1
|
Clauss NJ, Mayer FP, Owens WA, Vitela M, Clarke KM, Bowman MA, Horton RE, Gründemann D, Schmid D, Holy M, Gould GG, Koek W, Sitte HH, Daws LC. Ethanol inhibits dopamine uptake via organic cation transporter 3: Implications for ethanol and cocaine co-abuse. Mol Psychiatry 2023; 28:2934-2945. [PMID: 37308680 PMCID: PMC10615754 DOI: 10.1038/s41380-023-02064-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/20/2022] [Accepted: 03/29/2023] [Indexed: 06/14/2023]
Abstract
Concurrent cocaine and alcohol use is among the most frequent drug combination, and among the most dangerous in terms of deleterious outcomes. Cocaine increases extracellular monoamines by blocking dopamine (DA), norepinephrine (NE) and serotonin (5-HT) transporters (DAT, NET and SERT, respectively). Likewise, ethanol also increases extracellular monoamines, however evidence suggests that ethanol does so independently of DAT, NET and SERT. Organic cation transporter 3 (OCT3) is an emergent key player in the regulation of monoamine signaling. Using a battery of in vitro, in vivo electrochemical, and behavioral approaches, as well as wild-type and constitutive OCT3 knockout mice, we show that ethanol's actions to inhibit monoamine uptake are dependent on OCT3. These findings provide a novel mechanistic basis whereby ethanol enhances the neurochemical and behavioral effects of cocaine and encourage further research into OCT3 as a target for therapeutic intervention in the treatment of ethanol and ethanol/cocaine use disorders.
Collapse
Affiliation(s)
- N J Clauss
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - F P Mayer
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - W A Owens
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - M Vitela
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - K M Clarke
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - M A Bowman
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - R E Horton
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - D Gründemann
- Department of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - D Schmid
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - M Holy
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - G G Gould
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - W Koek
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - H H Sitte
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
- Center for Addiction Research and Science, Medical University Vienna, Waehringerstrasse 13 A, 1090, Vienna, Austria
| | - L C Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
2
|
Sauton P, Jeanblanc J, Benzerouk F, Gierski F, Naassila M. Sex-specific decision-making impairments and striatal dopaminergic changes after binge drinking history in rats. Front Pharmacol 2023; 14:1076465. [PMID: 36726581 PMCID: PMC9885167 DOI: 10.3389/fphar.2023.1076465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Binge drinking (BD) is a harmful behavior for health and is a predictive factor for the development of alcohol addiction. Weak decision-making (DM) capacities could play a role in the vulnerability to BD which in turn would lead to DM impairments, thus perpetuating BD. Longitudinal preclinical studies are however lacking and necessary to understand this complex relationship. Both DM and BD are influenced by sex and involve dopamine release in the core of the nucleus accumbens, a central mechanism regulated by dopamine D2/3 autoreceptors. In this context, we used an operant self-administration procedure of BD in male and female rats, and longitudinally assessed DM capacity, memory and anxiety-like behavior. To better understand the mechanisms potentially involved in the relationship between DM and BD, ex vivo dopamine transmission was assessed short term after the end of the binge exposure in the core of the nucleus accumbens (NAc) using the fast-scan cyclic voltammetry (FSCV) technique and the D2/3 agonist quinpirole. We found important basal sex differences in DM, with female rats showing better performances at baseline. Choice processes were impaired exclusively in males after BD history, associated with a decrease in impulse control in both sexes, while memory and anxiety-like behavior were not affected. Our neurobiological results demonstrate that BD did not affect basal dopamine signaling in the NAc core, regardless of the sex, but reveal changes in the sensitivity to the inhibitory effects of quinpirole in females. DM impairments were neither associated with changes in basal dopamine signaling nor pre-synaptic D2 activity. Overall, our findings show that BD affects both DM processes and dopamine transmission in the core of the NAc in a sex-related manner, further suggesting that these effects may play a role in the vicious cycle leading to BD perpetuation and the early onset of AUD. Our results may inform novel strategies for therapeutic and prevention interventions.
Collapse
Affiliation(s)
- Pierre Sauton
- INSERM UMR 1247—Research Group on Alcohol & Pharmacodependences (GRAP), Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Amiens, France
| | - Jerome Jeanblanc
- INSERM UMR 1247—Research Group on Alcohol & Pharmacodependences (GRAP), Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Amiens, France
| | - Farid Benzerouk
- INSERM UMR 1247—Research Group on Alcohol & Pharmacodependences (GRAP), Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Amiens, France,Université de Reims Champagne-Ardenne, Laboratoire Cognition, Santé, Société (C2S, EA6291), Reims, France
| | - Fabien Gierski
- INSERM UMR 1247—Research Group on Alcohol & Pharmacodependences (GRAP), Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Amiens, France,Université de Reims Champagne-Ardenne, Laboratoire Cognition, Santé, Société (C2S, EA6291), Reims, France
| | - Mickael Naassila
- INSERM UMR 1247—Research Group on Alcohol & Pharmacodependences (GRAP), Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Amiens, France,*Correspondence: Mickael Naassila,
| |
Collapse
|
3
|
De Santis S, Cosa-Linan A, Garcia-Hernandez R, Dmytrenko L, Vargova L, Vorisek I, Stopponi S, Bach P, Kirsch P, Kiefer F, Ciccocioppo R, Sykova E, Moratal D, Sommer WH, Canals S. Chronic alcohol consumption alters extracellular space geometry and transmitter diffusion in the brain. SCIENCE ADVANCES 2020; 6:eaba0154. [PMID: 32637601 PMCID: PMC7314532 DOI: 10.1126/sciadv.aba0154] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/14/2020] [Indexed: 05/08/2023]
Abstract
Already moderate alcohol consumption has detrimental long-term effects on brain function. However, how alcohol produces its potent addictive effects despite being a weak reinforcer is a poorly understood conundrum that likely hampers the development of successful interventions to limit heavy drinking. In this translational study, we demonstrate widespread increased mean diffusivity in the brain gray matter of chronically drinking humans and rats. These alterations appear soon after drinking initiation in rats, persist into early abstinence in both species, and are associated with a robust decrease in extracellular space tortuosity explained by a microglial reaction. Mathematical modeling of the diffusivity changes unveils an increased spatial reach of extrasynaptically released transmitters like dopamine that may contribute to alcohol's progressively enhanced addictive potency.
