1
|
Calado M, Pires D, Conceição C, Santos-Costa Q, Anes E, Azevedo-Pereira JM. Human immunodeficiency virus transmission-Mechanisms underlying the cell-to-cell spread of human immunodeficiency virus. Rev Med Virol 2023; 33:e2480. [PMID: 37698498 DOI: 10.1002/rmv.2480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Despite the success of combined antiretroviral therapy in controlling viral load and reducing the risk of human immunodeficiency virus (HIV) transmission, an estimated 1.5 million new infections occurred worldwide in 2021. These new infections are mainly the result of sexual intercourse and thus involve cells present on the genital mucosa, such as dendritic cells (DCs), macrophages (Mø) and CD4+ T lymphocytes. Understanding the mechanisms by which HIV interacts with these cells and how HIV exploits these interactions to establish infection in a new human host is critical to the development of strategies to prevent and control HIV transmission. In this review, we explore how HIV has evolved to manipulate some of the physiological roles of these cells, thereby gaining access to strategic cellular niches that are critical for the spread and pathogenesis of HIV infection. The interaction of HIV with DCs, Mø and CD4+ T lymphocytes, and the role of the intercellular transfer of viral particles through the establishment of the infectious or virological synapses, but also through membrane protrusions such as filopodia and tunnelling nanotubes (TNTs), and cell fusion or cell engulfment processes are presented and discussed.
Collapse
Affiliation(s)
- Marta Calado
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - David Pires
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Rio de Mouro, Portugal
| | - Carolina Conceição
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Quirina Santos-Costa
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Elsa Anes
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Herrera C, Serwanga J, Else L, Limakatso L, Opoka D, Ssemata AS, Pillay AD, Namubiru P, Seiphetlo TB, Odoch G, Mugaba S, Seatlholo P, Alieu A, Penchala SD, Muhumuza R, Alinde B, Petkov S, O'Hagan K, Callebaut C, Seeley J, Weiss H, Khoo S, Chiodi F, Gray CM, Kaleebu P, Webb EL, Martinson N, Fox J. Dose finding study for on-demand HIV pre-exposure prophylaxis for insertive sex in sub-Saharan Africa: results from the CHAPS open label randomised controlled trial. EBioMedicine 2023; 93:104648. [PMID: 37327677 PMCID: PMC10275696 DOI: 10.1016/j.ebiom.2023.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND The efficacy of on-demand HIV pre-exposure prophylaxis (PrEP) for men in sub-Saharan Africa has not been evaluated, and the on-demand PrEP dosing requirement for insertive sex remains unknown. METHODS HIV-negative males 13-24 years, requesting voluntary medical male circumcision (VMMC), were enrolled into an open-label randomised controlled trial (NCT03986970), and randomised 1:1:1:1:1:1:1:1:1 to control arm or one of eight arms receiving emtricitabine-tenofovir disoproxil fumarate (F/TDF) or emtricitabine-tenofovir alafenamide (F/TAF) over one or two days, and circumcised 5 or 21 h thereafter. The primary outcome was foreskin p24 concentrations following ex vivo HIV-1BaL challenge. Secondary outcomes included peripheral blood mononuclear cell (PBMC) p24 concentration, and drug concentrations in foreskin tissue, PBMCs, plasma and foreskin CD4+/CD4-cells. In the control arm, post-exposure prophylaxis (PEP) activity of non-formulated tenofovir-emtricitabine (TFV-FTC) or TAF-FTC was assessed with ex vivo dosing 1, 24, 48 or 72 h post-HIV-1 challenge. FINDINGS 144 participants were analysed. PrEP with F/TDF or F/TAF prevented ex vivo infection of foreskins and PBMCs both 5 and 21 h after PrEP dosing. There was no difference between F/TDF and F/TAF (p24day15 geometric mean ratio 1.06, 95% confidence interval: 0.65-1.74). Additional ex vivo dosing did not further increase inhibition. In the control arm, PEP ex vivo dosing was effective up to 48 post-exposure diminishing thereafter, with TAF-FTC showing prolonged protection compared to TFV-FTC. Participants receiving F/TAF had higher TFV-DP concentrations in foreskin tissue and PBMCs compared with F/TDF, irrespective of dose and sampling interval; but F/TAF did not confer preferential TFV-DP distribution into foreskin HIV target cells. FTC-TP concentrations with both drug regimens were equivalent and ∼1 log higher than TFV-DP in foreskin. INTERPRETATION A double dose of either F/TDF or F/TAF given once either 5 or 21 h before ex vivo HIV-challenge provided protection across foreskin tissue. Further clinical evaluation of pre-coital PrEP for insertive sex is warranted. FUNDING EDCTP2, Gilead Sciences, Vetenskapsrådet.
Collapse
Affiliation(s)
- Carolina Herrera
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, Norfolk Place, W2 1PG, London, UK
| | - Jennifer Serwanga
- Medical Research Council/Uganda Virus Research Institute, and London School of Hygiene and Tropical Medicine, Uganda Research Unit, 51-59 Nakiwogo Road, Entebbe, Uganda
| | - Laura Else
- Department of Molecular and Clinical Pharmacology, William Henry Duncan Building, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Lebina Limakatso
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Africa Health Research Unit, Durban, South Africa
| | - Daniel Opoka
- Medical Research Council/Uganda Virus Research Institute, and London School of Hygiene and Tropical Medicine, Uganda Research Unit, 51-59 Nakiwogo Road, Entebbe, Uganda
| | - Andrew S Ssemata
- Medical Research Council/Uganda Virus Research Institute, and London School of Hygiene and Tropical Medicine, Uganda Research Unit, 51-59 Nakiwogo Road, Entebbe, Uganda; Department of Global Health and Development, London School of Hygiene & Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK
| | - Azure-Dee Pillay
- Division of Immunology, University of Cape Town, South Africa based at Respiratory and Meningeal Pathogens Research Unit (RMPRU). Chris Hani Baragwanath Hospital, 30 Chris Hani Road, Diepkloof, Soweto, 1862, South Africa
| | - Patricia Namubiru
- Medical Research Council/Uganda Virus Research Institute, and London School of Hygiene and Tropical Medicine, Uganda Research Unit, 51-59 Nakiwogo Road, Entebbe, Uganda
| | - Thabiso B Seiphetlo
- Division of Immunology, University of Cape Town, South Africa based at Respiratory and Meningeal Pathogens Research Unit (RMPRU). Chris Hani Baragwanath Hospital, 30 Chris Hani Road, Diepkloof, Soweto, 1862, South Africa
| | - Geoffrey Odoch
- Medical Research Council/Uganda Virus Research Institute, and London School of Hygiene and Tropical Medicine, Uganda Research Unit, 51-59 Nakiwogo Road, Entebbe, Uganda
| | - Susan Mugaba
- Medical Research Council/Uganda Virus Research Institute, and London School of Hygiene and Tropical Medicine, Uganda Research Unit, 51-59 Nakiwogo Road, Entebbe, Uganda
| | - Portia Seatlholo
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Africa Health Research Unit, Durban, South Africa
| | - Amara Alieu
- Department of Molecular and Clinical Pharmacology, William Henry Duncan Building, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Sujan Dilly Penchala
- Department of Molecular and Clinical Pharmacology, William Henry Duncan Building, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Richard Muhumuza
- Medical Research Council/Uganda Virus Research Institute, and London School of Hygiene and Tropical Medicine, Uganda Research Unit, 51-59 Nakiwogo Road, Entebbe, Uganda
| | - Berenice Alinde
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Kyle O'Hagan
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | - Janet Seeley
- Department of Global Health and Development, London School of Hygiene & Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK; Medical Research Council/Uganda Virus Research Institute, and London School of Hygiene and Tropical Medicine, Uganda Research Unit, 51-59 Nakiwogo Road, Entebbe, Uganda
| | - Helen Weiss
- MRC International Statistics and Epidemiology Group, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Saye Khoo
- Department of Molecular and Clinical Pharmacology, William Henry Duncan Building, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Clive M Gray
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Biomedical Research Institute, Stellenbosch University (Tygerberg Campus), Francie van Zijl Drive, Tygerberg, Cape Town, South Africa
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute, and London School of Hygiene and Tropical Medicine, Uganda Research Unit, 51-59 Nakiwogo Road, Entebbe, Uganda
| | - Emily L Webb
- MRC International Statistics and Epidemiology Group, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Neil Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Africa Health Research Unit, Durban, South Africa; Johns Hopkins University Center for TB Research, Baltimore, MD, USA
| | - Julie Fox
- Infection and Immunity, Borough Wing, Guys and St Thomas' NHS Foundation Trust and King's College London, St. Thomas Street, SE1 9RS, London, UK.
| |
Collapse
|
3
|
Barnable P, Mukhopadhyay S, Kizima L, Kumar N, Plagianos M, Mehandru S, Teleshova N. Ex Vivo Colonic Tissue Susceptibility to HIV-1 in Cisgender Men and Women. AIDS Res Hum Retroviruses 2023; 40:28-36. [PMID: 37002886 PMCID: PMC10790552 DOI: 10.1089/aid.2022.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
The biology of HIV-1 acquisition through unprotected receptive anal intercourse is understudied. Considering that sex hormones are implicated in intestinal physiology, pathology, and HIV acquisition and pathogenesis, we explored links between sex hormones, ex vivo HIV-1BaL infection of colonic mucosa, and candidate biomarkers of susceptibility to HIV-1 (CD4+ T cell frequencies and immune mediators) in cisgender women and men. No consistent significant associations between sex hormone concentrations and ex vivo tissue infection with HIV-1BaL were detected. In men, serum estradiol (E2) concentrations were positively associated with tissue proinflammatory mediators (IL17A, GM-CSF, IFNγ, TNFα, and MIG/CXCL9) and serum testosterone concentrations were negatively associated with frequencies of activated CD4+ T cells (CD4+CCR5+, CD4+HLA-DR+, and CD4+CD38+HLA-DR+). In women, the only significant interactions were positive associations between progesterone (P4)/E2 ratios and tissue ILRA concentrations and between P4/E2 ratios and frequencies of tissue CD4+α4β7high+ T cells. The study did not reveal relationships between biological sex or phase of the menstrual cycle and ex vivo tissue HIV-1BaL infection and tissue immune mediators. A comparison of CD4+ T cell frequencies between study groups revealed a higher frequency of tissue CD4+α4β7high+ T cells in women versus men. In contrast, higher frequencies of tissue CD4+CD103+ T cells were detected in men versus women in the follicular phase of the menstrual cycle. Overall, the study identified associations between systemic sex hormone concentrations, biological sex, and tissue candidate biomarkers of susceptibility to HIV-1. The significance of these results for tissue susceptibility to HIV-1 and early HIV-1 pathogenesis warrants further investigation.
Collapse
Affiliation(s)
- Patrick Barnable
- Center for Biomedical Research, Population Council, New York, New York, USA
| | | | - Larisa Kizima
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - Narender Kumar
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - Marlena Plagianos
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Natalia Teleshova
- Center for Biomedical Research, Population Council, New York, New York, USA
| |
Collapse
|
4
|
Leal L, Guardo AC, Bedoya LM, Rodríguez de Miguel C, Climent N, Rovira C, Beltrán M, Llach J, Alcamí J, Kashuba AD, Gatell JM, Plana M, García F. Pharmacokinetics, the Immunological Impact, and the Effect on HIV Ex-Vivo Infectivity of Maraviroc, Raltegravir, and Lopinavir in Men Who Have Sex with Men Using Postexposure Prophylaxis. AIDS Res Hum Retroviruses 2023; 39:211-221. [PMID: 36416229 PMCID: PMC10325810 DOI: 10.1089/aid.2021.0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Most of the studies using the colorectal tissue explants challenge model have been conducted after one single dose and before reaching a steady state. We consider that longer exposure as in 28-day postexposure prophylaxis (PEP) course and in an at-risk setting, such as after a sexual risk exposure to HIV could give us valuable information about these drugs. In a substudy we assessed pharmacokinetics, changes on immune system and ex-vivo rectal mucosal susceptibility to HIV-1 infection after taking maraviroc (MVC), raltegravir (RAL), and ritonavir-boosted lopinavir (LPV/r) PEP-based regimens in 30 men who have sex with men. Participants received 28 days of twice-daily MVC (n = 11), RAL (n = 10) or LPV/r (n = 9) all with tenofovir/emtricitabine (TDF/FTC) backbone. Blood, rectal fluid, and rectal tissue samples were collected at days 7, 28, and 90 after starting PEP. The samples obtained at day 90 were considered baseline. All studied antiretrovirals were quantifiable at 7 and 28 days in all tissues. Activation markers were increased in CD4 mucosal mononuclear cells (MMCs) after 28 days of MVC: CD38 + 68.5 versus 85.1, p = .008 and CD38+DR +16.1 versus 26.7, p = .008. Exposure to MVC at both endpoints (7 and 28 days) was associated with significant suppression of HIV-1BAL (p = .005 and p = .028), but we did not observe this effect with RAL or LPV/r. Merging together changes in MMC in all arms, we found a positive correlation in the CD8 T cell lineage between the infectivity at day 7 and activation (CD38+ r = 0.43, p = .025, DR + r = 0.547, p = .003 and 38+DR+ r = 0.526, p = .05), senescence (CD57+CD28- r = 0.479, p = .012), naive cells (RA+CCR7+ r = 0.484, p = .01), and CCR5 expression (r = 0.593, p = .001). We conclude that MVC in combination with TDF/FTC was associated with viral suppression in rectal explants and that overall ex-vivo HIV infectivity correlated with activation and senescence in CD8 MMCs.
