1
|
Lõhelaid H, Anttila JE, Liew HK, Tseng KY, Teppo J, Stratoulias V, Airavaara M. UPR Responsive Genes Manf and Xbp1 in Stroke. Front Cell Neurosci 2022; 16:900725. [PMID: 35783104 PMCID: PMC9240287 DOI: 10.3389/fncel.2022.900725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a devastating medical condition with no treatment to hasten recovery. Its abrupt nature results in cataclysmic changes in the affected tissues. Resident cells fail to cope with the cellular stress resulting in massive cell death, which cannot be endogenously repaired. A potential strategy to improve stroke outcomes is to boost endogenous pro-survival pathways. The unfolded protein response (UPR), an evolutionarily conserved stress response, provides a promising opportunity to ameliorate the survival of stressed cells. Recent studies from us and others have pointed toward mesencephalic astrocyte-derived neurotrophic factor (MANF) being a UPR responsive gene with an active role in maintaining proteostasis. Its pro-survival effects have been demonstrated in several disease models such as diabetes, neurodegeneration, and stroke. MANF has an ER-signal peptide and an ER-retention signal; it is secreted by ER calcium depletion and exits cells upon cell death. Although its functions remain elusive, conducted experiments suggest that the endogenous MANF in the ER lumen and exogenously administered MANF protein have different mechanisms of action. Here, we will revisit recent and older bodies of literature aiming to delineate the expression profile of MANF. We will focus on its neuroprotective roles in regulating neurogenesis and inflammation upon post-stroke administration. At the same time, we will investigate commonalities and differences with another UPR responsive gene, X-box binding protein 1 (XBP1), which has recently been associated with MANF’s function. This will be the first systematic comparison of these two UPR responsive genes aiming at revealing previously uncovered associations between them. Overall, understanding the mode of action of these UPR responsive genes could provide novel approaches to promote cell survival.
Collapse
Affiliation(s)
- Helike Lõhelaid
- HiLIFE – Neuroscience Center, University of Helsinki, Helsinki, Finland
- *Correspondence: Helike Lõhelaid,
| | - Jenni E. Anttila
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hock-Kean Liew
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien City, Taiwan
| | - Kuan-Yin Tseng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jaakko Teppo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Mikko Airavaara
- HiLIFE – Neuroscience Center, University of Helsinki, Helsinki, Finland
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Mikko Airavaara,
| |
Collapse
|
2
|
Downregulated XBP-1 Rescues Cerebral Ischemia/Reperfusion Injury-Induced Pyroptosis via the NLRP3/Caspase-1/GSDMD Axis. Mediators Inflamm 2022; 2022:8007078. [PMID: 35497095 PMCID: PMC9050284 DOI: 10.1155/2022/8007078] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Ischemic stroke is a major condition that remains extremely problematic to treat. A cerebral reperfusion injury becomes apparent after an ischemic accident when reoxygenation of the afflicted area produces pathological side effects that are different than those induced by the initial oxygen and nutrient deprivation insult. Pyroptosis is a form of lytic programmed cell death that is distinct from apoptosis, which is initiated by inflammasomes and depends on the activation of Caspase-1. Then, Caspase-1 mobilizes the N-domain of gasdermin D (GSDMD), resulting in the release of cytokines, such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). X-box binding protein l (XBP-1) is activated under endoplasmic reticulum (ER) stress to form an important transcription factor XBP-1 splicing (XBP-1s). The cerebral ischemia/reperfusion (CI/R) causes cytotoxicity, which correlates with the activation of splicing XBP-1 mRNA and NLRP3 (NOD-, LRR-, and pyrin domain-containing 3) inflammasomes, along with increases in the expression and secretion of proinflammatory cytokines and upregulation of pyroptosis-related genes in HT22 cells and in the middle cerebral artery occlusion (MCAO) rat model. However, whether XBP-1 plays a role in regulating pyroptosis involved in CI/R is still unknown. Our present study showed that behavior deficits, cerebral ischemic lesions, and neuronal death resulted from CI/R. CI/R increased the mRNA level of XBP-1s, NLRP3, IL-1β, and IL-18 and the expressions of XBP-1s, NLRP3, Caspase-1, GSDMD-N, IL-1β, and IL-18. We further repeated this process in HT22 cells and C8-B4 cells and found that OGD/R decreased cell viability and increased LDH release, XBP-1s, NLRP3, Caspase-1, GSDMD-N, IL-1β, IL-18, and especially the ratio of pyroptosis, which were reversed by Z-YVAD-FMK and downregulated XBP-1. Our results suggest that downregulated XBP-1 inhibited pyroptosis through the classical NLRP3/Caspase-1/GSDMD pathway to protect the neurons.