Collapse
Affiliation(s)
- Silvia De Santis
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant, Spain
| | - Alejandro Cosa-Linan
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant, Spain
- Department of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Raquel Garcia-Hernandez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant, Spain
| | - Lesia Dmytrenko
- Institute of Experimental Medicine AS CR, 142 20 Prague 4, Czech Republic
| | - Lydia Vargova
- Institute of Experimental Medicine AS CR, 142 20 Prague 4, Czech Republic
- Charles University, 2nd Faculty of Medicine, 150 06 Prague 5, Czech Republic
| | - Ivan Vorisek
- Charles University, 2nd Faculty of Medicine, 150 06 Prague 5, Czech Republic
| | | | - Patrick Bach
- Department of Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Falk Kiefer
- Department of Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | | | - Eva Sykova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - David Moratal
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Wolfgang H. Sommer
- Department of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
- Department of Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant, Spain
| |
Collapse
|
4
|
Alexandre MCM, Mendes NV, Torres CA, Baldin SL, Bernardo HT, Scussel R, Baggio S, Mussulini BHM, Zenki KC, da Rosa MI, Rico EP. Weekly ethanol exposure alters dopaminergic parameters in zebrafish brain. Neurotoxicol Teratol 2019; 75:106822. [DOI: 10.1016/j.ntt.2019.106822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 11/15/2022]
|
5
|
Mikhailova MA, Deal AL, Grinevich VP, Bonin KD, Gainetdinov RR, Budygin EA. Real-Time Accumbal Dopamine Response to Negative Stimuli: Effects of Ethanol. ACS Chem Neurosci 2019; 10:1986-1991. [PMID: 30289684 DOI: 10.1021/acschemneuro.8b00272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Activity in the mesolimbic dopamine (DA) pathway is known to have a role in reward processing and related behaviors. The mesolimbic DA response to reward has been well-examined, while the response to aversive or negative stimuli has been studied to a lesser extent and produced inconclusive results. However, a brief increase in the DA concentration in terminals during nociceptive activation has become an established but not well-characterized phenomenon. Consequently, the interpretation of the significance of this neurochemical response is still elusive. The present study was designed to further explore these increases in subsecond DA dynamics triggered by negative stimuli using voltammetry in anesthetized rats. Our experiments revealed that repeated exposure to a tail pinch resulted in more efficacious DA release in rat nucleus accumbens. This fact may suggest a protective nature of immediate DA efflux. Furthermore, a sensitized DA response to a neutral stimulus, such as a touch, was discovered following several noxious pinches, while a touch applied before these pinches did not trigger DA release. Finally, it was found that the pinch-evoked DA efflux was significantly decreased by ethanol acutely administrated at an analgesic dose. Taken together, these results support the hypothesis that subsecond DA release in the nucleus accumbens may serve as an endogenous antinociceptive signal.
Collapse
Affiliation(s)
- Maria A. Mikhailova
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, United States
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Alex L. Deal
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Valentina P. Grinevich
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Keith D. Bonin
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27101, United States
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Evgeny A. Budygin
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, United States
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
6
|
Gómez-A A, Shnitko TA, Barefoot HM, Brightbill EL, Sombers LA, Nicola SM, Robinson DL. Local μ-Opioid Receptor Antagonism Blunts Evoked Phasic Dopamine Release in the Nucleus Accumbens of Rats. ACS Chem Neurosci 2019; 10:1935-1940. [PMID: 30388365 DOI: 10.1021/acschemneuro.8b00437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
μ-opioid receptors (MORs) in the nucleus accumbens (NAc) can regulate reward-related behaviors that are dependent on mesolimbic dopamine, but the precise mechanism of this MOR regulation is unknown. We hypothesized that MORs within the NAc core regulate dopamine release. Specifically, we infused the MOR antagonist CTAP (d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2) into the NAc core while dopamine release was evoked by electrical stimulation of the ventral tegmental area and measured by fast-scan cyclic voltammetry. We report that CTAP dose-dependently inhibited evoked dopamine release, with full blockade achieved with the 8 μg infusion. In contrast, evoked dopamine release increased after nomifensine infusion and was unchanged after vehicle infusion. These findings demonstrate profound local control of dopamine release by MORs within the NAc core, which has implications for regulation of reward processing.
Collapse
Affiliation(s)
| | | | | | | | - Leslie A. Sombers
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Saleem M. Nicola
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | | |
Collapse
|
7
|
Efimova EV, Gainetdinov RR, Budygin EA, Sotnikova TD. Dopamine transporter mutant animals: a translational perspective. J Neurogenet 2017; 30:5-15. [PMID: 27276191 DOI: 10.3109/01677063.2016.1144751] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The dopamine transporter (DAT) plays an important homeostatic role in the control of both the extracellular and intraneuronal concentrations of dopamine, thereby providing effective control over activity of dopaminergic transmission. Since brain dopamine is known to be involved in numerous neuropsychiatric disorders, investigations using mice with genetically altered DAT function and thus intensity of dopamine-mediated signaling have provided numerous insights into the pathology of these disorders and novel pathological mechanisms that could be targeted to provide new therapeutic approaches for these disorders. In this brief overview, we discuss recent investigations involving animals with genetically altered DAT function, particularly focusing on translational studies providing new insights into pathology and pharmacology of dopamine-related disorders. Perspective applications of these and newly developed models of DAT dysfunction are also discussed.
Collapse
Affiliation(s)
- Evgeniya V Efimova
- a Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia ;,b Skolkovo Institute of Science and Technology , Skolkovo , Moscow Region , Russia
| | - Raul R Gainetdinov
- a Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia ;,b Skolkovo Institute of Science and Technology , Skolkovo , Moscow Region , Russia
| | - Evgeny A Budygin
- a Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia ;,c Department of Neurobiology and Anatomy , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Tatyana D Sotnikova
- a Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia
| |
Collapse
|
8
|
Shnitko TA, Mace KD, Sullivan KM, Martin WK, Andersen EH, Williams Avram SK, Johns JM, Robinson DL. Use of fast-scan cyclic voltammetry to assess phasic dopamine release in rat models of early postpartum maternal behavior and neglect. Behav Pharmacol 2017; 28:648-660. [PMID: 29068793 PMCID: PMC5680131 DOI: 10.1097/fbp.0000000000000347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Maternal behavior (MB) is a complex response to infant cues, orchestrated by postpartum neurophysiology. Although mesolimbic dopamine contributes toward MB, little is known about real-time dopamine fluctuations during the postpartum period. Thus, we used fast-scan cyclic voltammetry to measure individual dopamine transients in the nucleus accumbens of early postpartum rats and compared them with dopamine transients in virgins and in postpartum females exposed to cocaine during pregnancy, which is known to disrupt MB. We hypothesized that dopamine transients are normally enhanced postpartum and support MB. In anesthetized rats, electrically evoked dopamine release was larger and clearance was faster in postpartum females than in virgins and gestational cocaine exposure blocked the change in clearance. In awake rats, control mothers showed more dopamine transients than cocaine-exposed mothers during MB. Salient pup-produced stimuli may contribute toward differences in maternal phasic dopamine by evoking dopamine transients; supporting the feasibility of this hypothesis, urine composition (glucose, ketones, and leukocytes) differed between unexposed and cocaine-exposed infants. These data, resulting from the novel application of fast-scan cyclic voltammetry to models of MB, support the hypothesis that phasic dopamine signaling is enhanced postpartum. Future studies with additional controls can delineate which aspects of gestational cocaine reduce dopamine clearance and transient frequency.