Collapse
Affiliation(s)
- Lorna Leal
- Department of Infectious Diseases, Hospital Clínic Barcelona, Barcelona, Spain
- AIDS and HIV Infection Research Group, IDIBAPS, Barcelona, Spain
- Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | | | - Luis M. Bedoya
- AIDS Immunopathogenesis Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Department of Pharmacology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Núria Climent
- AIDS and HIV Infection Research Group, IDIBAPS, Barcelona, Spain
| | - Cristina Rovira
- AIDS and HIV Infection Research Group, IDIBAPS, Barcelona, Spain
| | - Manuela Beltrán
- AIDS Immunopathogenesis Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Llach
- Endoscopy Unit, Hospital Clínic Barcelona, CIBERehd, Barcelona, Spain
| | - Jose Alcamí
- AIDS Immunopathogenesis Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Angela D.M. Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Jose M. Gatell
- Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- ViiV Healthcare, Barcelona, Spain
| | - Montserrat Plana
- AIDS and HIV Infection Research Group, IDIBAPS, Barcelona, Spain
- Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Felipe García
- Department of Infectious Diseases, Hospital Clínic Barcelona, Barcelona, Spain
- Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Herrera C, Olejniczak N, Noël-Romas L, Plummer F, Burgener A. Pre-clinical evaluation of antiproteases as potential candidates for HIV-1 pre-exposure prophylaxis. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:998913. [DOI: 10.3389/frph.2022.998913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
Previous studies on highly HIV-1-exposed, yet persistently seronegative women from the Punwami Sex Worker cohort in Kenya, have shed light on putative protective mechanisms, suggesting that mucosal immunological factors, such as antiproteases, could be mediating resistance to HIV-1 transmission in the female reproductive tract. Nine protease inhibitors were selected for this study: serpin B4, serpin A1, serpin A3, serpin C1, cystatin A, cystatin B, serpin B13, serpin B1 and α-2-macroglobulin-like-protein 1. We assessed in a pilot study, the activity of these antiproteases with cellular assays and an ex vivo HIV-1 challenge model of human ecto-cervical tissue explants. Preliminary findings with both models, cellular and tissue explants, established an order of inhibitory potency for the mucosal proteins as candidates for pre-exposure prophylaxis when mimicking pre-coital use. Combination of all antiproteases considered in this study was more active than any of the individual mucosal proteins. Furthermore, the migration of cells out of ecto-cervical explants was blocked indicating potential prevention of viral dissemination following amplification of the founder population. These findings constitute the base for further development of these mucosal protease inhibitors for prevention strategies.
Collapse
|
6
|
Berry N, Stein M, Ferguson D, Ham C, Hall J, Giles E, Kempster S, Adedeji Y, Almond N, Herrera C. Mucosal Responses to Zika Virus Infection in Cynomolgus Macaques. Pathogens 2022; 11:1033. [PMID: 36145466 PMCID: PMC9503824 DOI: 10.3390/pathogens11091033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Zika virus (ZIKV) cases continue to be reported, and no vaccine or specific antiviral agent has been approved for the prevention or treatment of infection. Though ZIKV is primarily transmitted by mosquitos, cases of sexual transmission and prolonged viral RNA presence in semen have been reported. In this observational study, we report the mucosal responses to sub-cutaneous and mucosal ZIKV exposure in cynomolgus macaques during acute and late chronic infection. Subcutaneous challenge induced a decrease in the growth factor VEGF in colorectal and cervicovaginal tissues 100 days post-challenge, in contrast to the observed increase in these tissues following vaginal infection. This different pattern was not observed in the uterus, where VEGF was upregulated independently of the challenge route. Vaginal challenge induced a pro-inflammatory profile in all mucosal tissues during late chronic infection. Similar responses were already observed during acute infection in a vaginal tissue explant model of ex vivo challenge. Non-productive and productive infection 100 days post-in vivo vaginal challenge induced distinct proteomic profiles which were characterized by further VEGF increase and IL-10 decrease in non-infected animals. Ex vivo challenge of mucosal explants revealed tissue-specific modulation of cytokine levels during the acute phase of infection. Mucosal cytokine profiles could represent biosignatures of persistent ZIKV infection.
Collapse
Affiliation(s)
- Neil Berry
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Monja Stein
- Department of Medicine, Imperial College London, London W2 1PG, UK
| | - Deborah Ferguson
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Claire Ham
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Jo Hall
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Elaine Giles
- Division of Analytical and Biological Sciences, NIBSC, Potters Bar EN6 3QC, UK
| | - Sarah Kempster
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Yemisi Adedeji
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Neil Almond
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control (NIBSC), Potters Bar EN6 3QC, UK
| | - Carolina Herrera
- Department of Medicine, Imperial College London, London W2 1PG, UK
| |
Collapse
|
7
|
Hypo-osmotic stress induces the epithelial alarmin IL-33 in the colonic barrier of ulcerative colitis. Sci Rep 2022; 12:11550. [PMID: 35798804 PMCID: PMC9263100 DOI: 10.1038/s41598-022-15573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
Epithelial alarmins are gaining interest as therapeutic targets for chronic inflammation. The nuclear alarmin interleukin-33 (IL-33) is upregulated in the colonic mucosa of acute ulcerative colitis (UC) and may represent an early instigator of the inflammatory cascade. However, it is not clear what signals drive the expression of IL-33 in the colonic mucosa, nor is the exact role of IL-33 elucidated. We established an ex vivo model using endoscopic colonic biopsies from healthy controls and UC patients. Colonic biopsies exposed to hypo-osmotic medium induced a strong nuclear IL-33 expression in colonic crypts in both healthy controls and UC biopsies. Mucosal IL33 mRNA was also significantly increased following hypo-osmotic stress in healthy controls compared to non-stimulated biopsies (fold change 3.9, p-value < 0.02). We observed a modest induction of IL-33 in response to TGF-beta-1 stimulation, whereas responsiveness to inflammatory cytokines TNF and IFN-gamma was negligible. In conclusion our findings indicate that epithelial IL-33 is induced by hypo-osmotic stress, rather than prototypic proinflammatory cytokines in colonic ex vivo biopsies. This is a novel finding, linking a potent cytokine and alarmin of the innate immune system with cellular stress mechanisms and mucosal inflammation.
Collapse
|
8
|
Herrera C, Cottrell ML, Prybylski J, Kashuba ADM, Veazey RS, García-Pérez J, Olejniczak N, McCoy CF, Ziprin P, Richardson-Harman N, Alcami J, Malcolm KR, Shattock RJ. The ex vivo pharmacology of HIV-1 antiretrovirals differs between macaques and humans. iScience 2022; 25:104409. [PMID: 35663021 PMCID: PMC9157191 DOI: 10.1016/j.isci.2022.104409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 05/11/2022] [Indexed: 01/08/2023] Open
Abstract
Non-human primates (NHP) are widely used for the pre-clinical assessment of antiretrovirals (ARVs) for HIV treatment and prevention. However, the utility of these models is questionable given the differences in ARV pharmacology between humans and macaques. Here, we report a model based on ex vivo ARV exposure and the challenge of mucosal tissue explants to define pharmacological differences between NHPs and humans. For colorectal and cervicovaginal explants in both species, high concentrations of tenofovir (TFV) and maraviroc were predictive of anti-viral efficacy. However, their combinations resulted in increased inhibitory potency in NHP when compared to human explants. In NHPs, higher TFV concentrations were measured in colorectal versus cervicovaginal explants (p = 0.042). In humans, this relationship was inverted with lower levels in colorectal tissue (p = 0.027). TFV-resistance caused greater loss of viral fitness for HIV-1 than SIV. This, tissue explants provide an important bridge to refine and appropriately interpret NHP studies. Tenofovir-maraviroc combinations show greater potency in NHP than in human tissue Opposite drug distribution in mucosal tissues was observed between both species Greater loss of viral replication fitness with RT mutations for SIV than for HIV-1 Ex vivo tissue models are a bridge between NHP studies and human clinical trials
Collapse
Affiliation(s)
- Carolina Herrera
- Section of Virology, Faculty of Medicine, St. Mary's Campus, Imperial College London, UK
| | - Mackenzie L Cottrell
- University of North Carolina at Chapel Hill, UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Chapel Hill, NC, USA
| | - John Prybylski
- University of North Carolina at Chapel Hill, UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Chapel Hill, NC, USA
| | - Angela D M Kashuba
- University of North Carolina at Chapel Hill, UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Chapel Hill, NC, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Javier García-Pérez
- AIDS Immunopathology Unit. National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia Olejniczak
- Section of Virology, Faculty of Medicine, St. Mary's Campus, Imperial College London, UK
| | - Clare F McCoy
- School of Pharmacy, Medical Biology Centre, Queen's University of Belfast, Belfast, UK
| | - Paul Ziprin
- Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, UK
| | | | - José Alcami
- AIDS Immunopathology Unit. National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain.,HIV Unit, Hospital Clinic-IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Karl R Malcolm
- School of Pharmacy, Medical Biology Centre, Queen's University of Belfast, Belfast, UK
| | - Robin J Shattock
- Section of Virology, Faculty of Medicine, St. Mary's Campus, Imperial College London, UK
| |
Collapse
|
9
|
Else L, Penchala SD, Pillay AD, Seiphetlo TB, Lebina L, Callebaut C, Minhas S, Morley R, Rashid T, Martinson N, Fox J, Khoo S, Herrera C. Pre-Clinical Evaluation of Tenofovir and Tenofovir Alafenamide for HIV-1 Pre-Exposure Prophylaxis in Foreskin Tissue. Pharmaceutics 2022; 14:pharmaceutics14061285. [PMID: 35745857 PMCID: PMC9227286 DOI: 10.3390/pharmaceutics14061285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Background: HIV-1 pre-exposure prophylaxis (PrEP) has focused predominantly on protective efficacy in receptive sex, with limited research on the dosing requirements for insertive sex. We pre-clinically assessed the ex vivo pharmacokinetic–pharmacodynamic (PK–PD) profile of tenofovir (TFV) and tenofovir alafenamide (TAF) in foreskin tissue. Methods: Inner and outer foreskin explants were exposed to serial dilutions of TFV or TAF prior to addition of HIV-1BaL at a high (HVT) or a low viral titer (LVT). Infection was assessed by measurement of p24 in foreskin culture supernatants. TFV, TAF and TFV–diphosphate (TFV–DP) concentrations were measured in tissues, culture supernatants and dosing and washing solutions. Results: Dose–response curves were obtained for both drugs, with greater potency observed against LVT. Inhibitory equivalency mimicking oral dosing was defined between 1 mg/mL of TFV and 15 µg/mL of TAF against HVT challenge. Concentrations of TFV–DP in foreskin explants were approximately six-fold higher after ex vivo dosing with TAF than with TFV. Statistically significant negative linear correlations were observed between explant levels of TFV or TFV–DP and p24 concentrations following HVT. Conclusions: Pre-clinical evaluation of TAF in foreskin explants revealed greater potency than TFV against penile HIV transmission. Clinical evaluation is underway to support this finding.
