1
|
Zhang X, Li C, Huang J, Zeng Q, Li L, Yang P, Wang P, Chu M, Luo J, Zhang H. Characterization and comparison of metabolites in colostrum from yaks, buffaloes, and cows based on UPLC-QTRAP-MS metabolomics. Food Chem 2025; 463:141345. [PMID: 39305669 DOI: 10.1016/j.foodchem.2024.141345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 11/06/2024]
Abstract
Colostrum from yaks and buffaloes possesses substantial nutritional value, yet the complete array of metabolites within remains insufficiently elucidated. This study scrutinizes the metabolite profiles of yak, buffalo, and cow colostrum utilizing targeted metabolomics paired with ultra-performance liquid chromatography-tandem triple quadrupole linear ion trap mass spectrometry (UPLC-QTRAP-MS). The analysis detected 362 metabolites across all samples. Furthermore, 63, 77, and 46 differential metabolites were selected between yak and buffalo colostrum, yak and cow colostrum, and buffalo and cow colostrum, respectively. Yak colostrum notably contained higher concentrations of inositol, glycine, and carnitine, whereas buffalo colostrum was distinguished by a substantial presence of primary bile acids, which facilitate fat digestion. These findings offer profound insights into yak and buffalo colostrum, providing critical data to propel advancements in the dairy industry.
Collapse
Affiliation(s)
- Xueyan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Changhui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jiaxiang Huang
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Qingkun Zeng
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Ling Li
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Pan Yang
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Pengjie Wang
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China.
| | - Min Chu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou 730050, China.
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China.
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| |
Collapse
|
2
|
Huang N, Li Y, Chen H, Li W, Wang C, OU Y, Likubo M, Chen J. The clinical efficacy of powder air-polishing in the non-surgical treatment of peri-implant diseases: A systematic review and meta-analysis. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:163-174. [PMID: 38828461 PMCID: PMC11141045 DOI: 10.1016/j.jdsr.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Peri-implant diseases, characterized by inflammatory conditions affecting peri-implant tissues, encompass peri-implant mucositis and peri-implantitis. Peri-implant mucositis is an inflammatory lesion limited to the mucosa around an implant, while peri-implantitis extends from the mucosa to the supporting bone, causing a loss of osseointegration. For non-surgical treatments, we tested the null hypothesis that the presence or absence of air-polishing made no difference. The study focused on randomized controlled trials (RCTs) comparing air-polishing with mechanical or ultrasonic debridement, evaluating outcomes such as bleeding on probing (BOP), probing depth (PD), plaque index/plaque score (PI/PS), clinical attachment level (CAL), bone loss, and mucosal recession (MR). Two independent reviewers conducted data extraction and quality assessments, considering short-term (<6 months) and long-term (≥6 months) follow-up periods. After screening, ten articles were included in the meta-analysis. In nonsurgical peri-implant disease management, air-polishing moderately mitigated short-term PI/PS for peri-implant mucositis and showed a similar improvement in long-term BOP and bone loss for peri-implantitis compared to the control group. The Egger test found no evidence of publication bias except for the long-term PI/PS of peri-implant mucositis. Leave-one-out analysis confirmed the stability of the results. The findings highlight the need for future research with longer-term follow-up and high-quality, multi-center, large-sample RCTs.
Collapse
Affiliation(s)
- Nengwen Huang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yang Li
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Division of Perioperative Oral Health Management, Tohoku University Hospital, Sendai, Japan
- Division of Oral and Maxillofacial Radiology, Tohoku University Hospital, Sendai, Japan
- Division of Dental Informatics and Radiology, Tohoku University Graduate School of Dentistry, Sendai, Japan, Tohoku University Hospital, Sendai, Japan
| | - Huachen Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Wen Li
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chengchaozi Wang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - YanJing OU
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Masahiro Likubo
- Division of Perioperative Oral Health Management, Tohoku University Hospital, Sendai, Japan
- Division of Oral and Maxillofacial Radiology, Tohoku University Hospital, Sendai, Japan
- Division of Dental Informatics and Radiology, Tohoku University Graduate School of Dentistry, Sendai, Japan, Tohoku University Hospital, Sendai, Japan
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
McCormick N, Joshi AD, Yokose C, Yu B, Tin A, Terkeltaub R, Merriman TR, Zeleznik O, Eliassen AH, Curhan GC, Ea HK, Nayor M, Raffield LM, Choi HK. Prediagnostic Amino Acid Metabolites and Risk of Gout, Accounting for Serum Urate: Prospective Cohort Study and Mendelian Randomization. Arthritis Care Res (Hoboken) 2024. [PMID: 39169570 DOI: 10.1002/acr.25420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE Our objective was to prospectively investigate prediagnostic population-based metabolome for risk of hospitalized gout (ie, most accurate, severe, and costly cases), accounting for serum urate. METHODS We conducted prediagnostic metabolome-wide analyses among 249,677 UK Biobank participants with nuclear magnetic resonance metabolomic profiling (N = 168 metabolites, including eight amino acids) from baseline blood samples (2006-2010) without a history of gout. We calculated multivariable hazard ratios (HRs) for hospitalized incident gout, before and after adjusting for serum urate levels; we included patients with nonhospitalized incident gout in a sensitivity analysis. Potential causal effects were evaluated with two-sample Mendelian randomization. RESULTS Correcting for multiple testing, 107 metabolites were associated with incidence of hospitalized gout (n = 2,735) before urate adjustment, including glycine and glutamine (glutamine HR 0.64, 95% confidence interval [CI] 0.54-0.75, P = 8.3 × 10-8; glycine HR 0.69, 95% CI 0.61-0.78, P = 3.3 × 10-9 between extreme quintiles), and glycoprotein acetyls (HR 2.48, 95% CI 2.15-2.87, P = 1.96 × 10-34). Associations remained significant and directionally consistent following urate adjustment (HR 0.83, 95% CI 0.70-0.98; HR 0.86, 95% CI 0.76-0.98; HR 1.41, 95% CI 1.21-1.63 between extreme quintiles), respectively; corresponding HRs per SD were 0.91 (95% CI 0.86-0.97), 0.94 (95% CI 0.91-0.98), and 1.10 (95% CI 1.06-1.14). Findings persisted when including patients with nonhospitalized incident gout. Mendelian randomization corroborated their potential causal role on hyperuricemia or gout risk; with change in urate levels of -0.05 mg/dL (95% CI -0.08 to -0.01) and -0.12 mg/dL (95% CI -0.22 to -0.03) per SD of glycine and glutamine, respectively, and odds ratios of 0.94 (95% CI 0.88-1.00) and 0.81 (95% CI 0.67-0.97) for gout. CONCLUSION These prospective findings with causal implications could lead to biomarker-based risk prediction and potential supplementation-based interventions with glycine or glutamine.
Collapse
Affiliation(s)
- Natalie McCormick
- Massachusetts General Hospital and Harvard Medical School, Boston, and Arthritis Research Canada, Vancouver, British Columbia, Canada
| | - Amit D Joshi
- Brigham and Women's Hospital, Boston, Massachusetts
| | - Chio Yokose
- Massachusetts General Hospital and Harvard Medical School, Boston
| | - Bing Yu
- The University of Texas Health Science Center at Houston
| | - Adrienne Tin
- University of Mississippi Medical Center, Jackson
| | | | - Tony R Merriman
- University of Alabama at Birmingham and the University of Otago, Dunedin, New Zealand
| | - Oana Zeleznik
- Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - A Heather Eliassen
- Brigham and Women's Hospital and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Gary C Curhan
- Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | | | - Hyon K Choi
- Massachusetts General Hospital and Harvard Medical School, Boston, and Arthritis Research Canada, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Wang J, Zhou C, Lu L, Wang S, Zhang Q, Liu Z. Differentiated metabolomic profiling reveals plasma amino acid signatures for primary glomerular disease. Amino Acids 2024; 56:46. [PMID: 39019998 PMCID: PMC11255010 DOI: 10.1007/s00726-024-03407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Primary glomerular disease (PGD) is an idiopathic cause of renal glomerular lesions that is characterized by proteinuria or hematuria and is the leading cause of chronic kidney disease (CKD). The identification of circulating biomarkers for the diagnosis of PGD requires a thorough understanding of the metabolic defects involved. In this study, ultra-high performance liquid chromatography-tandem mass spectrometry was performed to characterize the amino acid (AA) profiles of patients with pathologically diagnosed PGD, including minimal change disease (MCD), focal segmental glomerular sclerosis (FSGS), membranous nephropathy, and immunoglobulin A nephropathy. The plasma concentrations of asparagine and ornithine were low, and that of aspartic acid was high, in patients with all the pathologic types of PGD, compared to healthy controls. Two distinct diagnostic models were generated using the differential plasma AA profiles using logistic regression and receiver operating characteristic analyses, with areas under the curves of 1.000 and accuracies up to 100.0% in patients with MCD and FSGS. In conclusion, the progression of PGD is associated with alterations in AA profiles, The present findings provide a theoretical basis for the use of AAs as a non-invasive, real-time, rapid, and simple biomarker for the diagnosis of various pathologic types of PGD.
Collapse
Affiliation(s)
- Jiao Wang
- Department of geriatric endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China
| | - Chunyu Zhou
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China
| | - Liqian Lu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China
| | - Shoujun Wang
- Department of endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qing Zhang
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China.
| | - Zhangsuo Liu
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
5
|
Kalaycı R, Bingül İ, Soluk-Tekkeşin M, Olgaç V, Bekpınar S, Uysal M. The effect of glycine on oxidative stress, inflammation and renin-angiotensin system in kidneys and aorta of cyclosporine-administered rats. Drug Chem Toxicol 2024; 47:473-482. [PMID: 37338155 DOI: 10.1080/01480545.2023.2219036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/07/2023] [Indexed: 06/21/2023]
Abstract
Cyclosporine A (CsA) is an immunosuppressive drug, used in organ transplantations. Oxidative stress, inflammation and renin-angiotensin system (RAS) activation play an important role in CsA-toxicity. Glycine (Gly) has antioxidant and anti-inflammatory effects. In this study, Gly was investigated for its protective role against CsA-induced toxicity. CsA (20 mg/kg/day; subcutaneously) was administered to rats along with Gly injection (250 or 1000 mg/kg; intraperitoneally) for 21 days. Renal function markers [serum urea and creatinine and urinary protein and kidney injury molecule levels and creatinine clearance values] together with histopathological examinations were performed. Oxidative stress (reactive oxygen species, thiobarbutiric acid reactive substances, advanced oxidation products of protein, glutathione, ferric reducing anti-oxidant power and 4-hydroxynonenal levels), and inflammation (myeloperoxidase activity) were determined in kidney tissue. The RAS system [angiotensin II (Ang II) levels, and mRNA expressions of angiotensin converting enzyme (ACE), angiotensin II type-I receptor (AT1R)] and NADPH-oxidase 4 (NOX4) were measured in kidney and aorta. CsA caused significant disturbances in renal function markers, increases in oxidative stress and inflammation parameters and renal damage. Serum angiotensin II levels and mRNA expressions of ACE, AT1R and NOX4 elevated in the aorta and kidney of CsA-rats. Gly, especially its high-dose, alleviated renal function markers, oxidative stress, inflammation and renal damage in CsA-rats. Moreover, serum Ang II levels and mRNA expressions of ACE, AT1R and NOX4 decreased significantly in aorta and kidney in CsA-rats due to Gly treatment. Our results indicate that Gly may be useful for the prevention of CsA-induced renal and vascular toxicity.
