/27/2011] [Accepted: 03/03/2011] [Indexed: 11/25/2022] Open
Abstract
Simultaneous transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) may advance the understanding of neurophysiological mechanisms of TMS. However, it remains unclear if TMS induces fMRI signal changes consistent with the standard hemodynamic response function (HRF) in both local and remote regions. To address this issue, we delivered single-pulse TMS to the left M1 during simultaneous recoding of electromyography and time-resolved fMRI in 36 healthy participants. First, we examined the time-course of fMRI signals during supra- and subthreshold single-pulse TMS in comparison with those during voluntary right hand movement and electrical stimulation to the right median nerve (MNS). All conditions yielded comparable time-courses of fMRI signals, showing that HRF would generally provide reasonable estimates for TMS-evoked activity in the motor areas. However, a clear undershoot following the signal peak was observed only during subthreshold TMS in the left M1, suggesting a small but meaningful difference between the locally and remotely TMS-evoked activities. Second, we compared the spatial distribution of activity across the conditions. Suprathreshold TMS-evoked activity overlapped not only with voluntary movement-related activity but also partially with MNS-induced activity, yielding overlapped areas of activity around the stimulated M1. The present study has provided the first experimental evidence that motor area activity during suprathreshold TMS likely includes activity for processing of muscle afferents. A method should be developed to control the effects of muscle afferents for fair interpretation of TMS-induced motor area activity during suprathreshold TMS to M1.
Collapse
Affiliation(s)
- H Shitara
- Department of Functional Brain Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | | | | | | | | |
Collapse
|
29
|
Ziemann U. Transcranial magnetic stimulation at the interface with other techniques: a powerful tool for studying the human cortex. Neuroscientist 2011; 17:368-81. [PMID: 21311054 DOI: 10.1177/1073858410390225] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcranial magnetic stimulation (TMS) has developed into a very powerful tool in the hands of basic and clinical neuroscientists alike to study function and dysfunction of the human brain noninvasively and painlessly. However, as a stand-alone technique, the potential of TMS to gain knowledge is relatively limited. This potential can be strongly enhanced by combining TMS with simultaneous measurements in other electrophysiological (EEG) or imaging modalities (PET, fMRI, NIRS, MRS) or by combining TMS with exposure to neuroactive drugs (pharmaco-TMS). This review provides an up-to-date synopsis of these combined approaches and highlights important examples that have advanced our understanding of how TMS interacts with neuronal networks in the human brain.
Collapse
Affiliation(s)
- Ulf Ziemann
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
30
|
Cárdenas-Morales L, Grön G, Kammer T. Exploring the after-effects of theta burst magnetic stimulation on the human motor cortex: a functional imaging study. Hum Brain Mapp 2010; 32:1948-60. [PMID: 21181786 DOI: 10.1002/hbm.21160] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 08/05/2010] [Accepted: 08/10/2010] [Indexed: 11/06/2022] Open
Abstract
Theta burst stimulation (TBS) is a protocol of subthreshold repetitive transcranial magnetic stimulation (rTMS) inducing changes in cortical excitability. From functional imaging studies with conventional subthreshold rTMS protocols, it remains unclear what type of modulation occurs (direction and dependency to neural activity) and whether putative effects are bound to unspecific changes in cerebral perfusion or require a functional challenge. In a within-subjects (n = 17) repeated measurement design including real TBS and a control session without stimulation, we examined neural activation in a choice-reaction task after application of intermittent TBS, a protocol, which enhances cortical excitability over the left motor cortex (M1). Brain activity was monitored by blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging interleaved with measuring regional cerebral blood flow (rCBF) at rest using MR-based perfusion imaging. On a separate day, TMS-induced compound muscle action potentials (cMAPs) amplitude of the right hand was measured after excitatory TBS. Compared to control, a significant decrease in BOLD signal due to right hand motor activity during the choice-reaction task was observed mainly in the stimulated M1 and motor-related remote areas after stimulation. This decrease might represent a facilitating effect, because cMAPs amplitude increased upon TBS compared to control. No changes in rCBF at rest were observed. The data demonstrate that subthreshold intermittent TBS targets both the stimulated cortical area as well as remote areas. The facilitation changing the efficacy of neural signal transmission seems to be reflected by a BOLD signal decrease, whereas the network at rest does not appear to be affected.