Collapse
|
3
|
Guo S, Wehbe A, Syed S, Wills M, Guan L, Lv S, Li F, Geng X, Ding Y. Cerebral Glucose Metabolism and Potential Effects on Endoplasmic Reticulum Stress in Stroke. Aging Dis 2022; 14:450-467. [PMID: 37008060 PMCID: PMC10017147 DOI: 10.14336/ad.2022.0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke is an extremely common pathology with strikingly high morbidity and mortality rates. The endoplasmic reticulum (ER) is the primary organelle responsible for conducting protein synthesis and trafficking as well as preserving intracellular Ca2+ homeostasis. Mounting evidence shows that ER stress contributes to stroke pathophysiology. Moreover, insufficient circulation to the brain after stroke causes suppression of ATP production. Glucose metabolism disorder is an important pathological process after stroke. Here, we discuss the relationship between ER stress and stroke and treatment and intervention of ER stress after stroke. We also discuss the role of glucose metabolism, particularly glycolysis and gluconeogenesis, post-stroke. Based on recent studies, we speculate about the potential relationship and crosstalk between glucose metabolism and ER stress. In conclusion, we describe ER stress, glycolysis, and gluconeogenesis in the context of stroke and explore how the interplay between ER stress and glucose metabolism contributes to the pathophysiology of stroke.
Collapse
Affiliation(s)
- Sichao Guo
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Harvard T.H. Chan School of Public Health, USA
| | - Shabber Syed
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Shuyu Lv
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
- Correspondence should be addressed to: Dr. Xiaokun Geng, Beijing Luhe Hospital, Capital Medical University, Beijing, China. E-mail: ; Dr. Yuchuan Ding, Wayne State University School of Medicine, Detroit, MI 48201, USA. E-mail:
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Correspondence should be addressed to: Dr. Xiaokun Geng, Beijing Luhe Hospital, Capital Medical University, Beijing, China. E-mail: ; Dr. Yuchuan Ding, Wayne State University School of Medicine, Detroit, MI 48201, USA. E-mail:
| |
Collapse
|
4
|
Rehni AK, Cho S, Dave KR. Ischemic brain injury in diabetes and endoplasmic reticulum stress. Neurochem Int 2022; 152:105219. [PMID: 34736936 PMCID: PMC8918032 DOI: 10.1016/j.neuint.2021.105219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023]
Abstract
Diabetes is a widespread disease characterized by high blood glucose levels due to abnormal insulin activity, production, or both. Chronic diabetes causes many secondary complications including cardiovascular disease: a life-threatening complication. Cerebral ischemia-related mortality, morbidity, and the extent of brain injury are high in diabetes. However, the mechanism of increase in ischemic brain injury during diabetes is not well understood. Multiple mechanisms mediate diabetic hyperglycemia and hypoglycemia-induced increase in ischemic brain injury. Endoplasmic reticulum (ER) stress mediates both brain injury as well as brain protection after ischemia-reperfusion injury. The pathways of ER stress are modulated during diabetes. Free radical generation and mitochondrial dysfunction, two of the prominent mechanisms that mediate diabetic increase in ischemic brain injury, are known to stimulate the pathways of ER stress. Increased ischemic brain injury in diabetes is accompanied by a further increase in the activation of ER stress. As there are many metabolic changes associated with diabetes, differential activation of the pathways of ER stress may mediate pronounced ischemic brain injury in subjects suffering from diabetes. We presently discuss the literature on the significance of ER stress in mediating increased ischemia-reperfusion injury in diabetes.