Collapse
Affiliation(s)
- Laura Else
- Bioanalytical Facility, Molecular and Clinical Pharmacology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (L.E.); (S.D.P.); (S.K.)
| | - Sujan D. Penchala
- Bioanalytical Facility, Molecular and Clinical Pharmacology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (L.E.); (S.D.P.); (S.K.)
| | - Azure-Dee Pillay
- Division of Immunology, University of Cape Town, Cape Town 7935, South Africa; (A.-D.P.); (T.B.S.)
| | - Thabiso B. Seiphetlo
- Division of Immunology, University of Cape Town, Cape Town 7935, South Africa; (A.-D.P.); (T.B.S.)
| | - Limakatso Lebina
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa; (L.L.); (N.M.)
| | | | - Suks Minhas
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, London W6 8RF, UK; (S.M.); (R.M.); (T.R.)
| | - Roland Morley
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, London W6 8RF, UK; (S.M.); (R.M.); (T.R.)
| | - Tina Rashid
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, London W6 8RF, UK; (S.M.); (R.M.); (T.R.)
| | - Neil Martinson
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa; (L.L.); (N.M.)
| | - Julie Fox
- Guys and St. Thomas’ NHS Foundation Trust and King’s College London, London SE1 9RT, UK;
| | - Saye Khoo
- Bioanalytical Facility, Molecular and Clinical Pharmacology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK; (L.E.); (S.D.P.); (S.K.)
| | - Carolina Herrera
- Department of Infectious Diseases, Faculty of Medicine, Imperial College, London W2 1PG, UK
- Correspondence: ; Tel.: +44-207-594-2545
| |
Collapse
|
10
|
Nguyen DT, Famiglietti JE, Smolchek RA, Dupee Z, Diodati N, Pedro DI, Urueña JM, Schaller MA, Sawyer WG. 3D In Vitro Platform for Cell and Explant Culture in Liquid-like Solids. Cells 2022; 11:cells11060967. [PMID: 35326418 PMCID: PMC8946834 DOI: 10.3390/cells11060967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Existing 3D cell models and technologies have offered tools to elevate cell culture to a more physiologically relevant dimension. One mechanism to maintain cells cultured in 3D is by means of perfusion. However, existing perfusion technologies for cell culture require complex electronic components, intricate tubing networks, or specific laboratory protocols for each application. We have developed a cell culture platform that simply employs a pump-free suction device to enable controlled perfusion of cell culture media through a bed of granular microgels and removal of cell-secreted metabolic waste. We demonstrated the versatile application of the platform by culturing single cells and keeping tissue microexplants viable for an extended period. The human cardiomyocyte AC16 cell line cultured in our platform revealed rapid cellular spheroid formation after 48 h and ~90% viability by day 7. Notably, we were able to culture gut microexplants for more than 2 weeks as demonstrated by immunofluorescent viability assay and prolonged contractility.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (J.E.F.); (R.A.S.); (N.D.); (D.I.P.); (J.M.U.)
| | - Jack E. Famiglietti
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (J.E.F.); (R.A.S.); (N.D.); (D.I.P.); (J.M.U.)
| | - Ryan A. Smolchek
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (J.E.F.); (R.A.S.); (N.D.); (D.I.P.); (J.M.U.)
| | - Zadia Dupee
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL 32611, USA; (Z.D.); (M.A.S.)
| | - Nickolas Diodati
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (J.E.F.); (R.A.S.); (N.D.); (D.I.P.); (J.M.U.)
| | - Diego I. Pedro
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (J.E.F.); (R.A.S.); (N.D.); (D.I.P.); (J.M.U.)
| | - Juan M. Urueña
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (J.E.F.); (R.A.S.); (N.D.); (D.I.P.); (J.M.U.)
| | - Matthew A. Schaller
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL 32611, USA; (Z.D.); (M.A.S.)
| | - W. Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (J.E.F.); (R.A.S.); (N.D.); (D.I.P.); (J.M.U.)
- Correspondence:
| |
Collapse
|
11
|
Abstract
Globally, the most frequent route of HIV transmission is through sexual intercourse. In women, sexual transmission of HIV involves cervical, vaginal, endometrial, and rectal mucosal exposure to the virus. Here we describe technical protocols for ex vivo cervical, vaginal, and rectal tissue infection models and cultures that can be used to assess tissue susceptibility to infection under different conditions as well as the potential antiviral efficacy of a treatment for HIV prevention or cure.
Collapse
Affiliation(s)
| | - Nikolas C Vann
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | | |
Collapse
|
12
|
Leukocytospermia induces intraepithelial recruitment of dendritic cells and increases SIV replication in colorectal tissue explants. Commun Biol 2021; 4:861. [PMID: 34253821 PMCID: PMC8275775 DOI: 10.1038/s42003-021-02383-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Mucosal exposure to infected semen accounts for the majority of HIV-1 transmission events, with rectal intercourse being the route with the highest estimated risk of transmission. Yet, the impact of semen inflammation on colorectal HIV-1 transmission has never been addressed. Here we use cynomolgus macaques colorectal tissue explants to explore the effect of leukocytospermia, indicative of male genital tract inflammation, on SIVmac251 infection. We show that leukocytospermic seminal plasma (LSP) has significantly higher concentration of a number of pro-inflammatory molecules compared to normal seminal plasma (NSP). In virus-exposed explants, LSP enhance SIV infection more efficiently than NSP, being the increased viral replication linked to the level of inflammatory and immunomodulatory cytokines. Moreover, LSP induce leukocyte accumulation on the apical side of the colorectal lamina propria and the recruitment of a higher number of intraepithelial dendritic cells than with NSP. These results suggest that the outcome of mucosal HIV-1 infection is influenced by the inflammatory state of the semen donor, and provide further insights into mucosal SIV/HIV-1 pathogenesis.
Collapse
|
13
|
Al-Khouja A, Shieh E, Fuchs EJ, Marzinke MA, Bakshi RP, Hummert P, Ham AS, Buckheit KW, Breakey J, Weld ED, Chen H, Caffo BS, Buckheit RW, Hendrix CW. Examining the Safety, Pharmacokinetics, and Pharmacodynamics of a Rectally Administered IQP-0528 Gel for HIV Pre-Exposure Prophylaxis: A First-In-Human Study. AIDS Res Hum Retroviruses 2021; 37:444-452. [PMID: 33371779 DOI: 10.1089/aid.2020.0188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A lubricating microbicide gel designed for rectal and vaginal use would provide a behaviorally congruent strategy to enhance pre-exposure prophylaxis adherence and reduce HIV infection risk. In this study, we report the first-in-human evaluation of such a gel containing 1% IQP-0528, an investigational antiretroviral. Seven HIV-1-negative participants received one 10 mL rectal dose of radiolabeled 1% IQP-0528 gel. We assessed safety; IQP-0528 pharmacokinetics in plasma, and rectal and vaginal tissue; ex vivo local pharmacodynamics (PD); and colorectal distribution. The 1% gel was determined to be safe with one mild event attributed to study product and no effects on rectal tissue histology. All concentrations measured in plasma and vaginal tissue were below the limit of quantitation. Median IQP-0528 concentrations in rectal tissue exceeded the in vitro EC95 against HIV-1 (0.07 ng/mg) by 3-5 h of dosing and remained above this concentration for at least 24 h, despite a 3-log reduction in concentration over this duration of time. Rectal tissue PD-assessed by ex vivo HIV challenge-demonstrated significant p24 antigen reduction 3-5 h postdose compared with baseline (p = .05), but not 24-26 h postdose (p = .75). Single-photon emission computed tomography/computed tomography imaging revealed that product distribution was localized to the rectosigmoid. The IQP-0528 gel possesses desirable features for a topical microbicide including: local safety with no systemic absorption, delivery of locally high IQP-0528 concentrations, and significant reductions in ex vivo HIV infectivity. However, the gel is limited by its rapid clearance and inability to penetrate vaginal tissues following rectal dosing. Clinical Trial Registration number: NCT03082690.
Collapse
Affiliation(s)
- Amer Al-Khouja
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eugenie Shieh
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Edward J. Fuchs
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark A. Marzinke
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rahul P. Bakshi
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pamela Hummert
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Jennifer Breakey
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ethel D. Weld
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Huan Chen
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Brian S. Caffo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Craig W. Hendrix
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Puschhof J, Pleguezuelos-Manzano C, Clevers H. Organoids and organs-on-chips: Insights into human gut-microbe interactions. Cell Host Microbe 2021; 29:867-878. [PMID: 34111395 DOI: 10.1016/j.chom.2021.04.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 04/05/2021] [Indexed: 12/22/2022]
Abstract
The important and diverse roles of the gut microbiota in human health and disease are increasingly recognized. The difficulty of inferring causation from metagenomic microbiome sequencing studies and from mouse-human interspecies differences has prompted the development of sophisticated in vitro models of human gut-microbe interactions. Here, we review recent advances in the co-culture of microbes with intestinal and colonic epithelia, comparing the rapidly developing fields of organoids and organs-on-chips with other standard models. We describe how specific individual processes by which microbes and epithelia interact can be recapitulated in vitro. Using examples of bacterial, viral, and parasitic infections, we highlight the advantages of each culture model and discuss current trends and future possibilities to build more complex co-cultures.
Collapse
Affiliation(s)
- Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Cayetano Pleguezuelos-Manzano
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands; The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Mu W, Sharma M, Heymans R, Ritou E, Rezek V, Hamid P, Kossyvakis A, Sen Roy S, Grijalva V, Chattopadhyay A, Papesh J, Meriwether D, Kitchen SG, Fogelman AM, Reddy ST, Kelesidis T. Apolipoprotein A-I mimetics attenuate macrophage activation in chronic treated HIV. AIDS 2021; 35:543-553. [PMID: 33306550 PMCID: PMC8010648 DOI: 10.1097/qad.0000000000002785] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Despite antiretroviral therapy (ART), there is an unmet need for therapies to mitigate immune activation in HIV infection. The goal of this study is to determine whether the apoA-I mimetics 6F and 4F attenuate macrophage activation in chronic HIV. DESIGN Preclinical assessment of the in-vivo impact of Tg6F and the ex-vivo impact of apoA-I mimetics on biomarkers of immune activation and gut barrier dysfunction in treated HIV. METHODS We used two humanized murine models of HIV infection to determine the impact of oral Tg6F with ART (HIV+ART+Tg6F+) on innate immune activation (plasma human sCD14, sCD163) and gut barrier dysfunction [murine I-FABP, endotoxin (LPS), LPS-binding protein (LBP), murine sCD14]. We also used gut explants from 10 uninfected and 10 HIV-infected men on potent ART and no morbidity, to determine the impact of ex-vivo treatment with 4F for 72 h on secretion of sCD14, sCD163, and I-FABP from gut explants. RESULTS When compared with mice treated with ART alone (HIV+ART+), HIV+ART+Tg6F+ mice attenuated macrophage activation (h-sCD14, h-sCD163), gut barrier dysfunction (m-IFABP, LPS, LBP, and m-sCD14), plasma and gut tissue oxidized lipoproteins. The results were consistent with independent mouse models and ART regimens. Both 4F and 6F attenuated shedding of I-FABP and sCD14 from gut explants from HIV-infected and uninfected participants. CONCLUSION Given that gut barrier dysfunction and macrophage activation are contributors to comorbidities like cardiovascular disease in HIV, apoA-I mimetics should be tested as therapy for morbidity in chronic treated HIV.
Collapse
Affiliation(s)
- William Mu
- Division of Infectious Diseases
- Division of Hematology and Oncology
| | | | | | | | | | - Philip Hamid
- Division of Infectious Diseases
- Division of Hematology and Oncology
| | | | | | - Victor Grijalva
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
| | - Arnab Chattopadhyay
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
| | - Jeremy Papesh
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
| | - David Meriwether
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
| | | | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine
- Department of Molecular and Medical Pharmacology
- Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | |
Collapse
|
16
|
Early Colorectal Responses to HIV-1 and Modulation by Antiretroviral Drugs. Vaccines (Basel) 2021; 9:vaccines9030231. [PMID: 33800213 PMCID: PMC8000905 DOI: 10.3390/vaccines9030231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/01/2023] Open
Abstract
Innate responses during acute HIV infection correlate with disease progression and pathogenesis. However, limited information is available about the events occurring during the first hours of infection in the mucosal sites of transmission. With an ex vivo HIV-1 challenge model of human colorectal tissue we assessed the mucosal responses induced by R5- and X4-tropic HIV-1 isolates in the first 24 h of exposure. Microscopy studies demonstrated virus penetration of up to 39 μm into the lamina propia within 6 h of inoculation. A rapid, 6 h post-challenge, increase in the level of secretion of inflammatory cytokines, chemokines, interferon- γ (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF) was observed following exposure to R5- or X4-tropic isolates. This profile persisted at the later time point measured of 24 h. However, exposure to the X4-tropic isolate tested induced greater changes at the proteomic and transcriptomic levels than the R5-tropic. The X4-isolate induced greater levels of CCR5 ligands (RANTES, MIP-1α and MIP-1β) secretion than R5-HIV-1. Potential drugs candidates for colorectal microbicides, including entry, fusion or reverse transcriptase inhibitors demonstrated differential capacity to modulate these responses. Our findings indicate that in colorectal tissue, inflammatory responses and a Th1 cytokine profile are induced in the first 24 h following viral exposure.
Collapse
|
17
|
Gomara MJ, Perez Y, Gomez-Gutierrez P, Herrera C, Ziprin P, Martinez JP, Meyerhans A, Perez JJ, Haro I. Importance of structure-based studies for the design of a novel HIV-1 inhibitor peptide. Sci Rep 2020; 10:14430. [PMID: 32879375 PMCID: PMC7468280 DOI: 10.1038/s41598-020-71404-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Based on the structure of an HIV-1 entry inhibitor peptide two stapled- and a retro-enantio peptides have been designed to provide novel prevention interventions against HIV transmission. The three peptides show greater inhibitory potencies in cellular and mucosal tissue pre-clinical models than the parent sequence and the retro-enantio shows a strengthened proteolytic stability. Since HIV-1 fusion inhibitor peptides need to be embedded in the membrane to properly interact with their viral target, the structural features were determined by NMR spectroscopy in micelles and solved by using restrained molecular dynamics calculations. Both parent and retro-enantio peptides demonstrate a topology compatible with a shared helix–turn–helix conformation and assemble similarly in the membrane maintaining the active conformation needed for its interaction with the viral target site. This study represents a straightforward approach to design new targeted peptides as HIV-1 fusion inhibitors and lead us to define a retro-enantio peptide as a good candidate for pre-exposure prophylaxis against HIV-1.
