1
|
Li C, Tian J, Liu N, Song D, Steer CJ, Han Q, Song G. MicroRNA-206 as a potential cholesterol-lowering drug is superior to statins in mice. J Lipid Res 2024; 65:100576. [PMID: 38866328 PMCID: PMC11292365 DOI: 10.1016/j.jlr.2024.100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
Hypercholesterolemia is frequently intertwined with hepatosteatosis, hypertriglyceridemia, and hyperglycemia. This study is designed to assess the therapeutic efficacy of miR-206 in contrast to statins in the context of managing hypercholesterolemia in mice. We previously showed that miR-206 is a potent inhibitor of de novo lipogenesis (DNL), cholesterol synthesis, and gluconeogenesis in mice. Given that these processes occur within hepatocytes, we employed a mini-circle (MC) system to deliver miR-206 specifically to hepatocytes (designated as MC-miR-206). A single intravenous injection of MC-miR-206 maintained high levels of miR-206 in the liver for at least two weeks, thereby maintaining suppression of hepatic DNL, cholesterol synthesis, and gluconeogenesis. MC-miR-206 significantly reduced DNA damage, endoplasmic reticulum and oxidative stress, and hepatic toxicity. Therapeutically, both MC-miR-206 and statins significantly reduced total serum cholesterol and triglycerides as well as LDL cholesterol and VLDL cholesterol in mice maintained on the normal chow and high-fat high-cholesterol diet. MC-miR-206 reduced liver weight, hepatic triglycerides and cholesterol, and blood glucose, while statins slightly increased hepatic cholesterol and blood glucose and failed to affect levels of liver weight and hepatic triglycerides. Mechanistically, miR-206 alleviated hypercholesterolemia by inhibiting hepatic cholesterol synthesis, while statins increased HMGCR activity, hepatic cholesterol synthesis, and fecal-neutral steroid excretion. MiR-206 facilitates the regression of hypercholesterolemia, hypertriglyceridemia, hyperglycemia, and hepatosteatosis. MiR-206 outperforms statins by reducing hyperglycemia, hepatic cholesterol levels, and hepatic toxicity.
Collapse
Affiliation(s)
- Chao Li
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan City, China; The First College of Clinical Medicine, Shanxi Medical University, Taiyuan City, China
| | - Jing Tian
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan City, China
| | - Ningning Liu
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David Song
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Clifford J Steer
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Qinghua Han
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan City, China.
| | - Guisheng Song
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
A novel, orally bioavailable, small-molecule inhibitor of PCSK9 with significant cholesterol-lowering properties in vivo. J Lipid Res 2022; 63:100293. [DOI: 10.1016/j.jlr.2022.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
|
3
|
Pouwer MG, Heinonen SE, Behrendt M, Andréasson AC, van Koppen A, Menke AL, Pieterman EJ, van den Hoek AM, Jukema JW, Leighton B, Jönsson-Rylander AC, Princen HMG. The APOE ∗3-Leiden Heterozygous Glucokinase Knockout Mouse as Novel Translational Disease Model for Type 2 Diabetes, Dyslipidemia, and Diabetic Atherosclerosis. J Diabetes Res 2019; 2019:9727952. [PMID: 30949516 PMCID: PMC6425338 DOI: 10.1155/2019/9727952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND There is a lack of predictive preclinical animal models combining atherosclerosis and type 2 diabetes. APOE∗3-Leiden (E3L) mice are a well-established model for diet-induced hyperlipidemia and atherosclerosis, and glucokinase+/- (GK+/-) mice are a translatable disease model for glucose control in type 2 diabetes. The respective mice respond similarly to lipid-lowering and antidiabetic drugs as humans. The objective of this study was to evaluate/characterize the APOE∗3-Leiden.glucokinase+/- (E3L.GK+/-) mouse as a novel disease model to study the metabolic syndrome and diabetic complications. METHODS Female E3L.GK+/-, E3L, and GK+/- mice were fed fat- and cholesterol-containing diets for 37 weeks, and plasma parameters were measured throughout. Development of diabetic macro- and microvascular complications was evaluated. RESULTS Cholesterol and triglyceride levels were significantly elevated in E3L and E3L.GK+/- mice compared to GK+/- mice, whereas fasting glucose was significantly increased in E3L.GK+/- and GK+/- mice compared to E3L. Atherosclerotic lesion size was increased 2.2-fold in E3L.GK+/- mice as compared to E3L (p = 0.037), which was predicted by glucose exposure (R 2 = 0.636, p = 0.001). E3L and E3L.GK+/- mice developed NASH with severe inflammation and fibrosis which, however, was not altered by introduction of the defective GK phenotype, whereas mild kidney pathology with tubular vacuolization was present in all three phenotypes. CONCLUSIONS We conclude that the E3L.GK+/- mouse is a promising novel diet-inducible disease model for investigation of the etiology and evaluation of drug treatment on diabetic atherosclerosis.