Collapse
Affiliation(s)
- Ashish K Rehni
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Sunjoo Cho
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
5
|
John S, K G G, Krishna AP, Mishra R. Neurotherapeutic implications of sense and respond strategies generated by astrocytes and astrocytic tumours to combat pH mechanical stress. Neuropathol Appl Neurobiol 2021; 48:e12774. [PMID: 34811795 PMCID: PMC9300154 DOI: 10.1111/nan.12774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 02/04/2023]
Abstract
Aims Astrocytes adapt to acute acid stress. Intriguingly, cancer cells with astrocytic differentiation thrive even better in an acidic microenvironment. How changes in extracellular pH (pHe) are sensed and measured by the cell surface assemblies that first intercept the acid stress, and how this information is relayed downstream for an appropriate survival response remains largely uncharacterized. Methods In vitro cell‐based studies were combined with an in vivo animal model to delineate the machinery involved in pH microenvironment sensing and generation of mechanoadaptive responses in normal and neoplastic astrocytes. The data was further validated on patient samples from acidosis driven ischaemia and astrocytic tumour tissues. Results We demonstrate that low pHe is perceived and interpreted by cells as mechanical stress. GM3 acts as a lipid‐based pH sensor, and in low pHe, its highly protonated state generates plasma membrane deformation stress which activates the IRE1‐sXBP1‐SREBP2‐ACSS2 response axis for cholesterol biosynthesis and surface trafficking. Enhanced surface cholesterol provides mechanical tenacity and prevents acid‐mediated membrane hydrolysis, which would otherwise result in cell leakage and death. Conclusions In summary, activating these lipids or the associated downstream machinery in acidosis‐related neurodegeneration may prevent disease progression, while specifically suppressing this key mechanical ‘sense‐respond’ axis should effectively target astrocytic tumour growth.
Collapse
Affiliation(s)
- Sebastian John
- Brain and Cerebrovascular Mechanobiology Research, Laboratory of Translational Mechanobiology, Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Gayathri K G
- Brain and Cerebrovascular Mechanobiology Research, Laboratory of Translational Mechanobiology, Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Aswani P Krishna
- Brain and Cerebrovascular Mechanobiology Research, Laboratory of Translational Mechanobiology, Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Rashmi Mishra
- Brain and Cerebrovascular Mechanobiology Research, Laboratory of Translational Mechanobiology, Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
6
|
Ryan F, Khoshnam SE, Khodagholi F, Ashabi G, Ahmadiani A. How cytosolic compartments play safeguard functions against neuroinflammation and cell death in cerebral ischemia. Metab Brain Dis 2021; 36:1445-1467. [PMID: 34173922 DOI: 10.1007/s11011-021-00770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
Ischemic stroke is the second leading cause of mortality and disability globally. Neuronal damage following ischemic stroke is rapid and irreversible, and eventually results in neuronal death. In addition to activation of cell death signaling, neuroinflammation is also considered as another pathogenesis that can occur within hours after cerebral ischemia. Under physiological conditions, subcellular organelles play a substantial role in neuronal functionality and viability. However, their functions can be remarkably perturbed under neurological disorders, particularly cerebral ischemia. Therefore, their biochemical and structural response has a determining role in the sequel of neuronal cells and the progression of disease. However, their effects on cell death and neuroinflammation, as major underlying mechanisms of ischemic stroke, are still not understood. This review aims to provide a comprehensive overview of the contribution of each organelle on these pathological processes after ischemic stroke.