Collapse
|
31
|
Chouinard PA, Paus T. What have We Learned from "Perturbing" the Human Cortical Motor System with Transcranial Magnetic Stimulation? Front Hum Neurosci 2010; 4:173. [PMID: 21060721 PMCID: PMC2972749 DOI: 10.3389/fnhum.2010.00173] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 08/13/2010] [Indexed: 11/13/2022] Open
Abstract
The purpose of this paper is twofold. First, we will review different approaches that one can use with transcranial magnetic stimulation (TMS) to study both its effects on motor behavior and on neural connections in the human brain. Second, we will present evidence obtained in TMS-based studies showing that the dorsal premotor area (PMd), the ventral premotor area (PMv), the supplementary motor area (SMA), and the pre-supplementary motor area (pre-SMA) each have different roles to play in motor behavior. We highlight the importance of the PMd in response selection based on arbitrary cues and in the control of arm movements, the PMv in grasping and in the discrimination of bodily actions, the SMA in movement sequencing and in bimanual coordination, and the pre-SMA in cognitive control. We will also discuss ways in which TMS can be used to chart “true” cerebral reorganization in clinical populations and how TMS might be used as a therapeutic tool to facilitate motor recovery after stroke. We will end our review by discussing some of the methodological challenges and future directions for using this tool in basic and clinical neuroscience.
Collapse
Affiliation(s)
- Philippe A Chouinard
- Department of Psychology, Centre for Brain and Mind, University of Western Ontario London, ON, Canada
| | | |
Collapse
|
32
|
Lavidor M, Ellison A, Walsh V. The cortical representation of centrally presented words: A magnetic stimulation study. VISUAL COGNITION 2010. [DOI: 10.1080/13506280244000131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Amanda Ellison
- b Department of Experimental Psychology, University of Oxford, UK
| | - Vincent Walsh
- c Institute of Cognitive Neuroscience, University College, London, UK
| |
Collapse
|
33
|
Hampson M, Hoffman RE. Transcranial magnetic stimulation and connectivity mapping: tools for studying the neural bases of brain disorders. Front Syst Neurosci 2010; 4. [PMID: 20941369 PMCID: PMC2950743 DOI: 10.3389/fnsys.2010.00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/23/2010] [Indexed: 11/18/2022] Open
Abstract
There has been an increasing emphasis on characterizing pathophysiology underlying psychiatric and neurological disorders in terms of altered neural connectivity and network dynamics. Transcranial magnetic stimulation (TMS) provides a unique opportunity for investigating connectivity in the human brain. TMS allows researchers and clinicians to directly stimulate cortical regions accessible to electromagnetic coils positioned on the scalp. The induced activation can then propagate through long-range connections to other brain areas. Thus, by identifying distal regions activated during TMS, researchers can infer connectivity patterns in the healthy human brain and can examine how those patterns may be disrupted in patients with different brain disorders. Conversely, connectivity maps derived using neuroimaging methods can identify components of a dysfunctional network. Nodes in this dysfunctional network accessible as targets for TMS by virtue of their proximity to the scalp may then permit TMS-induced alterations of components of the network not directly accessible to TMS via propagated effects. Thus TMS can provide a portal for accessing and altering neural dynamics in networks that are widely distributed anatomically. Finally, when long-term modulation of network dynamics is induced by trains of repetitive TMS, changes in functional connectivity patterns can be studied in parallel with changes in patient symptoms. These correlational data can elucidate neural mechanisms underlying illness and recovery. In this review, we focus on the application of these approaches to the study of psychiatric and neurological illnesses.