Collapse
Affiliation(s)
- Tatiana A. Shnitko
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Kyla D. Mace
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Kaitlin M. Sullivan
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - W. Kyle Martin
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Josephine M. Johns
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Park J, Wakabayashi KT, Szalkowski C, Bhimani RV. Heterogeneous extracellular dopamine regulation in the subregions of the olfactory tubercle. J Neurochem 2017; 142:365-377. [PMID: 28498499 DOI: 10.1111/jnc.14069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/04/2017] [Accepted: 04/26/2017] [Indexed: 12/01/2022]
Abstract
Recent studies show that dense dopamine (DA) innervation from the ventral tegmental area to the olfactory tubercle (OT) may play an important role in processing multisensory information pertaining to arousal and reward, yet little is known about DA regulation in the OT. This is mainly due to the anatomical limitations of conventional methods of determining DA dynamics in small heterogeneous OT subregions located in the ventral most part of the brain. Additionally, there is increasing awareness that anteromedial and anterolateral subregions of the OT have distinct functional roles in natural and psychostimulant drug reinforcement as well as in regulating other types of behavioral responses, such as aversion. Here, we compared extracellular DA regulation (release and clearance) in three subregions (anteromedial, anterolateral, and posterior) of the OT of urethane-anesthetized rats, using in vivo fast-scan cyclic voltammetry following electrical stimulation of ventral tegmental area dopaminergic cell bodies. The neurochemical, anatomical, and pharmacological evidence confirmed that the major electrically evoked catecholamine in the OT was DA across both its anteroposterior and mediolateral extent. While both D2 autoreceptors and DA transporters play important roles in regulating DA evoked in OT subregions, DA in the anterolateral OT was regulated less by the D2 receptors when compared to other OT subregions. Comparing previous data from other DA rich ventral striatum regions, the slow DA clearance across the OT subregions may lead to a high extracellular DA concentration and contribute towards volume transmission. These differences in DA regulation in the terminals of OT subregions and other limbic structures will help us understand the neural regulatory mechanisms of DA in the OT, which may elucidate its distinct functional contribution in the ventral striatum towards mediating aversion, reward and addiction processes.
Collapse
Affiliation(s)
- Jinwoo Park
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.,Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Ken T Wakabayashi
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.,Research Institute on Addictions, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Caitlin Szalkowski
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Rohan V Bhimani
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
10
|
Lovinger DM, Alvarez VA. Alcohol and basal ganglia circuitry: Animal models. Neuropharmacology 2017; 122:46-55. [PMID: 28341206 DOI: 10.1016/j.neuropharm.2017.03.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 01/18/2023]
Abstract
Brain circuits that include the cortex and basal ganglia make up the bulk of the forebrain, and influence behaviors related to almost all aspects of affective, cognitive and sensorimotor functions. The learning of new actions as well as association of existing action repertoires with environmental events are key functions of this circuitry. Unfortunately, the cortico-basal ganglia circuitry is also the target for all drugs of abuse, including alcohol. This makes the circuitry susceptible to the actions of chronic alcohol exposure that impairs circuit function in ways that contribute to cognitive dysfunction and drug use disorders. In the present review, we describe the connectivity and functions of the associative, limbic and sensorimotor cortico-basal ganglia circuits. We then review the effects of acute and chronic alcohol exposure on circuit function. Finally, we review studies examining the roles of the different circuits and circuit elements in alcohol use and abuse. We attempt to synthesize information from a variety of studies in laboratory animals and humans to generate hypotheses about how the three circuits interact with each other and with the other brain circuits during exposure to alcohol and during the development of alcohol use disorders. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Veronica A Alvarez
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
11
|
Shnitko TA, Spear LP, Robinson DL. Adolescent binge-like alcohol alters sensitivity to acute alcohol effects on dopamine release in the nucleus accumbens of adult rats. Psychopharmacology (Berl) 2016; 233:361-71. [PMID: 26487039 PMCID: PMC4840100 DOI: 10.1007/s00213-015-4106-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/08/2015] [Indexed: 01/06/2023]
Abstract
UNLABELLED Rationale: Early onset of alcohol drinking has been associated with alcohol abuse in adulthood. The neurobiology of this phenomenon is unclear, but mesolimbic dopamine pathways, which are dynamic during adolescence, may play a role. OBJECTIVES We investigated the impact of adolescent binge-like alcohol on phasic dopaminergic neurotransmission during adulthood. METHODS Rats received intermittent intragastric ethanol, water, or nothing during adolescence. In adulthood, electrically evoked dopamine release and subsequent uptake were measured in the nucleus accumbens core at baseline and after acute challenge of ethanol or saline. RESULTS Adolescent ethanol exposure did not alter basal measures of evoked dopamine release or uptake. Ethanol challenge dose-dependently decreased the amplitude of evoked dopamine release in rats by 30–50 % in control groups, as previously reported, but did not alter evoked release in ethanol-exposed animals. To address the mechanism by which ethanol altered dopamine signaling, the evoked signals were modeled to estimate dopamine efflux per impulse and the velocity of the dopamine transporter. Dopamine uptake was slower in all exposure groups after ethanol challenge compared to saline, while dopamine efflux per pulse of electrical stimulation was reduced by ethanol only in ethanol-naive rats. CONCLUSIONS The results demonstrate that exposure to binge levels of ethanol during adolescence blunts the effect of ethanol challenge to reduce the amplitude of phasic dopamine release in adulthood. Large dopamine transients may result in more extracellular dopamine after alcohol challenge in adolescent-exposed rats and may be one mechanism by which alcohol is more reinforcing in people who initiated drinking at an early age.
Collapse
Affiliation(s)
- Tatiana A. Shnitko
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Linda P. Spear
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA,Corresponding author: Donita L. Robinson, PhD, Bowles Center for Alcohol Studies, CB #7178, University of North Carolina, Chapel Hill, NC 27599–7178; ; Phone: 919–966–9178; Fax: 919–966–5679
| |
Collapse
|
12
|
Shnitko TA, Kennerly LC, Spear LP, Robinson DL. Ethanol reduces evoked dopamine release and slows clearance in the rat medial prefrontal cortex. Alcohol Clin Exp Res 2015; 38:2969-77. [PMID: 25581652 DOI: 10.1111/acer.12587] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/18/2014] [Indexed: 01/26/2023]
Abstract
BACKGROUND Ethanol (EtOH) intoxication affects cognitive performance, contributing to attentional deficits and poor decision making, which may occur via actions in the medial prefrontal cortex (mPFC). mPFC function is modulated by the catecholamines dopamine and norepinephrine. In this study, we examine the acute effects of EtOH on electrically evoked dopamine release and clearance in the mPFC of anesthetized rats naïve to alcohol or chronically exposed to alcohol during adolescence. METHODS Dopamine release and clearance was evoked by electrical stimulation of the ventral tegmental area (VTA) and measured in the mPFC of anesthetized rats with fast-scan cyclic voltammetry. In Experiments 1 and 2, effects of a high dose of EtOH (4 g/kg, intraperitoneally) on dopamine neurotransmission in the mPFC of EtOH-naïve rats and rats given EtOH exposure during adolescence were investigated. Effects of cumulative dosing of EtOH (0.5 to 4 g/kg) on the dopamine release and clearance were investigated in Experiment 3. Experiment 4 studied effects of EtOH locally applied to the VTA on the dopamine neurotransmission in the mPFC of EtOH-naïve rats. RESULTS A high dose of EtOH decreased evoked dopamine release within 10 minutes of administration in EtOH-naïve rats. When tested via cumulative dosing from 0.5 to 4 g/kg, both 2 and 4 g/kg EtOH inhibited evoked dopamine release in the mPFC of EtOH-naïve rats, while 4 g/kg EtOH also slowed dopamine clearance. A similar effect on electrically evoked dopamine release in the mPFC was observed after infusion of EtOH into the VTA. Interestingly, intermittent EtOH exposure during adolescence had no effect on observed changes in mPFC dopamine release and clearance induced by acute EtOH administration. CONCLUSIONS Taken together, these data describe EtOH-induced reductions in the dynamics of VTA-evoked mPFC dopamine release and clearance, with the VTA contributing to the attenuation of evoked mPFC dopamine release induced by EtOH.