Collapse
Affiliation(s)
- Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Centre, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, PO Box: 1417613151, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Han Y, Yuan M, Guo YS, Shen XY, Gao ZK, Bi X. Mechanism of Endoplasmic Reticulum Stress in Cerebral Ischemia. Front Cell Neurosci 2021; 15:704334. [PMID: 34408630 PMCID: PMC8365026 DOI: 10.3389/fncel.2021.704334] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
Endoplasmic reticulum (ER) is the main organelle for protein synthesis, trafficking and maintaining intracellular Ca2+ homeostasis. The stress response of ER results from the disruption of ER homeostasis in neurological disorders. Among these disorders, cerebral ischemia is a prevalent reason of death and disability in the world. ER stress stemed from ischemic injury initiates unfolded protein response (UPR) regarded as a protection mechanism. Important, disruption of Ca2+ homeostasis resulted from cytosolic Ca2+ overload and depletion of Ca2+ in the lumen of the ER could be a trigger of ER stress and the misfolded protein synthesis. Brain cells including neurons, glial cells and endothelial cells are involved in the complex pathophysiology of ischemic stroke. This is generally important for protein underfolding, but even more for cytosolic Ca2+ overload. Mild ER stress promotes cells to break away from danger signals and enter the adaptive procedure with the activation of pro-survival mechanism to rescue ischemic injury, while chronic ER stress generally serves as a detrimental role on nerve cells via triggering diverse pro-apoptotic mechanism. What’s more, the determination of some proteins in UPR during cerebral ischemia to cell fate may have two diametrically opposed results which involves in a specialized set of inflammatory and apoptotic signaling pathways. A reasonable understanding and exploration of the underlying molecular mechanism related to ER stress and cerebral ischemia is a prerequisite for a major breakthrough in stroke treatment in the future. This review focuses on recent findings of the ER stress as well as the progress research of mechanism in ischemic stroke prognosis provide a new treatment idea for recovery of cerebral ischemia.
Collapse
Affiliation(s)
- Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Mei Yuan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yi-Sha Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
8
|
Santos-Galdiano M, González-Rodríguez P, Font-Belmonte E, Ugidos IF, Anuncibay-Soto B, Pérez-Rodríguez D, Fernández-López A. Celecoxib-Dependent Neuroprotection in a Rat Model of Transient Middle Cerebral Artery Occlusion (tMCAO) Involves Modifications in Unfolded Protein Response (UPR) and Proteasome. Mol Neurobiol 2021; 58:1404-1417. [PMID: 33184783 DOI: 10.1007/s12035-020-02202-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Stroke is one of the main causes of death and disability worldwide. Ischemic stroke results in unfolded/misfolded protein accumulation in endoplasmic reticulum (ER), a condition known as ER stress. We hypothesized that previously reported neuroprotection of celecoxib, a selective inhibitor of cyclooxygenase-2, in transient middle cerebral artery occlusion (tMCAO) model, relies on the ER stress decrease. To probe this hypothesis, Sprague-Dawley rats were subjected to 1 h of tMCAO and treated with celecoxib or vehicle 1 and 24 h after ischemia. Protein and mRNA levels of the main hallmarks of ER stress, unfolded protein response (UPR) activation, UPR-induced cell death, and ubiquitin proteasome system (UPS) and autophagy, the main protein degradation pathways, were measured at 12 and 48 h of reperfusion. Celecoxib treatment decreased polyubiquitinated protein load and ER stress marker expression such as glucose-related protein 78 (GRP78), C/EBP (CCAAT/enhancer-binding protein) homologous protein (CHOP), and caspase 12 after 48 h of reperfusion. Regarding the UPR activation, celecoxib promoted inositol-requiring enzyme 1 (IRE1) pathway instead of double-stranded RNA-activated protein kinase-like ER kinase (PERK) pathway. Furthermore, celecoxib treatment increased proteasome catalytic subunits transcript levels and decreased p62 protein levels, while the microtubule-associated protein 1 light chain 3 (LC3B) II/I ratio remained unchanged. Thus, the ability of celecoxib treatment on reducing the ER stress correlates with the enhancement of IRE1-UPR pathway and UPS degradation. These data support the ability of anti-inflammatory therapy in modulating ER stress and reveal the IRE1 pathway as a promising therapeutic target in stroke therapy.Graphical abstract.