Collapse
Affiliation(s)
- M Hampson
- Department of Diagnostic Radiology, Yale University School of Medicine New Haven, CT, USA
| | | |
Collapse
|
34
|
The use of transcranial magnetic stimulation in cognitive neuroscience: a new synthesis of methodological issues. Neurosci Biobehav Rev 2010; 35:516-36. [PMID: 20599555 DOI: 10.1016/j.neubiorev.2010.06.005] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 06/15/2010] [Accepted: 06/17/2010] [Indexed: 10/19/2022]
Abstract
Transcranial magnetic stimulation (TMS) has become a mainstay of cognitive neuroscience, thus facing new challenges due to its widespread application on behaviorally silent areas. In this review we will summarize the main technical and methodological considerations that are necessary when using TMS in cognitive neuroscience, based on a corpus of studies and technical improvements that has become available in most recent years. Although TMS has been applied only relatively recently on a large scale to the study of higher functions, a range of protocols that elucidate how this technique can be used to investigate a variety of issues is already available, such as single pulse, paired pulse, dual-site, repetitive and theta burst TMS. Finally, we will touch on recent promising approaches that provide powerful new insights about causal interactions among brain regions (i.e., TMS with other neuroimaging techniques) and will enable researchers to enhance the functional resolution of TMS (i.e., state-dependent TMS). We will end by briefly summarizing and discussing the implications of the newest safety guidelines.
Collapse
|
35
|
Acute high-frequency rTMS of the left dorsolateral prefrontal cortex and attentional control in healthy young men. Brain Res 2010; 1329:152-8. [DOI: 10.1016/j.brainres.2010.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 02/18/2010] [Accepted: 03/04/2010] [Indexed: 11/18/2022]
|
36
|
Funktionelle Bildgebung in der Neurorehabilitation. NeuroRehabilitation 2010. [DOI: 10.1007/978-3-642-12915-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Moisa M, Pohmann R, Uludağ K, Thielscher A. Interleaved TMS/CASL: Comparison of different rTMS protocols. Neuroimage 2010; 49:612-20. [DOI: 10.1016/j.neuroimage.2009.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/29/2009] [Accepted: 07/03/2009] [Indexed: 11/24/2022] Open
|
38
|
Hanakawa T, Mima T, Matsumoto R, Abe M, Inouchi M, Urayama SI, Anami K, Honda M, Fukuyama H. Stimulus-response profile during single-pulse transcranial magnetic stimulation to the primary motor cortex. Cereb Cortex 2009; 19:2605-15. [PMID: 19234068 DOI: 10.1093/cercor/bhp013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We examined the stimulus-response profile during single-pulse transcranial magnetic stimulation (TMS) by measuring motor-evoked potentials (MEPs) with electromyographic monitoring and hemodynamic responses with functional magnetic resonance imaging (fMRI) at 3 Tesla. In 16 healthy subjects, single TMS pulses were irregularly delivered to the left primary motor cortex at a mean frequency of 0.15 Hz with a wide range of stimulus intensities. The measurement of MEP proved a typical relationship between stimulus intensity and MEP amplitude in the concurrent TMS-fMRI environment. In the population-level analysis of the suprathreshold stimulation conditions, significant increases in hemodynamic responses were detected in the motor/somatosensory network, reflecting both direct and remote effects of TMS, and also the auditory/cognitive areas, perhaps related to detection of clicks. The stimulus-response profile showed both linear and nonlinear components in the direct and remote motor/somatosensory network. A detailed analysis suggested that the nonlinear components of the motor/somatosensory network activity might be induced by nonlinear recruitment of neurons in addition to sensory afferents resulting from movement. These findings expand our basic knowledge of the quantitative relationship between TMS-induced neural activations and hemodynamic signals measured by neuroimaging techniques.
Collapse
Affiliation(s)
- Takashi Hanakawa
- Department of Cortical Function Disorders, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bestmann S, Ruff CC, Blankenburg F, Weiskopf N, Driver J, Rothwell JC. Mapping causal interregional influences with concurrent TMS-fMRI. Exp Brain Res 2008; 191:383-402. [PMID: 18936922 DOI: 10.1007/s00221-008-1601-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 09/29/2008] [Indexed: 12/20/2022]
Abstract
Transcranial magnetic stimulation (TMS) produces a direct causal effect on brain activity that can now be studied by new approaches that simultaneously combine TMS with neuroimaging methods, such as functional magnetic resonance imaging (fMRI). In this review we highlight recent concurrent TMS-fMRI studies that illustrate how this novel combined technique may provide unique insights into causal interactions among brain regions in humans. We show how fMRI can detect the spatial topography of local and remote TMS effects and how these may vary with psychological factors such as task-state. Concurrent TMS-fMRI may furthermore reveal how the brain adapts to so-called virtual lesions induced by TMS, and the distributed activity changes that may underlie the behavioural consequences often observed during cortical stimulation with TMS. We argue that combining TMS with neuroimaging techniques allows a further step in understanding the physiological underpinnings of TMS, as well as the neural correlated of TMS-evoked consequences on perception and behaviour. This can provide powerful new insights about causal interactions among brain regions in both health and disease that may ultimately lead to developing more efficient protocols for basic research and therapeutic TMS applications.