Collapse
Affiliation(s)
- María J Gomara
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
| | - Yolanda Perez
- Nuclear Magnetic Resonance Facility, IQAC-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Patricia Gomez-Gutierrez
- Department of Chemical Engineering (ETSEIB), Universitat Politecnica de Catalunya, Barcelona, Spain
| | | | - Paul Ziprin
- Department of Surgery and Cancer, St. Mary's Hospital, Imperial College London, London, UK
| | - Javier P Martinez
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Juan J Perez
- Department of Chemical Engineering (ETSEIB), Universitat Politecnica de Catalunya, Barcelona, Spain
| | - Isabel Haro
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
18
|
Bhattacharya P, Ellegård R, Khalid M, Svanberg C, Govender M, Keita ÅV, Söderholm JD, Myrelid P, Shankar EM, Nyström S, Larsson M. Complement opsonization of HIV affects primary infection of human colorectal mucosa and subsequent activation of T cells. eLife 2020; 9:e57869. [PMID: 32876566 PMCID: PMC7492089 DOI: 10.7554/elife.57869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
HIV transmission via genital and colorectal mucosa are the most common routes of dissemination. Here, we explored the effects of free and complement-opsonized HIV on colorectal tissue. Initially, there was higher antiviral responses in the free HIV compared to complement-opsonized virus. The mucosal transcriptional response at 24 hr revealed the involvement of activated T cells, which was mirrored in cellular responses observed at 96 hr in isolated mucosal T cells. Further, HIV exposure led to skewing of T cell phenotypes predominantly to inflammatory CD4+ T cells, that is Th17 and Th1Th17 subsets. Of note, HIV exposure created an environment that altered the CD8+ T cell phenotype, for example expression of regulatory factors, especially when the virions were opsonized with complement factors. Our findings suggest that HIV-opsonization alters the activation and signaling pathways in the colorectal mucosa, which promotes viral establishment by creating an environment that stimulates mucosal T cell activation and inflammatory Th cells.
Collapse
Affiliation(s)
- Pradyot Bhattacharya
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Rada Ellegård
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Mohammad Khalid
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Cecilia Svanberg
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Melissa Govender
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Åsa V Keita
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Johan D Söderholm
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Pär Myrelid
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Esaki M Shankar
- Center of Excellence for Research in AIDS (CERiA), University of Malaya, Lembah PantaiKuala LumpurMalaysia
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences, Central University of Tamil NaduThiruvarurIndia
| | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
- Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| |
Collapse
|
19
|
Abstract
HIV topical microbicides are products with anti-HIV activity, generally incorporating a direct-acting antiretroviral agent, that when applied to the vagina or rectum have the potential to prevent the sexual acquisition of HIV in women and men. Topical microbicides may meet the prevention needs of individuals and groups for whom oral daily forms of pre-exposure prophylaxis (PrEP) have not been acceptable. Microbicides can provide personal control over HIV prevention and offer the possibility of discreet use, qualities that may be particularly important for receptive partners in sexual relationships such as women and transgender women and men, who together account for the clear majority of new HIV infections worldwide. Although the promise of such a product emerged nearly three decades ago, proof of concept has been demonstrated only within the last decade. A robust pipeline of microbicidal gels, films, inserts, and rings has been evaluated in multiple studies among at-risk women and men, and refinement of products for ease of use, reversibility, and high safety is the priority for the field.
Collapse
Affiliation(s)
- Jared M Baeten
- Departments of Global Health, Medicine, and Epidemiology, University of Washington, Seattle, Washington 98104, USA;
| | - Craig W Hendrix
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| | - Sharon L Hillier
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213, USA;
| |
Collapse
|
20
|
Herrera C. The Pre-clinical Toolbox of Pharmacokinetics and Pharmacodynamics: in vitro and ex vivo Models. Front Pharmacol 2019; 10:578. [PMID: 31178736 PMCID: PMC6543330 DOI: 10.3389/fphar.2019.00578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023] Open
Abstract
Prevention strategies against sexual transmission of human immunodeficiency virus (HIV) are essential to curb the rate of new infections. In the absence of a correlate of protection against HIV infection, pre-clinical evaluation is fundamental to facilitate and accelerate prioritization of prevention candidates and their formulations in a rapidly evolving clinical landscape. Characterization of pharmacokinetic (PK) and pharmacodynamic (PD) properties for candidate inhibitors is the main objective of pre-clinical evaluation. in vitro and ex vivo systems for pharmacological assessment allow experimental flexibility and adaptability at a relatively low cost without raising as significant ethical concerns as in vivo models. Applications and limitations of pre-clinical PK/PD models and future alternatives are reviewed in the context of HIV prevention.
Collapse
Affiliation(s)
- Carolina Herrera
- Section of Virology, Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Yavuz B, Morgan JL, Herrera C, Harrington K, Perez-Ramirez B, LiWang PJ, Kaplan DL. Sustained release silk fibroin discs: Antibody and protein delivery for HIV prevention. J Control Release 2019; 301:1-12. [PMID: 30876951 PMCID: PMC6538278 DOI: 10.1016/j.jconrel.2019.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/23/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
With almost 2 million new HIV infections worldwide each year, the prevention of HIV infection is critical for stopping the pandemic. The only approved form of pre-exposure prophylaxis is a costly daily pill, and it is recognized that several options will be needed to provide protection to the various affected communities around the world. In particular, many at-risk people would benefit from a prevention method that is simple to use and does not require medical intervention or a strict daily regimen. We show that silk fibroin protein can be formulated into insertable discs that encapsulate either an antibody (IgG) or the potent HIV inhibitor 5P12-RANTES. Several formulations were studied, including silk layering, water vapor annealing and methanol treatment to stabilize the protein cargo and impact the release kinetics over weeks. In the case of IgG, high concentrations were released over a short time using methanol treatment, with more sustained results with the use of water vapor annealing and layering during device fabrication. For 5P12-RANTES, sustained release was obtained for 31 days using water vapor annealing. Further, we show that the released inhibitor 5P12-RANTES was functional both in vitro and in ex vivo colorectal tissue. This work shows that silk fibroin discs can be developed into formidable tools to prevent HIV infection.
Collapse
Affiliation(s)
- Burcin Yavuz
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Jessica L Morgan
- Department of Molecular Cell Biology, University of California-Merced, Merced, CA, USA
| | - Carolina Herrera
- Department of Medicine, St. Mary's Campus Imperial College, London, UK
| | - Kristin Harrington
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Patricia J LiWang
- Department of Molecular Cell Biology, University of California-Merced, Merced, CA, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
22
|
Myerski A, Siegel A, Engstrom J, McGowan I, Brand RM. The Use of Droplet Digital PCR to Quantify HIV-1 Replication in the Colorectal Explant Model. AIDS Res Hum Retroviruses 2019; 35:326-334. [PMID: 30618283 DOI: 10.1089/aid.2018.0227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ex vivo explant models are used to characterize in vitro efficacy of preexposure prophylaxis (PrEP) agents. Tissue is challenged with virus in culture and HIV-1 p24 levels are quantified with enzyme-linked immunosorbent assay (ELISA) on supernatants collected throughout a 14-21-day incubation. Due to the narrow dynamic range of HIV-1 p24 kits, we evaluated whether droplet digital PCR (ddPCR) provides an alternative method to quantify HIV-1 replication in supernatant samples. We used samples from the MWRI-01 study, which evaluated the pharmacokinetic/pharmacodynamic profile of long-acting rilpivirine using the explant model (McGowan et al. Lancet HIV 2016). HIV-1 pol RNA was measured with ddPCR, either directly with a one-step method or reverse transcribed to cDNA before ddPCR (two-step method) on supernatants from the MWRI-01 study. Previously analyzed HIV-1 p24 antigen levels (Alliance; Perkin-Elmer) were available for comparison purposes. Both ddPCR methods strongly correlated with HIV-1 p24 and displayed similar patterns of HIV-1 suppression before and after rilpivirine. Compared to the p24 ELISA, two-step and one-step ddPCR reduced the amount of hands-on time by approximately one-half and two-thirds, respectively. ddPCR also required less sample and based on p24 versus ddPCR correlation, could potentially reduce the explant culture time from 14 to 10 days (r2 = 0.78, p < .001) due to the increased sensitivity of ddPCR. We demonstrate that ddPCR is a suitable alternative to HIV-1 p24 ELISA to quantify HIV-1 infection in the explant model and has the potential to decrease explant culture time.
Collapse
Affiliation(s)
- Ashley Myerski
- Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania
| | - Aaron Siegel
- Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania
| | - Jarret Engstrom
- Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania
| | - Ian McGowan
- Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania
- Department of Medicine University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rhonda M. Brand
- Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania
- Department of Medicine University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
DA COSTA GONÇALVES FABIANY, SERAFINI MICHELEARAMBURU, MELLO HELENAFLORES, PFAFFENSELLER BIANCA, ARAÚJO ANELISEBERGMANN, VISIOLI FERNANDA, PAZ ANAHELENA. Bioactive factors secreted from mesenchymal stromal cells protect the intestines from experimental colitis in a three-dimensional culture. Cytotherapy 2018; 20:1459-1471. [DOI: 10.1016/j.jcyt.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/24/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023]
|
24
|
Brand RM, Siegel A, Myerski A, Metter EJ, Engstrom J, Brand RE, Squiquera L, Hodge T, Sulley J, Cranston RD, McGowan I. Ranpirnase Reduces HIV-1 Infection and Associated Inflammatory Changes in a Human Colorectal Explant Model. AIDS Res Hum Retroviruses 2018; 34:838-848. [PMID: 29936861 DOI: 10.1089/aid.2017.0308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ranpirnase (RNP) is a low molecular weight type III endoribonuclease, which demonstrates broad antiviral and antitumor properties. We sought to characterize the antiviral activity of RNP against HIV-1 and to determine whether RNP modulates local inflammatory changes associated with HIV infection in the colorectal explant model. Colorectal explants were incubated for 2 h with HIV-1BaL, in the presence of increasing concentrations of RNP (0-60 μg/mL). After washing, explants were cultured for 14 days, with supernatant collected at days 3, 7, 10, and 14. All samples were assayed for HIV-1 p24. Additionally, 30 soluble inflammatory biomarkers were assayed in the day 3 supernatant sample. Other biopsies were stimulated with lipopolysaccharides (LPS) (10 μg/mL) in the presence of RNP and soluble biomarkers assayed at day 3. RNP inhibited productive infection of the colorectal explants with HIV-1BaL and induced a dose-dependent decrease in 15/30 biomarkers. Affected biomarkers included IP-10, MDC, MIP-1α, MIP-1β, TARC, IL12-p40, IL-15, IL-17, IL-1α, IL-7, IFNγ, IL12-p70, IL-1β, IL-4, IL-5, and TNF-β. Similarly, RNP dose-dependent inhibition was demonstrated in 7/30 biomarkers after LPS stimulation, all of which overlapped with HIV-1BaL-induced biomarker changes. The ability of RNP to inhibit both colorectal explant HIV-1BaL infection and inflammatory changes associated with HIV-1 infection makes RPN a promising agent for topical rectal pre-exposure prophylaxis.
Collapse
Affiliation(s)
- Rhonda M Brand
- 1 Department of Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- 2 Magee-Womens Research Institute and Foundation, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Aaron Siegel
- 2 Magee-Womens Research Institute and Foundation, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Ashley Myerski
- 2 Magee-Womens Research Institute and Foundation, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - E Jeffery Metter
- 3 Department of Neurology, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Jarret Engstrom
- 2 Magee-Womens Research Institute and Foundation, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Randall E Brand
- 1 Department of Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | | | - Thomas Hodge
- 4 Tamir Biotechnology, Inc., Short Hills, New Jersey
| | - Jamie Sulley
- 4 Tamir Biotechnology, Inc., Short Hills, New Jersey
| | - Ross D Cranston
- 1 Department of Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Ian McGowan
- 1 Department of Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- 2 Magee-Womens Research Institute and Foundation, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Elliott J, Fulcher JA, Ibarrondo FJ, Tanner K, McGowan I, Anton PA. Comparative Assessment of Small and Large Intestine Biopsies for Ex Vivo HIV-1 Pathogenesis Studies. AIDS Res Hum Retroviruses 2018; 34:900-906. [PMID: 29631414 DOI: 10.1089/aid.2017.0249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ex vivo mucosal explants have become a mainstay of HIV-1 studies using human tissue. In this study, we examine the baseline phenotypic and virologic differences between biopsies derived from the small intestine (SI) and large intestine (LI) for use in ex vivo explant studies. To do this, we collected endoscopic mucosal biopsies from both SI and LI from the same healthy, HIV-seronegative participants. Mucosal mononuclear cell phenotypes and quantity were compared using flow cytometry. Comparative HIV-1 infectibility of the explants was assessed using an ex vivo explant HIV-1 infection assay. We found that all biopsies had similar numbers of T cells per biopsy. While the percentage of CD4+ T cells from SI biopsies expressed significantly more activation markers (CD38, HLA-DR) and HIV coreceptors (CXCR4, CCR5), the absolute numbers of activated CD4+ T cells were similar between both sites. LI explants, however, supported more efficient HIV-1 infection, as evidenced by earlier rise in p24 accumulation and greater percent of infected explants at limiting infectious doses. These results suggest that explants from LI biopsies support more efficient HIV-1 infection than SI biopsies, despite similar numbers of available, activated HIV-1 target cells. These findings highlight important differences in LI and SI explants, which must be considered in designing and interpreting ex vivo HIV-1 infection studies, and suggest that factors within the tissue other than target cell number and activation state may play a role in regulating HIV-1 infection.