Collapse
Affiliation(s)
- María Santos-Galdiano
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Paloma González-Rodríguez
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Enrique Font-Belmonte
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Irene F Ugidos
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
- Currently at AIV Institute, University of Eastern Finland, Kuopio, Finland
| | - Berta Anuncibay-Soto
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
- Currently at Department of Life Sciences, Imperial College London (ICL), London, UK
| | - Diego Pérez-Rodríguez
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain.
- Currently at Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
| | - Arsenio Fernández-López
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain.
| |
Collapse
|
9
|
Kubra KT, Akhter MS, Uddin MA, Barabutis N. Unfolded protein response in cardiovascular disease. Cell Signal 2020; 73:109699. [PMID: 32592779 DOI: 10.1016/j.cellsig.2020.109699] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/21/2022]
Abstract
The unfolded protein response (UPR) is a highly conserved molecular machinery, which protects the cells against a diverse variety of stimuli. Activation of this element has been associated with both human health and disease. The purpose of the current manuscript is to provide the most updated information on the involvement of UPR towards the improvement; or deterioration of cardiovascular functions. Since UPR is consisted of three distinct elements, namely the activating transcription factor 6, the protein kinase RNA-like endoplasmic reticulum kinase; and the inositol-requiring enzyme-1α, a highly orchestrated manipulation of those molecular branches may provide new therapeutic possibilities against the severe outcomes of cardiovascular disease.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
10
|
Wang YC, Li X, Shen Y, Lyu J, Sheng H, Paschen W, Yang W. PERK (Protein Kinase RNA-Like ER Kinase) Branch of the Unfolded Protein Response Confers Neuroprotection in Ischemic Stroke by Suppressing Protein Synthesis. Stroke 2020; 51:1570-1577. [PMID: 32212900 DOI: 10.1161/strokeaha.120.029071] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background and Purpose- Ischemic stroke impairs endoplasmic reticulum (ER) function, causes ER stress, and activates the unfolded protein response. The unfolded protein response consists of 3 branches controlled by ER stress sensor proteins, which include PERK (protein kinase RNA-like ER kinase). Activated PERK phosphorylates eIF2α (eukaryotic initiation factor 2 alpha), resulting in inhibition of global protein synthesis. Here, we aimed to clarify the role of the PERK unfolded protein response branch in stroke. Methods- Neuron-specific and tamoxifen-inducible PERK conditional knockout (cKO) mice were generated by cross-breeding Camk2a-CreERT2 with Perkf/f mice. Transient middle cerebral artery occlusion was used to induce stroke. Short- and long-term stroke outcomes were evaluated. Protein synthesis in the brain was assessed using a surface-sensing-of-translation approach. Results- After tamoxifen-induced deletion of Perk in forebrain neurons was confirmed in PERK-cKO mice, PERK-cKO and control mice were subjected to transient middle cerebral artery occlusion and 3 days or 3 weeks recovery. PERK-cKO mice had larger infarcts and worse neurological outcomes compared with control mice, suggesting that PERK-induced eIF2α phosphorylation and subsequent suppression of translation protects neurons from ischemic stress. Indeed, better stroke outcomes were observed in PERK-cKO mice that received postischemic treatment with salubrinal, which can restore the ischemia-induced increase in phosphorylated eIF2α in these mice. Finally, our data showed that post-treatment with salubrinal improved functional recovery after stroke. Conclusions- Here, we presented the first evidence that postischemic suppression of translation induced by PERK activation promotes recovery of neurological function after stroke. This confirms and further extends our previous observations that recovery of ER function impaired by ischemic stress critically contributes to stroke outcome. Therefore, future research should include strategies to improve stroke outcome by targeting unfolded protein response branches to restore protein homeostasis in neurons.