Collapse
Affiliation(s)
- Rivaze Kalaycı
- Department of Laboratory Animals Science, Aziz Sancar Institude of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - İlknur Bingül
- Department of Medical Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Merva Soluk-Tekkeşin
- Department of Pathology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Vakur Olgaç
- Department of Pathology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Seldağ Bekpınar
- Department of Medical Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
6
|
Ruparell A, Alexander JE, Eyre R, Carvell-Miller L, Leung YB, Evans SJM, Holcombe LJ, Heer M, Watson P. Glycine supplementation can partially restore oxidative stress-associated glutathione deficiency in ageing cats. Br J Nutr 2024; 131:1947-1961. [PMID: 38418414 PMCID: PMC11361917 DOI: 10.1017/s0007114524000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Intracellular levels of glutathione, the major mammalian antioxidant, are reported to decline with age in several species. To understand whether ageing affects circulating glutathione levels in cats, blood was sampled from two age groups, < 3 years and > 9 years. Further, to determine whether dietary supplementation with glutathione precursor glycine (GLY) affects glutathione concentrations in senior cats (> 8 years), a series of free GLY inclusion level dry diets were fed. Subsequently, a 16-week GLY feeding study was conducted in senior cats (> 7 years), measuring glutathione, and markers of oxidative stress. Whole blood and erythrocyte total, oxidised and reduced glutathione levels were significantly decreased in senior cats, compared with their younger counterparts (P ≤ 0·02). The inclusion level study identified 1·5 % free GLY for the subsequent dry diet feeding study. Significant increases in erythrocyte total and reduced glutathione were observed between senior cats fed supplemented and control diets at 4 weeks (P ≤ 0·03; maximum difference of 1·23 µM). Oxidative stress markers were also significantly different between groups at 8 (P = 0·004; difference of 0·68 nG/ml in 8-hydroxy-2'-deoxyguanosine) and 12 weeks (P ≤ 0·049; maximum difference of 0·62 nG/mG Cr in F2-isoprostane PGF2α). Senior cats have lower circulating glutathione levels compared with younger cats. Feeding senior cats a complete and balanced dry diet supplemented with 1·5 % free GLY for 12 weeks elevated initial erythrocyte glutathione and altered markers of oxidative stress. Dietary supplementation with free GLY provides a potential opportunity to restore age-associated reduction in glutathione in cats.
Collapse
Affiliation(s)
- Avika Ruparell
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, UK
| | | | - Ryan Eyre
- Royal Canin Pet Health and Nutrition Centre, 6574 State Route 503N, Lewisburg, OH, USA
| | | | - Y. Becca Leung
- Royal Canin Research & Development Center, Aimargues, France
| | | | - Lucy J. Holcombe
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, UK
| | - Martina Heer
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, UK
| | - Phillip Watson
- Waltham Petcare Science Institute, Melton Mowbray, Leicestershire, UK
| |
Collapse
|
7
|
Wei L, Chen S, Deng X, Liu Y, Wang H, Gao X, Huang Y. Metabolomic discoveries for early diagnosis and traditional Chinese medicine efficacy in ischemic stroke. Biomark Res 2024; 12:63. [PMID: 38902829 PMCID: PMC11188286 DOI: 10.1186/s40364-024-00608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Ischemic stroke (IS), a devastating cerebrovascular accident, presents with high mortality and morbidity. Following IS onset, a cascade of pathological changes, including excitotoxicity, inflammatory damage, and blood-brain barrier disruption, significantly impacts prognosis. However, current clinical practices struggle with early diagnosis and identifying these alterations. Metabolomics, a powerful tool in systems biology, offers a promising avenue for uncovering early diagnostic biomarkers for IS. By analyzing dynamic metabolic profiles, metabolomics can not only aid in identifying early IS biomarkers but also evaluate Traditional Chinese Medicine (TCM) efficacy and explore its mechanisms of action in IS treatment. Animal studies demonstrate that TCM interventions modulate specific metabolite levels, potentially reflecting their therapeutic effects. Identifying relevant metabolites in cerebral ischemia patients holds immense potential for early diagnosis and improved outcomes. This review focuses on recent metabolomic discoveries of potential early diagnostic biomarkers for IS. We explore variations in metabolites observed across different ages, genders, disease severity, and stages. Additionally, the review examines how specific TCM extracts influence IS development through metabolic changes, potentially revealing their mechanisms of action. Finally, we emphasize the importance of integrating metabolomics with other omics approaches for a comprehensive understanding of IS pathophysiology and TCM efficacy, paving the way for precision medicine in IS management.
Collapse
Affiliation(s)
- Liangzhe Wei
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Siqi Chen
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, 315010, China
| | - Xinpeng Deng
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Yuchun Liu
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Haifeng Wang
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China.
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, 315010, China.
| | - Yi Huang
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, 315010, China.
- Ningbo Key Laboratory of Neurological Diseases and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, 315010, China.
| |
Collapse
|
8
|
Deutz LN, Wierzchowska-McNew RA, Deutz NE, Engelen MP. Reduced plasma glycine concentration in healthy and chronically diseased older adults: a marker of visceral adiposity? Am J Clin Nutr 2024; 119:1455-1464. [PMID: 38616018 PMCID: PMC11251212 DOI: 10.1016/j.ajcnut.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/14/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Previous studies have shown that a reduced plasma concentration of the amino acid glycine (Gly) is associated with intra-abdominal obesity, but the mechanism remains unclear. OBJECTIVES This study aimed to investigate whether lower plasma Gly concentrations in older adults are independently associated with (visceral) adiposity, age, sex, presence of chronic disease, and glucose intolerance, and whether they are caused by a reduced Gly whole-body production (WBP) and/or increased Gly disposal capacity. METHODS We studied 102 older adults (47 males/55 females, 68.5 ± standard deviation 6.4 y) without comorbidities and 125 older adults with chronic obstructive pulmonary disease (COPD) (58 males/67 females, 69.7 ± 8.6 y). We assessed body composition and visceral adipose tissue (VAT) by dual-energy x-ray absorptiometry and muscle function by dynamometry. We measured postabsorptive plasma amino acid profile and glucose, followed by pulse administration of stable isotope-labeled Gly ([2,2-2H2]), and blood sampling was performed to measure the WBP of Gly. Results are expressed as means and 95% confidence intervals (CIs). RESULTS We found a lower plasma Gly concentration in healthy males and males with COPD than in females (Healthy: 211; 95% CI: 193,230 compared with 248; 95% CI: 225,271; COPD: 200; 95% CI: 186,215 compared with 262: 95% CI: 241, 283; P < 0.0001, respectively), with no difference between healthy and COPD groups. A negative relationship was found between unadjusted plasma Gly and VAT mass (R2: 0.16; slope: -1.7; 95% CI: -2.4, -1.2; P < 0.0021), but not with total body fat or fasting glucose. The strong association between lower plasma Gly and increased VAT mass in older adults was independent of age, sex, body weight, lean mass or body mass index, and the presence of COPD. Inclusion of these covariates increased the R2 to 0.783. We found no relation between the VAT and WBP of Gly (P = 0.35) or Gly clearance (P = 0.187) when lean mass was considered. CONCLUSIONS Reduced plasma Gly in older adults can be considered a marker of visceral adiposity, independent of sex, age, body composition, presence of chronic disease, and whole-body Gly production or clearance. This study was registered on clinicaltrials.gov as NCT01787682, NCT02082418, NCT02157844, NCT02770092, NCT02780219, NCT03796455, and NCT04461236.
Collapse
Affiliation(s)
- Lars Nj Deutz
- Center for Translational Research in Aging and Longevity, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| | - Raven A Wierzchowska-McNew
- Center for Translational Research in Aging and Longevity, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| | - Nicolaas Ep Deutz
- Center for Translational Research in Aging and Longevity, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States; Department of Primary Care and Rural Medicine, Texas A&M School of Medicine, College Station, TX, United States
| | - Mariëlle Pkj Engelen
- Center for Translational Research in Aging and Longevity, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States; Department of Primary Care and Rural Medicine, Texas A&M School of Medicine, College Station, TX, United States.
| |
Collapse
|
9
|
Vargas MH, Chávez J, Del-Razo-Rodríguez R, Muñoz-Perea C, Romo-Domínguez KJ, Báez-Saldaña R, Rumbo-Nava U, Guerrero-Zúñiga S. Glycine by enteral route does not improve major clinical outcomes in severe COVID-19: a randomized clinical pilot trial. Sci Rep 2024; 14:11566. [PMID: 38773199 PMCID: PMC11109244 DOI: 10.1038/s41598-024-62321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
There is a worrying scarcity of drug options for patients with severe COVID-19. Glycine possesses anti-inflammatory, cytoprotective, endothelium-protective, and platelet-antiaggregant properties, so its use in these patients seems promising. In this open label, controlled clinical trial, inpatients with severe COVID-19 requiring mechanical ventilation randomly received usual care (control group) or usual care plus 0.5 g/kg/day glycine by the enteral route (experimental group). Major outcomes included mortality, time to weaning from mechanical ventilation, total time on mechanical ventilation, and time from study recruitment to death. Secondary outcomes included laboratory tests and serum cytokines. Patients from experimental (n = 33) and control groups (n = 23) did not differ in basal characteristics. There were no differences in mortality (glycine group, 63.6% vs control group, 52.2%, p = 0.60) nor in any other major outcome. Glycine intake was associated with lower fibrinogen levels, either evaluated per week of follow-up (p < 0.05 at weeks 1, 2, and 4) or as weighted mean during the whole hospitalization (608.7 ± 17.7 mg/dl vs control 712.2 ± 25.0 mg/dl, p = 0.001), but did not modify any other laboratory test or cytokine concentration. In summary, in severe COVID-19 glycine was unable to modify major clinical outcomes, serum cytokines or most laboratory tests, but was associated with lower serum fibrinogen concentration.Registration: ClinicalTrials.gov NCT04443673, 23/06/2020.
Collapse
Affiliation(s)
- Mario H Vargas
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Ciudad de México, México.
| | - Jaime Chávez
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Ciudad de México, México
| | - Rosangela Del-Razo-Rodríguez
- Servicio Clínico de Neumología Pediátrica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Carolina Muñoz-Perea
- Servicio de Urgencias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Karina Julieta Romo-Domínguez
- Servicio de Urgencias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
- Servicio de Neumología, Hospital Infantil del Estado de Sonora, Hermosillo, Sonora, México
| | - Renata Báez-Saldaña
- Servicio Clínico 3, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Uriel Rumbo-Nava
- Servicio Clínico 3, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Selene Guerrero-Zúñiga
- Unidad de Medicina del Sueño, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| |
Collapse
|
10
|
Arrari F, Jabri MA, Ayari A, Dakhli N, Ben Fayala C, Boubaker S, Sebai H. Amino acid HPLC-FLD analysis of spirulina and its protective mechanism against the combination of obesity and colitis in wistar rats. Heliyon 2024; 10:e30103. [PMID: 38694088 PMCID: PMC11061748 DOI: 10.1016/j.heliyon.2024.e30103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Objective The cafeteria diet (CD), designed as an experimental diet mimicking the obesogenic diet, may contribute to the pathogenesis of inflammatory bowel diseases (IBD). This study delves into the influence of spirulina (SP) on obesity associated with colitis in Wistar rats. Methods The amino acids composition of SP was analyzed using HPLC-FLD. Animals were equally separated into eight groups, each containing seven animals and treated daily for eight weeks as follows: Control diet (SD), cafeteria diet (CD) group, CD + SP (500 mg/kg) and SD + SP. Ulcerative colitis was provoked by rectal injection of acetic acid (AA) (3 % v/v, 5 ml/kg b.w.) on the last day of treatment in the following groups: SD + AA, SD + AA + SP, CD + AA, and CD + AA + SP. Results Findings revealed that UC and/or CD increased the abdominal fat, weights gain, and colons. Moreover, severe colonic alteration, perturbations in the serum metabolic parameters associated with an oxidative stress state in the colonic mucosa, defined by overproduction of reactive oxygen species (ROS) and increased levels of plasma scavenging activity (PSA). Additionally, obesity exacerbated the severity of AA-induced UC promoting inflammation marked by the overexpression of pro-inflammatory cytokines. Significantly, treatment with SP provided notable protection against inflammation severity, reduced histopathological alterations, attenuated lipid peroxidation (MDA), and enhanced antioxidant enzyme activities (CAT, SOD, and GPX) along with non-enzymatic antioxidants (GSH and SH-G). Conclusions Thus, the antioxidant effects and anti-inflammatory proprieties of SP could be attributed to its richness in amino acids, which could potentially mitigate inflammation severity in obese subjects suffering from ulcerative colitis. These results imply that SP hold promise as a therapeutic agent for managing of UC, particularly in individuals with concomitant obesity. Understanding SP's mechanisms of action may lead novel treatment strategies for inflammatory bowel diseases and hyperlipidemia in medical research.