Collapse
Affiliation(s)
- Julie Elliott
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jennifer A. Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- UCLA AIDS Institute, Los Angeles, California
| | - F. Javier Ibarrondo
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Karen Tanner
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ian McGowan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peter A. Anton
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California
- UCLA AIDS Institute, Los Angeles, California
| |
Collapse
|
26
|
Brand RM, Biswas N, Siegel A, Myerski A, Engstrom J, Jeffrey Metter E, Brand RE, Cranston RD, McGowan I. Immunological responsiveness of intestinal tissue explants and mucosal mononuclear cells to ex vivo stimulation. J Immunol Methods 2018; 463:39-46. [PMID: 30218652 DOI: 10.1016/j.jim.2018.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND There are limited data on the immunological responsiveness of healthy intestinal tissue when it is cultured and stimulated ex vivo. Such an ex vivo model has the potential to be a valuable tool in understanding disease pathogenesis and as a preclinical tool for the assessment of candidate therapeutic agents used to treat inflammatory bowel disease (IBD). AIM We undertook a comprehensive study to evaluate ex vivo immunological responses of intestinal tissue and isolated mucosal mononuclear cells (MMC) to a broad range of stimuli. METHODS Colorectal biopsies (explants) were obtained from healthy participants by flexible sigmoidoscopy and were placed either directly into culture or digested to isolate MMC prior to placement in culture. Explants or MMC were treated with polyinosinic:polycytidylic acid (Poly IC), phytohemagglutinin (PHA), lipopolysacccharides from E Coli (LPS), anti-CD3/CD28 antibodies, or IL-1β/TNF-α for 24 h. Supernatants were assayed for 40 inflammatory biomarkers using multiplexed enzyme-linked immunosorbent assay (ELISA). The isolated MMCs were further characterized using twelve color flow cytometry. RESULTS Explants have greater weight adjusted constitutive expression of inflammatory biomarkers than MMCs. Biomarker responses varied as a function of immunogen and use of intact tissue or isolated cells. PHA applied to intact explants was the most effective agent in inducing biomarker changes. Stimulation induced activated and memory cellular phenotypes in both explants and MMCs. CONCLUSIONS The breadth and magnitude of responses from intact and enzymatically digested intestinal tissue explants stimulated with exogenous immunogens are complex and vary by tissue form and treatment. Overall, PHA stimulation of intact explants produced the most robust responses in normal human colorectal tissue. This system could potentially serve as a preliminary model of the disease state, suitable for small scale screening of new therapeutic agents prior to using IBD patient derived tissue.
Collapse
Affiliation(s)
- Rhonda M Brand
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Magee-Womens Research Institute and Foundation, Pittsburgh, PA, USA.
| | - Nabanita Biswas
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron Siegel
- Magee-Womens Research Institute and Foundation, Pittsburgh, PA, USA
| | - Ashley Myerski
- Magee-Womens Research Institute and Foundation, Pittsburgh, PA, USA
| | - Jarret Engstrom
- Magee-Womens Research Institute and Foundation, Pittsburgh, PA, USA
| | | | - Randall E Brand
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ross D Cranston
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ian McGowan
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Magee-Womens Research Institute and Foundation, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Kordy K, Elliott J, Tanner K, Johnson EJ, McGowan IM, Anton PA. Human Semen or Seminal Plasma Does Not Enhance HIV-1 BaL Ex Vivo Infection of Human Colonic Explants. AIDS Res Hum Retroviruses 2018; 34:459-466. [PMID: 29343073 PMCID: PMC5934974 DOI: 10.1089/aid.2017.0118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To determine whether human whole semen (WS) and seminal plasma (SP) either previously frozen or freshly acquired altered ex vivo infectibility of human colonic explants or was associated with histology or toxicity changes, which may influence mucosal HIV-1 transmission in vivo. Pooled human semen samples were freshly obtained from study volunteers (never frozen) and from commercial sources (frozen/thawed). Endoscopically acquired rectal biopsies were evaluated for toxicity following titered ex vivo WS/SP exposure by histological grading and by MTT assay. The ex vivo HIV-1 biopsy challenge model was used to evaluate effects of exposure to either previously frozen or freshly acquired WS/SP on HIVBaL infectibility at a range of viral inocula (104-100 TCID50). To evaluate the effects at lower viral inocula of HIV-1 (10-2-102), experiments in the presence or absence of WS/SP were also performed utilizing TZM-bl cells. MTT assays and histological scoring demonstrated no tissue degradation of biopsies when exposed for 2 h to concentrations of 10% or 100% of either fresh or previously frozen WS/SP. Ex vivo biopsy HIV-1 challenge experiments showed no differences in the presence of freshly acquired or previously frozen/thawed WS/SP compared with control; no differences were seen with lower infectious titers on TZM-bl cells. Within the limits of assay sensitivity and variability, these data show no toxicity or significant enhancement of HIV-1 infectibility of human rectal mucosa using the colorectal explant model with either pooled fresh or frozen/thawed nonautologous human semen.
Collapse
Affiliation(s)
| | - Julie Elliott
- Department of Medicine, Center for HIV Prevention Research, UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Karen Tanner
- Department of Medicine, Center for HIV Prevention Research, UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | - Ian M. McGowan
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peter A. Anton
- Department of Medicine, Center for HIV Prevention Research, UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
28
|
Bakshi RP, Breakey J, Manohar M, Jois B, Fuchs EJ, Marzinke MA. Short Communication: Specimen Processing Impacts Tissue Tenofovir Pharmacokinetic Measurements. AIDS Res Hum Retroviruses 2018; 34:354-356. [PMID: 29258331 DOI: 10.1089/aid.2017.0231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Antiretroviral drug concentrations at sites of HIV exposure are important drivers that influence the development of HIV pre-exposure chemoprophylaxis strategies and regimens. We assessed the effect of collection method-in the presence or absence of tissue culture medium-on tenofovir (TFV) and tenofovir diphosphate (TFV-DP) concentrations in colonic biopsies. We find significant baseline interbiopsy variation in TFV (38% CV) and TFV-DP (33% CV) concentrations. Incubation in medium leads to a fluid absorption-driven twofold increase in tissue weight with a concomitant 75% decrease in weight-adjusted tissue TFV concentrations 120 min post-incubation. In contrast, adjusted TFV-DP concentrations decrease by only 25% during the same period, with this difference not achieving statistical significance. Although colonic biopsies should be collected in the absence of medium for accurate TFV concentrations, the presence of medium does not significantly impact TFV-DP-dependent pharmacokinetic or pharmacodynamic assays. Appropriate assessment of tissue drug concentrations should account for biopsy collection method and drug mechanism of action.
Collapse
Affiliation(s)
- Rahul P. Bakshi
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer Breakey
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Madhuri Manohar
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bhavna Jois
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Edward J. Fuchs
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark A. Marzinke
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Division of Clinical Chemistry, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
29
|
Abstract
The use of human organotypic models for biomedical research is experiencing a significant increase due to their biological relevance, the possibility to perform high-throughput analyses, and their cost efficiency. In the field of anti-infective research, comprising the search for novel antipathogenic treatments including vaccines, efforts have been made to reduce the use of animal models. That is due to two main reasons: unreliability of data obtained with animal models and the increasing willingness to reduce the use of animals in research for ethical reasons. Human three-dimensional (3-D) models may substitute and/or complement in vivo studies, to increase the translational value of preclinical data. Here, we provide an overview of recent studies utilizing human organotypic models, resembling features of the cervix, intestine, lungs, brain, and skin in the context of anti-infective research. Furthermore, we focus on the future applications of human skin models and present methodological protocols to culture human skin equivalents and human skin explants.
Collapse
|
30
|
Hypo-osmolar Formulation of Tenofovir (TFV) Enema Promotes Uptake and Metabolism of TFV in Tissues, Leading to Prevention of SHIV/SIV Infection. Antimicrob Agents Chemother 2017; 62:AAC.01644-17. [PMID: 29084755 DOI: 10.1128/aac.01644-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022] Open
Abstract
Oral preexposure prophylaxis (PrEP) has been approved for prophylaxis of HIV-1 transmission but is associated with high costs and issues of adherence. Protection from anal transmission of HIV using topical microbicides and methods congruent with sexual behavior offers the promise of improved adherence. We compared the pharmacokinetics (PK) and ex vivo efficacy of iso-osmolar (IOsm) and hypo-osmolar (HOsm) rectal enema formulations of tenofovir (TFV) in rhesus macaques. Single-dose PK of IOsm or HOsm high-dose (5.28 mg/ml) and low-dose (1.76 mg/ml) formulations of TFV enemas were evaluated for systemic uptake in blood, colorectal biopsy specimens, and rectal CD4+ T cells. Markedly higher TFV concentrations were observed in plasma and tissues after administration of the HOsm high-dose formulation than with all other formulations tested. TFV and TFV diphosphate (TFV-DP) concentrations in tissue correlated for the HOsm high-dose formulation, demonstrating rapid uptake and transformation of TFV to TFV-DP in tissues. TFV-DP amounts in tissues collected at 1 and 24 h were 7 times and 5 times higher, respectively (P < 0.01), than the ones collected in tissues with the IOsm formulation. The HOsm high-dose formulation prevented infection in ex vivo challenges of rectal tissues collected at 1, 24, and 72 h after the intrarectal dosing, whereas the same TFV dose formulated as an IOsm enema was less effective.
Collapse
|
31
|
Baydoun M, Vanneste SB, Creusy C, Guyot K, Gantois N, Chabe M, Delaire B, Mouray A, Baydoun A, Forzy G, Chieux V, Gosset P, Senez V, Viscogliosi E, Follet J, Certad G. Three-dimensional (3D) culture of adult murine colon as an in vitro model of cryptosporidiosis: Proof of concept. Sci Rep 2017; 7:17288. [PMID: 29230047 PMCID: PMC5725449 DOI: 10.1038/s41598-017-17304-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/19/2017] [Indexed: 01/12/2023] Open
Abstract
Cryptosporidium parvum is a major cause of diarrheal illness and was recently potentially associated with digestive carcinogenesis. Despite its impact on human health, Cryptosporidium pathogenesis remains poorly known, mainly due to the lack of a long-term culture method for this parasite. Thus, the aim of the present study was to develop a three-dimensional (3D) culture model from adult murine colon allowing biological investigations of the host-parasite interactions in an in vivo-like environment and, in particular, the development of parasite-induced neoplasia. Colonic explants were cultured and preserved ex vivo for 35 days and co-culturing was performed with C. parvum. Strikingly, the resulting system allowed the reproduction of neoplastic lesions in vitro at 27 days post-infection (PI), providing new evidence of the role of the parasite in the induction of carcinogenesis. This promising model could facilitate the study of host-pathogen interactions and the investigation of the process involved in Cryptosporidium-induced cell transformation.
Collapse
Affiliation(s)
- Martha Baydoun
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,ISA-YNCREA Hauts-de-France, Lille, France.,Univ. Lille, CNRS, ISEN, UMR 8520 - IEMN, Lille, France
| | - Sadia Benamrouz Vanneste
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,Laboratoire Ecologie et Biodiversité, Faculté de Gestion Economie et Sciences, Institut Catholique de Lille, Lille, France
| | - Colette Creusy
- Service d'Anatomie et de Cytologie Pathologiques, Groupement des Hopitaux de l'Institut Catholique de Lille (GHICL), Lille, France
| | - Karine Guyot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Nausicaa Gantois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Magali Chabe
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,Faculté de Pharmacie, Univ. de Lille, Lille, France
| | - Baptiste Delaire
- Service d'Anatomie et de Cytologie Pathologiques, Groupement des Hopitaux de l'Institut Catholique de Lille (GHICL), Lille, France
| | - Anthony Mouray
- Plateforme d'Expérimentations et de Hautes Technologies Animales, Institut Pasteur de Lille, Lille, France
| | - Atallah Baydoun
- Department of Internal Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Department of Internal Medicine, Louis Stokes VA Medical Center, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Gerard Forzy
- Laboratoire de Biologie Médicale, Groupement des Hospitaux de l'Institut Catholique de Lille (GHICL), Lille, France
| | - Vincent Chieux
- Laboratoire de Biologie Médicale, Groupement des Hospitaux de l'Institut Catholique de Lille (GHICL), Lille, France
| | - Pierre Gosset
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.,Service d'Anatomie et de Cytologie Pathologiques, Groupement des Hopitaux de l'Institut Catholique de Lille (GHICL), Lille, France
| | - Vincent Senez
- Univ. Lille, CNRS, ISEN, UMR 8520 - IEMN, Lille, France
| | - Eric Viscogliosi
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Jérôme Follet
- ISA-YNCREA Hauts-de-France, Lille, France.,Univ. Lille, CNRS, ISEN, UMR 8520 - IEMN, Lille, France
| | - Gabriela Certad
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France. .,Département de la Recherche Médicale, Groupement des Hopitaux de l'Institut Catholique de Lille (GHICL), Faculté de Médecine et Maïeutique, Université Catholique de Lille, Lille, France.
| |
Collapse
|
32
|
In vitro models for deciphering the mechanisms underlying the sexual transmission of viruses at the mucosal level. Virology 2017; 515:1-10. [PMID: 29220713 DOI: 10.1016/j.virol.2017.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/13/2017] [Accepted: 11/28/2017] [Indexed: 01/31/2023]
Abstract
Sexually transmitted viruses infect the genital and colorectal mucosa of the partner exposed to contaminated genital secretions through a wide range of mechanisms, dictated in part by the organization of the mucosa. Because understanding the modes of entry into the organism of viruses transmitted through sexual intercourse is a necessary prerequisite to the design of treatments to block those infections, in vitro modeling of the transmission is essential. The aim of this review is to present the models and methodologies available for the in vitro study of the interactions between viruses and mucosal tissue and for the preclinical evaluation of antiviral compounds, and to point out their advantages and limitations according to the question being studied.