Collapse
Affiliation(s)
- Ya-Chao Wang
- From the Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC
| | - Xuan Li
- From the Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC
| | - Yuntian Shen
- From the Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC
| | - Jingjun Lyu
- From the Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC
| | - Huaxin Sheng
- From the Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC
| | - Wulf Paschen
- From the Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC
| | - Wei Yang
- From the Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC
| |
Collapse
|
11
|
Habib P, Stamm AS, Schulz JB, Reich A, Slowik A, Capellmann S, Huber M, Wilhelm T. EPO and TMBIM3/GRINA Promote the Activation of the Adaptive Arm and Counteract the Terminal Arm of the Unfolded Protein Response after Murine Transient Cerebral Ischemia. Int J Mol Sci 2019; 20:ijms20215421. [PMID: 31683519 PMCID: PMC6862264 DOI: 10.3390/ijms20215421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke is known to cause the accumulation of misfolded proteins and loss of calcium homeostasis leading to impairment of endoplasmic reticulum (ER) function. The unfolded protein response (UPR) is an ER-located and cytoprotective pathway that aims to resolve ER stress. Transmembrane BAX inhibitor-1 motif-containing (TMBIM) protein family member TMBIM3/GRINA is highly expressed in the brain and mostly located at the ER membrane suppressing ER calcium release by inositol-1,4,5-trisphosphate receptors. GRINA confers neuroprotection and is regulated by erythropoietin (EPO) after murine cerebral ischemia. However, the role of GRINA and the impact of EPO treatment on the post-ischemic UPR have not been elucidated yet. We subjected GRINA-deficient (Grina−/−) and wildtype mice to transient (30 min) middle cerebral artery occlusion (tMCAo) followed by 6 h or 72 h of reperfusion. We administered EPO or saline 0, 24 and 48 h after tMCAo/sham surgery. Oxygen–glucose deprivation (OGD) and pharmacological stimulation of the UPR using Tunicamycin and Thapsigargin were carried out in primary murine cortical mixed cell cultures. Treatment with the PERK-inhibitor GSK-2606414, IRE1a-RNase-inhibitor STF-083010 and EPO was performed 1 h prior to either 1 h, 2 h or 3 h of OGD. We found earlier and larger infarct demarcations in Grina−/− mice compared to wildtype mice, which was accompanied by a worse neurological outcome and an abolishment of EPO-mediated neuroprotection after ischemic stroke. In addition, GRINA-deficiency increased apoptosis and the activation of the corresponding PERK arm of the UPR after stroke. EPO enhanced the post-ischemic activation of pro-survival IRE1a and counteracted the pro-apoptotic PERK branch of the UPR. Both EPO and the PERK-inhibitor GSK-2606414 reduced cell death and regulated Grina mRNA levels after OGD. In conclusion, GRINA plays a crucial role in post-ischemic UPR and the use of both GSK-2606414 and EPO might lead to neuroprotection.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Cells, Cultured
- Endoplasmic Reticulum Stress/drug effects
- Endoplasmic Reticulum Stress/genetics
- Erythropoietin/pharmacology
- Glucose/metabolism
- Indoles/pharmacology
- Infarction, Middle Cerebral Artery/genetics
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/prevention & control
- Ischemic Attack, Transient/genetics
- Ischemic Attack, Transient/metabolism
- Ischemic Attack, Transient/prevention & control
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuroprotective Agents/pharmacology
- Oxygen/metabolism
- Sulfonamides/pharmacology
- Thapsigargin/pharmacology
- Thiophenes/pharmacology
- Tunicamycin/pharmacology
- Unfolded Protein Response/drug effects
- Unfolded Protein Response/genetics
Collapse
Affiliation(s)
- Pardes Habib
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
| | - Ann-Sophie Stamm
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
| | - Joerg B Schulz
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbAnd RWTH Aachen University, 52074 Aachen, Germany.