Collapse
Affiliation(s)
- Fatma Arrari
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Mohamed-Amine Jabri
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Ala Ayari
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Nouha Dakhli
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Chayma Ben Fayala
- Laboratoire d'anatomie Pathologique Humaine et Expérimentale, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis, 1002, Tunisia
| | - Samir Boubaker
- Laboratoire d'anatomie Pathologique Humaine et Expérimentale, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis, 1002, Tunisia
| | - Hichem Sebai
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| |
Collapse
|
11
|
Zhao GP, Cheng WL, Zhang ZH, Li YX, Li YQ, Yang FW, Wang YB. The use of amino acids and their derivates to mitigate against pesticide-induced toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116340. [PMID: 38636261 DOI: 10.1016/j.ecoenv.2024.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Exposure to pesticides induces oxidative stress and deleterious effects on various tissues in non-target organisms. Numerous models investigating pesticide exposure have demonstrated metabolic disturbances such as imbalances in amino acid levels within the organism. One potentially effective strategy to mitigate pesticide toxicity involves dietary intervention by supplementing exogenous amino acids and their derivates to augment the body's antioxidant capacity and mitigate pesticide-induced oxidative harm, whose mechanism including bolstering glutathione synthesis, regulating arginine-NO metabolism, mitochondria-related oxidative stress, and the open of ion channels, as well as enhancing intestinal microecology. Enhancing glutathione synthesis through supplementation of substrates N-acetylcysteine and glycine is regarded as a potent mechanism to achieve this. Selection of appropriate amino acids or their derivates for supplementation, and determining an appropriate dosage, are of the utmost importance for effective mitigation of pesticide-induced oxidative harm. More experimentation is required that involves large population samples to validate the efficacy of dietary intervention strategies, as well as to determine the effects of amino acids and their derivates on long-term and low-dose pesticide exposure. This review provides insights to guide future research aimed at preventing and alleviating pesticide toxicity through dietary intervention of amino acids and their derivates.
Collapse
Affiliation(s)
- Guo-Ping Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Wei-Long Cheng
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zhi-Hui Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yi-Xuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; National Center of Technology Innovation for Dairy, Inner Mongolia 013757, China
| | - Ying-Qiu Li
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Fang-Wei Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan-Bo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
12
|
Farooqui H, Anjum F, Lebeche D, Ali S. Boron Facilitates Amelioration of Hepatic Injury by the Osmolyte Glycine and Resolves Injury by Improving the Tissue Redox Homeostasis. J Diet Suppl 2024; 21:585-607. [PMID: 38501915 DOI: 10.1080/19390211.2024.2328340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Background: Glycine is a conditional non-essential amino acid in human and other mammals. It is abundant in the liver and is known for a wide spectrum of characteristics including the antioxidant, antiinflammatory, immunomodulatory, and cryoprotective effects. The amino acid is a naturally occurring osmolyte compatible with protein surface interactions and has been reported in literature as a potent therapeutic immuno-nutrient for liver diseases such as alcoholic liver disease. Oral glycine administration protects ethanol-induced liver injury, improves serum and tissue lipid profile, and alleviates hepatic injury in various conditions. In recent years, sodium salt of boron (borax) has been reported for its beneficial effects on cellular stress, including the effects on cell survival, immunity, and tissue redox state. Incidentally both glycine and boron prevent apoptosis and promote cell survival under stress. Objective: This study investigates the beneficial effect of borax on liver protection by glycine. Methods: Briefly, liver toxicity was induced in rats by a single intraperitoneal injection of thioacetamide (400 mg/kg b. wt.). Results: Significant changes in oxidative stress and liver function test parameters, the molybdenum Fe-S flavin hydroxylase activity, nitric oxide and tissue histopathology were observed in thioacetamide treated positive control group. The changes were ameliorated both by glycine as well as borax, but the combinatorial treatment yielded a better response indicating the impact of boron supplementation on glycine mediated protection of liver injury in experimental animal model. Conclusions: The study has clinical implications as the hepatotoxicity caused by thioacetamide mimics features of hepatitis C infection in human.
Collapse
Affiliation(s)
- Humaira Farooqui
- Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
- Department of Biochemistry, School of Chemical and Life Sciences, New Delhi, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Djamel Lebeche
- Department of Physiology, College of Medicine, The University of TN Health Science Centre, Memphis, TN, USA
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, New Delhi, India
| |
Collapse
|
13
|
Zhao T, Zhao Y, Chen H, Sun W, Guan Y. A GC-MS-based untargeted metabolomics approach for comprehensive metabolic profiling of mycophenolate mofetil-induced toxicity in mice. Front Mol Biosci 2024; 11:1332090. [PMID: 38516185 PMCID: PMC10955473 DOI: 10.3389/fmolb.2024.1332090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
Background: Mycophenolate mofetil (MMF), the morpholinoethyl ester of mycophenolic acid, is widely used for maintenance immunosuppression in transplantation. The gastrointestinal toxicity of MMF has been widely uncovered. However, the comprehensive metabolic analysis of MMF-induced toxicity is lacking. This study is aimed to ascertain the metabolic changes after MMF administration in mice. Methods: A total of 700 mg MMF was dissolved in 7 mL dimethyl sulfoxide (DMSO), and then 0.5 mL of mixture was diluted with 4.5 mL of saline (100 mg/kg). Mice in the treatment group (n = 9) were given MMF (0.1 mL/10 g) each day via intraperitoneal injection lasting for 2 weeks, while those in the control group (n = 9) received the same amount of blank solvent (DMSO: saline = 1:9). Gas chromatography-mass spectrometry was utilized to identify the metabolic profiling in serum samples and multiple organ tissues of mice. The potential metabolites were identified using orthogonal partial least squares discrimination analysis. Meanwhile, we used the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (http://www.kegg.jp) to depict the metabolic pathways. The percentages of lymphocytes in spleens were assessed by multiparameter flow cytometry analysis. Results: Compared to the control group, we observed that MMF treatment induced differential expression of metabolites in the intestine, hippocampus, lung, liver, kidney, heart, serum, and cortex tissues. Subsequently, we demonstrated that multiple amino acids metabolism and fatty acids biosynthesis were disrupted following MMF treatment. Additionally, MMF challenge dramatically increased CD4+ T cell percentages but had no significant influences on other types of lymphocytes. Conclusion: MMF can affect the metabolism in various organs and serum in mice. These data may provide preliminary judgement for MMF-induced toxicity and understand the metabolic mechanism of MMF more comprehensively.
Collapse
Affiliation(s)
- Tongfeng Zhao
- Department of Hematology, Jining No.1 People’s Hospital, Jining, China
| | - Yaxin Zhao
- Department of Pharmacy, Jining No.1 People’s Hospital, Jining, China
| | - Haotian Chen
- Department of Hematology, Jining No.1 People’s Hospital, Jining, China
| | - Wenxue Sun
- Translational Pharmaceutical Laboratory, Jining No.1 People’s Hospital, Jining, China
- Postdoctoral of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun Guan
- Department of Hematology, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
14
|
Antalicz B, Sengupta S, Vilangottunjalil A, Versluis J, Bakker HJ. Orientational Behavior and Vibrational Response of Glycine at Aqueous Interfaces. J Phys Chem Lett 2024; 15:2075-2081. [PMID: 38358315 PMCID: PMC10895693 DOI: 10.1021/acs.jpclett.3c02930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Aqueous glycine plays many different roles in living systems, from being a building block for proteins to being a neurotransmitter. To better understand its fundamental behavior, we study glycine's orientational behavior near model aqueous interfaces, in the absence and presence of electric fields and biorelevant ions. To this purpose, we use a surface-specific technique called heterodyne-detected vibrational sum-frequency generation spectroscopy (HD-VSFG). Using HD-VSFG, we directly probe the symmetric and antisymmetric stretching vibrations of the carboxylate group of zwitterionic glycine. From their relative amplitudes, we infer the zwitterion's orientation near surfactant-covered interfaces and find that it is governed by both electrostatic and surfactant-specific interactions. By introducing additional ions, we observe that the net orientation is altered by the enhanced ionic strength, indicating a change in the balance of the electrostatic and surfactant-specific interactions.
Collapse
Affiliation(s)
- Balázs Antalicz
- Ultrafast Spectroscopy, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Sanghamitra Sengupta
- Ultrafast Spectroscopy, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | - Jan Versluis
- Ultrafast Spectroscopy, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Huib J Bakker
- Ultrafast Spectroscopy, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
15
|
Soh J, Raventhiran S, Lee JH, Lim ZX, Goh J, Kennedy BK, Maier AB. The effect of glycine administration on the characteristics of physiological systems in human adults: A systematic review. GeroScience 2024; 46:219-239. [PMID: 37851316 PMCID: PMC10828290 DOI: 10.1007/s11357-023-00970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023] Open
Abstract
Functional decline of physiological systems during ageing leads to age-related diseases. Dietary glycine increases healthy lifespan in model organisms and might decrease inflammation in humans, suggesting its geroprotective potential. This review summarises the evidence of glycine administration on the characteristics of eleven physiological systems in adult humans. Databases were searched using key search terms: 'glycine', 'adult', 'supplementation'/ 'administration'/ 'ingestion'/ 'treatment'. Glycine was administered to healthy and diseased populations (18 and 34 studies) for up to 14 days and 4 months, respectively. The nervous system demonstrated the most positive effects, including improved psychiatric symptoms from longer-term glycine administration in psychiatric populations. While longer-term glycine administration improved sleep in healthy populations, these studies had small sample sizes with a high risk of bias. Larger and long-term studies with more robust study designs in healthy populations to examine the effects of glycine administration on preventing, delaying or reversing the ageing process are warranted.
Collapse
Affiliation(s)
- Janjira Soh
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Shivaanishaa Raventhiran
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Jasinda H Lee
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Zi Xiang Lim
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Jorming Goh
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Brian K Kennedy
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Andrea B Maier
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore.
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Van Der Boechorstsraat 7, Amsterdam, 1081 BT, The Netherlands.
| |
Collapse
|
16
|
Zhang SS, Yang X, Zhang WX, Zhou Y, Wei TT, Cui N, Du J, Liu W, Lu QB. Metabolic alterations in urine among the patients with severe fever with thrombocytopenia syndrome. Virol J 2024; 21:11. [PMID: 38191404 PMCID: PMC10775654 DOI: 10.1186/s12985-024-02285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The pathogenesis of severe fever with thrombocytopenia syndrome (SFTS) remained unclear. We aimed to profile the metabolic alterations in urine of SFTS patients and provide new evidence for its pathogenesis. METHODS A case-control study was conducted in the 154th hospital in China. Totally 88 cases and 22 controls aged ≥ 18 years were enrolled. The cases were selected from laboratory-confirmed SFTS patients. The controls were selected among SFTSV-negative population. Those with diabetes, cancer, hepatitis and other sexually transmitted diseases were excluded in both groups. Fatal cases and survival cases were 1:1 matched. Inter-group differential metabolites and pathways were obtained, and the inter-group discrimination ability was evaluated. RESULTS Tryptophan metabolism and phenylalanine metabolism were the top one important metabolism pathway in differentiating the control and case groups, and the survival and fatal groups, respectively. The significant increase of differential metabolites in tryptophan metabolism, including 5-hydroxyindoleacetate (5-HIAA), L-kynurenine (KYN), 5-hydroxy-L-tryptophan (5-HTP), 3-hydroxyanthranilic acid (3-HAA), and the increase of phenylpyruvic acid and decrease of hippuric acid in phenylalanine metabolism indicated the potential metabolic alterations in SFTSV infection. The increase of 5-HIAA, KYN, 5-HTP, phenylpyruvic acid and hippuric acid were involved in the fatal progress of SFTS patients. CONCLUSIONS Tryptophan metabolism and phenylalanine metabolism might be involved in the pathogenesis of SFTSV infection. These findings provided new evidence for the pathogenesis and treatment of SFTS.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xin Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wan-Xue Zhang
- Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
| | - Yiguo Zhou
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China
| | - Ting-Ting Wei
- Department of Laboratorial of Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, 100191, China
| | - Ning Cui
- Department of Infectious Diseases, The 154th Hospital, Xinyang, China
| | - Juan Du
- Department of Laboratorial of Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, 100191, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qing-Bin Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
- Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China.
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China.
