1
|
Lu H, Wise SS, Toyoda JH, Speer RM, Croom-Perez TJ, Meaza I, Kouokam JC, Wise JL, Hoyle G, Chen N, Wise JP, Kondo K, Toba H, Takizawa H, Wise JP. Particulate hexavalent chromium exposure induces DNA double-strand breaks and inhibits homologous recombination repair in rat and human lung tissues. CHEMOSPHERE 2025; 370:143982. [PMID: 39701314 DOI: 10.1016/j.chemosphere.2024.143982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Lung cancer is an important human health concern because of its high mortality rate, with many cases caused by environmental chemicals other than tobacco. Particulate hexavalent chromium [Cr(VI)] is a well-established human lung carcinogen, but how Cr(VI) induces lung cancer is poorly understood. Chromosome instability, a hallmark of lung cancer, is considered a major driving factor in Cr(VI)-induced lung cancer. Our previous studies in cultured human lung cells showed that particulate Cr(VI) induces DNA double-strand breaks during the late S and G2 phases of the cell cycle, which are repaired by homologous recombination, one of the main repair pathways of DNA double-strand breaks. Our previous data showed that prolonged exposure to Cr(VI) inhibits homologous recombination repair by targeting RAD51, a key protein that mediates homologous recombination. Therefore, particulate Cr(VI)-induced DNA damage combined with failure of DNA repair can lead to chromosome instability. In this study we translated these results to rat lung tissue and lung tumor tissue from Cr(VI)-exposed workers. Wistar rats were exposed to zinc chromate in a saline solution or saline alone by oropharyngeal aspiration with a single dose repeated weekly for 90 days. We observed DNA double-strand breaks increased in a concentration-dependent manner, but homologous recombination repair decreased in rat lungs after 90 days of exposure. Notably, these effects were more pronounced in bronchioles than alveoli. We also considered these effects in Cr(VI)-associated human lung tumors and observed increased DNA double-strand breaks and reduced RAD51 levels in lung tumor tissue compared with adjacent normal lung tissue. Thus, Cr(VI)-induced induction of DNA double-strand breaks, and inhibition of homologous recombination repair translates from cultured cells to experimental animals, normal lung tissue adjacent to the tumor, and Cr(VI)-associated human lung tumors.
Collapse
Affiliation(s)
- Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Jennifer H Toyoda
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Rachel M Speer
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Tayler J Croom-Perez
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - J Calvin Kouokam
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Jamie Lynn Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Gary Hoyle
- Environmental and Occupational Health Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Ning Chen
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - John Pierce Wise
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University Tokushima, Japan
| | - Hiroaki Toba
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University Tokushima, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University Tokushima, Japan
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
2
|
Meaza I, Cahill CR, Speer RM, Kouokam JC, Wise JP. Particulate hexavalent chromium inhibits global transcription of genes in DNA repair pathways, particularly targeting homologous recombination repair, base excision repair, mismatch repair and microhomology-mediated end-joining. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136892. [PMID: 39706010 DOI: 10.1016/j.jhazmat.2024.136892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Hexavalent chromium [Cr(VI)] is a human lung carcinogen with widespread exposure. How Cr(VI) causes cancer is poorly understood, but chromosome instability plays a central role. Inhibition of DNA repair pathways leads to chromosome instability; however, despite the importance of these pathways in the mechanism of Cr(VI)-induced lung carcinogenesis, there are no data considering in-depth analysis on the transcriptional changes of genes involved in them. This study characterized the global transcriptional changes of mRNA expression after Cr(VI) exposure focusing on DNA repair pathways. The repair pathways considered included homologous recombination repair, non-homologous end joining, microhomology-directed end-joining, single strand annealing, mismatch repair, base excision repair, nucleotide excision repair and crosslink repair. Normal human lung fibroblast cells were exposed to increasing zinc chromate concentrations for 24, 72 or 120 h then RNA was extracted and sequenced. Our results indicate Cr(VI) causes differential expression of genes in lung cancer pathways and downregulates expression of some genes in all 8 DNA repair pathways. Homologous recombination repair, mismatch repair, base excision repair and microhomology-directed end-joining were the most affected pathways. This study provides a critical in-depth analysis of the effects of Cr(VI) on DNA repair pathways and contributes new insights into the mechanism of Cr(VI)-carcinogenesis.
Collapse
Affiliation(s)
- Idoia Meaza
- Wise Laboratory for Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States
| | - Caitlin R Cahill
- Wise Laboratory for Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States
| | - Rachel M Speer
- Wise Laboratory for Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States
| | - J Calvin Kouokam
- Wise Laboratory for Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States
| | - John Pierce Wise
- Wise Laboratory for Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States.
| |
Collapse
|
3
|
Meaza I, Williams AR, Wise SS, Lu H, Pierce JW. Carcinogenic Mechanisms of Hexavalent Chromium: From DNA Breaks to Chromosome Instability and Neoplastic Transformation. Curr Environ Health Rep 2024; 11:484-546. [PMID: 39466546 DOI: 10.1007/s40572-024-00460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW Hexavalent chromium [Cr(VI)] is a well-established human carcinogen, yet the mechanisms by which it leads to carcinogenic outcomes is still unclear. As a driving factor in its carcinogenic mechanism, Cr(VI) causes DNA double strand breaks and break-repair deficiency, leading to the development of chromosome instability. Therefore, the aim of this review is to discuss studies assessing Cr(VI)-induced DNA double strand breaks, chromosome damage and instability, and neoplastic transformation including cell culture, experimental animal, human pathology and epidemiology studies. RECENT FINDINGS Recent findings confirm Cr(VI) induces DNA double strand breaks, chromosome instability and neoplastic transformation in exposed cells, animals and humans, emphasizing these outcomes as key steps in the mechanism of Cr(VI) carcinogenesis. Moreover, recent findings suggest chromosome instability is a key phenotype in Cr(VI)-neoplastically transformed clones and is an inheritable and persistent phenotype in exposed cells, once more suggesting chromosome instability as central in the carcinogenic mechanism. Although limited, some studies have demonstrated DNA damage and epigenetic modulation are also key outcomes in biopsies from chromate workers that developed lung cancer. Additionally, we also summarized new studies showing Cr(VI) causes genotoxic and clastogenic effects in cells from wildlife, such as sea turtles, whales, and alligators. Overall, across the literature, it is clear that Cr(VI) causes neoplastic transformation and lung cancer. Many studies measured Cr(VI)-induced increases in DNA double strand breaks, the most lethal type of breaks clearly showing that Cr(VI) is genotoxic. Unrepaired or inaccurately repaired breaks lead to the development of chromosome instability, which is a common phenotype in Cr(VI) exposed cells, animals, and humans. Indeed, many studies show Cr(VI) induces both structural and numerical chromosome instability. Overall, the large body of literature strongly supports the conclusion that Cr(VI) causes DNA double strand breaks, inhibits DNA repair and chromosome instability, which are key to the development of Cr(VI)-induced cell transformation.