Collapse
Affiliation(s)
- Marianne G. Pouwer
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, Netherlands
- Cardiology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Suvi E. Heinonen
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Margareta Behrendt
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | | - Arianne van Koppen
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, Netherlands
| | | | - Elsbet J. Pieterman
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, Netherlands
| | - Anita M. van den Hoek
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, Netherlands
| | - J. Wouter Jukema
- Cardiology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Brendan Leighton
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- The Research Network, Sandwich, Kent, UK
| | | | - Hans M. G. Princen
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, Netherlands
| |
Collapse
|
4
|
Gui Y, Yao S, Yan H, Hu L, Yu C, Gao F, Xi C, Li H, Ye Y, Wang Y. A novel small molecule liver X receptor transcriptional regulator, nagilactone B, suppresses atherosclerosis in apoE-deficient mice. Cardiovasc Res 2016; 112:502-14. [DOI: 10.1093/cvr/cvw183] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/23/2016] [Indexed: 11/14/2022] Open
|
5
|
van de Steeg E, Kleemann R, Jansen HT, van Duyvenvoorde W, Offerman EH, Wortelboer HM, DeGroot J. Combined Analysis of Pharmacokinetic and Efficacy Data of Preclinical Studies with Statins Markedly Improves Translation of Drug Efficacy to Human Trials. J Pharmacol Exp Ther 2013; 347:635-44. [DOI: 10.1124/jpet.113.208595] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
6
|
Beneficial effects of rosuvastatin on insulin resistance, adiposity, inflammatory markers and non-alcoholic fatty liver disease in mice fed on a high-fat diet. Clin Sci (Lond) 2012; 123:259-70. [PMID: 22420611 DOI: 10.1042/cs20110373] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of the present study was to evaluate the effects of ST (rosuvastatin) and GZ (rosiglitazone) on IR (insulin resistance) and on liver as well as adipose tissue in mice fed on an HF (high-fat) diet. Our data show that treatment with ST resulted in a marked improvement in insulin sensitivity characterized by enhanced glucose clearance during the insulin tolerance test and a 70% decrease in the HOMA-IR (homoeostasis model assessment of insulin resistance) index level (P=0.0008). The ST-treated mice exhibited lower gains in BM (body mass; -8%; P<0.01) and visceral fat pad thickness (-60%; P<0.01) compared with the untreated HF group. In comparison with HF-diet-fed mice, HF+ST-treated mice showed a significant reduction in hepatomegaly and liver steatosis (-6%, P<0.05; and -21%, P<0.01 respectively). In HF+ST-treated mice, the hepatic TAG (triacylglycerol) levels were reduced by 58% compared with the HF group (P<0.01). In addition, the expression of SREBP-1c (sterol-regulatory-element-binding protein-1c) was decreased by 50% in the livers of HF+ST-treated mice (P<0.01) relative to the HF-diet-fed mice. The levels of resistin were lower in the HF+ST-treated group compared with the HF group (44% less, P< 0.01). In conclusion, we demonstrated that ST treatment improved insulin sensitivity and decreased liver steatosis in mice fed on an HF diet. Furthermore, ST reduced BM gains, improved the circulating levels of plasma cholesterol and TAG, and reduced hepatic TAG, which was concomitant with lower resistin levels.