Collapse
Affiliation(s)
- Tatiana A Shnitko
- Bowles Center for Alcohol Study , University of North Carolina, Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
13
|
Vena AA, Gonzales RA. Temporal profiles dissociate regional extracellular ethanol versus dopamine concentrations. ACS Chem Neurosci 2015; 6:37-47. [PMID: 25537116 PMCID: PMC4304481 DOI: 10.1021/cn500278b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In vivo monitoring of dopamine via microdialysis has demonstrated that acute, systemic ethanol increases extracellular dopamine in regions innervated by dopaminergic neurons originating in the ventral tegmental area and substantia nigra. Simultaneous measurement of dialysate dopamine and ethanol allows comparison of the time courses of their extracellular concentrations. Early studies demonstrated dissociations between the time courses of brain ethanol concentrations and dopaminergic responses in the nucleus accumbens (NAc) elicited by acute ethanol administration. Both brain ethanol and extracellular dopamine levels peak during the first 5 min following systemic ethanol administration, but the dopamine response returns to baseline while brain ethanol concentrations remain elevated. Post hoc analyses examined ratios of the dopamine response (represented as a percent above baseline) to tissue concentrations of ethanol at different time points within the first 25-30 min in the prefrontal cortex, NAc core and shell, and dorsomedial striatum following a single intravenous infusion of ethanol (1 g/kg). The temporal patterns of these "response ratios" differed across brain regions, possibly due to regional differences in the mechanisms underlying the decline of the dopamine signal associated with acute intravenous ethanol administration and/or to the differential effects of acute ethanol on the properties of subpopulations of midbrain dopamine neurons. This Review draws on neurochemical, physiological, and molecular studies to summarize the effects of acute ethanol administration on dopamine activity in the prefrontal cortex and striatal regions, to explore the potential reasons for the regional differences observed in the decline of ethanol-induced dopamine signals, and to suggest directions for future research.
Collapse
Affiliation(s)
- Ashley A. Vena
- College
of Pharmacy, Division of Pharmacology and
Toxicology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Rueben A. Gonzales
- College
of Pharmacy, Division of Pharmacology and
Toxicology, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Shnitko TA, Robinson DL. Anatomical and pharmacological characterization of catecholamine transients in the medial prefrontal cortex evoked by ventral tegmental area stimulation. Synapse 2014; 68:131-43. [PMID: 24285555 PMCID: PMC4060446 DOI: 10.1002/syn.21723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/30/2013] [Accepted: 10/11/2013] [Indexed: 02/03/2023]
Abstract
Voltammetric measurements of catecholamines in the medial prefrontal cortex (mPFC) are infrequent because of lack of chemical selectivity between dopamine and norepinephrine and their overlapping anatomical inputs. Here, we examined the contribution of norepinephrine to the catecholamine release in the mPFC evoked by electrical stimulation of the ventral tegmental area (VTA). Initially, electrical stimulation was delivered in the midbrain at incremental depths of -5 to -9.4 mm from bregma while catecholamine release was monitored in the mPFC. Although catecholamine release was observed at dorsal stimulation sites that may correspond to the dorsal noradrenergic bundle (DNB, containing noradrenergic axonal projections to the mPFC), maximal release was evoked by stimulation of the VTA (the source of dopaminergic input to the mPFC). Next, VTA-evoked catecholamine release was monitored in the mPFC before and after knife incision of the DNB, and no significant changes in the evoked catecholamine signals were found. These data indicated that DNB fibers did not contribute to the VTA-evoked catecholamine release observed in the mPFC. Finally, while the D2-receptor antagonist raclopride significantly altered VTA-evoked catecholamine release, the α₂-adrenergic receptor antagonist idazoxan did not. Specifically, raclopride reduced catecholamine release in the mPFC, opposite to that observed in the striatum, indicating differential autoreceptor regulation of mesocortical and mesostriatal neurons. Together, these findings suggest that the catecholamine release in the mPFC arising from VTA stimulation was predominately dopaminergic rather than noradrenergic.
Collapse
Affiliation(s)
- Tatiana A. Shnitko
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Rose JH, Calipari ES, Mathews TA, Jones SR. Greater ethanol-induced locomotor activation in DBA/2J versus C57BL/6J mice is not predicted by presynaptic striatal dopamine dynamics. PLoS One 2013; 8:e83852. [PMID: 24349553 PMCID: PMC3861521 DOI: 10.1371/journal.pone.0083852] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/18/2013] [Indexed: 12/13/2022] Open
Abstract
A large body of research has aimed to determine the neurochemical factors driving differential sensitivity to ethanol between individuals in an attempt to find predictors of ethanol abuse vulnerability. Here we find that the locomotor activating effects of ethanol are markedly greater in DBA/2J compared to C57BL/6J mice, although it is unclear as to what neurochemical differences between strains mediate this behavior. Dopamine elevations in the nucleus accumbens and caudate-putamen regulate locomotor behavior for most drugs, including ethanol; thus, we aimed to determine if differences in these regions predict strain differences in ethanol-induced locomotor activity. Previous studies suggest that ethanol interacts with the dopamine transporter, potentially mediating its locomotor activating effects; however, we found that ethanol had no effects on dopamine uptake in either strain. Ex vivo voltammetry allows for the determination of ethanol effects on presynaptic dopamine terminals, independent of drug-induced changes in firing rates of afferent inputs from either dopamine neurons or other neurotransmitter systems. However, differences in striatal dopamine dynamics did not predict the locomotor-activating effects of ethanol, since the inhibitory effects of ethanol on dopamine release were similar between strains. There were differences in presynaptic dopamine function between strains, with faster dopamine clearance in the caudate-putamen of DBA/2J mice; however, it is unclear how this difference relates to locomotor behavior. Because of the role of the dopamine system in reinforcement and reward learning, differences in dopamine signaling between the strains could have implications for addiction-related behaviors that extend beyond ethanol effects in the striatum.
Collapse
Affiliation(s)
- Jamie H. Rose
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Erin S. Calipari
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Tiffany A. Mathews
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States of America
| | - Sara R. Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
16
|
Wickham RJ, Solecki W, Rathbun LR, Neugebauer NM, Wightman RM, Addy NA. Advances in studying phasic dopamine signaling in brain reward mechanisms. Front Biosci (Elite Ed) 2013; 5:982-99. [PMID: 23747914 DOI: 10.2741/e678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The last sixty years of research has provided extraordinary advances of our knowledge of the reward system. Since its discovery as a neurotransmitter by Carlsson and colleagues (1), dopamine (DA) has emerged as an important mediator of reward processing. As a result, a number of electrochemical techniques have been developed to measure DA in the brain. Together, these techniques have begun to elucidate the complex roles of tonic and phasic DA signaling in reward processing and addiction. In this review, we will first provide a guide for the most commonly used electrochemical methods for DA detection and describe their utility in furthering our knowledge about DA's role in reward and addiction. Second, we will review the value of common in vitro and in vivo preparations and describe their ability to address different types of questions. Last, we will review recent data that has provided new mechanistic insight of in vivo phasic DA signaling and its role in reward processing and reward-mediated behavior.