Collapse
Affiliation(s)
- Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - Aggie R Williams
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - John W Pierce
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA.
| |
Collapse
|
4
|
Mundt KA, Santamaria AB, Thompson WJ, Bates CA, Boles C, Dotson GS, Yong M. Carcinogenicity of Poorly Soluble Low Toxicity Particles: Commentary on Epidemiology as a Risk Assessment “Reality Check”. Front Public Health 2022; 10:920032. [PMID: 35903380 PMCID: PMC9315308 DOI: 10.3389/fpubh.2022.920032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Inhaled particles that are poorly soluble or insoluble and of low toxicity (“poorly soluble low toxicity” or “PSLT” particles), can accumulate in the lung and at lung overload levels induce lung cancers in rats. The question of whether PSLT particles increase lung cancer risk in humans is complicated by large differences between rats and humans and the relatively large particle doses administered in animal studies even when compared with heavy human occupational exposures. We review the findings of epidemiological studies on occupational exposure to each of three different PSLT particles (carbon black, talc and taconite). The epidemiological evidence indicates that at even very high occupational exposure levels at which non-malignant respiratory diseases including pneumoconiosis and even talcosis are observed, lung cancer risks appear not to be elevated. Although positive human cancer risks might be predicted based on extrapolation from overload doses in rats to relevant exposures in humans, the epidemiological “reality check” based on the three examples indicates that these PSLT particles are unlikely to increase lung cancer risk in humans even at high occupational levels of exposure. Therefore, we propose that careful evaluation of the epidemiological evidence can serve as a “reality check” for human risk assessment and help balance the risk evaluation process.
Collapse
Affiliation(s)
- Kenneth A. Mundt
- Cardno ChemRisk now Stantec, San Francisco, CA, United States
- *Correspondence: Kenneth A. Mundt
| | | | | | | | - Corey Boles
- Cardno ChemRisk now Stantec, San Francisco, CA, United States
| | - G. Scott Dotson
- Cardno ChemRisk now Stantec, San Francisco, CA, United States
| | - Mei Yong
- MY EpiConsulting, Düsseldorf, Germany
| |
Collapse
|
5
|
den Braver-Sewradj SP, van Benthem J, Staal YCM, Ezendam J, Piersma AH, Hessel EVS. Occupational exposure to hexavalent chromium. Part II. Hazard assessment of carcinogenic effects. Regul Toxicol Pharmacol 2021; 126:105045. [PMID: 34506880 DOI: 10.1016/j.yrtph.2021.105045] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022]
Abstract
Hexavalent chromium (Cr(VI)) compounds have been studied extensively and several agencies have described their toxicological profile. In the past, personnel of the Dutch Ministry of Defence may have been exposed to Cr(VI) during maintenance activities on NATO equipment. To investigate if this exposure may have caused irreversible adverse health effects, the Dutch National Institute for Public Health and the Environment (RIVM) summarized all available knowledge from previous evaluations. This information was complemented with a scoping review to retrieve new scientific literature. All scientific evidence was evaluated in workshops with external experts to come to an overview of irreversible adverse health effects that could be caused by occupational exposure to Cr(VI) compounds. This review provides the hazard assessment for occupational exposure to Cr(VI) and carcinogenic effects by integrating and weighting evidence provided by international agencies complemented with newly published studies. It was concluded that occupational exposure to Cr(VI) can cause lung cancer, nose and nasal sinus cancer in humans. Cr(VI) is suspected to cause stomach cancer and laryngeal cancer in humans. It is currently insufficiently clear if Cr(VI) can cause cancer of the small intestine, oral cavity, pancreas, prostate or bladder in humans.
Collapse
Affiliation(s)
| | - Jan van Benthem
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, the Netherlands
| | - Yvonne C M Staal
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, the Netherlands
| | - Janine Ezendam
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, the Netherlands
| | - Aldert H Piersma
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, the Netherlands
| | - Ellen V S Hessel
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, the Netherlands
| |
Collapse
|
6
|
Proctor DM, Bhat V, Suh M, Reichert H, Jiang X, Thompson CM. Inhalation cancer risk assessment for environmental exposure to hexavalent chromium: Comparison of margin-of-exposure and linear extrapolation approaches. Regul Toxicol Pharmacol 2021; 124:104969. [PMID: 34089813 DOI: 10.1016/j.yrtph.2021.104969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Hexavalent chromium [Cr(VI)] exists in the ambient air at low concentrations (average upperbound ~0.1 ng/m3) yet airborne concentrations typically exceed EPA's Regional Screening Level for residential exposure (0.012 ng/m3) and other similar benchmarks, which assume a mutagenic mode of action (MOA) and use low-dose linear risk assessment models. We reviewed Cr(VI) inhalation unit risk estimates developed by researchers and regulatory agencies for environmental and occupational exposures and the underlying epidemiologic data, updated a previously published MOA analysis, and conducted dose-response modeling of rodent carcinogenicity data to evaluate the need for alternative exposure-response data and risk assessment approaches. Current research supports the role of non-mutagenic key events in the MOA, with growing evidence for epigenetic modifiers. Animal data show a weak carcinogenic response, even at cytotoxic exposures, and highlight the uncertainties associated with the current epidemiological data used in risk assessment. Points of departure from occupational and animal studies were used to determine margins of exposure (MOEs). MOEs range from 1.5 E+3 to 3.3 E+6 with a median of 5 E+5, indicating that current environmental exposures to Cr(VI) in ambient air should be considered of low concern. In this comprehensive review, the divergent results from default linear and MOE assessments support the need for more relevant and robust epidemiologic data, additional mechanistic studies, and refined risk assessment strategies.