- Department of Laboratorial of Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, 100191, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China.
| |
Collapse
|
17
|
Hu J, Melchor GS, Ladakis D, Reger J, Kim HW, Chamberlain KA, Shults NV, Oft HC, Smith VN, Rosko LM, Li E, Baydyuk M, Fu MM, Bhargava P, Huang JK. Myeloid cell-associated aromatic amino acid metabolism facilitates CNS myelin regeneration. NPJ Regen Med 2024; 9:1. [PMID: 38167866 PMCID: PMC10762216 DOI: 10.1038/s41536-023-00345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Regulation of myeloid cell activity is critical for successful myelin regeneration (remyelination) in demyelinating diseases, such as multiple sclerosis (MS). Here, we show aromatic alpha-keto acids (AKAs) generated from the amino acid oxidase, interleukin-4 induced 1 (IL4I1), promote efficient remyelination in mouse models of MS. During remyelination, myeloid cells upregulated the expression of IL4I1. Conditionally knocking out IL4I1 in myeloid cells impaired remyelination efficiency. Mice lacking IL4I1 expression exhibited a reduction in the AKAs, phenylpyruvate, indole-3-pyruvate, and 4-hydroxyphenylpyruvate, in remyelinating lesions. Decreased AKA levels were also observed in people with MS, particularly in the progressive phase when remyelination is impaired. Oral administration of AKAs modulated myeloid cell-associated inflammation, promoted oligodendrocyte maturation, and enhanced remyelination in mice with focal demyelinated lesions. Transcriptomic analysis revealed AKA treatment induced a shift in metabolic pathways in myeloid cells and upregulated aryl hydrocarbon receptor activity in lesions. Our results suggest myeloid cell-associated aromatic amino acid metabolism via IL4I1 produces AKAs in demyelinated lesions to enable efficient remyelination. Increasing AKA levels or targeting related pathways may serve as a strategy to facilitate the regeneration of myelin in inflammatory demyelinating conditions.
Collapse
Affiliation(s)
- Jingwen Hu
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - George S Melchor
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20007, USA
| | - Dimitrios Ladakis
- Division of Neuroimmunology and Neurological Infections, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Joan Reger
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Hee Won Kim
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Kelly A Chamberlain
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20007, USA
| | - Nataliia V Shults
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Helena C Oft
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Victoria N Smith
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Lauren M Rosko
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20007, USA
| | - Erqiu Li
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Maryna Baydyuk
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Meng-Meng Fu
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Pavan Bhargava
- Division of Neuroimmunology and Neurological Infections, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, DC, 20007, USA.
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20007, USA.
| |
Collapse
|
18
|
van Boom KM, Kohn TA, Tordiffe ASW. A cross-over dietary intervention in captive cheetahs (Acinonyx jubatus): Investigating the effects of glycine supplementation on blood parameters. Zoo Biol 2024; 43:32-41. [PMID: 37721178 DOI: 10.1002/zoo.21803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/30/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
Captive cheetahs are prone to unusual diseases which may be attributed to their high muscle meat, collagen deficient captive diet. Glycine is a simple amino acid that is abundant in collagen rich tissues and has many physiological functions, specifically in collagen synthesis and in the conjugation of detrimental by-products produced during gut bacterial fermentation. Therefore, the aim of this study was to investigate the effect of a 4 week glycine supplementation on the body measurements, haematology and serum blood parameters of 10 captive cheetahs using a randomised controlled cross-over design. This approach has not yet been used to investigate the effect of diet in captive cheetahs. Cheetahs were randomly assigned to a control diet (horse meat only) or a glycine diet (30 g glycine per 1 kg meat) for 4 weeks before being crossed over. Blood was collected at baseline and after each intervention. The glycine diet resulted in a decreased serum albumin, alkaline phosphatase and total calcium concentration and increases in eosinophils and basophils counts compared to the control diet. Body weight also decreased on the glycine diet which may be due to increased β-oxidation and fat loss. This was the first study to investigate the effect of glycine supplementation, which resulted in slight body and blood changes, in captive cheetahs using a cross-over design and this approach should be utilised for future dietary studies.
Collapse
Affiliation(s)
- Kathryn M van Boom
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Tertius A Kohn
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
- Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
- Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Gauteng, South Africa
| | - Adrian S W Tordiffe
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
- Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Gauteng, South Africa
| |
Collapse
|
19
|
Snyder BM, Nian H, Miller AM, Ryckman KK, Li Y, Tindle HA, Ammar L, Ramesh A, Liu Z, Hartert TV, Wu P. Associations between Smoking and Smoking Cessation during Pregnancy and Newborn Metabolite Concentrations: Findings from PRAMS and INSPIRE Birth Cohorts. Metabolites 2023; 13:1163. [PMID: 37999258 PMCID: PMC10673147 DOI: 10.3390/metabo13111163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Newborn metabolite perturbations may identify potential biomarkers or mechanisms underlying adverse, smoking-related childhood health outcomes. We assessed associations between third-trimester smoking and newborn metabolite concentrations using the Tennessee Pregnancy Risk Assessment Monitoring System (PRAMS, 2009-2019) as the discovery cohort and INSPIRE (2012-2014) as the replication cohort. Children were linked to newborn screening metabolic data (33 metabolites). Third-trimester smoking was ascertained from birth certificates (PRAMS) and questionnaires (INSPIRE). Among 8600 and 1918 mother-child dyads in PRAMS and INSPIRE cohorts, 14% and 13% of women reported third-trimester smoking, respectively. Third-trimester smoking was associated with higher median concentrations of free carnitine (C0), glycine (GLY), and leucine (LEU) at birth (PRAMS: C0: adjusted fold change 1.11 [95% confidence interval (CI) 1.08, 1.14], GLY: 1.03 [95% CI 1.01, 1.04], LEU: 1.04 [95% CI 1.03, 1.06]; INSPIRE: C0: 1.08 [95% CI 1.02, 1.14], GLY: 1.05 [95% CI 1.01, 1.09], LEU: 1.05 [95% CI 1.01, 1.09]). Smoking cessation (vs. continued smoking) during pregnancy was associated with lower median metabolite concentrations, approaching levels observed in infants of non-smoking women. Findings suggest potential pathways underlying fetal metabolic programming due to in utero smoke exposure and a potential reversible relationship of cessation.
Collapse
Affiliation(s)
- Brittney M. Snyder
- Department of Medicine, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, USA (H.A.T.)
| | - Hui Nian
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Angela M. Miller
- Division of Population Health Assessment, Tennessee Department of Health, Nashville, TN 37243, USA
| | - Kelli K. Ryckman
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health—Bloomington, Bloomington, IN 47405, USA
| | - Yinmei Li
- Division of Family Health and Wellness, Tennessee Department of Health, Nashville, TN 37243, USA;
| | - Hilary A. Tindle
- Department of Medicine, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, USA (H.A.T.)
- The Vanderbilt Center for Tobacco, Addiction and Lifestyle, Vanderbilt University Medical Center, Nashville, TN 37203, USA
- Geriatric Research Education and Clinical Centers, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Lin Ammar
- Vanderbilt University School of Medicine, Nashville, TN 37203, USA;
| | - Abhismitha Ramesh
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA 52242, USA
| | - Zhouwen Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Tina V. Hartert
- Department of Medicine, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, USA (H.A.T.)
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Pingsheng Wu
- Department of Medicine, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, USA (H.A.T.)
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| |
Collapse
|
20
|
Zheng X, Xie Y, Chen Z, He J, Chen J. Effects of Glycine Supplementation in Drinking Water on the Growth Performance, Intestinal Development, and Genes Expression in the Jejunum of Chicks. Animals (Basel) 2023; 13:3109. [PMID: 37835714 PMCID: PMC10571574 DOI: 10.3390/ani13193109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Glycine, the most basic amino acid found in nature, is considered an essential amino acid for chicks. However, the precise understanding of high concentrations of glycine's significance in promoting the growth performance of chicks, as well as its impact on intestinal development, re-mains limited. Consequently, the objective of this study was to investigate the effects of glycine supplementation in drinking water on growth performance, intestine morphology, and development in newly hatched chicks. In this study, 200 newly born chicks were selected and pro-vided with a supplementation of 0.5%, 1%, and 2% glycine in their drinking water during their first week of life. The results revealed that glycine supplementation in drinking water could significantly increase the average daily gain of chicks from days 7 to 14. Furthermore, a significant difference was observed between the group supplemented with 1% glycine and the control group. Concurrently, this glycine supplementation increased the villus height and the ratio of the villus height to crypt depth in jejunum on both day 7 and day 14. Glycine supplementation in drinking water significantly affected the mRNA expression level of the ZO-1, GCLM, and rBAT genes in jejunum, which may have certain effects on the mucosal immune defense, cellular antioxidant stress capacity, and amino acid absorption. Overall, the findings of this study indicate that glycine supplementation in drinking water can enhance the growth performance of chicks and promote their intestine development.
Collapse
Affiliation(s)
- Xiaotong Zheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (X.Z.); (Y.X.); (Z.C.); (J.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yinku Xie
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (X.Z.); (Y.X.); (Z.C.); (J.H.)
| | - Ziwei Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (X.Z.); (Y.X.); (Z.C.); (J.H.)
| | - Jiaheng He
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (X.Z.); (Y.X.); (Z.C.); (J.H.)
| | - Jianfei Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (X.Z.); (Y.X.); (Z.C.); (J.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
21
|
Udhaya Nandhini D, Venkatesan S, Senthilraja K, Janaki P, Prabha B, Sangamithra S, Vaishnavi SJ, Meena S, Balakrishnan N, Raveendran M, Geethalakshmi V, Somasundaram E. Metabolomic analysis for disclosing nutritional and therapeutic prospective of traditional rice cultivars of Cauvery deltaic region, India. Front Nutr 2023; 10:1254624. [PMID: 37841397 PMCID: PMC10568072 DOI: 10.3389/fnut.2023.1254624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Traditional rice is gaining popularity worldwide due to its high nutritional and pharmaceutical value, as well as its high resistance to abiotic and biotic stresses. This has attracted significant attention from breeders, nutritionists, and plant protection scientists in recent years. Hence, it is critical to investigate the grain metabolome to reveal germination and nutritional importance. This research aimed to explore non-targeted metabolites of five traditional rice varieties, viz., Chinnar, Chithiraikar, Karunguruvai, Kichili samba, and Thooyamalli, for their nutritional and therapeutic properties. Approximately 149 metabolites were identified using the National Institute of Standards and Technology (NIST) library and Human Metabolome Database (HMDB) and were grouped into 34 chemical classes. Major classes include fatty acids (31.1-56.3%), steroids and their derivatives (1.80-22.4%), dihydrofurans (8.98-11.6%), prenol lipids (0.66-4.44%), organooxygen compounds (0.12-6.45%), benzene and substituted derivatives (0.53-3.73%), glycerolipids (0.36-2.28%), and hydroxy acids and derivatives (0.03-2.70%). Significant variations in metabolite composition among the rice varieties were also observed through the combination of univariate and multivariate statistical analyses. Principal component analysis (PCA) reduced the dimensionality of 149 metabolites into five principle components (PCs), which explained 96% of the total variance. Two clusters were revealed by hierarchical cluster analysis, indicating the distinctiveness of the traditional varieties. Additionally, a partial least squares-discriminant analysis (PLS-DA) found 17 variables important in the projection (VIP) scores of metabolites. The findings of this study reveal the biochemical intricate and distinctive metabolomes of the traditional therapeutic rice varieties. This will serve as the foundation for future research on developing new rice varieties with traditional rice grain metabolisms to increase grain quality and production with various nutritional and therapeutic benefits.