Collapse
|
7
|
Zachařová A, Šiller M, Špičáková A, Anzenbacherová E, Škottová N, Anzenbacher P, Večeřa R. Rosuvastatin suppresses the liver microsomal CYP2C11 and CYP2C6 expression in male Wistar rats. Xenobiotica 2012; 42:731-6. [DOI: 10.3109/00498254.2012.661099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Grönros J, Wikström J, Brandt-Eliasson U, Forsberg GB, Behrendt M, Hansson GI, Gan LM. Effects of rosuvastatin on cardiovascular morphology and function in an ApoE-knockout mouse model of atherosclerosis. Am J Physiol Heart Circ Physiol 2008; 295:H2046-53. [PMID: 18790840 DOI: 10.1152/ajpheart.00133.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of rosuvastatin on plaque progression and in vivo coronary artery function in apolipoprotein E-knockout (ApoE-KO) mice, using noninvasive high-resolution ultrasound techniques. Eight-week-old male ApoE-KO mice (n = 20) were fed a high-fat diet with or without rosuvastatin (10 micromol.kg(-1).day(-1)) for 16 wk. When compared with control, rosuvastatin reduced total cholesterol levels (P < 0.05) and caused significant retardation of lesion progression in the brachiocephalic artery, as visualized in vivo using an ultrasound biomicroscope (P < 0.05). Histological analysis confirmed the reduction of brachiocephalic atherosclerosis and also revealed an increase in collagen content in the statin-treated group (P < 0.05). Coronary volumetric flow was measured by simultaneous recording of Doppler velocity signals and left coronary artery morphology before and during adenosine infusion. The hyperemic flow in response to adenosine was significantly greater in left coronary artery following 16 wk of rosuvastatin treatment (P < 0.001), whereas the baseline flow was similar in both groups. In conclusion, rosuvastatin reduced brachiocephalic artery atherosclerotic plaques in ApoE-KO mice. Coronary artery function assessed using recently developed in vivo ultrasound-based protocols, also improved.
Collapse
Affiliation(s)
- J Grönros
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
9
|
Vergès B, Florentin E, Baillot-Rudoni S, Monier S, Petit JM, Rageot D, Gambert P, Duvillard L. Effects of 20 mg rosuvastatin on VLDL1-, VLDL2-, IDL- and LDL-ApoB kinetics in type 2 diabetes. Diabetologia 2008; 51:1382-90. [PMID: 18535816 DOI: 10.1007/s00125-008-1046-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 03/25/2008] [Indexed: 11/27/2022]
Abstract
AIMS/HYPOTHESIS In addition to its efficacy in reducing LDL-cholesterol, rosuvastatin has been shown to significantly decrease plasma triacylglycerol. The use of rosuvastatin may be beneficial in patients with type 2 diabetes, who usually have increased triacylglycerol levels. However, its effects on the metabolism of triacylglycerol-rich lipoproteins in type 2 diabetic patients remains unknown. METHODS We performed a randomised double-blind crossover trial of 6-week treatment with placebo or rosuvastatin 20 mg in eight patients with type 2 diabetes who were being treated with oral glucose-lowering agents. In each patient, an in vivo kinetic study of apolipoprotein B (ApoB)-containing lipoproteins with [13C]leucine was performed at the end of each treatment period. A central randomisation centre used computer-generated tables to allocate treatments. Participants, caregivers and those assessing the outcomes were blinded to group assignment. RESULTS Rosuvastatin 20 mg significantly reduced plasma LDL-cholesterol, triacylglycerol and total ApoB. It also significantly reduced ApoB pool sizes of larger triacylglycerol-rich VLDL particles (VLDL1; p = 0.011), smaller VLDL particles (VLDL2; p = 0.011), intermediate density lipoprotein (IDL; p = 0.011) and LDL (p = 0.011). This reduction was associated with a significant increase in the total fractional catabolic rate of VLDL1-ApoB (6.70 +/- 3.24 vs 4.52 +/- 2.34 pool/day, p = 0.049), VLDL2-ApoB (8.72 +/- 3.37 vs 5.36 +/- 2.64, p = 0.011), IDL-ApoB (7.06 +/- 1.68 vs 4.21 +/- 1.51, p = 0.011) and LDL-ApoB (1.02 +/- 0.27 vs 0.59 +/- 0.13, p = 0.011). Rosuvastatin did not change the production rates of VLDL2-, IDL- or LDL-, but did reduce VLDL1-ApoB production rate (12.4 +/- 4.5 vs 19.5 +/- 8.4 mg kg(-1) day(-1), p = 0.035). No side effects of rosuvastatin were observed during the study. CONCLUSIONS/INTERPRETATION In type 2 diabetic patients rosuvastatin 20 mg not only induces a significant increase of LDL-ApoB catabolism (73%), but also has favourable effects on the catabolism of triacylglycerol-rich lipoproteins, e.g. a significant increase in the catabolism of VLDL1-ApoB (48%), VLDL2-ApoB (63%) and IDL-ApoB (68%), and a reduction in the production rate of VLDL1-ApoB (-36%). The effects of rosuvastatin on the metabolism of triacylglycerol-rich lipoproteins may be beneficial for prevention of atherosclerosis in type 2 diabetic patients.