Collapse
Affiliation(s)
- Deborah M Proctor
- ToxStrategies, Inc, 27001 La Paz Rd, Suite 260, Mission Viejo, CA, 92691, USA.
| | | | - Mina Suh
- ToxStrategies, Inc, 27001 La Paz Rd, Suite 260, Mission Viejo, CA, 92691, USA
| | | | | | | |
Collapse
|
7
|
Zhang Y, Zheng P, Su Z, Hu G, Jia G. Perspectives of Genetic Damage and Epigenetic Alterations by Hexavalent Chromium: Time Evolution Based on a Bibliometric Analysis. Chem Res Toxicol 2021; 34:684-694. [PMID: 33663212 DOI: 10.1021/acs.chemrestox.0c00415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Compounds containing hexavalent chromium [Cr(VI)] have been classified as Group I human carcinogens in 1990 by the International Agency for Research on Cancer, known to induce human lung cancers. To determine the nature of Cr(VI) carcinogenesis, much has been learned about genetic damage and epigenetic alterations. On the basis of bibliometric analysis of the available literature found between 1966 and 2020, the present study investigated the evolution of author keywords; provided a summary of relevant studies focused on populations, animals/plants, or cells; and depicted the co-operation among countries or institutions and research group development. Additionally, multiomics technology and bioinformatics analysis can be a valuable tool for figuring out new biomarkers from different molecular levels like gene, RNA, protein, and metabolite and ascertaining the mechanism pathways of Cr(VI) genotoxicity and carcinogenesis.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Zekang Su
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Guiping Hu
- School of Medical Science and Engineering, Beihang University, Beijing 100191, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
8
|
Suh M, Wikoff D, Lipworth L, Goodman M, Fitch S, Mittal L, Ring C, Proctor D. Hexavalent chromium and stomach cancer: a systematic review and meta-analysis. Crit Rev Toxicol 2019; 49:140-159. [DOI: 10.1080/10408444.2019.1578730] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mina Suh
- ToxStrategies, Inc, Mission Viejo, CA, USA
| | | | - Loren Lipworth
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Goodman
- Emory University Rollins School of Public Health, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
9
|
Deng Y, Wang M, Tian T, Lin S, Xu P, Zhou L, Dai C, Hao Q, Wu Y, Zhai Z, Zhu Y, Zhuang G, Dai Z. The Effect of Hexavalent Chromium on the Incidence and Mortality of Human Cancers: A Meta-Analysis Based on Published Epidemiological Cohort Studies. Front Oncol 2019; 9:24. [PMID: 30778374 PMCID: PMC6369173 DOI: 10.3389/fonc.2019.00024] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/08/2019] [Indexed: 01/15/2023] Open
Abstract
Background: Hexavalent chromium [Cr(VI)] is an occupational carcinogen that can cause lung and nasal cancers, but its association with mortality and incidence in many other cancers is unclear. Objectives: In this meta-analysis, we aimed to evaluate the relationship between exposure to Cr(VI) and the mortality and incidence of human cancers. Methods: We performed a search of the literature and extracted the standardized mortality ratios (SMRs), standardized incidence ratios (SIRs), and their corresponding 95% confidence intervals (CIs), to estimate risk values. Subgroup analyses were conducted by sex, occupation, and types of cancer to identify groups that were at high-risk or predisposed to certain cancers. Results: A total of 47 cohort studies covering the period 1985–2016 were included (37 studies reporting SMRs and 16 studies reporting SIRs). The summary SMR for all studies combined was 1.07 (95% CI: 1.01–1.15). Summary SMRs were higher among chromate production workers, chrome platers, and masons, and especially male workers. In the subgroup analysis, Cr(VI) exposure was related to a higher risk of death owing to lung, larynx, bladder, kidney, testicular, bone, and thyroid cancer. The meta-SIR of all studies combined was 1.06 (95% CI: 1.04–1.09). Summary SIRs were elevated among cement industry workers and tanners. Cr(VI) exposure was related to an elevated risk of respiratory system, buccal cavity, pharynx, prostate, and stomach cancers. Conclusions: Cr(VI) might cause cancers of the respiratory system, buccal cavity and pharynx, prostate, and stomach in humans, and it is related to increased risk of overall mortality owing to lung, larynx, bladder, kidney, testicular, bone, and thyroid cancer. In addition, there was a strong association between incidence and mortality risk of cancers and concentration of Cr(VI) in the air and the exposure time.
Collapse
Affiliation(s)
- Yujiao Deng
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Wang
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tian Tian
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuai Lin
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peng Xu
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Linghui Zhou
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Cong Dai
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qian Hao
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ying Wu
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhen Zhai
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yue Zhu
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guihua Zhuang
- Department of Epidemiology and Biostatistics, Xi'an Jiaotong University Health Science Center, School of Public Health, Xi'an, China
| | - Zhijun Dai
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Betansedi CO, Vaca Vasquez P, Counil E. A comprehensive approach of the gender bias in occupational cancer epidemiology: A systematic review of lung cancer studies (2003-2014). Am J Ind Med 2018; 61:372-382. [PMID: 29508431 DOI: 10.1002/ajim.22823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND In occupational epidemiology, a male-centered perspective often predominates. We aimed to describe current research practices in terms of gender consideration at different stages of epidemiological studies. METHODS A systematic review of occupational lung cancer publications indexed in PubMed was conducted over the period 2003-2014. Articles were described according to the sex composition of their study sample. RESULTS In 243 studies, 7 (3%) were women-only, 101 (41%) were mixed, with a disproportionate men-to-women ratio (P50 = 3.5; P75 = 12.4). A shift was observed from mixed and unspecified source populations to men-only final samples. Our results also suggest implicit generalization of results from men-only studies, a lack of tests of interaction and often unjustified sex-adjustment for mixed studies. CONCLUSIONS The lower proportion of women in studies cannot be fully explained by their under-representation in the target populations, since there were large numbers of women among both potentially exposed workers and patients diagnosed with lung cancer.