Collapse
|
33
|
Targeted microbicides for preventing sexual HIV transmission. J Control Release 2017; 266:119-128. [PMID: 28951320 DOI: 10.1016/j.jconrel.2017.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 12/16/2022]
Abstract
Sexual transmission remains one of the most significant hurdles in the fight against HIV infection. The use of vaginal or rectal microbicides has been proposed for topical pre-exposure prophylaxis but available results from clinical trials of candidate products have been, at best, less than optimal. While waiting for the first product to get regulatory approval, novel approaches are being explored in order to enhance efficacy, as well as to assure safety. Strategies involving specific delivery of antiviral agents to key players involved in the early steps of sexual transmission have the potential to help achieving such purposes. Engineering systems that allow targeting cells, tissues or other biological structures of interest may provide a way to modulate local pharmacokinetics of promising microbicide molecules and, thus, maximize protection. This concise review discusses the identification and use of potential targets for such purpose, while detailing on several examples of targeted systems engineered as potential microbicide candidates. Furthermore, remaining challenges and hints for future work in the field of targeted microbicides are addressed.
Collapse
|
34
|
Abstract
OBJECTIVE Chronic HIV-1 infection leads to widespread inflammation and immune dysregulation. The gastrointestinal mucosa, a primary site for HIV-1 replication, is thought to play a significant role in this response. MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression, including immune activation and inflammation. Here we investigate miR expression and function in the colonic mucosa during HIV-1 infection. DESIGN AND METHODS Using miR profiling, we examined miR expression in the colonic mucosa of HIV-infected patients. These miRs were further parsed to identify those that most likely function in HIV-related inflammation. Using bioinformatics tools, we identified potential target genes which were confirmed using in-vitro functional testing. RESULTS We identified 12 miRs that were differentially expressed in the colonic mucosa of HIV-infected patients with high versus undetectable plasma viral concentrations. Of these, both miR-26a and miR-29a were downregulated in untreated HIV-1 infection, yet not in the colonic mucosa from inflammatory bowel disease. This downregulation occurs within the first hours after infection. These miRs were further shown to directly target IL-6 and STAT3, respectively, with similar changes confirmed in an ex-vivo explant infection model. CONCLUSION miR-26a and miR-29a levels are decreased in the colonic mucosa during chronic HIV-1 infection, and this change may be initiated during acute infection. Both miRs de-repress the IL-6/STAT3 signaling pathway, which could contribute to increased inflammation during infection. These miRs may represent novel therapeutic targets for HIV-1-associated inflammation in the colonic mucosa.
Collapse
|
35
|
Fulcher JA, Romas L, Hoffman JC, Elliott J, Saunders T, Burgener AD, Anton PA, Yang OO. Highly Human Immunodeficiency Virus-Exposed Seronegative Men Have Lower Mucosal Innate Immune Reactivity. AIDS Res Hum Retroviruses 2017; 33:788-795. [PMID: 28503933 DOI: 10.1089/aid.2017.0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Risk of HIV acquisition varies, and some individuals are highly HIV-1-exposed, yet, persistently seronegative (HESN). The immunologic mechanisms contributing to this phenomenon are an area of intense interest. As immune activation and inflammation facilitate disease progression in HIV-1-infected persons and gastrointestinal-associated lymphoid tissue is a highly susceptible site for transmission, we hypothesized that reduced gut mucosal immune reactivity may contribute to reduced HIV-1 susceptibility in HESN men with a history of numerous rectal sexual exposures. To test this, we used ex vivo mucosal explants from freshly acquired colorectal biopsies from healthy control and HESN subjects who were stimulated with specific innate immune ligands and inactivated whole pathogens. Immune reactivity was then assessed via cytokine arrays and proteomic analysis. Mucosal immune cell compositions were quantified via immunohistochemistry. We found that explants from HESN subjects produced less proinflammatory cytokines compared with controls following innate immune stimulation; while noninflammatory cytokines were similar between groups. Proteomic analysis identified several immune response proteins to be differentially expressed between HIV-1-stimulated HESN and control explants. Immunohistochemical examination of colorectal mucosa showed similar amounts of T cells, macrophages, and dendritic cells between groups. The results of this pilot study suggest that mucosal innate immune reactivity is dampened in HESN versus control groups, despite presence of similar densities of immune cells in the colorectal mucosa. This observed modulation of the rectal mucosal immune response may contribute to lower risk of mucosal HIV-1 transmission in these individuals.
Collapse
Affiliation(s)
- Jennifer A. Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Laura Romas
- National HIV and Retrovirology Labs, JC Wilt Center for Infectious Diseases, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Jennifer C. Hoffman
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Julie Elliott
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Terry Saunders
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Adam D. Burgener
- National HIV and Retrovirology Labs, JC Wilt Center for Infectious Diseases, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
- Unit of Infectious Diseases, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Peter A. Anton
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Otto O. Yang
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
36
|
Swedrowska M, Jamshidi S, Kumar A, Kelly C, Rahman KM, Forbes B. In Silico and in Vitro Screening for P-Glycoprotein Interaction with Tenofovir, Darunavir, and Dapivirine: An Antiretroviral Drug Combination for Topical Prevention of Colorectal HIV Transmission. Mol Pharm 2017. [PMID: 28648081 DOI: 10.1021/acs.molpharmaceut.7b00133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of the study was to use in silico and in vitro techniques to evaluate whether a triple formulation of antiretroviral drugs (tenofovir, darunavir, and dapivirine) interacted with P-glycoprotein (P-gp) or exhibited any other permeability-altering drug-drug interactions in the colorectal mucosa. Potential drug interactions with P-gp were screened initially using molecular docking, followed by molecular dynamics simulations to analyze the identified drug-transporter interaction more mechanistically. The transport of tenofovir, darunavir, and dapivirine was investigated in the Caco-2 cell models and colorectal tissue, and their apparent permeability coefficient (Papp), efflux ratio (ER), and the effect of transporter inhibitors were evaluated. In silico, dapivirine and darunavir showed strong affinity for P-gp with similar free energy of binding; dapivirine exhibiting a ΔGPB value -38.24 kcal/mol, darunavir a ΔGPB value -36.84 kcal/mol. The rank order of permeability of the compounds in vitro was tenofovir < darunavir < dapivirine. The Papp for tenofovir in Caco-2 cell monolayers was 0.10 ± 0.02 × 10-6 cm/s, ER = 1. For dapivirine, Papp was 32.2 ± 3.7 × 10-6 cm/s, but the ER = 1.3 was lower than anticipated based on the in silico findings. Neither tenofovir nor dapivirine transport was influenced by P-gp inhibitors. The absorptive permeability of darunavir (Papp = 6.4 ± 0.9 × 10-6 cm/s) was concentration dependent with ER = 6.3, which was reduced by verapamil to 1.2. Administration of the drugs in combination did not alter their permeability compared to administration as single agents. In conclusion, in silico modeling, cell culture, and tissue-based assays showed that tenofovir does not interact with P-gp and is poorly permeable, consistent with a paracellular transport mechanism. In silico modeling predicted that darunavir and dapivirine were P-gp substrates, but only darunavir showed P-gp-dependent permeability in the biological models, illustrating that in silico modeling requires experimental validation. When administered in combination, the disposition of the proposed triple-therapy antiretroviral drugs in the colorectal mucosa will depend on their distinctly different permeability, but was not interdependent.
Collapse
Affiliation(s)
- Magda Swedrowska
- Institute of Pharmaceutical Science, King's College London , London, SE1 9NH, U.K
| | - Shirin Jamshidi
- Institute of Pharmaceutical Science, King's College London , London, SE1 9NH, U.K
| | - Abhinav Kumar
- Institute of Pharmaceutical Science, King's College London , London, SE1 9NH, U.K
| | - Charles Kelly
- Mucosal and Salivary Biology, King's College London , London, SE1 1UL, U.K
| | | | - Ben Forbes
- Institute of Pharmaceutical Science, King's College London , London, SE1 9NH, U.K
| |
Collapse
|
37
|
Yang Y, Zhu J, Hassink M, Jenkins LMM, Wan Y, Appella DH, Xu J, Appella E, Zhang X. A novel preventive strategy against HIV-1 infection: combinatorial use of inhibitors targeting the nucleocapsid and fusion proteins. Emerg Microbes Infect 2017; 6:e40. [PMID: 28588284 PMCID: PMC5520304 DOI: 10.1038/emi.2017.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/05/2017] [Accepted: 03/06/2017] [Indexed: 11/29/2022]
Abstract
The strategy of simultaneously attacking multiple targets is worthy of exploration in the field of microbicide development to combat HIV-1 sequence diversity and minimize the transmission of resistant variants. A combination of S-acyl-2-mercaptobenzamide thioester-10 (SAMT10), an inhibitor of the HIV-1 nucleocapsid protein (NCp7), and the fusion inhibitor sifuvirtide (SFT) may exert synergistic effects, since SFT can block viral fusion at an early stage of the viral cycle and SAMT10 can disrupt viral particles at a later stage. In this study, we investigated the effect of the combination of SAMT10 and SFT on HIV-1 infection using in vitro cell culture and ex vivo mucosal explant models. A range of doses for each compound was tested at 10-fold serial dilutions based on their 50% effective concentrations (EC50). We observed a synergistic effect of SAMT10 and SFT in vitro against both the laboratory-adapted HIV-1 strain HIV-1IIIB (subtype B, X4) and three pseudotyped viruses prevalent in Chinese sexually transmitted populations (SVPB16 (subtype B, R5), SVPC12 (subtype C, R5) and SH1.81 (CRF01_AE, R5)). In the ex vivo study, the EC50 values of the inhibitor combinations were reduced 1.5- to 2-fold in colorectal mucosal explants compared to treatment with SAMT10 or SFT alone by using with HIV-1IIIB. These results may provide a novel strategy for microbicide development against HIV-1 sexual transmission.
Collapse
Affiliation(s)
- Yu Yang
- Scientific Research Center, Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Fudan University, Shanghai 201508, China
| | - Jingyu Zhu
- Scientific Research Center, Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Fudan University, Shanghai 201508, China
| | - Matthew Hassink
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20814, USA
| | - Lisa M Miller Jenkins
- Chemical Immunology Section, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yanmin Wan
- Scientific Research Center, Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Fudan University, Shanghai 201508, China
| | - Daniel H Appella
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20814, USA
| | - Jianqing Xu
- Scientific Research Center, Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Fudan University, Shanghai 201508, China
| | - Ettore Appella
- Chemical Immunology Section, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Xiaoyan Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, Fudan University, Shanghai 201508, China
| |
Collapse
|
38
|
Richardson-Harman N, Parody R, Anton P, McGowan I, Doncel G, Thurman AR, Herrera C, Kordy K, Fox J, Tanner K, Swartz G, Dezzutti CS. Analytical Advances in the Ex Vivo Challenge Efficacy Assay. AIDS Res Hum Retroviruses 2017; 33:395-403. [PMID: 27841671 PMCID: PMC5372762 DOI: 10.1089/aid.2016.0073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ex vivo challenge assay is being increasingly used as an efficacy endpoint during early human clinical trials of HIV prevention treatments. There is no standard methodology for the ex vivo challenge assay, although the use of different data collection methods and analytical parameters may impact results and reduce the comparability of findings between trials. In this analysis, we describe the impact of data imputation methods, kit type, testing schedule and tissue type on variability, statistical power, and ex vivo HIV growth kinetics. Data were p24 antigen (pg/ml) measurements collected from clinical trials of candidate microbicides where rectal (n = 502), cervical (n = 88), and vaginal (n = 110) tissues were challenged with HIV-1BaL ex vivo. Imputation of missing data using a nonlinear mixed effect model was found to provide an improved fit compared to imputation using half the limit of detection. The rectal virus growth period was found to be earlier and of a relatively shorter duration than the growth period for cervical and vaginal tissue types. On average, only four rectal tissue challenge assays in each treatment and control group would be needed to find a one log difference in p24 to be significant (alpha = 0.05), but a larger sample size was predicted to be needed for either cervical (n = 21) or vaginal (n = 10) tissue comparisons. Overall, the results indicated that improvements could be made in the design and analysis of the ex vivo challenge assay to provide a more standardized and powerful assay to compare efficacy of microbicide products.