Collapse
Affiliation(s)
- Sven Bestmann
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
40
|
O'Shea J, Taylor PCJ, Rushworth MFS. Imaging causal interactions during sensorimotor processing. Cortex 2008; 44:598-608. [PMID: 18387592 DOI: 10.1016/j.cortex.2007.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 08/09/2007] [Accepted: 08/09/2007] [Indexed: 11/20/2022]
Abstract
We review three ways in which transcranial magnetic stimulation (TMS) has been used to investigate causal interactions between different brain areas: (1) combined with functional imaging; (2) combined with EEG; and (3) applied successively over two brain areas. We discuss the theoretical advantages of each technique, illustrated by examples from the literature, and highlight the potential of these approaches to provide novel insights into the neural bases of action control.
Collapse
Affiliation(s)
- Jacinta O'Shea
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
41
|
del Olmo MF, Bello O, Cudeiro J. Transcranial magnetic stimulation over dorsolateral prefrontal cortex in Parkinson’s disease. Clin Neurophysiol 2007; 118:131-9. [PMID: 17097342 DOI: 10.1016/j.clinph.2006.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 08/18/2006] [Accepted: 09/05/2006] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Several studies have shown that repetitive transcranial magnetic stimulation (rTMS) over the dorsolateral prefrontal cortex (DLPFC) is effective in the treatment of depression in patients with Parkinson disease (PD). However, since research into the effect of this type of rTMS regime on motor function is limited, we studied the effect of rTMS over the DLPFC on the motor functions in PD patients. METHODS Thirteen patients were randomly assigned into 2 groups, one receiving real-rTMS (90% of resting motor threshold, 10 Hz, 450 pulses-day for 10 consecutive days) over the DLPFC contralateral to the more affected side, and the other group receiving sham-rTMS. Assessment included a clinical motor evaluation using part III of the Unified Parkinson's Disease Rating Scale (UPDRS), and several motor tasks. The UPDRS was applied before and after 10 days of rTMS. Finger tapping, reach movement, grip movement and gait were measured in each session before and after the rTMS over the 10 day period. RESULTS Statistical analysis (ANOVA for repeated measures; group *day *side *rTMS) only showed a significant effect for finger tapping, reach movement and gait for the factor day. No significant change was reported for the UPDRS in any group. CONCLUSIONS Application of rTMS over the DLPFC as a 10 day course had no significant effect on motor functions and clinical motor status, and the improvement in performance of motor tasks can be attributed to the effects of practice. SIGNIFICANCE rTMS over the DLPFC did not lead to any motor improvement in PD patients.
Collapse
|
42
|
Valero-Cabré A, Payne BR, Pascual-Leone A. Opposite impact on 14C-2-deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex. Exp Brain Res 2006; 176:603-15. [PMID: 16972076 DOI: 10.1007/s00221-006-0639-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 07/15/2006] [Indexed: 11/29/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) appears capable of modulating human cortical excitability beyond the duration of the stimulation train. However, the basis and extent of this "off-line" modulation remains unknown. In a group of anesthetized cats, we applied patterns of real or sham focal rTMS to the visuo-parietal cortex (VP) at high (HF) or low (LF) frequency and recorded brain glucose uptake during (on-line), immediately after (off-line), or 1 h after (late) stimulation. During the on-line period LF and HF rTMS induced a significant relative reduction of (14)C-2DG uptake in the stimulated VP cortex and tightly linked cortical and subcortical structures (e.g. the superficial superior colliculus, the pulvinar, and the LPl nucleus) with respect to homologue areas in the unstimulated hemisphere. During the off-line period HF rTMS induced a significant relative increase in (14)C-2DG uptake in the targeted VP cortex, whereas LF rTMS generated the opposite effect, with only mild network impact. Moderate distributed effects were only recorded after LF rTMS in the posterior thalamic structures. No long lasting cortical or subcortical effects were detected during the late period. Our findings demonstrate opposite modulation of rTMS on local and distant effects along a specific network, depending on the pattern of stimulation. Such effects are demonstrated in the anesthetized animal, ruling out behavioral and non-specific reasons for the differential impact of the stimulation. The findings are consistent with previous differential electrophysiological and behavioral effects of low and high frequency rTMS patterns and provide support to uses of rTMS in neuromodulation.