Collapse
Affiliation(s)
- Dhandayuthapani Udhaya Nandhini
- Centre of Excellence in Sustaining Soil Health, Anbil Dharmalingam Agricultural College and Research Institute, Trichy, Tamil Nadu, India
| | - Subramanian Venkatesan
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Kandasamy Senthilraja
- Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Ponnusamy Janaki
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Balasubramaniam Prabha
- Department of Renewable Energy Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sadasivam Sangamithra
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Sadasivam Meena
- Centre of Excellence in Sustaining Soil Health, Anbil Dharmalingam Agricultural College and Research Institute, Trichy, Tamil Nadu, India
| | - Natarajan Balakrishnan
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Muthurajan Raveendran
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Vellingiri Geethalakshmi
- Agro-Climatic Research Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Eagan Somasundaram
- Agribusiness Development, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
22
|
Zhuang Y, Li C, Jiang H, Li L, Zhang Y, Yu W, Fu W. Multi-omics investigation of the resistance mechanisms of pomalidomide in multiple myeloma. Front Oncol 2023; 13:1264422. [PMID: 37799465 PMCID: PMC10549987 DOI: 10.3389/fonc.2023.1264422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Background Despite significant therapeutic advances over the last decade, multiple myeloma remains an incurable disease. Pomalidomide is the third Immunomodulatory drug that is commonly used to treat patients with relapsed/refractory multiple myeloma. However, approximately half of the patients exhibit resistance to pomalidomide treatment. While previous studies have identified Cereblon as a primary target of Immunomodulatory drugs' anti-myeloma activity, it is crucial to explore additional mechanisms that are currently less understood. Methods To comprehensively investigate the mechanisms of drug resistance, we conducted integrated proteomic and metabonomic analyses of 12 plasma samples from multiple myeloma patients who had varying responses to pomalidomide. Differentially expressed proteins and metabolites were screened, and were further analyzed using pathway analysis and functional correlation analysis. Also, we estimated the cellular proportions based on ssGSEA algorithm. To investigate the potential role of glycine in modulating the response of MM cells to pomalidomide, cell viability and apoptosis were analyzed. Results Our findings revealed a consistent decrease in the levels of complement components in the pomalidomide-resistant group. Additionally, there were significant differences in the proportion of T follicular helper cell and B cells in the resistant group. Furthermore, glycine levels were significantly decreased in pomalidomide-resistant patients, and exogenous glycine administration increased the sensitivity of MM cell lines to pomalidomide. Conclusion These results demonstrate distinct molecular changes in the plasma of resistant patients that could be used as potential biomarkers for identifying resistance mechanisms for pomalidomide in multiple myeloma and developing immune-related therapeutic strategies.
Collapse
Affiliation(s)
- Yan Zhuang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Department of Hematology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chenyu Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hua Jiang
- Department of Hematology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lu Li
- Department of Hematology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanteng Zhang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - WeiJun Fu
- Department of Hematology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
23
|
Abstract
Amino acids derived from protein digestion are important nutrients for the growth and maintenance of organisms. Approximately half of the 20 proteinogenic amino acids can be synthesized by mammalian organisms, while the other half are essential and must be acquired from the nutrition. Absorption of amino acids is mediated by a set of amino acid transporters together with transport of di- and tripeptides. They provide amino acids for systemic needs and for enterocyte metabolism. Absorption is largely complete at the end of the small intestine. The large intestine mediates the uptake of amino acids derived from bacterial metabolism and endogenous sources. Lack of amino acid transporters and peptide transporter delays the absorption of amino acids and changes sensing and usage of amino acids by the intestine. This can affect metabolic health through amino acid restriction, sensing of amino acids, and production of antimicrobial peptides.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Canberra, Australia;
| |
Collapse
|
24
|
Morales-González V, Galeano-Sánchez D, Covaleda-Vargas JE, Rodriguez Y, Monsalve DM, Pardo-Rodriguez D, Cala MP, Acosta-Ampudia Y, Ramírez-Santana C. Metabolic fingerprinting of systemic sclerosis: a systematic review. Front Mol Biosci 2023; 10:1215039. [PMID: 37614441 PMCID: PMC10442829 DOI: 10.3389/fmolb.2023.1215039] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction: Systemic sclerosis (SSc) is a chronic autoimmune disease, marked by an unpredictable course, high morbidity, and increased mortality risk that occurs especially in the diffuse and rapidly progressive forms of the disease, characterized by fibrosis of the skin and internal organs and endothelial dysfunction. Recent studies suggest that the identification of altered metabolic pathways may play a key role in understanding the pathophysiology of the disease. Therefore, metabolomics might be pivotal in a better understanding of these pathogenic mechanisms. Methods: Through a systematic review of the literature following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA), searches were done in the PubMed, EMBASE, Web of Science, and Scopus databases from 2000 to September 2022. Three researchers independently reviewed the literature and extracted the data based on predefined inclusion and exclusion criteria. Results: Of the screened studies, 26 fulfilled the inclusion criteria. A total of 151 metabolites were differentially distributed between SSc patients and healthy controls (HC). The main deregulated metabolites were those derived from amino acids, specifically homocysteine (Hcy), proline, alpha-N-phenylacetyl-L-glutamine, glutamine, asymmetric dimethylarginine (ADMA), citrulline and ornithine, kynurenine (Kyn), and tryptophan (Trp), as well as acylcarnitines associated with long-chain fatty acids and tricarboxylic acids such as citrate and succinate. Additionally, differences in metabolic profiling between SSc subtypes were identified. The diffuse cutaneous systemic sclerosis (dcSSc) subtype showed upregulated amino acid-related pathways involved in fibrosis, endothelial dysfunction, and gut dysbiosis. Lastly, potential biomarkers were evaluated for the diagnosis of SSc, the identification of the dcSSc subtype, pulmonary arterial hypertension, and interstitial lung disease. These potential biomarkers are within amino acids, nucleotides, carboxylic acids, and carbohydrate metabolism. Discussion: The altered metabolite mechanisms identified in this study mostly point to perturbations in amino acid-related pathways, fatty acid beta-oxidation, and in the tricarboxylic acid cycle, possibly associated with inflammation, vascular damage, fibrosis, and gut dysbiosis. Further studies in targeted metabolomics are required to evaluate potential biomarkers for diagnosis, prognosis, and treatment response.
Collapse
Affiliation(s)
- Victoria Morales-González
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Daniel Galeano-Sánchez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Jaime Enrique Covaleda-Vargas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Yhojan Rodriguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Diana M. Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Daniel Pardo-Rodriguez
- Metabolomics Core Facility—MetCore, Vicepresidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Mónica P. Cala
- Metabolomics Core Facility—MetCore, Vicepresidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| |
Collapse
|
25
|
Aguayo-Cerón KA, Sánchez-Muñoz F, Gutierrez-Rojas RA, Acevedo-Villavicencio LN, Flores-Zarate AV, Huang F, Giacoman-Martinez A, Villafaña S, Romero-Nava R. Glycine: The Smallest Anti-Inflammatory Micronutrient. Int J Mol Sci 2023; 24:11236. [PMID: 37510995 PMCID: PMC10379184 DOI: 10.3390/ijms241411236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Glycine is a non-essential amino acid with many functions and effects. Glycine can bind to specific receptors and transporters that are expressed in many types of cells throughout an organism to exert its effects. There have been many studies focused on the anti-inflammatory effects of glycine, including its abilities to decrease pro-inflammatory cytokines and the concentration of free fatty acids, to improve the insulin response, and to mediate other changes. However, the mechanism through which glycine acts is not clear. In this review, we emphasize that glycine exerts its anti-inflammatory effects throughout the modulation of the expression of nuclear factor kappa B (NF-κB) in many cells. Although glycine is a non-essential amino acid, we highlight how dietary glycine supplementation is important in avoiding the development of chronic inflammation.
Collapse
Affiliation(s)
- Karla Aidee Aguayo-Cerón
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de Mexico 11340, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de Mexico 14080, Mexico
| | | | | | - Aurora Vanessa Flores-Zarate
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de Mexico 11340, Mexico
| | - Fengyang Huang
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico
| | - Abraham Giacoman-Martinez
- Laboratorio de Framacología, Departamaneto de Ciencias de la Salud, DCBS, Universidad Autónoma Mteropolitana-Iztapalapa (UAM-I), Ciudad de Mexico 09340, Mexico
| | - Santiago Villafaña
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de Mexico 11340, Mexico
| | - Rodrigo Romero-Nava
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
26
|
Cedeno M, Murillo-Saich J, Coras R, Cedola F, Brandy A, Prior A, Pedersen A, Mateo L, Martinez-Morillo M, Guma M. Serum metabolomic profiling identifies potential biomarkers in arthritis in older adults: an exploratory study. Metabolomics 2023; 19:37. [PMID: 37022535 PMCID: PMC11449491 DOI: 10.1007/s11306-023-02004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Seronegative elderly-onset rheumatoid arthritis (EORA)neg and polymyalgia rheumatica (PMR) have similar clinical characteristics making them difficult to distinguish based on clinical features. We hypothesized that the study of serum metabolome could identify potential biomarkers of PMR vs. EORAneg. METHODS Arthritis in older adults (ARTIEL) is an observational prospective cohort with patients older than 60 years of age with newly diagnosed arthritis. Patients' blood samples were compared at baseline with 18 controls. A thorough clinical examination was conducted. A Bruker Avance 600 MHz spectrometer was used to acquire Nuclear Magnetic Resonance (NMR) spectra of serum samples. Chenomx NMR suite 8.5 was used for metabolite identification and quantification.Student t-test, one-way ANOVA, binary linear regression and ROC curve, Pearson's correlation along with pathway analyses were conducted. RESULTS Twenty-eight patients were diagnosed with EORAneg and 20 with PMR. EORAneg patients had a mean disease activity score (DAS)-Erythrocyte Sedimentation Rate (ESR) of 6.21 ± 1.00. All PMR patients reported shoulder pain, and 90% reported pelvic pain. Fifty-eight polar metabolites were identified. Of these, 3-hydroxybutyrate, acetate, glucose, glycine, lactate, and o-acetylcholine (o-ACh), were significantly different between groups. Of interest, IL-6 correlated with different metabolites in PMR and EORAneg suggesting different inflammatory activated pathways. Finally, lactate, o-ACh, taurine, and sex (female) were identified as distinguishable factors of PMR from EORAneg with a sensitivity of 90%, specificity of 92.3%, and an AUC of 0.925 (p < 0.001). CONCLUSION These results suggest that EORAneg and PMR have different serum metabolomic profiles that might be related to their pathobiology and can be used as biomarker to discriminate between both diseases.
Collapse
Affiliation(s)
- Martha Cedeno
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jessica Murillo-Saich
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Roxana Coras
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, Bellaterra, Barcelona, 08193, Spain
| | - Francesca Cedola
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Anahy Brandy
- Department of Rheumatology, Germans Trias i Pujol, University Hospital, Carretera de Canyet, Badalona, 08916, Spain
| | - Agueda Prior
- Department of Rheumatology, Germans Trias i Pujol, University Hospital, Carretera de Canyet, Badalona, 08916, Spain
| | - Anders Pedersen
- Swedish NMR Centre, University of Gothenburg, Gothenburg, 41390, Sweden
| | - Lourdes Mateo
- Department of Rheumatology, Germans Trias i Pujol, University Hospital, Carretera de Canyet, Badalona, 08916, Spain
| | - Melania Martinez-Morillo
- Department of Rheumatology, Germans Trias i Pujol, University Hospital, Carretera de Canyet, Badalona, 08916, Spain.
| | - Monica Guma
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, Bellaterra, Barcelona, 08193, Spain.
- VA Healthcare Service, San Diego, CA, 92161, USA.
| |
Collapse
|
27
|
Growth Hormone Alters Circulating Levels of Glycine and Hydroxyproline in Mice. Metabolites 2023; 13:metabo13020191. [PMID: 36837810 PMCID: PMC9959592 DOI: 10.3390/metabo13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Growth hormone (GH) has established effects on protein metabolism, such as increasing protein synthesis and decreasing amino acid degradation, but its effects on circulating amino acid levels are less studied. To investigate this relationship, metabolomic analyses were used to measure amino acid concentrations in plasma and feces of mice with alterations to the GH axis, namely bovine GH transgenic (bGH; increased GH action) and GH receptor knockout (GHRKO; GH resistant) mice. To determine the effects of acute GH treatment, GH-injected GH knockout (GHKO) mice were used to measure serum glycine. Furthermore, liver gene expression of glycine metabolism genes was assessed in bGH, GHRKO, and GH-injected GHKO mice. bGH mice had significantly decreased plasma glycine and increased hydroxyproline in both sexes, while GHRKO mice had increased plasma glycine in both sexes and decreased hydroxyproline in males. Glycine synthesis gene expression was decreased in bGH mice (Shmt1 in females and Shmt2 in males) and increased in GHRKO mice (Shmt2 in males). Acute GH treatment of GHKO mice caused decreased liver Shmt1 and Shmt2 expression and decreased serum glycine. In conclusion, GH alters circulating glycine and hydroxyproline levels in opposing directions, with the glycine changes at least partially driven by decreased glycine synthesis.
Collapse
|
28
|
Tian X, Zhang K, Wang N, Cheng B, Xu H, Guang S. Synthesis of a novel triphenylamine-based multifunctional fluorescent probe for continuous recognition application s. NEW J CHEM 2023. [DOI: 10.1039/d2nj05116h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
In this paper, a novel fluorescent probe, TPA-PAT, with continuous recognition based on triphenylamine was designed, synthesized, and characterized by NMR, IR, and fluorescence spectrophotometry techniques.