Collapse
Affiliation(s)
- B Vergès
- Service Endocrinologie, Diabétologie et Maladies métaboliques, Centre Hospitalier Universitaire de Dijon, Hôpital du Bocage, Dijon, BP 77908, 21079, France.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ooi EMM, Barrett PHR, Chan DC, Nestel PJ, Watts GF. Dose-dependent effect of rosuvastatin on apolipoprotein B-100 kinetics in the metabolic syndrome. Atherosclerosis 2008; 197:139-46. [PMID: 17416370 DOI: 10.1016/j.atherosclerosis.2007.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 11/29/2022]
Abstract
In a randomized, double-blind, crossover trial of 5-week treatment period with placebo or rosuvastatin (10 or 40 mg/day) with 2-week placebo wash-outs between treatments, the dose-dependent effect of rosuvastatin on apolipoprotein (apo) B-100 kinetics in metabolic syndrome subjects were studied. Compared with placebo, there was a significant dose-dependent decrease with rosuvastatin in plasma cholesterol, triglycerides, LDL cholesterol, apoB and apoC-III concentrations and in the apoB/apoA-I ratio, lathosterol:cholesterol ratio, HDL cholesterol concentration and campesterol:cholesterol ratio also increased significantly. Rosuvastatin significantly increased the fractional catabolic rates (FCR) of very-low density lipoprotein (VLDL), intermediate density lipoprotein (IDL) and LDL-apoB and decreased the corresponding pool sizes, with evidence of a dose-related effect. LDL apoB production rate (PR) fell significantly with rosuvastatin 40 mg/day with no change in VLDL and IDL-apoB PR. Changes in triglycerides were significantly correlated with changes in VLDL apoB FCR and apoC-III concentration, and changes in lathosterol:cholesterol ratio were correlated with changes in LDL apoB FCR, the associations being more significant with the higher dose of rosuvastatin. In the metabolic syndrome, rosuvastatin decreases the plasma concentration of apoB-containing lipoproteins by a dose-dependent mechanism that increases their rates of catabolism. Higher dose rosuvastatin may also decrease LDL apoB production. The findings provide a dose-related mechanism for the benefits of rosuvastatin on cardiovascular disease in the metabolic syndrome.
Collapse
Affiliation(s)
- Esther M M Ooi
- Metabolic Research Centre, School of Medicine & Pharmacology, Royal Perth Hospital, University of Western Australia, Perth, Western Australia, Australia
| | | | | | | | | |
Collapse
|
11
|
de Haan W, van der Hoogt CC, Westerterp M, Hoekstra M, Dallinga-Thie GM, Princen HMG, Romijn JA, Jukema JW, Havekes LM, Rensen PCN. Atorvastatin increases HDL cholesterol by reducing CETP expression in cholesterol-fed APOE*3-Leiden.CETP mice. Atherosclerosis 2008; 197:57-63. [PMID: 17868678 DOI: 10.1016/j.atherosclerosis.2007.08.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 06/06/2007] [Accepted: 08/01/2007] [Indexed: 11/18/2022]
Abstract
OBJECTIVE In addition to lowering low-density lipoprotein (LDL)-cholesterol, statins modestly increase high-density lipoprotein (HDL)-cholesterol in humans and decrease cholesteryl ester transfer protein (CETP) mass and activity. Our aim was to determine whether the increase in HDL depends on CETP expression. METHODS AND RESULTS APOE*3-Leiden (E3L) mice, with a human-like lipoprotein profile and a human-like responsiveness to statin treatment, were crossbred with mice expressing human CETP under control of its natural flanking regions resulting in E3L.CETP mice. E3L and E3L.CETP mice were fed a Western-type diet with or without atorvastatin. Atorvastatin (0.01% in the diet) reduced plasma cholesterol in both E3L and E3L.CETP mice (-26 and -33%, P<0.05), mainly in VLDL, but increased HDL-cholesterol only in E3L.CETP mice (+52%). Hepatic mRNA expression levels of genes involved in HDL metabolism, such as phospholipid transfer protein (Pltp), ATP-binding cassette transporter A1 (Abca1), scavenger receptor class B type I (Sr-b1), and apolipoprotein AI (Apoa1), were not differently affected by atorvastatin in E3L.CETP mice as compared to E3L mice. However, in E3L.CETP mice, atorvastatin down-regulated the hepatic CETP mRNA expression (-57%; P<0.01) as well as the total CETP level (-29%) and cholesteryl esters (CE) transfer activity (-36%; P<0.05) in plasma. CONCLUSIONS Atorvastatin increases HDL-cholesterol in E3L.CETP mice by reducing the CETP-dependent transfer of cholesterol from HDL to (V)LDL, as related to lower hepatic CETP expression and a reduced plasma (V)LDL pool.