Collapse
Affiliation(s)
| | - Robert Parody
- Alpha StatConsult, LLC, Damascus, Maryland
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York
| | - Peter Anton
- Department of Medicine, David Geffen School of Medicine at UCLA, Center for HIV Prevention Research, UCLA AIDS Institute, Los Angeles, California
| | - Ian McGowan
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee Womens Research Institute, Pittsburgh, Pennsylvania
| | - Gustavo Doncel
- CONRAD, Eastern Virginia Medical School, Norfolk and Arlington, Virginia
| | | | - Carolina Herrera
- Division of Infectious Diseases, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Kattayoun Kordy
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Southern California, Los Angeles, California
| | - Julie Fox
- Guys and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Karen Tanner
- Department of Medicine, David Geffen School of Medicine at UCLA, Center for HIV Prevention Research, UCLA AIDS Institute, Los Angeles, California
| | - Glenn Swartz
- Advanced Bioscience Laboratories, Gaithersburg, Maryland
| | - Charlene S. Dezzutti
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee Womens Research Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
39
|
Russo I, Zeppa P, Iovino P, Del Giorno C, Zingone F, Bucci C, Puzziello A, Ciacci C. The culture of gut explants: A model to study the mucosal response. J Immunol Methods 2016; 438:1-10. [PMID: 27475701 DOI: 10.1016/j.jim.2016.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/16/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023]
Abstract
Various experimental model designs have been used to analyze the inflammatory pathways in human gastrointestinal illnesses. Traditionally, analytical techniques and animal models are popular experimental tools to study the inflammation process of intestinal diseases. However, the comparison of results between animal and human models is difficult for the inconsistency of outcomes. Although there are different animal models for studying the intestinal diseases, none of them fully represents the physiological and environmental conditions typical of the human species. Also, there is currently a concerted effort to decrease the experimental use of animals. On the converse, experimental protocols using the culture of gut mucosa had become popular with the advent of endoscopy which allows explanting multiple fragments from the intestine. The peculiar characteristic of this model is the ability to preserve in vitro the features that we found in vivo, thus also the response to various stimuli that differs from person to person. The aim of the present paper is to provide a review of some of the possible uses of the organ intestinal mucosa culture.
Collapse
Affiliation(s)
- Ilaria Russo
- Department of Medicine and Surgery, University Hospital San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy
| | - Pio Zeppa
- Department of Medicine and Surgery, University Hospital San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy
| | - Paola Iovino
- Department of Medicine and Surgery, University Hospital San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy
| | - Chiara Del Giorno
- Department of Medicine and Surgery, University Hospital San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy
| | - Fabiana Zingone
- Department of Medicine and Surgery, University Hospital San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy
| | - Cristina Bucci
- Department of Medicine and Surgery, University Hospital San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy
| | - Alessandro Puzziello
- Department of Medicine and Surgery, University Hospital San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy
| | - Carolina Ciacci
- Department of Medicine and Surgery, University Hospital San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy.
| |
Collapse
|
40
|
Dezzutti CS, Richardson-Harman N, Rohan LC, Marzinke MA, Hoesley CJ, Panther L, Johnson S, Nuttall JP, Nel A, Chen BA. Pharmacodynamic correlations using fresh and cryopreserved tissue following use of vaginal rings containing dapivirine and/or maraviroc in a randomized, placebo controlled trial. Medicine (Baltimore) 2016; 95:e4174. [PMID: 27428211 PMCID: PMC4956805 DOI: 10.1097/md.0000000000004174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND The ex vivo challenge assay is a bio-indicator of drug efficacy and was utilized in this randomized, placebo controlled trial as one of the exploratory endpoints. Fresh and cryopreserved tissues were evaluated for human immunodeficiency virus (HIV) infection and pharmacokinetic (PK)/pharmacodynamic (PD) relationships. METHODS HIV-negative women used vaginal rings containing 25 mg dapivirine (DPV)/100 mg maraviroc (MVC) (n = 12), DPV only (n = 12), MVC only (n = 12), or placebo (n = 12) for 28 days. Blood plasma, cervicovaginal fluid (CVF), and cervical biopsies were collected for drug quantification and the ex vivo challenge assay; half (fresh) were exposed immediately to HIV while the other half were cryopreserved, thawed, then exposed to HIV. HIV replication was monitored by p24 enzyme-linked immunosorbent assay from culture supernatant. Data were log-transformed and analyzed by linear least squared regression, nonlinear Emax dose-response model and Satterthwaite t test. RESULTS HIV replication was greater in fresh compared to cryopreserved tissue (P = 0.04). DPV was detected in all compartments, while MVC was consistently detected only in CVF. Significant negative correlations between p24 and DPV levels were observed in fresh cervical tissue (P = 0.01) and CVF (P = 0.03), but not plasma. CVF MVC levels showed a significant negative correlation with p24 levels (P = 0.03); drug levels in plasma and tissue were not correlated with HIV suppression. p24 levels from cryopreserved tissue did not correlate to either drug from any compartment. CONCLUSION Fresh tissue replicated HIV to greater levels and defined PK/PD relationships while cryopreserved tissue did not. The ex vivo challenge assay using fresh tissue could prioritize drugs being considered for HIV prevention.
Collapse
Affiliation(s)
| | | | - Lisa C. Rohan
- University of Pittsburgh
- Magee-Womens Research Institute, Pittsburgh, PA
| | | | | | | | | | | | - Annalene Nel
- International Partnership for Microbicides, Silver Spring, MD, USA
| | - Beatrice A. Chen
- University of Pittsburgh
- Magee-Womens Research Institute, Pittsburgh, PA
| |
Collapse
|
41
|
Terrazas-Aranda K, Van Herrewege Y, Lewi PJ, Van Roey J, Vanham G. In Vitro Pre- and Post-Exposure Prophylaxis Using HIV Inhibitors as Microbicides Against Cell-Free or Cell-Associated HIV-1 Infection. ACTA ACUST UNITED AC 2016; 18:141-51. [PMID: 17626598 DOI: 10.1177/095632020701800304] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several classes of microbicides are being evaluated for the prevention of sexual HIV transmission. In vivo, the infectious dose and viral source involved in transmission remain uncertain and it is likely that women will use microbicides both before and after high-risk HIV exposure. Therefore, we evaluated HIV entry inhibitors (EIs) and reverse transcriptase inhibitors (RTIs) for their ability to block cell-free and cell-associated HIV-1 infection in co-cultures of monocyte-derived dendritic cells (MO-DC) and CD4+T-cells using settings of pre- and post-exposure prophylaxis. In the pre-exposure assay, where compound was present before, during and 24 h after infection, all tested EIs (BMS806, TAK779 and T20) and RTIs (PMPA, TMC120 and UC781) blocked infection with 10−4multiplicity of infection (MOI) of cell-free virus at a dose between 100 and 10,000 nM, dependent on the compound used. At 10−3MOI, however, only T20 and the RTIs completely blocked infection. Furthermore, in experiments with cell-associated virus, EIs were ineffective, whereas RTIs actively blocked infection with similar potency as in the experiments with cell-free virus. In the post-exposure assay, where compound was added 2 h after infection and remained present for 24 h, EIs were inactive whereas RTIs blocked cell-free and cell-associated viral infections equally efficiently. Moreover, post-exposure prophylaxis initiated 24 h after infection with cell-free or cell-associated HIV-1 was still effective with 1,000 nM of TMC120. Both EIs and RTIs were non-cytotoxic at any tested concentration for MO-DC and CD4+T-cells in co-culture. Our study shows that RTIs are potent inhibitors of cell-free and cell-associated virus used either in pre- or post-exposure settings. It highlights that parameters such as viral input, viral source, the time of compound addition and the target cells should be considered in microbicides evaluation.
Collapse
Affiliation(s)
- Katty Terrazas-Aranda
- Virology Unit, Department of Microbiology, Institute of Tropical Medicine, Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
42
|
Costa MO, Harding JCS, Hill JE. Development and evaluation of a porcine in vitro colon organ culture technique. In Vitro Cell Dev Biol Anim 2016; 52:942-952. [PMID: 27338737 DOI: 10.1007/s11626-016-0060-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/01/2016] [Indexed: 12/17/2022]
Abstract
The intestinal mucosa comprises a complex assemblage of specialized tissues that interact in numerous ways. In vitro cell culture models are generally focused on recreating a specific characteristic of this organ and do not account for the many interactions between the different tissues. In vitro organ culture (IVOC) methods offer a way to overcome these limitations, but prolonging cell viability is essential. This study aimed to determine the feasibility and optimal conditions for in vitro culture of swine colonic mucosa for use as an enteric pathogen infection model. Explants (n = 168) from commercial pigs (n = 12), aged 5 to 10 wk, were used to assess the impact of various culture protocols on explant viability. Explants were cultured for up to 5 d and formalin fixed at 24-h intervals. Following establishment of the culture protocol, explants (n = 208) from 13 pigs were evaluated at Day 0 and 5 of culture. Assessment of viability was based on histological changes (tissue architecture evaluated by H&E, immunostaining of cell proliferation marker Ki-67) and expression of genes encoding IL-1α, IL-8, TNF-α, IFN-γ, and e-cadherin. After 5 d in culture, 20% of explants displayed over 80% of epithelial coverage, whereas 31% of explants had more than 50% of their surface covered by columnar epithelium, and 81% had crypts but with a decreased number of Ki-67-positive cells when compared to Day 0. Notably, large variability in explant quality was observed between donor pigs. Best possible explants were obtained from the distal colon of pigs, processed immediately after euthanasia, cultured at the liquid-tissue-gas interface in media supplemented with a mixture of antibiotics and antifungals and an oxygen-rich gas mix.
Collapse
Affiliation(s)
- Matheus O Costa
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Janet E Hill
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
43
|
Maraviroc and reverse transcriptase inhibitors combinations as potential preexposure prophylaxis candidates. AIDS 2016; 30:1015-25. [PMID: 26854808 DOI: 10.1097/qad.0000000000001043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Receptive anal intercourse in both men and women is associated with the highest probability for sexual acquisition of HIV infection. As part of a program to develop an effective prevention strategy, we performed an ex-vivo preclinical evaluation to determine the efficacy of multiple double combinations of maraviroc (MVC) and reverse transcriptase inhibitors (RTIs). DESIGN The entry inhibitor, MVC, a nucleotide RTI, tenofovir and two non-nucleoside RTIs, UC781 and TMC120 (dapivirine, DPV), were used in double, combinations against a panel of CCR5-using clade B and clade C HIV-1 isolates and against MVC-escape variants. A gel-formulated version of MVC-DPV combination was also tested. METHODS Indicator cells, cocultures of immature dendritic cells with CD4T cells, and colorectal tissue explants were used to assess antiviral activity of drug combinations. RESULTS All dual MVC-RTI combinations tested inhibited MVC-sensitive and resistant isolates in cellular and colorectal explants models. All the combinations were positive with no reduction in the activity of MVC. In tissue explants, the combinations against all viral isolates tested produced an increase in the activity of MVC. An initial gel-formulation of MVC-DPV combination showed greater and prolonged antiviral activity of MVC in mucosal tissue explants. CONCLUSION This study demonstrates that combinations based on antiretroviral drugs inhibiting HIV transmission at viral entry and reverse transcription have potential as prevention strategies against colorectal transmission of HIV-1 including MVC-resistant isolates. Preclinical evaluation with colorectal tissue explants indicates that a gel-formulation of MVC-DPV is an effective candidate colorectal microbicide.
Collapse
|
44
|
Fletcher P, Herrera C, Armanasco N, Nuttall J, Shattock RJ. Short Communication: Limited Anti-HIV-1 Activity of Maraviroc in Mucosal Tissues. AIDS Res Hum Retroviruses 2016; 32:334-8. [PMID: 26711323 DOI: 10.1089/aid.2015.0315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The potential of maraviroc (MVC), a small-molecule CCR5 antagonist, as a candidate to prevent HIV-1 sexual transmission by oral or topical dosing has not yet been completely established. Using relevant cellular and mucosal tissue explant models, we show partial antiviral activity of MVC when tested in multiple preclinical dosing strategies.