Collapse
Affiliation(s)
- Robert J Wickham
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Ethanol (EtOH) has effects on numerous cellular molecular targets, and alterations in synaptic function are prominent among these effects. Acute exposure to EtOH activates or inhibits the function of proteins involved in synaptic transmission, while chronic exposure often produces opposing and/or compensatory/homeostatic effects on the expression, localization, and function of these proteins. Interactions between different neurotransmitters (e.g., neuropeptide effects on release of small molecule transmitters) can also influence both acute and chronic EtOH actions. Studies in intact animals indicate that the proteins affected by EtOH also play roles in the neural actions of the drug, including acute intoxication, tolerance, dependence, and the seeking and drinking of EtOH. This chapter reviews the literature describing these acute and chronic synaptic effects of EtOH and their relevance for synaptic transmission, plasticity, and behavior.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, NIAAA, 5625 Fishers Lane, Room TS-13A, Rockville, MD 20852, USA.
| | | |
Collapse
|
18
|
Yorgason JT, España RA, Jones SR. Demon voltammetry and analysis software: analysis of cocaine-induced alterations in dopamine signaling using multiple kinetic measures. J Neurosci Methods 2011; 202:158-64. [PMID: 21392532 DOI: 10.1016/j.jneumeth.2011.03.001] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 02/26/2011] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
Abstract
The fast sampling rates of fast scan cyclic voltammetry make it a favorable method for measuring changes in brain monoamine release and uptake kinetics in slice, anesthetized, and freely moving preparations. The most common analysis technique for evaluating changes in dopamine signaling uses well-established Michaelis-Menten kinetic methods that can accurately model dopamine release and uptake parameters across multiple experimental conditions. Nevertheless, over the years, many researchers have turned to other measures to estimate changes in dopamine release and uptake, yet to our knowledge no systematic comparison amongst these measures has been conducted. To address this lack of uniformity in kinetic analyses, we have created the Demon Voltammetry and Analysis software suite, which is freely available to academic and non-profit institutions. Here we present an explanation of the Demon Voltammetry acquisition and analysis features, and demonstrate its utility for acquiring voltammetric data under in vitro, in vivo anesthetized, and freely moving conditions. Additionally, the software was used to compare the sensitivity of multiple kinetic measures of release and uptake to cocaine-induced changes in electrically evoked dopamine efflux in nucleus accumbens core slices. Specifically, we examined and compared tau, full width at half height, half-life, T₂₀, T₈₀, slope, peak height, calibrated peak dopamine concentration, and area under the curve to the well-characterized Michaelis-Menten parameters, dopamine per pulse, maximal uptake rate, and apparent affinity. Based on observed results we recommend tau for measuring dopamine uptake and calibrated peak dopamine concentration for measuring dopamine release.
Collapse
Affiliation(s)
- Jordan T Yorgason
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
19
|
Hagan CE, Neumaier JF, Schenk JO. Rotating disk electrode voltammetric measurements of serotonin transporter kinetics in synaptosomes. J Neurosci Methods 2010; 193:29-38. [PMID: 20713085 PMCID: PMC2952731 DOI: 10.1016/j.jneumeth.2010.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 12/13/2022]
Abstract
Altered serotonin (5-HT) signaling is implicated in several neuropsychiatric disorders, including depression, anxiety, obsessive-compulsive disorder, and autism. The 5-HT transporter (SERT) modulates 5-HT neurotransmission strength and duration. This is the first study using rotating disk electrode voltammetry (RDEV) to measure 5-HT clearance. SERT kinetics were measured in whole brain synaptosomes. Uptake kinetics of exogenous 5-HT were measured using glassy carbon electrodes rotated in 500 μL glass chambers containing synaptosomes from SERT-knockout (-/-), heterozygous (+/-), or wild-type (+/+) mice. RDEV detected 5-HT concentrations of 5nM and higher. Initial velocities were kinetically resolved with K(m) and V(max) values of 99±35 standard error of regression (SER) nM and 181±11 SER fmol/(s×mg protein), respectively in wild-type synaptosomes. The method enables control over drug and chemical concentrations, facilitating interpretation of results. Results are compared in detail to other techniques used to measure SERT kinetics, including tritium labeled assays, chronoamperometry, and fast scan cyclic voltammetry. RDEV exhibits decreased 5-HT detection limits, decreased vulnerability to 5-HT oxidation products that reduce electrode sensitivity, and also overcomes diffusion limitations via forced convection by providing a continuous, kinetically resolved signal. Finally, RDEV distinguishes functional differences between genotypes, notably, between wild-type and heterozygous mice, an experimental problem with other experimental approaches.
Collapse
Affiliation(s)
- Catherine E Hagan
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
20
|
Pelkonen A, Hiltunen M, Kiianmaa K, Yavich L. Stimulated dopamine overflow and alpha-synuclein expression in the nucleus accumbens core distinguish rats bred for differential ethanol preference. J Neurochem 2010; 114:1168-76. [PMID: 20533994 DOI: 10.1111/j.1471-4159.2010.06844.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The key neurochemical systems and structures involved in the predisposition to substance abuse and preference to ethanol (EtOH) are not known in detail but clearly dopamine (DA) is an important modulator of addiction. Recent data indicate that alpha-synuclein (alpha-syn), a pre-synaptic protein, plays a role in regulation of DA release from the pre-synaptic terminals in striatum and the expression of this protein is different after drug abuse or following abstinence. In the present work, we analysed stimulated DA overflow in the dorsal and ventral striatum in EtOH naïve alko alchohol (AA) and alko non-alchohol (ANA) rats selected for more than 100 generations for their differential EtOH preference. In the same structures, we studied the expression of alpha-syn using western blotting. AA rats, in comparison with ANA rats, showed a marked reduction of stimulated peak DA overflow and higher levels of alpha-syn in the nucleus accumbens core. In the same structure, DA re-uptake was increased in AA rats in comparison with ANA rats. The effects of EtOH at low (0.1 g/kg) and higher (3 mg/kg) doses on DA overflow measured in the nucleus accumbens shell were similar in both lines. These results indicate that high expression of alpha-syn may contribute to the reduced DA overflow and the possible activation of re-uptake in the nucleus accumbens core of AA rats in comparison with ANA rats.
Collapse
Affiliation(s)
- Anssi Pelkonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| | | | | | | |
Collapse
|
21
|
Robinson DL, Howard EC, McConnell S, Gonzales RA, Wightman RM. Disparity between tonic and phasic ethanol-induced dopamine increases in the nucleus accumbens of rats. Alcohol Clin Exp Res 2009; 33:1187-96. [PMID: 19389195 PMCID: PMC2947861 DOI: 10.1111/j.1530-0277.2009.00942.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored. METHODS We measured tonic and phasic dopamine fluctuations in the nucleus accumbens of rats in response to ethanol (within-subject cumulative dosing, 0.125 to 2 g/kg, i.v.). RESULTS Microdialysis samples yielded significant tonic increases in dopamine concentrations at 1 to 2 g/kg ethanol in each rat, while repeated saline infusions had no effect. When monitored with fast scan cyclic voltammetry, ethanol increased the frequency of dopamine transients in 6 of 16 recording sites, in contrast to the uniform effect of ethanol as measured with microdialysis. In the remaining 10 recording sites that were unresponsive to ethanol, dopamine transients either decreased in frequency or were unaffected by cumulative ethanol infusions, patterns also observed during repeated saline infusions. The responsiveness of particular recording sites to ethanol was not correlated with either core versus shell placement of the electrodes or the basal rate of dopamine transients. Importantly, the phasic response pattern to a single dose of ethanol at a particular site was qualitatively reproduced when a second dose of ethanol was administered, suggesting that the variable between-site effects reflected specific pharmacology at that recording site. CONCLUSIONS These data demonstrate that the relatively uniform dopamine concentrations obtained with microdialysis can mask a dramatic heterogeneity of phasic dopamine release within the accumbens.