Collapse
Affiliation(s)
- Charles-Olivier Betansedi
- Paris-Saclay University; Paris-Sud University; UVSQ; Villejuif France
- Giscop93; Paris 13 University; Bobigny France
| | | | - Emilie Counil
- Giscop93; Paris 13 University; Bobigny France
- EHESP School of Public Health; Rennes; France
- IRIS UMR8156-U997; Paris 13 University; Bobigny France
- INSERM, U1085, IRSET, ESTER Team; University of Angers; Angers France
| |
Collapse
|
11
|
Kim J, Seo S, Kim Y, Kim DH. Review of carcinogenicity of hexavalent chrome and proposal of revising approval standards for an occupational cancers in Korea. Ann Occup Environ Med 2018; 30:7. [PMID: 29423230 PMCID: PMC5791242 DOI: 10.1186/s40557-018-0215-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/17/2018] [Indexed: 11/10/2022] Open
Abstract
Background The objective of this study is to suggest revised recognition standards for occupational disease due to chromium (VI) by reflecting recent domestic and international research works and considering domestic exposure status with respect to target organs, exposure period, and cumulative exposure dose in relation to the chromium (VI)-induced occupational disease compensation. Methods In this study, the reports published by major international institutions such as World Health Organization (WHO) International Agency for Research on Cancer (IARC) (2012), Occupational Safety and Health Administration (OSHA) (2006), National Institute for Occupational Safety and Health (NIOSH) (2013), American Conference of Governmental Industrial Hygienists (ACGIH) (2004), National Toxicology Program (NTP) (2014), and Agency for Toxic Substances and Disease Registry (ASTDR) (2012) were reviewed and the recent research works searched by PubMed were summarized. Results Considering the recent research works and the domestic situation, only lung cancer is conserved in the legislative bill in relation to chromium (VI), and the exposure period is not included in the bill. Nasal and paranasal sinus cancer was excluded from the list of cancers that are compensated as the chromium (VI)- induced occupational disease, while lung cancer remains in the list. In the view of legislative unity, considering the fact that only the cancers having sufficient evidence are included in the conventional list of cancers compensated as occupational disease, nasal and paranasal sinus cancer having limited evidence were excluded from the list. The exposure period was also removed from the legislative bill due to the insufficient evidence. Recent advices in connection with cumulative exposure dose were proposed, and other considerable points were provided with respect to individual occupational relevance. Conclusions It is suggested that the current recognition standard which is “Lung cancer or nasal and paranasal sinus cancer caused by exposure to chromium (VI) or compounds thereof (exposure for two years or longer), or nickel compounds” should be changed to “Lung cancer caused by exposure to chromium (VI) or compounds thereof, and lung cancer or nasal and paranasal sinus cancer caused by exposure to nickel compounds”.
Collapse
Affiliation(s)
- Jungwon Kim
- 1Department of Occupational and Environmental Medicine, Kosin University College of Medicine, Busan, Republic of Korea.,4Department of Occupational and Environmental Medicine, Kosin University Gospel Hospital, 34 Amnam-dong, Seo-gu, Busan, 602-702 Republic of Korea
| | - Sangyun Seo
- 1Department of Occupational and Environmental Medicine, Kosin University College of Medicine, Busan, Republic of Korea
| | - Yangho Kim
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Dae Hwan Kim
- 3Department of Occupational and Environmental Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| |
Collapse
|
12
|
Proctor DM, Suh M, Mittal L, Hirsch S, Valdes Salgado R, Bartlett C, Van Landingham C, Rohr A, Crump K. Inhalation cancer risk assessment of hexavalent chromium based on updated mortality for Painesville chromate production workers. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:224-31. [PMID: 26669850 PMCID: PMC4756268 DOI: 10.1038/jes.2015.77] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 05/05/2023]
Abstract
The exposure-response for hexavalent chromium (Cr(VI))-induced lung cancer among workers of the Painesville Ohio chromate production facility has been used internationally for quantitative risk assessment of environmental and occupational exposures to airborne Cr(VI). We updated the mortality of 714 Painesville workers (including 198 short-term workers) through December 2011, reconstructed exposures, and conducted exposure-response modeling using Poisson and Cox regressions to provide quantitative lung cancer risk estimates. The average length of follow-up was 34.4 years with 24,535 person-years at risk. Lung cancer was significantly increased for the cohort (standardized mortality ratio (SMR)=186; 95% confidence interval (CI) 145-228), for those hired before 1959, those with >30-year tenure, and those with cumulative exposure >1.41 mg/m(3)-years or highest monthly exposures >0.26 mg/m(3). Of the models assessed, the linear Cox model with unlagged cumulative exposure provided the best fit and was preferred. Smoking and age at hire were also significant predictors of lung cancer mortality. Adjusting for these variables, the occupational unit risk was 0.00166 (95% CI 0.000713-0.00349), and the environmental unit risk was 0.00832 (95% CI 0.00359-0.0174), which are 20% and 15% lower, respectively, than values developed in a previous study of this cohort.
Collapse
Affiliation(s)
| | - Mina Suh
- ToxStrategies, Mission Viejo, California, USA
| | | | | | | | | | | | - Annette Rohr
- Electric Power Research Institute, Palo Alto, California, USA
| | | |
Collapse
|
13
|
Decharat S. Chromium Exposure and Hygienic Behaviors in Printing Workers in Southern Thailand. J Toxicol 2015; 2015:607435. [PMID: 26448746 PMCID: PMC4584031 DOI: 10.1155/2015/607435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/18/2015] [Accepted: 08/25/2015] [Indexed: 11/17/2022] Open
Abstract
Objectives. The main objective of this study was to assess the chromium exposure levels in printing workers. The study evaluated the airborne, serum, and urinary chromium levels and determines any correlation between level of chromium in specimen and airborne chromium levels. Material and Methods. A cross-sectional study was conducted with 75 exposed and 75 matched nonexposed subjects. Air breathing zone was measured by furnace atomic absorption spectrophotometer. Serum and urine samples were collected to determine chromium levels by graphite furnaces atomic absorption spectrometer chromium analyzer. Results and Discussion. The printing workers' urinary chromium levels (6.86 ± 1.93 μg/g creatinine) and serum chromium levels (1.24 ± 1.13 μg/L) were significantly higher than the control group (p < 0.001 and p < 0.001). Work position, duration of work, personal protective equipment (PPE), and personal hygiene were significantly associated with urinary chromium level and serum chromium levels (p < 0.001 and p < 0.001). This study found a correlation between airborne chromium levels and urinary chromium levels (r = 0.247, p = 0.032). A multiple regression model was constructed. Significant predictors of urinary and serum chromium levels were shown in this study. Conclusion. Improvements in working conditions, occupational health training, and PPE use are recommended to reduce chromium exposure.