Collapse
Affiliation(s)
- Willeke de Haan
- Netherlands Organization for Applied Scientific Research-Quality of Life, Gaubius Laboratory, P.O. Box 2215, 2301 CE Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zadelaar S, Kleemann R, Verschuren L, de Vries-Van der Weij J, van der Hoorn J, Princen HM, Kooistra T. Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol 2007; 27:1706-21. [PMID: 17541027 DOI: 10.1161/atvbaha.107.142570] [Citation(s) in RCA: 414] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Atherosclerosis is a multifactorial highly-complex disease with numerous etiologies that work synergistically to promote lesion development. The ability to develop preventive and ameliorative treatments will depend on animal models that mimic the human subject metabolically and pathophysiologically and will develop lesions comparable to those in humans. The mouse is the most useful, economic, and valid model for studying atherosclerosis and exploring effective therapeutic approaches. Among the most widely used mouse models for atherosclerosis are apolipoprotein E-deficient (ApoE-/-) and LDL receptor-deficient (LDLr-/-) mice. An up-and-coming model is the ApoE*3Leiden (E3L) transgenic mouse. Here, we review studies that have explored how and to what extent these mice respond to compounds directed at treatment of the risk factors hypercholesterolemia, hypertriglyceridemia, hypertension, and inflammation. An important outcome of this survey is that the different models used may differ markedly from one another in their response to a specific experimental manipulation. The choice of a model is therefore of critical importance and should take into account the risk factor to be studied and the working spectrum of the compounds tested.
Collapse
Affiliation(s)
- Susanne Zadelaar
- TNO Quality of Life, Gaubius Laboratory, Department of Biosciences, P.O. Box 2215, 2301 CE Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
van der Hoogt CC, de Haan W, Westerterp M, Hoekstra M, Dallinga-Thie GM, Romijn JA, Princen HMG, Jukema JW, Havekes LM, Rensen PCN. Fenofibrate increases HDL-cholesterol by reducing cholesteryl ester transfer protein expression. J Lipid Res 2007; 48:1763-71. [PMID: 17525476 DOI: 10.1194/jlr.m700108-jlr200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to efficiently decreasing VLDL-triglycerides (TGs), fenofibrate increases HDL-cholesterol levels in humans. We investigated whether the fenofibrate-induced increase in HDL-cholesterol is dependent on the expression of the cholesteryl ester transfer protein (CETP). To this end, APOE*3-Leiden (E3L) transgenic mice without and with the human CETP transgene, under the control of its natural regulatory flanking regions, were fed a Western-type diet with or without fenofibrate. Fenofibrate (0.04% in the diet) decreased plasma TG in E3L and E3L.CETP mice (-59% and -60%; P < 0.001), caused by a strong reduction in VLDL. Whereas fenofibrate did not affect HDL-cholesterol in E3L mice, fenofibrate dose-dependently increased HDL-cholesterol in E3L.CETP mice (up to +91%). Fenofibrate did not affect the turnover of HDL-cholesteryl ester (CE), indicating that fenofibrate causes a higher steady-state HDL-cholesterol level without altering the HDL-cholesterol flux through plasma. Analysis of the hepatic gene expression profile showed that fenofibrate did not differentially affect the main players in HDL metabolism in E3L.CETP mice compared with E3L mice. However, in E3L.CETP mice, fenofibrate reduced hepatic CETP mRNA (-72%; P < 0.01) as well as the CE transfer activity in plasma (-73%; P < 0.01). We conclude that fenofibrate increases HDL-cholesterol by reducing the CETP-dependent transfer of cholesterol from HDL to (V)LDL, as related to lower hepatic CETP expression and a reduced plasma (V)LDL pool.