Collapse
Affiliation(s)
- Xiaoyong Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials & College of Materials Sciences and Engineering, Donghua University, Shanghai, 201620, China
| | - Kezhen Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials & College of Materials Sciences and Engineering, Donghua University, Shanghai, 201620, China
| | - Nan Wang
- College of Chemistry, and Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Baijie Cheng
- College of Chemistry, and Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Hongyao Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials & College of Materials Sciences and Engineering, Donghua University, Shanghai, 201620, China
| | - Shanyi Guang
- College of Chemistry, and Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
29
|
Baghal Behyar M, Hasanzadeh M, Seidi F, Shadjou N. Sensing of Amino Acids: Critical role of nanomaterials for the efficient biomedical analysis. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Zhu H, Guan X, Pu L, Shen L, Hua H. Acute toxicity, biochemical and transcriptomic analysis of Procambarus clarkii exposed to avermectin. PEST MANAGEMENT SCIENCE 2023; 79:206-215. [PMID: 36129128 DOI: 10.1002/ps.7189] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pesticides are extensively applied globally. Pesticide residues induce calamitous effects on the environment and untargeted organisms. Public concerns for the safety of freshwater organisms and the challenges posed by aquatic contaminants remain high. In the present study, the acute toxicity of avermectins (AVMs) to the crayfish, Procambarus clarkii was evaluated. We also evaluated the potential effects of AVM on the biochemical and transcriptomic status of the hepatopancreas and gastrointestinal tract in P. clarkii. RESULTS The 24, 48, 72, 96 h median lethal concentrations (LC50 ) of AVM on crayfish were 2.626, 1.162, 0.723, 0.566 mg L-1 , respectively. The crayfish were then exposed to 0.65 mg L-1 of AVM for 96 h. AVM significantly altered biochemical parameters including AChE and CAT activities in the hepatopancreas, and AChE, SOD and Na + -K + -ATPase activities in the gastrointestinal tract at several time points. Furthermore, transcriptomic analysis identified 953 and 1851 differentially-expressed genes (DEGs) in the hepatopancreas and gastrointestinal tract, respectively. KEGG enrichment showed that the gene expression profiles of the hepatopancreas and gastrointestinal tract were distinct from each other. The DEGs in the hepatopancreas were mostly enriched with stress-response pathways, while the majority of the DEGs in the gastrointestinal tract belonged to metabolism-related pathways. CONCLUSION We demonstrated that the AVM induced acute toxicity, oxidative stress, osmoregulation disturbance, neurotoxicity and transcriptome imbalance in crayfish. These findings unraveled the detrimental effects of AVMs exposure on crayfish. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongyuan Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianjun Guan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lei Pu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liyang Shen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
31
|
Deng C, Zheng J, Zhou H, You J, Li G. Dietary glycine supplementation prevents heat stress-induced impairment of antioxidant status and intestinal barrier function in broilers. Poult Sci 2022; 102:102408. [PMID: 36584416 PMCID: PMC9827071 DOI: 10.1016/j.psj.2022.102408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
This study tested the hypothesis that glycine improves intestinal barrier function through regulating oxidative stress in broilers exposed to heat stress. A total of 300 twenty-one-day-old female Arbor Acres broilers (600 ± 2.5g) was randomly allocated to 5 treatments (6 replicate of 10 birds each). The 5 treatments were as follows: the control group (CON) was kept under thermoneutral condition (24 ± 1°C) and was fed a basal diet. Broilers fed a basal diet and reared under high ambient temperature (HT) were considered as the HT group (34 ± 1°C for 8 h/d). Broilers fed a basal diet supplemented with 0.5%, 1.0%, and 2.0% glycine and exposed to HT were regarded as the HT + glycine treatments. The results exhibited that heat stress reduced growth performance, serum total antioxidant capacity (T-AOC), and glutathione (GSH) concentration (P < 0.05); increased activity of serum catalase (CAT) and the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) (P < 0.05). HT exposure led to downregulating the mRNA expression of NAD(P)H quinone dehydrogenase 1 (NQO1), Occludin, and zonula occludens-1 (ZO-1) (P < 0.05); enhanced the mRNA levels of Kelch-like ECH-associated protein 1 (Keap1), CAT, glutathione synthetase (GSS), and glutamate-cysteine ligase modifier subunit (GCLM) (P < 0.05); impaired the intestinal morphology (P < 0.05); and altered the diversity and community of gut microbiota (P < 0.05). The final body weight (FBW), ADFI, ADG, and gain-to-feed ratio (G: F) increased linearly or quadratically, and the antioxidant capacity was improved (P < 0.05) with glycine supplementation. Glycine treatment increased the villus height (VH), and villus height to crypt depth ratio (V/C) of the duodenum linearly or quadratically, and linearly increased the VH of jejunum and ileum. The mRNA expression of Occludin, and ZO-1 were increased linearly in the ileum mucosa of broilers subjected to HT. Collectively, these results demonstrated that glycine supplementation alleviates heat stress-induced dysfunction of antioxidant status and intestinal barrier in broilers.
Collapse
Affiliation(s)
- Chenxi Deng
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Jun Zheng
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Hua Zhou
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Guanhong Li
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Nanchang 330045, China.
| |
Collapse
|
32
|
Bhuvaragavan S, Sruthi K, Nivetha R, Ramaraj P, Hilda K, Meenakumari M, Janarthanan S. Insect galectin stimulates the human CD4+ T cell proliferation by regulating inflammation (T cell and monocyte) through Th2 immune response. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Tran MN, Kim S, Nguyen QHN, Lee S. Molecular Mechanisms Underlying Qi-Invigorating Effects in Traditional Medicine: Network Pharmacology-Based Study on the Unique Functions of Qi-Invigorating Herb Group. PLANTS 2022; 11:plants11192470. [PMID: 36235337 PMCID: PMC9573487 DOI: 10.3390/plants11192470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
Qi-invigorating herbs (QIHs) are a group of herbs that invigorate Qi, the most vital force for maintaining the physiological functions of the human body in traditional medicine. However, the mechanism underlying the Qi-invigorating effects remains unclear. This study aimed to elucidate the unique mechanisms of QIHs based on unique compounds, using a network pharmacology approach. QIHs and their compounds were identified using existing literature and the TCMSP database, respectively. Subsequently, a method was proposed to screen for unique compounds that are common in QIHs but rare in other traditional herbs. Unique compounds’ targets were predicted using the TCMSP, BATMAN-TCM, and SwissTargetPrediction databases. Finally, enriched GO and KEGG pathways were obtained using DAVID to uncover the biomolecular functions and mechanisms. Thirteen unique compounds, mainly including amino acids and vitamins that participate in energy metabolism and improve Qi deficiency syndrome, were identified among the eight QIHs. GO and KEGG pathway analyses revealed that these compounds commonly participate in neuroactive ligand–receptor interaction and the metabolism of amino acids, and are related to the components of mitochondria and neuronal cells. Our results appropriately reflect the characteristics of traditional Qi-invigorating effects; therefore, this study facilitates the scientific interpretation of Qi functions and provides evidence regarding the treatment effectiveness of QIHs.
Collapse
Affiliation(s)
- Minh Nhat Tran
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- Korean Convergence Medical Science, University of Science and Technology, Daejeon 34113, Korea
- Faculty of Traditional Medicine, Hue University of Medicine and Pharmacy, Hue University, Hue 49120, Vietnam
| | - Soyoung Kim
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- Korean Convergence Medical Science, University of Science and Technology, Daejeon 34113, Korea
| | - Quynh Hoang Ngan Nguyen
- Center for Artificial Intelligence, Korea Institute of Science and Technology, Seoul 02792, Korea
- AI Robotics, University of Science and Technology, Daejeon 34113, Korea
| | - Sanghun Lee
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- Korean Convergence Medical Science, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-42-868-9461
| |
Collapse
|
34
|
Nutraceutical Prevention of Diabetic Complications—Focus on Dicarbonyl and Oxidative Stress. Curr Issues Mol Biol 2022; 44:4314-4338. [PMID: 36135209 PMCID: PMC9498143 DOI: 10.3390/cimb44090297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative and dicarbonyl stress, driven by excess accumulation of glycolytic intermediates in cells that are highly permeable to glucose in the absence of effective insulin activity, appear to be the chief mediators of the complications of diabetes. The most pathogenically significant dicarbonyl stress reflects spontaneous dephosphorylation of glycolytic triose phosphates, giving rise to highly reactive methylglyoxal. This compound can be converted to harmless lactate by the sequential activity of glyoxalase I and II, employing glutathione as a catalyst. The transcription of glyoxalase I, rate-limiting for this process, is promoted by Nrf2, which can be activated by nutraceutical phase 2 inducers such as lipoic acid and sulforaphane. In cells exposed to hyperglycemia, glycine somehow up-regulates Nrf2 activity. Zinc can likewise promote glyoxalase I transcription, via activation of the metal-responsive transcription factor (MTF) that binds to the glyoxalase promoter. Induction of glyoxalase I and metallothionein may explain the protective impact of zinc in rodent models of diabetic complications. With respect to the contribution of oxidative stress to diabetic complications, promoters of mitophagy and mitochondrial biogenesis, UCP2 inducers, inhibitors of NAPDH oxidase, recouplers of eNOS, glutathione precursors, membrane oxidant scavengers, Nrf2 activators, and correction of diabetic thiamine deficiency should help to quell this.
Collapse
|
35
|
L-Lysine Ameliorates Diabetic Nephropathy in Rats with Streptozotocin-Induced Diabetes Mellitus. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4547312. [PMID: 36132073 PMCID: PMC9484891 DOI: 10.1155/2022/4547312] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022]
Abstract
Introduction Diabetic nephropathy is one of the leading causes of end-stage renal disease worldwide. Uncontrolled hyperglycemia and subsequent production of glycation end-products activate the paths which lead to diabetic nephropathy. The aim of this study was to assess the effects of L-lysine on antioxidant capacity, biochemical factors, kidney function, HSP70 level, and the expression of the TGFβ, VEGF, and RAGE genes in rats with streptozocin-induced diabetes mellitus. Methods Thirty-two male Wistar rats were randomly allocated to four eight-rat groups, namely, a healthy group, a diabetic group treated with vehicle (DM + vehicle), a diabetic group treated with L-lysine (DM + Lys), and a healthy group treated with L-lysine (healthy + Lys). Rats in the DM + Lys and the healthy + Lys groups were treated with L-lysine 0.15%. The levels of fasting blood glucose, insulin, HbA1C, advanced glycation end-products (AGEs), lipid profile, serum creatinine, blood urea nitrogen, glomerular filtration rate, urine microalbumin, oxidative stress parameters, kidney histology and morphology, and TGFβ, VEGF, and RAGE gene expressions were assessed. Findings. An eight-week treatment with L-lysine significantly reduced the levels of fasting blood glucose, AGEs, kidney function parameters, oxidative stress parameters, lipid profile, and the TGFβ, VEGF, and RAGE gene expression and significantly increased the levels of serum insulin and tissue HSP70. Conclusion Treatment with L-lysine seems to slow down the progression of diabetic nephropathy.
Collapse
|
36
|
Feng L, Zhong K, Majdi HS, Aallaei M, Andreevna Rushchitc A. Advanced computational study of different boron nitride-based nanospheres for removal of organic contaminants from wastewater system. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Hernández-Velázquez IM, Zamora-Briseño JA, Hernández-Bolio GI, Hernández-Nuñez E, Lozano-Álvarez E, Briones-Fourzán P, Rodríguez-Canul R. Metabolic changes in antennal glands of Caribbean spiny lobsters Panulirus argus infected by Panulirus argus virus 1 (PaV1). DISEASES OF AQUATIC ORGANISMS 2022; 151:11-22. [PMID: 36047670 DOI: 10.3354/dao03682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Panulirus argus virus 1 (PaV1) (Family Mininucleoviridae) causes chronic and systemic infection in wild juvenile spiny lobsters Panulirus argus (Latreille, 1804), ending in death by starvation and metabolic wasting. In marine decapods, the antennal gland is involved in osmoregulation and excretion. In this compact organ, fluid is filtered from the hemolymph, and ions are reabsorbed to produce a hypotonic urine. Although PaV1 is released with the urine in infected individuals, little is known regarding the metabolic effect of PaV1 in the antennal gland. The objective of this study was to perform a comparative evaluation of the metabolic profile of the antennal gland of clinically PaV1-infected lobsters versus those with no clinical signs of infection, using proton nuclear magnetic resonance analysis. Overall, 48 compounds were identified, and the most represented metabolites were those involved in carbohydrate, amino acid, energy, and nucleotide metabolism. Most of the metabolites that were down-regulated in the infected group were essential and non-essential amino acids. Some metabolites involved in the urea cycle and carbohydrate metabolism were also altered. This study represents a first approach to the metabolic evaluation of the antennal gland. We broadly discuss alterations in the content of several proteinogenic and non-proteinogenic amino acids and other key metabolites involved in energetic and nucleotide metabolism.