Collapse
Affiliation(s)
- Somsiri Decharat
- Department of Industrial Hygiene and Health Science, Faculty of Health and Sports Science, Thaksin University, Phatthalung 93210, Thailand
| |
Collapse
|
14
|
Proctor DM, Suh M, Campleman SL, Thompson CM. Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures. Toxicology 2014; 325:160-79. [PMID: 25174529 DOI: 10.1016/j.tox.2014.08.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/30/2014] [Accepted: 08/24/2014] [Indexed: 12/23/2022]
Abstract
Inhalation of hexavalent chromium [Cr(VI)] is associated with increased lung cancer risk among workers in several industries, most notably chromate production workers exposed to high concentrations of Cr(VI) (≥100 μg/m(3)), for which clear exposure-response relationships and respiratory irritation and tissue damage have been reported. Data from this industry are used to assess lung cancer risk associated with environmental and current occupational exposures, occurring at concentrations that are significantly lower. There is considerable uncertainty in the low dose extrapolation of historical occupational epidemiology data to assess risk at current exposures because no published or well recognized mode of action (MOA) for Cr(VI)-induced lung tumors exists. We conducted a MOA analysis for Cr(VI)-induced lung cancer evaluating toxicokinetic and toxicological data in humans and rodents and mechanistic data to assess plausibility, dose-response, and temporal concordance for potential MOAs. Toxicokinetic data support that extracellular reduction of Cr(VI), which limits intracellular absorption of Cr(VI) and Cr(VI)-induced toxicity, can be overwhelmed at high exposure levels. In vivo genotoxicity and mutagenicity data are mostly negative and do not support a mutagenic MOA. Further, both chronic bioassays and the epidemiologic literature support that lung cancer occurs at exposures that cause tissue damage. Based on this MOA analysis, the overall weight of evidence supports a MOA involving deposition and accumulation of particulate chromium in the bifurcations of the lung resulting in exceedance of clearance mechanisms and cellular absorption of Cr(VI). Once inside the cell, reduction of Cr(VI) results in oxidative stress and the formation of Cr ligands. Subsequent protein and DNA damage lead to tissue irritation, inflammation, and cytotoxicity. These effects, concomitant with increased cell proliferation, result in changes to DNA sequences and/or methylation status that can lead to tumorigenesis. This MOA supports the use of non-linear approaches when extrapolating lung cancer risk occurring at high concentration occupational exposures to environmentally-relevant exposures.
Collapse
Affiliation(s)
| | - Mina Suh
- ToxStrategies, Inc., Mission Viejo, CA 92692, United States.
| | - Sharan L Campleman
- University of California, Office of the President, Oakland, CA 94612, United States.
| | | |
Collapse
|
15
|
Wang TC, Song YS, Yu SF, Zhang J, Wang H, Gu YE, Chen T, Jia G. Association of folate deficiency and selected tumor marker concentrations in long-term hexavalent chromium exposed population. Int J Hyg Environ Health 2014; 217:88-94. [DOI: 10.1016/j.ijheh.2013.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/23/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
|
16
|
Haney JT, Erraguntla N, Sielken RL, Valdez-Flores C. Development of an inhalation unit risk factor for hexavalent chromium. Regul Toxicol Pharmacol 2013; 68:201-11. [PMID: 24361343 DOI: 10.1016/j.yrtph.2013.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 11/25/2022]
Abstract
A unit risk factor (URF) was developed for hexavalent chromium (CrVI). The URF is based on excess lung cancer mortality in two key epidemiological studies of chromate production workers. The Crump et al. (2003) study concerns the Painesville, OH worker cohort, while Gibb et al. (2000) regards the Baltimore, MD cohort. A supporting assessment was also performed for a cohort from four low-dose chromate plants (Leverkusen and Uerdingen, Germany, Corpus Christi, TX, Castle Hayne, NC). For the Crump et al. (2003) study, grouped observed and expected number of lung cancer mortalities along with cumulative CrVI exposures were used to obtain the maximum likelihood estimate and asymptotic variance of the slope (β) for the linear multiplicative relative risk model using Poisson regression modeling. For the Gibb et al. (2000) study, Cox proportional hazards modeling was performed with optimal exposure lag and adjusting for the effect of covariates (e.g., smoking) to estimate β values. Life-table analyses were used to develop URFs for each of the two key studies, as well as for supporting and related studies. The two key study URFs were combined using weighting factors relevant to confidence to derive the final URF for CrVI of 2.3E-03 per μgCrVI/m(3).
Collapse
Affiliation(s)
- Joseph T Haney
- Texas Commission on Environmental Quality (TCEQ), Toxicology Division, MC-168, P.O. Box 13087, Austin, TX 78711-3087, United States.
| | - Neeraja Erraguntla
- Texas Commission on Environmental Quality (TCEQ), Toxicology Division, MC-168, P.O. Box 13087, Austin, TX 78711-3087, United States.
| | - Robert L Sielken
- Sielken & Associates Consulting Inc., 3833 Texas Avenue, Bryan, TX 77802, United States.
| | - Ciriaco Valdez-Flores
- Sielken & Associates Consulting Inc., 3833 Texas Avenue, Bryan, TX 77802, United States.
| |
Collapse
|
17
|
Brocato J, Costa M. Basic mechanics of DNA methylation and the unique landscape of the DNA methylome in metal-induced carcinogenesis. Crit Rev Toxicol 2013; 43:493-514. [PMID: 23844698 PMCID: PMC3871623 DOI: 10.3109/10408444.2013.794769] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA methylation plays an intricate role in the regulation of gene expression and events that compromise the integrity of the methylome may potentially contribute to disease development. DNA methylation is a reversible and regulatory modification that elicits a cascade of events leading to chromatin condensation and gene silencing. In general, normal cells are characterized by gene-specific hypomethylation and global hypermethylation, while cancer cells portray a reverse profile to this norm. The unique methylome displayed in cancer cells is induced after exposure to carcinogenic metals such as nickel, arsenic, cadmium, and chromium (VI). These metals alter the DNA methylation profile by provoking both hyper- and hypo-methylation events. The metal-stimulated deviations to the methylome are possible mechanisms for metal-induced carcinogenesis and may provide potential biomarkers for cancer detection. Development of therapies based on the cancer methylome requires further research including human studies that supply results with larger impact and higher human relevance.