Collapse
Affiliation(s)
- Caroline C van der Hoogt
- Netherlands Organization for Applied Scientific Research-Quality of Life, Gaubius Laboratory, 2301 CE Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Basso F, Freeman LA, Ko C, Joyce C, Amar MJ, Shamburek RD, Tansey T, Thomas F, Wu J, Paigen B, Remaley AT, Santamarina-Fojo S, Brewer HB. Hepatic ABCG5/G8 overexpression reduces apoB-lipoproteins and atherosclerosis when cholesterol absorption is inhibited. J Lipid Res 2007; 48:114-26. [PMID: 17060690 DOI: 10.1194/jlr.m600353-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that liver-specific overexpression of ABCG5/G8 in mice is not atheroprotective, suggesting that increased biliary cholesterol secretion must be coupled with decreased intestinal cholesterol absorption to increase net sterol loss from the body and reduce atherosclerosis. To evaluate this hypothesis, we fed low density lipoprotein receptor-knockout (LDLr-KO) control and ABCG5/G8-transgenic (ABCG5/G8-Tg)xLDLr-KO mice, which overexpress ABCG5/G8 only in liver, a Western diet containing ezetimibe to reduce intestinal cholesterol absorption. On this dietary regimen, liver-specific ABCG5/G8 overexpression increased hepatobiliary cholesterol concentration and secretion rates (1.5-fold and 1.9-fold, respectively), resulting in 1.6-fold increased fecal cholesterol excretion, decreased hepatic cholesterol, and increased (4.4-fold) de novo hepatic cholesterol synthesis versus LDLr-KO mice. Plasma lipids decreased (total cholesterol, 32%; cholesteryl ester, 32%; free cholesterol, 30%), mostly as a result of reduced non-high density lipoprotein-cholesterol and apolipoprotein B (apoB; 36% and 25%, respectively). ApoB-containing lipoproteins were smaller and lipid-depleted in ABCG5/G8-TgxLDLr-KO mice. Kinetic studies revealed similar 125I-apoB intermediate density lipoprotein/LDL fractional catabolic rates, but apoB production rates were decreased 37% in ABCG5/G8-TgxLDLr-KO mice. Proximal aortic atherosclerosis decreased by 52% (male) and 59% (female) in ABCG5/G8-TgxLDLr-KO versus LDLr-KO mice fed the Western/ezetimibe diet. Thus, increased biliary secretion, resulting from hepatic ABCG5/G8 overexpression, reduces atherogenic risk in LDLr-KO mice fed a Western diet containing ezetimibe. These findings identify distinct roles for liver and intestinal ABCG5/G8 in modulating sterol metabolism and atherosclerosis.