Collapse
Affiliation(s)
- Ioreni Margarita Hernández-Velázquez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Carr. Mérida-Progreso, CP 97310 Mérida, Yucatán, México
| | | | | | | | | | | | | |
Collapse
|
38
|
Murillo-Saich JD, Coras R, Meyer R, Llorente C, Lane NE, Guma M. Synovial tissue metabolomic profiling reveal biomarkers of synovial inflammation in patients with osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100295. [PMID: 36474936 PMCID: PMC9718344 DOI: 10.1016/j.ocarto.2022.100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/30/2023] Open
Abstract
Objective Inflammatory responses are associated with changes in tissue metabolism. Prior studies find altered metabolomic profiles in both the synovial fluid (SF) and serum of osteoarthritis subjects. Our study determined the metabolomic profile of synovial tissue (ST) and SF of individuals with osteoarthritis (OA) and its association with synovial inflammation. Design 37 OA ST samples were collected during joint replacement, 21 also had SF. ST samples were fixed in formalin for histological analysis, cultured (explants) for cytokine analysis by enzyme-linked immunosorbent assay, or snap-frozen for metabolomic analysis. ST samples were categorized by Krenn synovitis score and picrosirius red. CD68 and vimentin expression was assessed by immunohistochemistry and semi-quantified using Image J. Proton-nuclear magnetic resonance (1H NMR) was used to acquire a spectrum from ST and SF samples. Chenomx NMR suite 8.5 was used for metabolite identification and quantification. Metaboanalyst 5.0, SPSS v26, and R (v4.1.2) were used for statistical analysis. Results 42 and 29 metabolites were detected in the ST and SF respectively by 1H NMR. Only 3 metabolites, lactate, dimethylamine, and creatine positively correlated between SF and ST. ST concentrations of several metabolites (lactate, alanine, fumarate, glutamine, glycine, leucine, lysine, methionine, trimethylamine N-oxide, tryptophan and valine) were associated with synovitis score, mostly to the lining score. IL-6, acetoacetate, and tyrosine in SF predicted high Krenn synovitis scores in ST. Conclusion Metabolomic profiling of ST identified metabolic changes associated with inflammation. Further studies are needed to determine whether metabolomic profiling of synovial tissue can identify new therapeutic targets in osteoarthritis.
Collapse
Affiliation(s)
- Jessica D. Murillo-Saich
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Roxana Coras
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
- Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain
| | - Robert Meyer
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
- San Diego VA Healthcare Service, San Diego, CA, 92161, USA
| | - Cristina Llorente
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Nancy E. Lane
- Department of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Monica Guma
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
- Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain
- San Diego VA Healthcare Service, San Diego, CA, 92161, USA
| |
Collapse
|
39
|
Wang K, Yuan Y, Luo X, Shen Z, Huang Y, Zhou H, Gao X. Effects of exogenous selenium application on nutritional quality and metabolomic characteristics of mung bean ( Vigna radiata L.). FRONTIERS IN PLANT SCIENCE 2022; 13:961447. [PMID: 36061759 PMCID: PMC9433778 DOI: 10.3389/fpls.2022.961447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Selenium (Se) biofortification is an important strategy for reducing hidden hunger by increasing the nutritional quality of crops. However, there is limited metabolomic information on the nutritional quality of Se-enriched mung beans. In this study, physiological assays and LC-MS/MS based widely targeted metabolomics approach was employed to reveal the Se biofortification potential of mung bean by evaluating the effect of Se on mung bean nutraceutical compounds and their qualitative parameters. Physiological data showed that foliar application of 30 g ha-1 Se at key growth stages significantly increased the content of Se, protein, fat, total phenols, and total flavonoids content in two mung bean varieties. Widely targeted metabolomics identified 1,080 metabolites, among which L-Alanyl-L-leucine, 9,10-Dihydroxy-12,13-epoxyoctadecanoic acid, and 1-caffeoylquinic acid could serve as biomarkers for identifying highly nutritious mung bean varieties. Pathway enrichment analysis revealed that the metabolic pathways of different metabolites were different in the Se-enriched mung bean. Specifically, P1 was mainly enriched in the linoleic acid metabolic pathway, while P2 was mainly enriched in the phosphonate and phosphinate metabolic pathways. Overall, these results revealed the specific Se enrichment mechanism of different mung bean varieties. This study provides new insights into the comprehensive improvement of the nutritional quality of mung beans.
Collapse
|
40
|
Impact of glycine and erythritol/chlorhexidine air-polishing powders on human gingival fibroblasts: an in vitro study. Ann Anat 2022; 243:151949. [PMID: 35523398 DOI: 10.1016/j.aanat.2022.151949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Supra- and subgingival air-polishing has been used in periodontitis and gingivitis therapy for years. Low-abrasive types of powders have facilitated the application in subgingival areas. In this study, the cellular effects of a glycine powder and an erythritol/chlorhexidine (CHX) powder on human gingival fibroblasts (HGF) were investigated. METHODS HGF were obtained from sound gingiva of three healthy donors. After 12hours and 24hours of incubation time, cell viability testing and, after 24hours and 48hours, a cell proliferation assay was conducted. Additionally, the individual components erythritol and CHX were investigated for cell viability. In vitro wound healing was monitored for 48hours and scanning electron microscopy (SEM) analysis was performed after 24hours. Statistical analysis was accomplished by ANOVA and post hoc Dunnett's and Tukey's tests (p < 0.05) were performed. RESULTS Erythritol/CHX powder and in a lower extent, glycine powder decreased cell viability and cell proliferation. The negative effect of erythritol/CHX was mainly based on the CHX component. In vitro wound healing was negatively influenced in both types of powders compared to control. Cell size was altered in both test groups, whereas cell morphology was affected only in the erythritol/CHX group. CONCLUSIONS The investigated powders for subgingival air-polishing can influence cell viability, morphology, and proliferation, as well as wound closure in vitro. These actions on fibroblasts are discernible, with the cytotoxic effect of erythritol/CHX powder being very clear and mainly due to the CHX component. Our results suggest that subgingivally applied powders can exert direct effects on gingival fibroblasts.
Collapse
|
41
|
Imenshahidi M, Hossenzadeh H. Effects of glycine on metabolic syndrome components: a review. J Endocrinol Invest 2022; 45:927-939. [PMID: 35013990 DOI: 10.1007/s40618-021-01720-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/03/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE Glycine is the simplest and major amino acid in humans. It is mainly generated in the liver and kidney and is used to produce collagen, creatine, glucose and purine. It is also involved in immune function, anti-inflammatory processes and anti-oxidation reactions. Here, we reviewed the current evidence supporting the role of glycine in the development and treatment of metabolic syndrome components. METHODS We searched Scopus, PubMed and EMBASE databases for papers concerning glycine and metabolic syndrome. RESULTS Available evidence shows that the amount of glycine synthesized in vivo is insufficient to meet metabolic demands in these species. Plasma glycine levels are lower in subjects with metabolic syndrome than in healthy individuals. Interventions such as lifestyle modification, exercise, weight loss, or drugs that improve manifestations of metabolic syndrome remarkably increase circulating glycine concentrations. CONCLUSION Glycine supplementation improves various components of metabolic syndrome including diabetes, obesity, hyperlipidemia and hypertension. In the future, the use of glycine may have a significant clinical impact on the treatment of patients with metabolic syndrome.
Collapse
Affiliation(s)
- M Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Hossenzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
Krupenko SA, Cole SA, Hou R, Haack K, Laston S, Mehta NR, Comuzzie AG, Butte NF, Voruganti VS. Genetic variants in ALDH1L1 and GLDC influence the serine-to-glycine ratio in Hispanic children. Am J Clin Nutr 2022; 116:500-510. [PMID: 35460232 PMCID: PMC9348975 DOI: 10.1093/ajcn/nqac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/15/2022] [Accepted: 04/21/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Glycine is a proteogenic amino acid that is required for numerous metabolic pathways, including purine, creatine, heme, and glutathione biosynthesis. Glycine formation from serine, catalyzed by serine hydroxy methyltransferase, is the major source of this amino acid in humans. Our previous studies in a mouse model have shown a crucial role for the 10-formyltetrahydrofolate dehydrogenase enzyme in serine-to-glycine conversion. OBJECTIVES We sought to determine the genomic influence on the serine-glycine ratio in 803 Hispanic children from 319 families of the Viva La Familia cohort. METHODS We performed a genome-wide association analysis for plasma serine, glycine, and the serine-glycine ratio in Sequential Oligogenic Linkage Analysis Routines while accounting for relationships among family members. RESULTS All 3 parameters were significantly heritable (h2 = 0.22-0.78; P < 0.004). The strongest associations for the serine-glycine ratio were with single nucleotide polymorphisms (SNPs) in aldehyde dehydrogenase 1 family member L1 (ALDH1L1) and glycine decarboxylase (GLDC) and for glycine with GLDC (P < 3.5 × 10-8; effect sizes, 0.03-0.07). No significant associations were found for serine. We also conducted a targeted genetic analysis with ALDH1L1 exonic SNPs and found significant associations between the serine-glycine ratio and rs2886059 (β = 0.68; SE, 0.25; P = 0.006) and rs3796191 (β = 0.25; SE, 0.08; P = 0.003) and between glycine and rs3796191 (β = -0.08; SE, 0.02; P = 0.0004). These exonic SNPs were further associated with metabolic disease risk factors, mainly adiposity measures (P < 0.006). Significant genetic and phenotypic correlations were found for glycine and the serine-glycine ratio with metabolic disease risk factors, including adiposity, insulin sensitivity, and inflammation-related phenotypes [estimate of genetic correlation = -0.37 to 0.35 (P < 0.03); estimate of phenotypic correlation = -0.19 to 0.13 (P < 0.006)]. The significant genetic correlations indicate shared genetic effects among glycine, the serine-glycine ratio, and adiposity and insulin sensitivity phenotypes. CONCLUSIONS Our study suggests that ALDH1L1 and GLDC SNPs influence the serine-to-glycine ratio and metabolic disease risk.
Collapse
Affiliation(s)
- Sergey A Krupenko
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ruixue Hou
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sandra Laston
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA,South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Nitesh R Mehta
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,USDA/ARS Children Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Nancy F Butte
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,USDA/ARS Children Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
43
|
Zhao Q, Huang M, Yin J, Wan Y, Liu Y, Duan R, Luo Y, Xu X, Cao X, Yi M. Atrazine exposure and recovery alter the intestinal structure, bacterial composition and intestinal metabolites of male Pelophylax nigromaculatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151701. [PMID: 34798088 DOI: 10.1016/j.scitotenv.2021.151701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
The pesticide atrazine poses a potential threat to the health of frogs living in farmland areas. The exposure concentration in traditional pesticide experiments is usually constant, while pesticide pollution in actual water may fluctuate due to periodic or seasonal application. We examined the effects of different concentrations of atrazine (50, 100 and 500 μg/L) over a 14-day exposure and a 7-day recovery on intestinal histology, bacterial composition and intestinal metabolites of male Pelophylax nigromaculatus. HE staining revealed that after a 14-day atrazine exposure, the 100 μg/L and 500 μg/L groups showed obvious cysts and significantly decreased intestinal crypt depth and villus height. After a 7-day recovery, the damaged intestine in the 100 μg/L group was partially recovered, while in the 500 μg/L exposure group there was no improvement. 16S rRNA gene analysis of intestinal bacteria showed that 500 μg/L atrazine exposure significantly caused a persistent decrease in bacterial α diversity. Compared to the control and other atrazine exposure groups, the 500 μg/L group showed significant changes in the relative abundance of predominant bacteria. In addition, most dominant bacteria in the 500 μg/L recovery group showed significant differences with the 50 μg/L and 100 μg/L recovery groups. Nontargeted metabolomics profiling based on UPLC/MS analysis showed that atrazine exposure and recovery induced changes in the intestinal metabolic profile. The changes in metabolites were mainly related to purine/pyrimidine metabolism, glycine, serine and threonine metabolism, and arginine and proline metabolism. In general, these pathways were closely related to energy metabolism and amino acid metabolism. These results suggest that the short-term exposure to 500 μg/L atrazine causes persistent harm to intestinal health. This study is an important step toward a better understanding of the toxic effects of atrazine exposure and recovery in frog intestines.