Collapse
Affiliation(s)
- Donita L Robinson
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina (DLR, SM), Chapel Hill, North Carolina, USA.
| | | | | | | | | |
Collapse
|
22
|
Zhu J, Reith MEA. Role of the dopamine transporter in the action of psychostimulants, nicotine, and other drugs of abuse. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2009; 7:393-409. [PMID: 19128199 DOI: 10.2174/187152708786927877] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A number of studies over the last two decades have demonstrated the critical importance of dopamine (DA) in the behavioral pharmacology and addictive properties of abused drugs. The DA transporter (DAT) is a major target for drugs of abuse in the category of psychostimulants, and for methylphenidate (MPH), a drug used for treating attention deficit hyperactivity disorder (ADHD), which can also be a psychostimulant drug of abuse. Other drugs of abuse such as nicotine, ethanol, heroin and morphine interact with the DAT in more indirect ways. Despite the different ways in which drugs of abuse can affect DAT function, one evolving theme in all cases is regulation of the DAT at the level of surface expression. DAT function is dynamically regulated by multiple intracellular and extracellular signaling pathways and several protein-protein interactions. In addition, DAT expression is regulated through the removal (internalization) and recycling of the protein from the cell surface. Furthermore, recent studies have demonstrated that individual differences in response to novel environments and psychostimulants can be predicted based on individual basal functional DAT expression. Although current knowledge of multiple factors regulating DAT activity has greatly expanded, many aspects of this regulation remain to be elucidated; these data will enable efforts to identify drugs that might be used therapeutically for drug dependence therapeutics.
Collapse
Affiliation(s)
- J Zhu
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA.
| | | |
Collapse
|
23
|
Abstract
Carbon-fiber microelectrodes (CFMEs) have been a useful tool for measuring rapid changes in neurotransmitters because of their small size, sensitivity, and good electrochemical properties. In this article, we highlight recent advances using CFMEs for measuring neurotransmitters in vivo. Dopamine has been a primary neurotransmitter of interest but direct electrochemical detection of other neurochemicals including nitric oxide and adenosine has also been investigated. Surface treatments have been studied to enhance electrode sensitivity, such as covalent modification or the addition of a layer of carbon nanotubes. Enzyme-modified microelectrodes that detect non-electroactive compounds further extend the usefulness of CFMEs beyond the traditional monoamines. CFMEs continue to be used in vivo to understand basic neurobiological mechanisms and the actions of pharmacological agents, including drugs of abuse. Advances in sensitivity and instrumentation now allow CFMEs to be used for measurements of natural dopamine release that occur during behavioral experiments. A new technique combining electrochemistry with electrophysiology at a single microelectrode facilitates a better understanding of neurotransmitter concentrations and their effects on cell firing. Future research in this field will likely concentrate on fabricating smaller electrodes and electrode arrays, as well as expanding the use of CFMEs in neuroscience beyond dopamine.
Collapse
Affiliation(s)
- Megan L Huffman
- Department of Chemistry, University of Virginia, P.O. Box 400319, Charlottesville, VA 22904, USA
| | | |
Collapse
|
24
|
Riherd DN, Galindo DG, Krause LR, Mayfield RD. Ethanol potentiates dopamine uptake and increases cell surface distribution of dopamine transporters expressed in SK-N-SH and HEK-293 cells. Alcohol 2008; 42:499-508. [PMID: 18579334 DOI: 10.1016/j.alcohol.2008.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/29/2008] [Accepted: 04/29/2008] [Indexed: 11/15/2022]
Abstract
Ethanol increases dopaminergic release in the reward and reinforcement areas of the brain. The primary protein responsible for terminating dopamine (DA) neurotransmission is the plasma membrane-bound dopamine transporter (DAT). In vitro electrophysiological and biochemical studies in Xenopus laevis oocytes have previously shown ethanol potentiates DAT function and increases transporter-binding sites. The potentiating effect of ethanol on the transporter is eliminated in Xenopus oocytes by the DAT mutation glycine 130 to threonine. However, ethanol's action on DAT functional regulation has yet to be examined in mammalian cell expression systems. To further understand the molecular mechanisms of ethanol's action on DAT, we determined the direct mechanistic action of short-term (< or =2 h) ethanol exposure on transporter function and cell surface distribution in non-neuronal human embryonic kidney cells-293 (HEK-293) and neuronal SK-N-SH neuroblastoma cells expressing the transporter. Wild-type or G130T mutant DAT were overexpressed in HEK-293 and SK-N-SH cells. Ethanol potentiated DAT mediated [(3)H]DA uptake in a dose (25, 50, 100 mM), but not time dependent manner in cells expressing wild-type DAT. Ethanol-induced potentiation of uptake was significantly reduced in cells expressing the G130T mutant. Analysis of DA uptake kinetic parameters indicates 100-mM ethanol exposure increased [(3)H]DA uptake velocity (V(max)), while affinity for DA (K(m)) remained unchanged. The effect of ethanol on wild-type DAT surface expression was measured by biotinylation cell surface labeling. DAT surface expression increased 40%-50% after 1-h, 100-mM ethanol exposure. These studies show ethanol potentiates DAT functional regulation in both neuronal and non-neuronal cells, suggesting a direct mechanistic action of ethanol on transporter trafficking in mammalian systems. Our findings demonstrate ethanol's action on DAT function and regulation is consistent across multiple model systems.
Collapse
Affiliation(s)
- D Nicole Riherd
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
25
|
Wilson GS, Johnson MA. In-vivo electrochemistry: what can we learn about living systems? Chem Rev 2008; 108:2462-81. [PMID: 18558752 DOI: 10.1021/cr068082i] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- George S Wilson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA.
| | | |
Collapse
|
26
|
Méndez M, Morales-Mulia M, Pérez-Luna JM. Ethanol-induced changes in proenkephalin mRNA expression in the rat nigrostriatal pathway. J Mol Neurosci 2008; 34:225-34. [PMID: 18227978 DOI: 10.1007/s12031-008-9039-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
Abstract
Endogenous opioid systems have been suggested to play a key role in ethanol reinforcement mechanisms and alcohol-drinking behavior. Ethanol induces differential alterations in opioid peptide expression in brain areas of the reward circuits, which may be linked to the reinforcing effects of ethanol. In addition, ethanol-induced alterations in opioidergic nigrostriatal transmission could be involved in brain sensitivity to ethanol and play a role in addictive processes. The aim of this work was to study the effects of acute ethanol administration on proenkephalin (proenk) mRNA expression in the rat substantia nigra and caudate-putamen (CP) for up to 24 h post treatment. Male Wistar rats received ethanol (2.5 g/kg) or distilled water by intragastric administration, and proenk mRNA expression was studied by in situ hybridization and densitometry. Ethanol transiently increased proenk mRNA expression in the CP 1 h after drug administration. Proenk mRNA levels remained elevated 2 h post treatment in the anterior-medial and medial-posterior regions of the CP. In contrast, ethanol decreased proenk mRNA expression in the substantia nigra pars compacta and pars reticulata 2 h after drug exposure. Alterations in enkephalin expression in the substantia nigra and CP in response to ethanol exposure could be involved in the mechanisms underlying brain sensitivity to the drug.