Collapse
Affiliation(s)
- Antoni Valero-Cabré
- Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | |
Collapse
|
43
|
Strafella AP, Ko JH, Grant J, Fraraccio M, Monchi O. Corticostriatal functional interactions in Parkinson's disease: a rTMS/[11C]raclopride PET study. Eur J Neurosci 2005; 22:2946-52. [PMID: 16324129 PMCID: PMC2967526 DOI: 10.1111/j.1460-9568.2005.04476.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Several animal studies have shown that striatal dopamine can be released under direct control of glutamatergic corticostriatal efferents. In Parkinson's disease (PD), abnormalities in corticostriatal interactions are believed to play an important role in the pathophysiology of the disease. Previously, we have reported that, in healthy subjects, repetitive transcranial magnetic stimulation (rTMS) of motor cortex (MC) induces focal dopamine release in the ipsilateral putamen. In the present study, using [11C]raclopride PET, we sought to investigate early PD patients with evidence of unilateral motor symptoms. We measured in the putamen changes in extracellular dopamine concentration following rTMS (intensity, 90% of the resting motor threshold; frequency, 10 Hz) of the left and right MC. The main objective was to identify potential differences in corticostriatal dopamine release between the hemisphere associated with clear contralateral motor symptoms (symptomatic hemisphere) and the presymptomatic stage of the other hemisphere (asymptomatic hemisphere). Repetitive TMS of MC caused a binding reduction in the ipsilateral putamen of both hemispheres. In the symptomatic hemisphere, while the amount of TMS-induced dopamine release was, as expected, smaller, the size of the significant cluster of change in [11C]raclopride binding was, instead, 61.4% greater than in the asymptomatic hemisphere. This finding of a spatially enlarged area of dopamine release, following cortical stimulation, may represent a possible in vivo expression of a loss of functional segregation of cortical information to the striatum and an indirect evidence of abnormal corticostriatal transmission in early PD. This has potential implications for models of basal ganglia function in PD.
Collapse
Affiliation(s)
- Antonio P Strafella
- Montreal Neurological Institute, Neurology & Neurosurgery Department, McGill University, 3801 University St., Montréal, QC H3A 2B4, Canada.
| | | | | | | | | |
Collapse
|
44
|
Abstract
When engaged by a stimulus, different nodes of a neural circuit respond in a coordinated fashion. We often ask whether there is a cause and effect in such interregional interactions. This paper proposes that we can infer causality in functional connectivity by employing a 'perturb and measure' approach. In the human brain, this has been achieved by combining transcranial magnetic stimulation (TMS) with positron emission tomography (PET), functional magnetic resonance imaging or electroencephalography. Here, I will illustrate this approach by reviewing some of our TMS/PET work, and will conclude by discussing a few methodological and theoretical challenges facing those studying neural connectivity using a perturbation.