| | - Arno Reich
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
| | - Alexander Slowik
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
| | - Sandro Capellmann
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
| | - Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
12
|
Thiebaut AM, Hedou E, Marciniak SJ, Vivien D, Roussel BD. Proteostasis During Cerebral Ischemia. Front Neurosci 2019; 13:637. [PMID: 31275110 PMCID: PMC6594416 DOI: 10.3389/fnins.2019.00637] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
Cerebral ischemia is a complex pathology involving a cascade of cellular mechanisms, which deregulate proteostasis and lead to neuronal death. Proteostasis refers to the equilibrium between protein synthesis, folding, transport, and protein degradation. Within the brain proteostasis plays key roles in learning and memory by controlling protein synthesis and degradation. Two important pathways are implicated in the regulation of proteostasis: the unfolded protein response (UPR) and macroautophagy (called hereafter autophagy). Both are necessary for cell survival, however, their over-activation in duration or intensity can lead to cell death. Moreover, UPR and autophagy can activate and potentiate each other to worsen the issue of cerebral ischemia. A better understanding of autophagy and ER stress will allow the development of therapeutic strategies for stroke, both at the acute phase and during recovery. This review summarizes the latest therapeutic advances implicating ER stress or autophagy in cerebral ischemia. We argue that the processes governing proteostasis should be considered together in stroke, rather than focusing either on ER stress or autophagy in isolation.
Collapse
Affiliation(s)
- Audrey M Thiebaut
- INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, University of Caen Normandy, Caen, France
| | - Elodie Hedou
- INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, University of Caen Normandy, Caen, France
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.,Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Denis Vivien
- INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, University of Caen Normandy, Caen, France.,Department of Clinical Research, University of Caen Normandy, Caen, France
| | - Benoit D Roussel
- INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, University of Caen Normandy, Caen, France
| |
Collapse
|
13
|
Ma J, Ni H, Rui Q, Liu H, Jiang F, Gao R, Gao Y, Li D, Chen G. Potential Roles of NIX/BNIP3L Pathway in Rat Traumatic Brain Injury. Cell Transplant 2019; 28:585-595. [PMID: 30961359 PMCID: PMC7103607 DOI: 10.1177/0963689719840353] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
NIX/BNIP3L is known as a proapoptotic protein that is also related to mitophagy. Previous
reports have shown that NIX could be involved in neuronal apoptosis after intracerebral
hemorrhage, but it also plays a protective role in mitophagy in ischemic brain injury. How
NIX works in traumatic brain injury (TBI) is unclear. Thus, this study was designed to
observe the expression of NIX and perform a preliminary exploration of the possible
effects of NIX in a rat TBI model. The results showed that NIX expression decreased after
damage, and colocalized with neuronal cells in cortical areas. Moreover, when we induced
upregulation of NIX, autophagy was increased, while neuronal apoptosis and brain water
content decreased along with neurological deficits. These findings remind us that NIX
probably plays a neuroprotective role in TBI through autophagy and apoptosis pathways.