Collapse
Affiliation(s)
- Milagros Méndez
- Departamento de Neuroquímica, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370, México D.F., México.
| | | | | |
Collapse
|
27
|
Budygin EA, Oleson EB, Mathews TA, Läck AK, Diaz MR, McCool BA, Jones SR. Effects of chronic alcohol exposure on dopamine uptake in rat nucleus accumbens and caudate putamen. Psychopharmacology (Berl) 2007; 193:495-501. [PMID: 17492432 DOI: 10.1007/s00213-007-0812-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 04/21/2007] [Indexed: 11/25/2022]
Abstract
RATIONALE Existing data strongly suggest that alcohol affects dopamine (DA) neurotransmission in the brain. However, many questions remain about the effects of alcohol on the delicate equilibrium between such neurochemical processes as DA release and uptake. Dysregulation of these processes in the mesolimbic and nigrostriatal systems after chronic alcohol ingestion could be a neuroadaptation contributing to dependence. OBJECTIVES In the present study, we have employed an alcohol vapor inhalation model to characterize the effects of chronic alcohol exposure on DA dynamics in rat nucleus accumbens (NAc) and caudate putamen (CP) using fast-scan cyclic voltammetry (FSCV) in brain slices. This method provides a unique view of real-time, spatially resolved changes in DA concentration. RESULTS We found that chronic alcohol exposure enhanced DA uptake rates in rat NAc and CP. These changes would have the effect of down-regulating extracellular DA levels, presumably a compensatory effect related to increased DA release by repeated alcohol exposure. The sensitivity of terminal release-regulating DA autoreceptors was not different in alcohol-exposed rats compared with alcohol-naïve animals. CONCLUSIONS The DA uptake changes after chronic alcohol exposure documented here using FSCV may be associated with a compensatory response of the DA system aimed at decreasing DA signaling. Alterations in autoreceptor function may require relatively long lasting alcohol exposure.
Collapse
Affiliation(s)
- Evgeny A Budygin
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Riegel AC, Zapata A, Shippenberg TS, French ED. The abused inhalant toluene increases dopamine release in the nucleus accumbens by directly stimulating ventral tegmental area neurons. Neuropsychopharmacology 2007; 32:1558-69. [PMID: 17213847 DOI: 10.1038/sj.npp.1301273] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recreational abuse of toluene-containing volatile inhalants by adolescents is a significant public health problem. The mechanisms underlying the abuse potential of such substances remain unclear, but could involve increased activity in mesoaccumbal dopamine (DA) afferents innervating the nucleus accumbens (ACB). Here, using in vitro electrophysiology, we show that application of behaviorally relevant concentrations of toluene directly stimulates DA neurons in the ventral tegmental area (VTA), but not surrounding midbrain regions. Toluene stimulation of VTA neurons persists when synaptic transmission is reduced. Moreover, unlike non-DA neurons, the magnitude of VTA DA neuron firing does not decline during longer exposures designed to emulate 'huffing'. Using dual-probe in vivo microdialysis, we show that perfusion of toluene directly into the VTA increases DA concentrations in the VTA (somatodendritic release) and its terminal projection site, the ACB. These results provide the first demonstration that even brief exposure to toluene increases action potential drive onto mesoaccumbal VTA DA neurons, thereby enhancing DA release in the ACB. The finding that toluene stimulates mesoaccumbal neurotransmission by activating VTA DA neurons directly (independently of transynaptic inputs) provide insights into the neural substrates that may contribute to the initiation and pathophysiology of toluene abuse.
Collapse
Affiliation(s)
- Arthur C Riegel
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| | | | | | | |
Collapse
|
29
|
Cheer JF, Wassum KM, Sombers LA, Heien MLAV, Ariansen JL, Aragona BJ, Phillips PEM, Wightman RM. Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J Neurosci 2007; 27:791-5. [PMID: 17251418 PMCID: PMC6672925 DOI: 10.1523/jneurosci.4152-06.2007] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transient surges of dopamine in the nucleus accumbens are associated with drug seeking. Using a voltammetric sensor with high temporal and spatial resolution, we demonstrate differences in the temporal profile of dopamine concentration transients caused by acute doses of nicotine, ethanol, and cocaine in the nucleus accumbens shell of freely moving rats. Despite differential release dynamics, all drug effects are uniformly inhibited by administration of rimonabant, a cannabinoid receptor (CB1) antagonist, suggesting that an increase in endocannabinoid tone facilitates the effects of commonly abused drugs on subsecond dopamine release. These time-resolved chemical measurements provide unique insight into the neurobiological effectiveness of rimonabant in treating addictive disorders.
Collapse
Affiliation(s)
- Joseph F. Cheer
- Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| | - Kate M. Wassum
- Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| | - Leslie A. Sombers
- Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| | - Michael L. A. V. Heien
- Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| | - Jennifer L. Ariansen
- Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| | - Brandon J. Aragona
- Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| | - Paul E. M. Phillips
- Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| | - R. Mark Wightman
- Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| |
Collapse
|
30
|
Huber M, Kirchler E, Karner M, Pycha R. Delusional parasitosis and the dopamine transporter. A new insight of etiology? Med Hypotheses 2007; 68:1351-8. [PMID: 17134847 DOI: 10.1016/j.mehy.2006.07.061] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 07/16/2006] [Indexed: 11/20/2022]
Abstract
Delusional parasitosis (DP) is a psychotic condition in which a person has the unshakeable and mistaken belief (delusion) and/or aberrant perception (hallucination) of being infested with parasites. The disorder will be usually classified in a primary DP-group without a detectable cause (so-called pure forms), while secondary DP-groups are associated with general organic conditions, psychiatric illnesses and drugs (substance induced). Etiology and pathophysiology of DP remain however unknown. In the present paper we hypothesize for the first time a decreased striatal dopamine transporter (DAT)-functioning (corresponding with an increased extracellular dopamine-level) as etiologic condition for DP (primary and secondary groups). The DAT as key regulator of the dopamine-reuptake in the human brain is well known (regulation of the extracellular dopamine concentration). It is a presynaptic plasma membrane protein highly dense represented in the striatum. The hypothesis of a decreased DAT-functioning as etiologic condition by DP is revealed in case reports which show that DAT-inhibitors, such as cocaine, pemoline, methylphenidate and other amphetamine-derivatives can induce the clinical expression of DP. Several other associated causes of secondary DP-groups (medications, parkinson, chorea huntington, multiple system atrophy, diabetes, cerebrovascular diseases, alcoholism, traumatic brain injury, hyperuricemia, human immunodeficiency virus, iron deficiency, schizophrenia, depression) suggest that the clinical expression of DP may be related to a decreased striatal DAT-functioning (blocking, reduced ligand binding, reduced density, reduced activity). Our examined DP-cases (2-females) show means of magnetic resonance imaging a structurally damaged striatum. Furthermore, we presume that by the primary DP-group, the physiologically age-related decline of the DAT-density is pathologically elevated. Based on this hypothesis we show in the present paper the relation between DP and decreased striatal DAT-functioning, trying to give a new insight into the pathophysiologically mechanism involved. The hypothesis provides supporting evidence that increased levels of extracellular dopamine in the striatum of DP-patients is likely to be the result of decreased DAT-functioning and not increased rates of release. The hypothesis can be investigated simply by dopamine transporter imaging in patients with DP.