Collapse
Affiliation(s)
- Jason Brocato
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, NY 10987, USA
| | - Max Costa
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, NY 10987, USA
| |
Collapse
|
18
|
Reply to: Pesch B, Weiss T, Pallapies D, Schlüter G, Brüning T. Letter to the editor. Re: Seidler A, Jähnichen S, Hegewald J, Fishta A, Krug O, Rüter L, Strik C, Hallier E, Straube S. Systematic review and quantification of respiratory cancer risk for occupational exposure to hexavalent chromium. Int Arch Occup Environ Health 2013; 86:961-3. [PMID: 23712849 DOI: 10.1007/s00420-013-0888-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
|
19
|
Pesch B, Weiss T, Pallapies D, Schlüter G, Brüning T. Re: Seidler A, Jänichen S, Hegewald J et al. Systematic review and quantification of respiratory cancer risk for occupational exposure to hexavalent chromium. Int Arch Occup Environ Health 2013; 86:957-60. [DOI: 10.1007/s00420-013-0887-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/14/2013] [Indexed: 12/01/2022]
|
20
|
Huang HH, Huang JY, Lung CC, Wu CL, Ho CC, Sun YH, Ko PC, Su SY, Chen SC, Liaw YP. Cell-type specificity of lung cancer associated with low-dose soil heavy metal contamination in Taiwan: an ecological study. BMC Public Health 2013; 13:330. [PMID: 23575356 PMCID: PMC3643867 DOI: 10.1186/1471-2458-13-330] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 03/25/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Numerous studies have examined the association between heavy metal contamination (including arsenic [As], cadmium [Cd], chromium [Cr], copper [Cu], mercury [Hg], nickel [Ni], lead [Pb], and zinc [Zn]) and lung cancer. However, data from previous studies on pathological cell types are limited, particularly regarding exposure to low-dose soil heavy metal contamination. The purpose of this study was to explore the association between soil heavy metal contamination and lung cancer incidence by specific cell type in Taiwan. METHODS We conducted an ecological study and calculated the annual averages of eight soil heavy metals (i.e., As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) by using data from the Taiwan Environmental Protection Administration from1982 to 1986. The age-standardized incidence rates of lung cancer according to two major pathological types (adenocarcinoma [AC] and squamous cell carcinoma [SCC]) were obtained from the National Cancer Registry Program conducted in Taiwan from 2001 to 2005. A geographical information system was used to plot the maps of soil heavy metal concentration and lung cancer incidence rates. Poisson regression models were used to obtain the adjusted relative ratios (RR) and 95% confidence intervals (CI) for the lung cancer incidence associated with soil heavy metals. RESULTS For males, the trend test for lung SCC incidence caused by exposure to Cr, Cu, Hg, Ni, and Zn showed a statistically significant dose-response relationship. However, for lung AC, only Cu and Ni had a significant dose-response relationship. As for females, those achieving a statistically significant dose-response relationship for the trend test were Cr (P = 0.02), Ni (P = 0.02), and Zn (P= 0.02) for lung SCC, and Cu (P < 0.01) and Zn (P = 0.02) for lung AC. CONCLUSION The current study suggests that a dose-response relationship exists between low-dose soil heavy metal concentration and lung cancer occurrence by specific cell-type; however, the relevant mechanism should be explored further.
Collapse
|
21
|
Development of a cancer-based chronic inhalation reference value for hexavalent chromium based on a nonlinear-threshold carcinogenic assessment. Regul Toxicol Pharmacol 2012; 64:466-80. [DOI: 10.1016/j.yrtph.2012.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 12/29/2022]
|
22
|
Seidler A, Jähnichen S, Hegewald J, Fishta A, Krug O, Rüter L, Strik C, Hallier E, Straube S. Systematic review and quantification of respiratory cancer risk for occupational exposure to hexavalent chromium. Int Arch Occup Environ Health 2012; 86:943-55. [DOI: 10.1007/s00420-012-0822-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/27/2012] [Indexed: 11/30/2022]
|
23
|
Chervona Y, Costa M. The control of histone methylation and gene expression by oxidative stress, hypoxia, and metals. Free Radic Biol Med 2012; 53:1041-7. [PMID: 22841757 PMCID: PMC3432141 DOI: 10.1016/j.freeradbiomed.2012.07.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/03/2012] [Accepted: 07/18/2012] [Indexed: 12/14/2022]
Abstract
The harmful consequences of carcinogenic metals, such as nickel, arsenic, and chromium, are thought to be in part due to their ability to induce oxidative stress. The ubiquity of oxidative stress in biological systems has made it a fairly obvious culprit in causing cellular damage and/or development of disease. However, the full extent of oxidative stress-induced damage is not limited to its direct effects on cellular components, such as lipids, proteins, and DNA, but may extend to its ability to alter gene expression. Gene expression regulation is an important component of cellular and/or tissue homeostasis, and its alteration can have detrimental consequences. Therefore, a growing amount of interest is being paid to understanding how oxidative stress can influence gene expression. Oxidative stress-induced epigenetic dysregulation in the form of posttranslational histone modifications, in particular, is a popular topic of research. This review will therefore primarily focus on discussing the role of oxidative stress and hypoxia on histone methylation and/or gene expression alterations. The sources of oxidative stress discussed here are carcinogenic metals, such as, nickel, arsenic, and chromium.
Collapse
Affiliation(s)
- Yana Chervona
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York 10987, USA
| | - Max Costa
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York 10987, USA
| |
Collapse
|
24
|
Chervona Y, Arita A, Costa M. Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics 2012; 4:619-27. [PMID: 22473328 PMCID: PMC3687545 DOI: 10.1039/c2mt20033c] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carcinogenic metals, such as nickel, arsenic, and chromium, are widespread environmental and occupational pollutants. Chronic exposure to these metals has been connected with increased risks of numerous cancers and as well as non-carcinogenic health outcomes, including cardiovascular disease, neurologic deficits, neuro-developmental deficits in childhood, and hypertension. However, currently the specific molecular targets for metal toxicity and carcinogenicity are not fully understood. Here, we propose that the iron- and 2-oxoglutarate-dependent dioxygenase family enzymes, as well as, other histone modifying enzymes are important intracellular targets that mediate the toxicity and carcinogenicity of nickel, and maybe potential targets in chromium and arsenic induced carcinogenesis. Our data demonstrate that all three metals are capable of inducing post-translational histone modifications and affecting the enzymes that modulate them (i.e. the iron- and 2-oxoglutarate-dependent dioxygenase family, including HIF-prolyl hydroxylase PHD2, histone demethylase JHDM2A/JMJD1A, and DNA repair enzymes ABH3 and ABH2, and histone methyltransferases, G9a). Given the effects that these metals can exert on the epigenome, future studies of their involvement in histone modifying enzymes dynamics would deepen our understanding on their respective toxicities and carcinogenicities.