Collapse
Affiliation(s)
- Tomás Paus
- Brain & Body Centre, University of Nottingham, UK.
| |
Collapse
|
45
|
Valero-Cabré A, Payne BR, Rushmore J, Lomber SG, Pascual-Leone A. Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic brain activity: a 14C-2DG tracing study in the cat. Exp Brain Res 2005; 163:1-12. [PMID: 15688174 DOI: 10.1007/s00221-004-2140-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 10/05/2004] [Indexed: 12/01/2022]
Abstract
Transcranial magnetic stimulation (TMS) is increasingly utilized in clinical neurology and neuroscience. However, detailed knowledge of the impact and specificity of the effects of TMS on brain activity remains unresolved. We have used 14C-labeled deoxyglucose (14C-2DG) mapping during repetitive TMS (rTMS) of the posterior and inferior parietal cortex in anesthetized cats to study, with exquisite spatial resolution, the local and distant effects of rTMS on brain activity. High-frequency rTMS decreases metabolic activity at the primary site of stimulation with respect to homologue areas in the unstimulated hemisphere. In addition, rTMS induces specific distant effects on cortical and subcortical regions known to receive substantial efferent projections from the stimulated cortex. The magnitude of this distal impact is correlated with the strength of the anatomical projections. Thus, in the anesthetized animal, the impact of rTMS is upon a distributed network of structures connected to the primary site of application.
Collapse
Affiliation(s)
- Antoni Valero-Cabré
- Cerebral Dynamics, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | |
Collapse
|
46
|
Wittenberg GF, Werhahn KJ, Wassermann EM, Herscovitch P, Cohen LG. Functional connectivity between somatosensory and visual cortex in early blind humans. Eur J Neurosci 2004; 20:1923-7. [PMID: 15380014 DOI: 10.1111/j.1460-9568.2004.03630.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Crossmodal plasticity occurs when loss of input in one sensory modality leads to reorganization in brain representations of other sensory modalities. In congenital blindness the visual cortex becomes responsive to somatosensory input such as occurs during Braille reading. The route by which somatosensory information reaches the visual cortex is not known. Here, we used repetitive transcranial magnetic stimulation (rTMS) to probe the connection between primary somatosensory cortex (S1) and early visual cortex (V1 and neighboring areas), combining rTMS with positron emission tomography (PET). We applied stimulation over S1 in sighted, early blind and late blind individuals. Baseline regional cerebral blood flow in occipital cortex was highest in early blind and lowest in late blind individuals. Only the early blind group showed significant activation of early visual areas when rTMS was delivered over S1. This activation was significantly higher in early than in late blind, but not relative to sighted controls. These results are consistent with the hypothesis that tactile information may reach early visual areas in early blind humans through cortico-cortical pathways, possibly supporting enhanced tactile information processing.
Collapse
Affiliation(s)
- George F Wittenberg
- Human Cortical Physiology Section, National Institute of Neurological Disorders and stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
47
|
Denslow S, Lomarev M, Bohning DE, Mu Q, George MS. A High Resolution Assessment of the Repeatability of Relative Location and Intensity of Transcranial Magnetic Stimulation–induced and Volitionally Induced Blood Oxygen Level–dependent Response in the Motor Cortex. Cogn Behav Neurol 2004; 17:163-73. [PMID: 15536304 DOI: 10.1097/01.wnn.0000117864.42205.6d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Using functional magnetic resonance imaging, we assessed variation in location and intensity of blood oxygen level-dependent contrast associated with movements induced by transcranial magnetic stimulation or volition. BACKGROUND Anatomic location and within-subject repeatability of blood oxygen level-dependent responses induced by transcranial magnetic stimulation comprise critical information to the use of interleaved transcranial magnetic stimulation/functional magnetic resonance imaging as a neuroscience tool. METHODS Eleven healthy adults were scanned 3 times each at 1.5 T. Interleaved with functional magnetic resonance imaging, 1-Hz transcranial magnetic stimulation was applied over motor cortex. VOL was alternated with transcranial magnetic stimulation over the scans. RESULTS Intra-subject standard deviations in blood oxygen level-dependent locations ranged between 3 and 6 millimeters, allowing localization to subregions of the motor strip. Coil placement relative to blood oxygen level-dependent location varied more than blood oxygen level-dependent location (sdx = 9.5mm, sdy = 8.7 mm, sdz = 9.0mm) with consistent anterior displacement (dy = 21.8 mm, P = <0.025). Analysis of variance did not detect significant differences between transcranial magnetic stimulation and VOL blood oxygen level-dependent locations or intensities, in contrast to significant intensity differences detected in auditory blood oxygen level dependence. CONCLUSION The high repeatability of location of transcranial magnetic stimulation-induced blood oxygen level-dependent activation suggests that transcranial magnetic stimulation/functional magnetic resonance imaging stimulation can be used as a precise tool in investigation of cortical mechanisms. The similarity between VOL and transcranial magnetic stimulation suggests that transcranial magnetic stimulation may act through natural brain movement circuits.