Collapse
Affiliation(s)
- M Huber
- Department of Psychiatry, General Hospital SB-Bruneck, Spitalstrasse 4, I-39031 Bruneck, Italy.
| | | | | | | |
Collapse
|
31
|
Mathews TA, John CE, Lapa GB, Budygin EA, Jones SR. No role of the dopamine transporter in acute ethanol effects on striatal dopamine dynamics. Synapse 2006; 60:288-94. [PMID: 16786536 DOI: 10.1002/syn.20301] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The acute effects of ethanol on dopamine (DA) release and clearance in the caudate-putamen were evaluated in wild-type and dopamine transporter (DAT) knockout (DAT-KO) mice, using microdialysis and voltammetry. Dialysate DA levels were elevated, approximately 80% above baseline levels, after administration of 2 g/kg ethanol in both wild-type and DAT-KO mice. In brain slices containing the caudate-putamen, a low (20 mM) concentration of ethanol produced no change in electrically stimulated DA release in either wild-type or DAT-KO mice. A high concentration (200 mM) of ethanol caused a similar decrease in DA release in slices from both types of mice. DA clearance was unaltered across the genotypes at low and high concentrations of ethanol. The fact that ethanol had similar effects in wild-type and DAT-KO mice, measured by in vivo microdialysis or brain slice voltammetry, supports the idea that acute ethanol does not interact with the DAT to produce its effects on the DA system.
Collapse
Affiliation(s)
- Tiffany A Mathews
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | |
Collapse
|
32
|
Jones SR, Mathews TA, Budygin EA. Effect of moderate ethanol dose on dopamine uptake in rat nucleus accumbens in vivo. Synapse 2006; 60:251-5. [PMID: 16752364 DOI: 10.1002/syn.20294] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study was designed to evaluate the effects of a moderate dose of ethanol (1 g/kg) on dopamine (DA) dynamics in rat nucleus accumbens (NAc) using fast-scan cyclic voltammetry. Voltammetric recordings were made every 100 ms at a carbon fiber microelectrode, positioned in the NAc core. Acute ethanol did not significantly alter DA uptake parameters (K(m) and V(max)), but amplitudes of the DA signals were decreased after the drug in both freely moving and anesthetized rats. Therefore, the present in vivo voltammetry results suggest that DA uptake changes are not involved in ethanol-induced increases in extracellular DA concentrations.
Collapse
Affiliation(s)
- Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
33
|
Daws LC, Montañez S, Munn JL, Owens WA, Baganz NL, Boyce-Rustay JM, Millstein RA, Wiedholz LM, Murphy DL, Holmes A. Ethanol inhibits clearance of brain serotonin by a serotonin transporter-independent mechanism. J Neurosci 2006; 26:6431-8. [PMID: 16775130 PMCID: PMC6674049 DOI: 10.1523/jneurosci.4050-05.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Brain serotonin (5-HT) modulates the neural and behavioral effects of ethanol in a manner that remains poorly understood. Here we show that treatment with physiologically relevant (i.e., moderately intoxicating) doses of ethanol inhibits clearance of 5-HT from extracellular fluid in the mouse hippocampus. This finding demonstrates, in vivo, a key molecular mechanism by which ethanol modulates serotonergic neurotransmission. The 5-HT transporter (5-HTT) is the principle means of 5-HT reuptake in the brain and an obvious candidate mechanism for the effect of ethanol to inhibit 5-HT clearance. However, our second major finding was that genetic inactivation of the 5-HTT in a knock-out mouse not only failed to prevent ethanol-induced inhibition of 5-HT clearance, but actually potentiated this effect. Ethanol-induced inhibition of 5-HT clearance was also potentiated in nonmutant mice by cotreatment with a 5-HTT antagonist. Providing a link with potential behavioral manifestations of this neural phenotype, 5-HTT knock-out mice also exhibited exaggerated sensitivity to behavioral intoxication, as assayed by the sedative/hypnotic effects of ethanol. This clearly demonstrates that the 5-HTT is not necessary for the neural and behavioral effects of ethanol observed herein and that genetic or pharmacological inactivation of the 5-HTT unmasks involvement of other principle mechanisms. These data are intriguing given growing evidence implicating the 5-HTT in the pathophysiology and treatment of alcoholism and neuropsychiatric conditions frequently comorbid with alcoholism, such as depression. The present findings provide new insights into the actions of ethanol on brain function and behavior.
Collapse
Affiliation(s)
- Lynette C Daws
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Goldowitz D, Matthews DB, Hamre KM, Mittleman G, Chesler EJ, Becker HC, Lopez MF, Jones SR, Mathews TA, Miles MF, Kerns R, Grant KA. Progress in Using Mouse Inbred Strains, Consomics, and Mutants to Identify Genes Related to Stress, Anxiety, and Alcohol Phenotypes. Alcohol Clin Exp Res 2006; 30:1066-78. [PMID: 16737467 DOI: 10.1111/j.1530-0277.2006.00125.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This article summarizes the proceedings of a symposium that took place at the 2005 meeting of the Research Society on Alcoholism. The organizers/chairs were Daniel Goldowitz and Katheen A. Grant. The presentations were as follows: (1) High-Throughput Screening for Ethanol Phenotypes, by Douglas B. Matthews and Kristin M. Hamre; (2) Genetic Basis of Schedule-Induced Polydipsia in Mice, by Guy Mittleman and Elissa J. Chesler; (3) Effects of Stress and Ethanol Dependence on Ethanol Self-administration in Inbred and Mutant Mice, by Howard C. Becker and Marcelo F. Lopez; (4) Changes in Dopaminergic Mechanisms Associated With Ethanol Dependence, by Sara R. Jones and Tiffany A. Mathews; and (5) Defining Brain Region-Specific Gene Networks Relevant to Ethanol Behaviors, by Michael F. Miles and Robnet Kerns.
Collapse
Affiliation(s)
- Daniel Goldowitz
- University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Volz TJ, Hanson GR, Fleckenstein AE. Measurement of kinetically resolved vesicular dopamine uptake and efflux using rotating disk electrode voltammetry. J Neurosci Methods 2006; 155:109-15. [PMID: 16480775 DOI: 10.1016/j.jneumeth.2006.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 11/03/2005] [Accepted: 01/06/2006] [Indexed: 11/17/2022]
Abstract
The vesicular monoamine transporter-2 (VMAT-2) sequesters cytoplasmic dopamine (DA) into vesicles for storage and subsequent release. VMAT-2 activity has traditionally been measured in small synaptic vesicles isolated from rat striatum by monitoring [3H] DA uptake and in cellular expression systems using fast scan cyclic voltammetry. This is the first report using rotating disk electrode (RDE) voltammetry to measure VMAT-2 DA uptake and efflux in small synaptic vesicles. DA uptake profiles followed mixed order kinetics with apparent zero order kinetics for the first 25 s and apparent first order kinetics thereafter. Vesicular DA uptake was temperature- and ATP-dependent and was blocked by the VMAT-2 inhibitor tetrabenazine. Initial velocities of DA uptake were kinetically resolved and displayed Michaelis-Menten kinetics with a Km and Vmax of 289 +/- 59 nM and 1.9 +/- 0.2 fmol/(s microg protein), respectively. Methamphetamine-induced DA efflux was blocked by tetrabenazine and kinetically resolved with an initial velocity of 0.54 +/- 0.08 fmol/(s microg protein). These results suggest that RDE voltammetry can be used to make kinetically resolved measurements of vesicular DA uptake and efflux and will allow the design of experiments that could reveal important information about the kinetics of VMAT-2 activity and its inhibition.
Collapse
Affiliation(s)
- Trent J Volz
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|