Collapse
Affiliation(s)
- Yana Chervona
- New York University School of Medicine, Nelson Institute of Environmental Medicine, 57 Old Forge Road, NY 10987
| | - Adriana Arita
- New York University School of Medicine, Nelson Institute of Environmental Medicine, 57 Old Forge Road, NY 10987
| | - Max Costa
- New York University School of Medicine, Nelson Institute of Environmental Medicine, 57 Old Forge Road, NY 10987
| |
Collapse
|
25
|
|
26
|
In vitro genotoxicity data of nanomaterials compared to carcinogenic potency of inorganic substances after inhalational exposure. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2011; 727:72-85. [DOI: 10.1016/j.mrrev.2011.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/22/2011] [Accepted: 03/22/2011] [Indexed: 11/18/2022]
|
27
|
Haucke F. The cost effectiveness of radon mitigation in existing German dwellings--a decision theoretic analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2010; 91:2263-2274. [PMID: 20619957 DOI: 10.1016/j.jenvman.2010.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 05/18/2010] [Accepted: 06/11/2010] [Indexed: 05/29/2023]
Abstract
Radon is a naturally occurring inert radioactive gas found in soils and rocks that can accumulate in dwellings, and is associated with an increased risk of lung cancer. This study aims to analyze the cost effectiveness of different intervention strategies to reduce radon concentrations in existing German dwellings. The cost effectiveness analysis (CEA) was conducted as a scenario analysis, where each scenario represents a specific regulatory regime. A decision theoretic model was developed, which reflects accepted recommendations for radon screening and mitigation and uses most up-to-date data on radon distribution and relative risks. The model was programmed to account for compliance with respect to the single steps of radon intervention, as well as data on the sensitivity/specificity of radon tests. A societal perspective was adopted to calculate costs and effects. All scenarios were calculated for different action levels. Cost effectiveness was measured in costs per averted case of lung cancer, costs per life year gained and costs per quality adjusted life year (QALY) gained. Univariate and multivariate deterministic and probabilistic sensitivity analyses (SA) were performed. Probabilistic sensitivity analyses were based on Monte Carlo simulations with 5000 model runs. The results show that legal regulations with mandatory screening and mitigation for indoor radon levels >100 Bq/m(3) are most cost effective. Incremental cost effectiveness compared to the no mitigation base case is 25,181 euro (95% CI: 7371 euro-90,593 euro) per QALY gained. Other intervention strategies focussing primarily on the personal responsibility for screening and/or mitigative actions show considerably worse cost effectiveness ratios. However, targeting radon intervention to radon-prone areas is significantly more cost effective. Most of the uncertainty that surrounds the results can be ascribed to the relative risk of radon exposure. It can be concluded that in the light of international experience a legal regulation requiring radon screening and, if necessary, mitigation is justifiable under the terms of CEA.
Collapse
Affiliation(s)
- Florian Haucke
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Health Economics and Health Care Management, IGM, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
28
|
Occupational exposure to hexavalent chromium and cancers of the gastrointestinal tract: a meta-analysis. Cancer Epidemiol 2010; 34:388-99. [PMID: 20430714 DOI: 10.1016/j.canep.2010.03.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 03/09/2010] [Accepted: 03/23/2010] [Indexed: 11/24/2022]
Abstract
INTRODUCTION We conducted a systematic literature review and meta-analysis of oral cavity, esophageal, stomach, small intestine, colon, and rectal cancers among workers occupationally exposed to Cr(VI). METHODS Using PubMed, studies published from 1950 to 2009 evaluating the relationship between Cr(VI) exposure and GI cancers were identified. Measures of effect and variability were extracted from 32 studies meeting specific inclusion criteria, and meta-analysis summary relative risk measures were calculated using random effects models and inverse variance weighting methods. RESULTS Meta-standardized mortality ratios (SMRs) were, for cancer of the: oral cavity [1.02 (95% CI=0.77-1.34)]; esophagus [1.17 (95% CI=0.90-1.51)]; stomach [1.09 (95% CI=0.93-1.28)]; colon [0.89 (95% CI=0.70-1.12)]; and rectum [1.17 (95% CI=0.98-1.39)]. Analyses of more highly exposed subgroups included in the studies or subgroups based on geographic region or by industry with recognized Cr(VI) exposures (welding, chrome plating, chromate production, and pigment production) did not result in elevated meta-SMRs except for esophageal cancer among US cohorts [meta-SMR=1.49 (95% CI=1.06-2.09)]. However, that finding was based on a subgroup of only four studies, one of which was a PMR study. Potential confounding by socioeconomic status (SES), diet and/or smoking, or limitations due to the healthy-worker effect (HWE) were evaluated, and while smoking, diet and SES may be important factors that may have upwardly biased the meta-SMRs, HWE is not likely to have significantly affected the summary results. None of three studies reporting small intestine cancers observed a statistically significant increased risk. DISCUSSION These meta-analyses and literature review indicate that Cr(VI)-exposed workers are not at a greater risk of GI cancers than the general population.
Collapse
|
29
|
Michaels D. In response to a review of "Doubt is Their Product". Prev Med 2010; 50:94-5. [PMID: 19932129 DOI: 10.1016/j.ypmed.2009.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 11/14/2009] [Indexed: 11/18/2022]
|
30
|
Bilancia M, Fedespina A. Geographical clustering of lung cancer in the province of Lecce, Italy: 1992-2001. Int J Health Geogr 2009; 8:40. [PMID: 19570225 PMCID: PMC2718871 DOI: 10.1186/1476-072x-8-40] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 07/01/2009] [Indexed: 11/16/2022] Open
Abstract
Background The triennial mortality rates for lung cancer in the two decades 1981–2001 in the province of Lecce, Italy, are significantly higher than those for the entire region of Apulia (to which the Province of Lecce belongs) and the national reference rates. Moreover, analyzing the rates in the three-year periods 1993–95, 1996–98 and 1999–01, there is a dramatic increase in mortality for both males and females, which still remains essentially unexplained: to understand the extent of this phenomenon, it is worth noting that the standardized mortality rate for males in 1999–01 is equal to 13.92 per 10000 person-years, compared to a value of 6.96 for Italy in the 2000–2002 period. These data have generated a considerable concern in the press and public opinion, which with little scientific reasoning have sometimes identified suspected culprits of the risk excess (for example, the emission caused by a number of large industrial sites located in the provinces of Brindisi and Taranto, bordering the Province of Lecce). The objective of this paper is to study on a scientifically sound basis the spatial distribution of risk for lung cancer mortality in the province of Lecce. Our goal is to demonstrate that most of the previous explanations are not supported by data: to this end, we will follow a hybrid approach that combines both frequentist and Bayesian disease mapping methods. Furthermore, we define a new sequential algorithm based on a modified version of the Besag-York-Mollié (BYM) model, suitably modified to detect geographical clusters of disease. Results Standardized mortality ratios (SMRs) for lung cancer in the province of Lecce: For males, the relative risk (measured by means of SMR, i.e. the ratio between observed and expected cases in each area under internal standardization) was