Collapse
Affiliation(s)
- Patricia Fletcher
- Division of Cellular and Molecular Medicine, Centre for Infection, St. George's University of London, London, United Kingdom
| | - Carolina Herrera
- Division of Cellular and Molecular Medicine, Centre for Infection, St. George's University of London, London, United Kingdom
| | - Naomi Armanasco
- Division of Cellular and Molecular Medicine, Centre for Infection, St. George's University of London, London, United Kingdom
| | - Jeremy Nuttall
- International Partnership for Microbicides, Silver Springs, Maryland
| | - Robin J. Shattock
- Division of Cellular and Molecular Medicine, Centre for Infection, St. George's University of London, London, United Kingdom
| |
Collapse
|
45
|
Animal and human mucosal tissue models to study HIV biomedical interventions: can we predict success? J Int AIDS Soc 2015; 18:20301. [PMID: 26530077 PMCID: PMC4631705 DOI: 10.7448/ias.18.1.20301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/10/2015] [Accepted: 09/28/2015] [Indexed: 12/20/2022] Open
Abstract
Introduction Preclinical testing plays an integral role in the development of HIV prevention modalities. Several models are used including humanized mice, non-human primates and human mucosal tissue cultures. Discussion Pharmaceutical development traditionally uses preclinical models to evaluate product safety. The HIV prevention field has extended this paradigm to include models of efficacy, encompassing humanized mice, non-human primates (typically Asian macaques) and human mucosal tissue (such as cervical and colorectal). As our understanding of the biology of HIV transmission improves and includes the influence of human behaviour/biology and co-pathogens, these models have evolved as well to address more complex questions. These three models have demonstrated the effectiveness of systemic (oral) and topical use of antiretroviral drugs. Importantly, pharmacokinetic/pharmacodynamic relationships are being developed and linked to information gathered from human clinical trials. The models are incorporating co-pathogens (bacterial and viral) and the effects of coitus (mucosal fluids) on drug distribution and efficacy. Humanized mice are being tailored in their immune reconstitution to better represent humans. Importantly, human mucosal tissue cultures are now being used in early clinical trials to provide information on product efficacy to more accurately characterize efficacious products to advance to larger clinical trials. While all of these models have made advancements in product development, each has limitations and the data need to be interpreted by keeping these limitations in mind. Conclusions Development and refinement of each of these models has been an iterative process and linkages to data generated among each of them and from human clinical trials are needed to determine their reliability. Preclinical testing has evolved from simply identifying products that demonstrate efficacy prior to clinical trials to defining essential pharmacokinetic/pharmacodynamic relationships under a variety of conditions and has the potential to improve product selection prior to the initiation of large-scale human clinical trials. The goal is to provide researchers with ample information to make conversant decisions that guide optimized and efficient product development.
Collapse
|
46
|
Mukhopadhya I, Murray GI, Berry S, Thomson J, Frank B, Gwozdz G, Ekeruche-Makinde J, Shattock R, Kelly C, Iannelli F, Pozzi G, El-Omar EM, Hold GL, Hijazi K. Drug transporter gene expression in human colorectal tissue and cell lines: modulation with antiretrovirals for microbicide optimization. J Antimicrob Chemother 2015; 71:372-86. [PMID: 26514157 DOI: 10.1093/jac/dkv335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/15/2015] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES The objectives of this study were to comprehensively assess mRNA expression of 84 drug transporters in human colorectal biopsies and six representative cell lines, and to investigate the alteration of drug transporter gene expression after exposure to three candidate microbicidal antiretroviral (ARV) drugs (tenofovir, darunavir and dapivirine) in the colorectal epithelium. The outcome of the objectives informs development of optimal ARV-based microbicidal formulations for prevention of HIV-1 infection. METHODS Drug transporter mRNA expression was quantified from colorectal biopsies and cell lines by quantitative real-time PCR. Relative mRNA expression was quantified in Caco-2 cells and colorectal explants after induction with ARVs. Data were analysed using Pearson's product moment correlation (r), hierarchical clustering and principal component analysis (PCA). RESULTS Expression of 58 of the 84 transporters was documented in colorectal biopsies, with genes for CNT2, P-glycoprotein (P-gp) and MRP3 showing the highest expression. No difference was noted between individual subjects when analysed by age, gender or anatomical site (rectum or recto-sigmoid) (r = 0.95-0.99). High expression of P-gp and CNT2 proteins was confirmed by immunohistochemical staining. Similarity between colorectal tissue and cell-line drug transporter gene expression was variable (r = 0.64-0.84). PCA showed distinct clustering of human colorectal biopsy samples, with the Caco-2 cells defined as the best surrogate system. Induction of Caco-2 cell lines with ARV drugs suggests that darunavir-based microbicides incorporating tenofovir may result in drug-drug interactions likely to affect distribution of individual drugs to sub-epithelial target cells. CONCLUSIONS These findings will help optimize complex formulations of rectal microbicides to realize their full potential as an effective approach for pre-exposure prophylaxis against HIV-1 infection.
Collapse
Affiliation(s)
| | - Graeme I Murray
- Department of Pathology, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Susan Berry
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen, UK
| | - John Thomson
- Department of Gastroenterology, Aberdeen Royal Infirmary, Aberdeen, UK
| | | | | | - Julia Ekeruche-Makinde
- Mucosal Infection & Immunity Group, Section of Infectious Diseases, Imperial College, London, UK
| | - Robin Shattock
- Mucosal Infection & Immunity Group, Section of Infectious Diseases, Imperial College, London, UK
| | - Charles Kelly
- Mucosal & Salivary Biology, Dental Institute, King's College London, London, UK
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Emad M El-Omar
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen, UK
| | - Georgina L Hold
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen, UK
| | - Karolin Hijazi
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
47
|
Single oral dose of maraviroc does not prevent ex-vivo HIV infection of rectal mucosa in HIV-1 negative human volunteers. AIDS 2015; 29:2149-54. [PMID: 26544579 DOI: 10.1097/qad.0000000000000769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Maraviroc (MVC) is a potential candidate for 'on demand' preexposure prophylaxis. In the present study, we evaluated the efficacy of a single oral dose of MVC to prevent ex-vivo HIV-1 infection of rectal tissue in humans. DESIGN AND METHODS Eight HIV-1-negative healthy volunteers received a single oral dose of MVC (300 or 600 mg), and two additional volunteers received tenofovir disoproxil fumarate/emtricitabine (TDF/FTC, 300/200 mg) for 10 days. Rectal biopsies were performed prior to the ex-vivo challenge (day 0), at day 7 (4 h after MVC) or after 10 days with TDF/FTC. Rectal biopsies were infected ex-vivo, and viral inhibition and CCR5 occupancy was analyzed. MVC concentration in plasma and rectal tissue was measured just after biopsy and after viral incubation. RESULTS Ex-vivo rectal tissue protection with MVC was incomplete in all but two participants, whereas TDF/FTC avoided ex-vivo infection in the two controls. Median dose-normalized concentration of MVC was significantly higher in rectal tissue than in plasma (561.1 and 155.1 ng/ml, respectively). A significant loss of MVC during the virus incubation (about 60%) and a low CCR5 occupancy (approximately 45%) were detected in rectal cells. CONCLUSIONS An ex-vivo challenge with a single oral dose of MVC does not prevent ex-vivo infection of human rectal mucosa. The lack of prophylactic efficacy observed suggests that 'on demand' MVC preexposure prophylaxis would not prevent rectal HIV-1 transmission.
Collapse
|
48
|
Janocko L, Althouse AD, Brand RM, Cranston RD, McGowan I. The Molecular Characterization of Intestinal Explant HIV Infection Using Polymerase Chain Reaction-Based Techniques. AIDS Res Hum Retroviruses 2015; 31:981-91. [PMID: 26214703 PMCID: PMC4576939 DOI: 10.1089/aid.2015.0165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ex vivo mucosal explant model is frequently used to test the efficacy of microbicides that have the potential for preventing HIV-1 transmission. The conventional assessment of product efficacy has been the extent of HIV-1 p24 suppression in supernatant fluids sampled up to day 14 after HIV-1 challenge ex vivo. The purpose of this study was to determine if measurement of HIV-1 nucleic acids by real-time PCR and HIV-1 integration by Alu-gag PCR provides advantages with regard to monitoring HIV-1 infection in explants. Rectal biopsies from HIV-1-negative individuals were challenged with 1 × 10(5) virions/ml of HIV-1BaL or HIV-1CH077 ex vivo. HIV-1 RNA and HIV-1 p24 in supernatant fluids and HIV-1 nucleic acids and integrated provirus in individual biopsies were measured at days 1-14 after infection. HIV-1 RNA and proviral DNA were measured by quantitative real-time PCR (qRT-PCR) while integrated virus was detected by Alu-gag PCR. Real-time PCR assays detecting HIV-1 DNA and RNA performed similarly provided that the infecting virus sequences were a good match with the sequences of the assay primers and probes. Increased HIV-1 nucleic acid levels and DNA integration were measurable on days 11 and 14 after infection. The magnitude of explant infection was similar after challenge with HIV-1BaL and HIV-1CH077, although the trajectory of infection was delayed in the HIV-1CH077-infected biopsies. In the majority of experiments, qRT-PCR did not appreciably shorten the time necessary to detect evidence of HIV-1 infection.
Collapse
Affiliation(s)
- Laura Janocko
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Andrew D. Althouse
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rhonda M. Brand
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Ian McGowan
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
49
|
Santra S, Tomaras GD, Warrier R, Nicely NI, Liao HX, Pollara J, Liu P, Alam SM, Zhang R, Cocklin SL, Shen X, Duffy R, Xia SM, Schutte RJ, Pemble IV CW, Dennison SM, Li H, Chao A, Vidnovic K, Evans A, Klein K, Kumar A, Robinson J, Landucci G, Forthal DN, Montefiori DC, Kaewkungwal J, Nitayaphan S, Pitisuttithum P, Rerks-Ngarm S, Robb ML, Michael NL, Kim JH, Soderberg KA, Giorgi EE, Blair L, Korber BT, Moog C, Shattock RJ, Letvin NL, Schmitz JE, Moody MA, Gao F, Ferrari G, Shaw GM, Haynes BF. Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques. PLoS Pathog 2015; 11:e1005042. [PMID: 26237403 PMCID: PMC4523205 DOI: 10.1371/journal.ppat.1005042] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/23/2015] [Indexed: 11/19/2022] Open
Abstract
HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4+ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant region of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Thus, some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses.
Collapse
Affiliation(s)
- Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SS); (GDT); (BFH)
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (SS); (GDT); (BFH)
| | - Ranjit Warrier
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nathan I. Nicely
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Pinghuang Liu
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Ruijun Zhang
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Sarah L. Cocklin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Ryan Duffy
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Shi-Mao Xia
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Robert J. Schutte
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Charles W. Pemble IV
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - S. Moses Dennison
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Hui Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew Chao
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kora Vidnovic
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Abbey Evans
- Department of Medicine, St Mary’s Campus, Imperial College London, London, United Kingdom
| | - Katja Klein
- Department of Medicine, St Mary’s Campus, Imperial College London, London, United Kingdom
| | - Amit Kumar
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - James Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Gary Landucci
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, Irvine, California, United States of America
| | - Donald N. Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, Irvine, California, United States of America
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | | | - Sorachai Nitayaphan
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | | | - Merlin L. Robb
- US Military Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- US Military Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jerome H. Kim
- US Military Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Kelly A. Soderberg
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Elena E. Giorgi
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Lily Blair
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Bette T. Korber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Christiane Moog
- U1109, INSERM University of Strasbourg, Strasbourg, Alsace, France
| | - Robin J. Shattock
- Department of Medicine, St Mary’s Campus, Imperial College London, London, United Kingdom
| | - Norman L. Letvin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joern E. Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - M. A. Moody
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Feng Gao
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - George M. Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (SS); (GDT); (BFH)
| |
Collapse
|
50
|
Abstract
OBJECTIVE Model systems that rapidly identify tissue drug concentrations protective of HIV infection could streamline the development of chemoprevention strategies. Tissue models are promising, but limited concentration targets exist, and no systematic comparison to cell models or clinical studies has been performed. DESIGN We explored the efficacy of maraviroc (MVC) and tenofovir (TFV) for HIV prevention by comparing Emax models from TZM-bl cells to vaginal tissue explants and evaluated their predictive capabilities with a dose-challenge clinical study. METHODS HIV-1JR-CSF was used for viral challenge. Drug efficacy was assessed using a luciferase reporter assay in TZM-bl cells and real-time PCR to quantify spliced RNA in a tissue explant model. Cell and tissue concentrations of MVC, TFV, and the active metabolite tenofovir diphosphate were measured by liquid chromatography with tandem mass spectrometry and used to create Emax models of efficacy. Efficacy after a single oral dose of 600 mg MVC and 600 mg tenofovir disoproxil fumarate was predicted from cell and tissue models and confirmed in a clinical study with viral biopsy challenge postdose. RESULTS TFV was >10-fold and MVC >1000-fold, more potent in TZM-bl cells compared with vaginal explant tissue. In the dose-challenge study, tissues from 3 of 6 women were protected from HIV infection, which was 49% lower than predicted by TZM-bl data and 36% higher than predicted by tissue explant data. CONCLUSIONS Comparative effective concentration data were generated for TFV and MVC in 3 HIV chemoprophylaxis models. These results provide a framework for future early investigations of antiretroviral efficacy in HIV prevention to optimize dosing strategies in clinical investigations.
Collapse
|