Collapse
Affiliation(s)
- Federica Basso
- Molecular Disease Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zadelaar ASM, Boesten LSM, Jukema JW, van Vlijmen BJM, Kooistra T, Emeis JJ, Lundholm E, Camejo G, Havekes LM. Dual PPARα/γ Agonist Tesaglitazar Reduces Atherosclerosis in Insulin-Resistant and Hypercholesterolemic ApoE*3Leiden Mice. Arterioscler Thromb Vasc Biol 2006; 26:2560-6. [PMID: 16931788 DOI: 10.1161/01.atv.0000242904.34700.66] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We investigated whether the dual PPARalpha/gamma agonist tesaglitazar has anti-atherogenic effects in ApoE*3Leiden mice with reduced insulin sensitivity. METHODS AND RESULTS ApoE*3Leiden transgenic mice were fed a high-fat (HF) insulin-resistance-inducing diet. One group received a high-cholesterol (HC) supplement (1% wt/wt; HC group). A second group received the same HC supplement along with tesaglitazar (T) 0.5 micromol/kg diet (T group). A third (control) group received a low-cholesterol (LC) supplement (0.1% wt/wt; LC group). Tesaglitazar decreased plasma cholesterol by 20% compared with the HC group; cholesterol levels were similar in the T and LC groups. Compared with the HC group, tesaglitazar caused a 92% reduction in atherosclerosis, whereas a 56% reduction was seen in the cholesterol-matched LC group. Furthermore, tesaglitazar treatment significantly reduced lesion number beyond that expected from cholesterol lowering and induced a shift to less severe lesions. Concomitantly, tesaglitazar reduced macrophage-rich and collagen areas. In addition, tesaglitazar reduced inflammatory markers, including plasma SAA levels, the number of adhering monocytes, and nuclear factor kappaB-activity in the vessel wall. CONCLUSIONS Tesaglitazar has anti-atherosclerotic effects in the mouse model that go beyond plasma cholesterol lowering, possibly caused by a combination of altered lipoprotein profiles and anti-inflammatory vascular effects.
Collapse
Affiliation(s)
- A Susanne M Zadelaar
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Westerterp M, van der Hoogt CC, de Haan W, Offerman EH, Dallinga-Thie GM, Jukema JW, Havekes LM, Rensen PCN. Cholesteryl Ester Transfer Protein Decreases High-Density Lipoprotein and Severely Aggravates Atherosclerosis in
APOE*3-Leiden
Mice. Arterioscler Thromb Vasc Biol 2006; 26:2552-9. [PMID: 16946130 DOI: 10.1161/01.atv.0000243925.65265.3c] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective—
The role of cholesteryl ester transfer protein (CETP) in the development of atherosclerosis is still undergoing debate. Therefore, we evaluated the effect of human CETP expression on atherosclerosis in
APOE*3-Leiden
(
E3L
) mice with a humanized lipoprotein profile.
Methods and Results—
E3L
mice were crossbred with human
CETP
transgenic mice. On a chow diet, CETP expression increased plasma total cholesterol (TC) (+43%;
P
<0.05). To evaluate the effects of CETP on the development of atherosclerosis, mice were fed a Western-type diet containing 0.25% cholesterol, leading to 4.3-fold elevated TC levels in both
E3L
and
CETP.E3L
mice (
P
<0.01). On both diets, CETP expression shifted the distribution of cholesterol from high-density lipoprotein (HDL) toward very-low-density lipoprotein (VLDL)/low-density lipoprotein (LDL). Moreover, plasma of
CETP.E3L
mice had reduced capacity (−39%;
P
<0.05) to induce SR-BI–mediated cholesterol efflux from Fu5AH cells than plasma of
E3L
mice. After 19 weeks on the Western-type diet,
CETP.E3L
mice showed a 7.0-fold increased atherosclerotic lesion area in the aortic root compared with
E3L
mice (
P
<0.0001).
Conclusions—
CETP expression in
E3L
mice shifts the distribution of cholesterol from HDL to VLDL/LDL, reduces plasma-mediated SR-BI–dependent cholesterol efflux, and represents a clear pro-atherogenic factor in
E3L
mice. We anticipate that the
CETP.E3L
mouse will be a valuable model for the preclinical evaluation of HDL-raising interventions on atherosclerosis development.
Collapse
Affiliation(s)
- Marit Westerterp
- Department of Biomedical Research, Gaubius Laboratory, CE Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
van der Greef J, McBurney RN. Rescuing drug discovery: in vivo systems pathology and systems pharmacology. Nat Rev Drug Discov 2005; 4:961-7. [PMID: 16341061 DOI: 10.1038/nrd1904] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The pharmaceutical industry is currently beleaguered by close scrutiny from the financial community, regulators and the general public. Productivity, in terms of new drug approvals, has generally been falling for almost a decade and the safety of a number of highly successful drugs has recently been brought into question. Here, we discuss whether taking an in vivo systems approach to drug discovery and development could be the paradigm shift that rescues the industry.
Collapse
Affiliation(s)
- Jan van der Greef
- TNO Systems Biology, Netherlands Organization for Applied Scientific Research, Utrechtseweg 48, PO BOX 360, 3700 AJ Zeist, The Netherlands.
| | | |
Collapse
|