judged to be significantly greater than 1 in many municipal areas, the significance being evaluated under the null hypothesis of neutral risk on the ground of area-specific p-values (denoted by ρi); in addition, it was seen that high risk areas were not randomly distributed within the province, but showed a sharp clustering. The most perceptible cluster involved a collection of municipalities around the Maglie area (Istat code: 75039), while the association among the municipalities of Otranto, Poggiardo and Santa Cesarea Terme (Istat codes: 75057, 75061, 75072) was more ambiguous. For females, it was noteworthy the significant risk excess in the city of Lecce (Istat code: 75035), where an SMR of 1.83 and ρi < 0.01 have been registered. BYM model for the province of Lecce: For males, Bayes estimates of relative risks varied around an overall mean of 1.04 with standard deviation of 0.1, with a minimum of 0.77 and a maximum of 1.25. The posterior relative risks for females, although smoothed, showed more variation than for males, ranging form 0.74 to 1.65, around a mean of 0.90 with standard deviation 0.12. For males, 95% posterior credible intervals of relative risks included unity in every area, whereas significantly elevated risk of mortality was confirmed in the Lecce area for females (95% posterior CI: 1.33 – 2.00). BYM model for the whole Apulia: For males, internally standardized maps showed several high risk areas bordering the province of Lecce, belonging to the province of Brindisi, and the presence of a large high risk region, including the southern part of the province of Brindisi and the eastern and southern part of the Salento peninsula, in which an increasing trend in the north-south direction was found. Ecological correlation study with deprivation (Cadum Index): For males, posterior mean of the ecological regression coefficient β resulted to be 0.04 with 95% posterior credible interval equal to (-0.01, 0.08); similarly, β was estimated as equal to -0.03 for females (95% posterior credible interval: -0.16, 0.10). Moreover, there was some indication of nonlinearly increasing relative risk with increasing deprivation for higher deprivation levels. For females, it was difficult to postulate the existence of any association between risk and deprivation. Cluster detection: cluster detection based on a modified BYM model identified two large unexplained increased risk clusters in the central-eastern and southern part of the peninsula. Other secondary clusters, which raise several complex interpretation issues, are present. Conclusion Our results reduce the alleged role of the industrial facilities located around the province of Taranto: in particular, air pollution produced around the city of Taranto (which lies to the west of the province of Lecce) has been often identified as the main culprit of the mortality excess, a conclusion that was further supported by a recent study on the direction of prevailing winds on Salento. This hypothesis is contradicted by the finding that those municipalities that directly border on the province of Taranto (belonging to the so-called "Jonico-Salentina" band) are those that present low mortality rates (at least for males). In the same way, the responsibilities of energy production plants located in the province of Brindisi (Brindisi province lies to the north) appear to be of little relevance. For females, given the situation observed in the city of Lecce, and given the substantial increase in mortality observed in younger age classes, further investigation is required into the role played by changes in lifestyle, including greater net propensity to smoke that women have shown since the 80s onwards (a phenomenon which could be amplified in a city traditionally cultured and modern as Lecce, as the tobacco habit is a largely cultural phenomenon). For males, the presence of high levels of deprivation throughout the eastern and southern Salento is likely to play an important role: those with lower socio-economic status smoke more, and gender differences may be explained on the basis of the fact that in less developed areas women have less habit to tobacco smoking and alcohol drinking (and other harmful lifestyles), which are seen as purely masculine behaviour: research into the role of material deprivation and individual lifestyle differences between genders should be further developed.
Collapse
Affiliation(s)
- Massimo Bilancia
- Department of Statistical Sciences Carlo Cecchi, University of Bari, 70124 Bari, Italy.
| | | |
Collapse
|
31
|
Wild P, Bourgkard E, Paris C. Lung cancer and exposure to metals: the epidemiological evidence. Methods Mol Biol 2009; 472:139-167. [PMID: 19107432 DOI: 10.1007/978-1-60327-492-0_6] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Exposure to metallic compounds is ubiquitous, with its widespread use in industry and its presence, mostly in trace amounts, in the environment. This paper reviews the epidemiologic evidence of the relation between lung cancer and exposure to metallic compounds by building on and updating the corresponding International Agency for Research on Cancer (IARC) assessments. Given that most of the well-identified human populations with given metal exposure are in occupational settings, this review is mostly based on results in occupational epidemiology. The epidemiological evidence is shortly reviewed for accepted carcinogens: chromium, nickel, beryllium, cadmium, arsenic, and silicon, highlighting what is still unclear. We then review in more detail metals for which the evidence is less clear: lead, titanium, iron, and cobalt. There is scarce evidence for the human carcinogenicity of titanium. Exposure to titanium dioxide is associated with lung cancer excesses in one large study, but this excess may be due to confounders. The evidence for lead is contradictory. The lung cancer risk is presented as a function of a post hoc exposure ranking but no dose-response relationship is found. A weak but consistent lung cancer excess in many populations exposed to iron oxides but it is not possible to state on causality. Finally the evidence in the hard metal industry is presented, which suggests a possible carcinogenic effect of cobalt in presence of tungsten carbide. A short discussion presents the limitations of epidemiology in assessing the carcinogenicity of metals.
Collapse
Affiliation(s)
- Pascal Wild
- Department of Occupational Epidemiology, INRS, Vandoeuvre, France
| | | | | |
Collapse
|
32
|
Abstract
Lung cancer is the world's leading cause of cancer death. It is primarily due to the inhalation of carcinogens and highly accessible to prevention by diminishing exposures to lung carcinogens. Most important will be the complete cessation of exposure to cigarette smoke (first and second hand) and to asbestos. Two environmental exposures--radon in homes and arsenic in drinking water--cannot be totally avoided, but people in certain geographical regions would greatly benefit from a reduction in exposure magnitude. And last but not least, workers all over the world deserve that preventive measures at the workplace are observed with regard to exposures, such as arsenic, beryllium, bis-chloromethyl ether (BCME), cadmium, chromium, polycyclic aromatic hydrocarbons (PAHs), and nickel.
Collapse
Affiliation(s)
- Irene Brüske-Hohlfeld
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
33
|
Keegan GM, Learmonth ID, Case C. A Systematic Comparison of the Actual, Potential, and Theoretical Health Effects of Cobalt and Chromium Exposures from Industry and Surgical Implants. Crit Rev Toxicol 2008; 38:645-74. [DOI: 10.1080/10408440701845534] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Michaels D, Lurie P, Monforton C. Lung cancer mortality in the German chromate industry, 1958 to 1998. J Occup Environ Med 2007; 48:995-7; author reply 997-8. [PMID: 17033494 DOI: 10.1097/01.jom.0000237412.48569.0e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
|