Collapse
Affiliation(s)
- Stewart Denslow
- Center for Advanced Imaging Research and Brain Stimulation Laboratories, Department of Radiology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | |
Collapse
|
48
|
Hayashi T, Ohnishi T, Okabe S, Teramoto N, Nonaka Y, Watabe H, Imabayashi E, Ohta Y, Jino H, Ejima N, Sawada T, Iida H, Matsuda H, Ugawa Y. Long-term effect of motor cortical repetitive transcranial magnetic stimulation [correction]. Ann Neurol 2004; 56:77-85. [PMID: 15236404 DOI: 10.1002/ana.20151] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) recently has been assessed as a noninvasive treatment modality for movement and psychiatric disorders, whereas the mechanism underlying the therapeutic effects is not fully understood. Studies in rodents showed lasting functional changes in some selected regions, such as limbic-associated structures, but unfocused brain stimulation did not clarify the regional effects. To address the topographical and temporal profiles of the effects on glucose metabolism in primate brain, we performed rTMS and repeated (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) before, during, and up to 16 days after rTMS in anesthetized cynomologous monkeys. We delivered a total of 2,000 pulses of 5 Hz-rTMS over the right precentral gyrus using a small-sized eight-figured coil that induced a localized electrical field. Voxel-based analysis in a standard space of the macaque brain showed statistically robust changes in FDG uptake: a decrease in the motor/premotor cortices and an increase in the limbic-associated areas involving the anterior/posterior cingulate, and orbitofrontal cortices. Interestingly, these uptake changes continued for at least 8 days and the magnitude of the lasting effects in the limbic-related areas was negatively correlated across subjects with those in the motor/premotor cortices. The results demonstrate that motor rTMS has a long-term lasting effect on motor-related regions and distant limbic-related areas via functional connections.
Collapse
Affiliation(s)
- Takuya Hayashi
- Department of Investigative Radiology, Research Institute, National Cardiovascular Centre, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tamura Y, Okabe S, Ohnishi T, N Saito D, Arai N, Mochio S, Inoue K, Ugawa Y. Effects of 1-Hz repetitive transcranial magnetic stimulation on acute pain induced by capsaicin. Pain 2004; 107:107-15. [PMID: 14715396 DOI: 10.1016/j.pain.2003.10.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study is to investigate the efficacy of 1-Hz repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex (M1) on acute pain induced by intradermal capsaicin injection and to elucidate its mechanisms by single-photon emission computed tomography (SPECT). We compared time courses of a subjective scale of pain induced by intradermal capsaicin injection in seven normal subjects under three different conditions: rTMS over M1, sham stimulation, and control condition (natural course of acute pain without any stimulation). In ten normal subjects, using SPECT, we also studied differences in regional cerebral blood flow (rCBF) after capsaicin injection between two conditions: rTMS over M1 and the control condition. rTMS over M1 induced earlier recovery from acute pain compared with the sham or control conditions. Under rTMS over the right M1 condition compared with the control condition, the SPECT study demonstrated a significant relative rCBF decrease in the right medial prefrontal cortex (MPFC) corresponding to Brodmann area (BA) 9, and a significant increase in the caudal part of the right anterior cingulate cortex (ACC) corresponding to BA24 and the left premotor area (BA6). A region-of-interest analysis showed significant correlation between pain reduction and rCBF changes in both BA9 and BA24. We conclude that rTMS over M1 should have beneficial effects on acute pain, and its effects must be caused by functional changes of MPFC and caudal ACC.
Collapse
Affiliation(s)
- Yohei Tamura
- Department of Neurology, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Siebner HR, Lee L, Bestmann S. Interleaving TMS with functional MRI: now that it is technically feasible how should it be used? Clin Neurophysiol 2003; 114:1997-9. [PMID: 14580597 DOI: 10.1016/s1388-2457(03)00242-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|