Collapse
Affiliation(s)
- Qiang Zhao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China.
| | - Jiawei Yin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Yuyue Wan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Yang Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Yucai Luo
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Xiang Xu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Xiaohong Cao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Minghui Yi
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| |
Collapse
|
44
|
Jia D, Zhang R, Shao J, Zhang W, Cai L, Sun W. Exposure to trace levels of metals and fluoroquinolones increases inflammation and tumorigenesis risk of zebrafish embryos. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 10:100162. [PMID: 36159734 PMCID: PMC9488011 DOI: 10.1016/j.ese.2022.100162] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 05/04/2023]
Abstract
Exposure to trace-level heavy metals and antibiotics may elicit metabolic disorder, alter protein expression, and then induce pathological changes in zebrafish embryos, despite negligible physiological and developmental toxicity. This study investigated the single and combined developmental toxicity of fluoroquinolones (enrofloxacin [ENR] and ciprofloxacin [CIP]) (≤0.5 μM) and heavy metals (Cu and Cd) (≤0.5 μM) to zebrafish embryos, and molecular responses of zebrafish larvae upon exposure to the single pollutant (0.2 μM) or a binary metal-fluoroquinolone mixture (0.2 μM). In all single and mixture exposure groups, no developmental toxicity was observed, but oxidative stress, inflammation, and lipid depletion were found in zebrafish embryos, which was more severe in the mixture exposure groups than in the single exposure groups, probably due to increased metal bioaccumulation in the presence of ENR or CIP. Metabolomics analysis revealed the up-regulation of amino acids and down-regulation of fatty acids, corresponding to an active response to oxidative stress and the occurrence of inflammation. The up-regulation of antioxidase and immune proteins revealed by proteomics analysis further confirmed the occurrence of oxidative stress and inflammation. Furthermore, the KEGG pathway enrichment analysis showed a significant disturbance of pathways related to immunity and tumor, indicating the potential risk of tumorigenesis in zebrafish larvae. The findings provide molecular-level insights into the adverse effects of heavy metals and antibiotics (especially in chemical mixtures) on zebrafish embryos, and highlight the potential ecotoxicological risks of trace-level heavy metals and antibiotics in the environment.
Collapse
Affiliation(s)
- Dantong Jia
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Ruijie Zhang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Jian Shao
- College of Animal Science, Guizhou University, The Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Environmental Science and Policy Program, Michigan State University, East Lansing, MI, 48824, United States
| | - Leilei Cai
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
- Corresponding author. Peking University. China.
| |
Collapse
|
45
|
Zhang Y, Mu T, Jia H, Yang Y, Wu Z. Protective effects of glycine against lipopolysaccharide-induced intestinal apoptosis and inflammation. Amino Acids 2022; 54:353-364. [PMID: 34085156 DOI: 10.1007/s00726-021-03011-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022]
Abstract
Intestinal dysfunction is commonly observed in humans and animals. Glycine (Gly) is a functional amino acid with anti-inflammatory and anti-apoptotic properties. The objective of this study was to test the protective effects of Gly against lipopolysaccharide (LPS)-induced intestinal injury. 28 C57BL/6 mice with a body weight (BW) of 18 ± 2 g were randomly assigned into four groups: CON (control), GLY (orally administered Gly, 5 g/kg BW/day for 6 days), LPS (5 mg/kg BW on day 7, i. p.), and GLY + LPS (Gly pretreatment and LPS administration). Histological alterations, inflammatory responses, epithelial cell apoptosis, and changes of the intestinal microbiota were analyzed. Results showed that, compared with the CON group, mice in the LPS treatment group showed decreased villus height, increased crypt depth, and decreased ratio of villus height to crypt depth, which were significantly attenuated by Gly. Neither LPS nor Gly treatment altered morphology of the distal colon tissues. LPS increased the apoptosis of jejunum and colon epithelial cells and protein abundance of cleaved caspase3 in the jejunum, which were markedly abrogated by Gly. LPS also elevated the mRNA levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MYD88), pro-inflammatory cytokines, and chemokines in the jejunum and colon. These alterations were significantly suppressed by Gly. In addition, Gly supplementation attenuated infiltration of CD4+, CD8+ T-lymphocytes, CD11b+ and F4/80+ macrophages in the colon. Furthermore, Gly increased the relative abundance of Mucispirillum, Lachnospiraceae-NK4A136-group, Anaerotruncus, Faecalibaculum, Ruminococcaceae-UCG-014, and decreased the abundance of Bacteroides at genus level. Supplementation with Gly might be a nutritional strategy to ameliorate LPS-induced intestinal injury in mice.
Collapse
Affiliation(s)
- Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Tianqi Mu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
46
|
Colas L, Royer AL, Massias J, Raux A, Chesneau M, Kerleau C, Guerif P, Giral M, Guitton Y, Brouard S. Urinary metabolomic profiling from spontaneous tolerant kidney transplanted recipients shows enrichment in tryptophan-derived metabolites. EBioMedicine 2022; 77:103844. [PMID: 35241402 PMCID: PMC9034456 DOI: 10.1016/j.ebiom.2022.103844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Background Operational tolerance is the holy grail in solid organ transplantation. Previous reports showed that the urinary compartment of operationally tolerant recipients harbor a specific and unique profile. We hypothesized that spontaneous tolerant kidney transplanted recipients (KTR) would have a specific urinary metabolomic profile associated to operational tolerance. Methods We performed metabolomic profiling on urine samples from healthy volunteers, stable KTR under standard and minimal immunosuppression and spontaneous tolerant KTR using liquid chromatography in tandem with mass spectrometry. Supervised and unsupervised multivariate computational analyses were used to highlight urinary metabolomic profile and metabolite identification thanks to workflow4metabolomic platform. Findings The urinary metabolome was composed of approximately 2700 metabolites. Raw unsupervised clustering allowed us to separate healthy volunteers and tolerant KTR from others. We confirmed by two methods a specific urinary metabolomic signature in tolerant KTR mainly driven by kynurenic acid independent of immunosuppressive drugs, serum creatinine and gender. Interpretation Kynurenic acid and tryptamine enrichment allowed the identification of putative pathways and metabolites associated with operational tolerance like IDO, GRP35 and AhR and indole alkaloids. Funding This study was supported by the ANR, IRSRPL and CHU de Nantes.
Collapse
Affiliation(s)
- Luc Colas
- CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Centre Hospitalier, Nantes Université, 30 bd Jean Monnet, Nantes F-44000, France.
| | - Anne-Lise Royer
- MELISA Core Facility, Oniris, INRΑE, Nantes F-44307, France; Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRAE, Nantes F-44307, France.
| | - Justine Massias
- MELISA Core Facility, Oniris, INRΑE, Nantes F-44307, France; Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRAE, Nantes F-44307, France.
| | - Axel Raux
- MELISA Core Facility, Oniris, INRΑE, Nantes F-44307, France; Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRAE, Nantes F-44307, France.
| | - Mélanie Chesneau
- CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Centre Hospitalier, Nantes Université, 30 bd Jean Monnet, Nantes F-44000, France.
| | - Clarisse Kerleau
- CHU Nantes, Service de Néphrologie-Immunologie Clinique, Nantes Université, Nantes, France.
| | - Pierrick Guerif
- CHU Nantes, Service de Néphrologie-Immunologie Clinique, Nantes Université, Nantes, France.
| | - Magali Giral
- CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Centre Hospitalier, Nantes Université, 30 bd Jean Monnet, Nantes F-44000, France; CHU Nantes, Service de Néphrologie-Immunologie Clinique, Nantes Université, Nantes, France; Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Nantes, France.
| | - Yann Guitton
- MELISA Core Facility, Oniris, INRΑE, Nantes F-44307, France; Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRAE, Nantes F-44307, France.
| | - Sophie Brouard
- CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Centre Hospitalier, Nantes Université, 30 bd Jean Monnet, Nantes F-44000, France; CHU Nantes, Service de Néphrologie-Immunologie Clinique, Nantes Université, Nantes, France; Labex IGO, Nantes, France.
| |
Collapse
|
47
|
Soares L, César de Paula Dorigam J, da Silva Viana G, Balbino Leme B, Quintino do Nascimento M, Kochenborger Fernandes JB, Kazue Sakomura N. Determination of ideal protein ratios in growing pullets. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2021.115189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
48
|
Multi Platforms Strategies and Metabolomics Approaches for the Investigation of Comprehensive Metabolite Profile in Dogs with Babesia canis Infection. Int J Mol Sci 2022; 23:ijms23031575. [PMID: 35163517 PMCID: PMC8835742 DOI: 10.3390/ijms23031575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Canine babesiosis is an important tick-borne disease worldwide, caused by parasites of the Babesia genus. Although the disease process primarily affects erythrocytes, it may also have multisystemic consequences. The goal of this study was to explore and characterize the serum metabolome, by identifying potential metabolites and metabolic pathways in dogs naturally infected with Babesia canis using liquid and gas chromatography coupled to mass spectrometry. The study included 12 dogs naturally infected with B. canis and 12 healthy dogs. By combining three different analytical platforms using untargeted and targeted approaches, 295 metabolites were detected. The untargeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) metabolomics approach identified 64 metabolites, the targeted UHPLC-MS/MS metabolomics approach identified 205 metabolites, and the GC-MS metabolomics approach identified 26 metabolites. Biological functions of differentially abundant metabolites indicate the involvement of various pathways in canine babesiosis including the following: glutathione metabolism; alanine, aspartate, and glutamate metabolism; glyoxylate and dicarboxylate metabolism; cysteine and methionine metabolism; and phenylalanine, tyrosine, and tryptophan biosynthesis. This study confirmed that host–pathogen interactions could be studied by metabolomics to assess chemical changes in the host, such that the differences in serum metabolome between dogs with B. canis infection and healthy dogs can be detected with liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) methods. Our study provides novel insight into pathophysiological mechanisms of B. canis infection.
Collapse
|
49
|
The Mycobacterium tuberculosis PE_PGRS Protein Family Acts as an Immunological Decoy to Subvert Host Immune Response. Int J Mol Sci 2022; 23:ijms23010525. [PMID: 35008950 PMCID: PMC8745494 DOI: 10.3390/ijms23010525] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) is a successful pathogen that can reside within the alveolar macrophages of the host and can survive in a latent stage. The pathogen has evolved and developed multiple strategies to resist the host immune responses. M.tb escapes from host macrophage through evasion or subversion of immune effector functions. M.tb genome codes for PE/PPE/PE_PGRS proteins, which are intrinsically disordered, redundant and antigenic in nature. These proteins perform multiple functions that intensify the virulence competence of M.tb majorly by modulating immune responses, thereby affecting immune mediated clearance of the pathogen. The highly repetitive, redundant and antigenic nature of PE/PPE/PE_PGRS proteins provide a critical edge over other M.tb proteins in terms of imparting a higher level of virulence and also as a decoy molecule that masks the effect of effector molecules, thereby modulating immuno-surveillance. An understanding of how these proteins subvert the host immunological machinery may add to the current knowledge about M.tb virulence and pathogenesis. This can help in redirecting our strategies for tackling M.tb infections.
Collapse
|
50
|
Silva Neto GJ, Silva LR, Omena RJMD, Aguiar ACC, Annunciato Y, Rosseto B, Gazarini ML, Heimfarth L, Quintans-Júnior LJ, Ferreira E, Meneghetti MR. Dual Quinoline-Hybrid Compounds with Antimalarial Activity Against Plasmodium falciparum Parasites. NEW J CHEM 2022. [DOI: 10.1039/d1nj05598d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although we have at our disposal relatively low-cost drugs that can be prescribed for the treatment of malaria, the prevalence of resistant strains of the causative parasite has required the...
Collapse
|