Collapse
Affiliation(s)
- Jialing Ma
- 1 Department of Anesthesia, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Haibo Ni
- 2 Department of Neurosurgery, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Qin Rui
- 3 Department of Laboratory, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Huixiang Liu
- 2 Department of Neurosurgery, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Feng Jiang
- 2 Department of Neurosurgery, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Rong Gao
- 2 Department of Neurosurgery, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Yanping Gao
- 1 Department of Anesthesia, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Di Li
- 4 Department of Neurosurgery and Translational Medicine Center, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Gang Chen
- 5 Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, SuZhou, China
| |
Collapse
|
14
|
Shi S, Tang M, Li H, Ding H, Lu Y, Gao L, Wu Q, Zhou L, Fu Y, Xiao B, Zhang M. X‐box binding protein l splicing attenuates brain microvascular endothelial cell damage induced by oxygen‐glucose deprivation through the activation of phosphoinositide 3‐kinase/protein kinase B, extracellular signal‐regulated kinases, and hypoxia‐inducible factor‐1α/vascular endothelial growth factor signaling pathways. J Cell Physiol 2018; 234:9316-9327. [PMID: 30317635 DOI: 10.1002/jcp.27614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Shupeng Shi
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Mimi Tang
- Department of Pharmacy Xiangya Hospital, Central South University Changsha China
- Institute of Hospital Pharmacy, Xiangya Hospital, Central South University Changsha China
| | - Honglei Li
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Hui Ding
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Yangfan Lu
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Lijuan Gao
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Qian Wu
- Department of Neurology First Affiliated Hospital, Kunming Medical University Kunming China
| | - Luo Zhou
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Yujiao Fu
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Bo Xiao
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Mengqi Zhang
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| |
Collapse
|
15
|
Shen Y, Yan B, Zhao Q, Wang Z, Wu J, Ren J, Wang W, Yu S, Sheng H, Crowley SD, Ding F, Paschen W, Yang W. Aging Is Associated With Impaired Activation of Protein Homeostasis-Related Pathways After Cardiac Arrest in Mice. J Am Heart Assoc 2018; 7:e009634. [PMID: 30371162 PMCID: PMC6201440 DOI: 10.1161/jaha.118.009634] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/02/2018] [Indexed: 01/08/2023]
Abstract
Background The mechanisms underlying worse outcome at advanced age after cardiac arrest ( CA ) and resuscitation are not well understood. Because protein homeostasis (proteostasis) is essential for cellular and organismal health, but is impaired after CA , we investigated the effects of age on proteostasis-related prosurvival pathways activated after CA . Methods and Results Young (2-3 months old) and aged (21-22 months old) male C57Bl/6 mice were subjected to CA and cardiopulmonary resuscitation ( CPR ). Functional outcome and organ damage were evaluated by assessing neurologic deficits, histological features, and creatinine level. CA / CPR -related changes in small ubiquitin-like modifier conjugation, ubiquitination, and the unfolded protein response were analyzed by measuring mRNA and protein levels in the brain, kidney, and spinal cord. Thiamet-G was used to increase O-linked β-N-acetylglucosamine modification. After CA / CPR , aged mice had trended lower survival rates, more severe tissue damage in the brain and kidney, and poorer recovery of neurologic function compared with young mice. Furthermore, small ubiquitin-like modifier conjugation, ubiquitination, unfolded protein response, and O-linked β-N-acetylglucosamine modification were activated after CA / CPR in young mice, but their activation was impaired in aged mice. Finally, pharmacologically increasing O-linked β-N-acetylglucosamine modification after CA improved outcome. Conclusions Results suggest that impaired activation of prosurvival pathways contributes to worse outcome after CA / CPR in aged mice because restoration of proteostasis is critical to the survival of cells stressed by ischemia. Therefore, a pharmacologic intervention that targets aging-related impairment of proteostasis-related pathways after CA / CPR may represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yuntian Shen
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationCo‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Baihui Yan
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
- Department of AnesthesiologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Qiang Zhao
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
- Department of NeurologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
| | - Zhuoran Wang
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
| | - Jiangbo Wu
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
| | - Jiafa Ren
- Division of NephrologyDepartment of MedicineDuke University and Durham VA Medical CentersDurhamNC
| | - Wei Wang
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
- Department of AnesthesiologySouthern Medical University Nanfang HospitalGuangzhouChina
| | - Shu Yu
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationCo‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Huaxin Sheng
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
| | - Steven D. Crowley
- Division of NephrologyDepartment of MedicineDuke University and Durham VA Medical CentersDurhamNC
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationCo‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Wulf Paschen
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
| | - Wei Yang
- Center for Perioperative Organ ProtectionDepartment of AnesthesiologyDuke University Medical CenterDurhamNC
| |
Collapse
|
16
|
Zhang GL, Wang LH, Liu XY, Zhang YX, Hu MY, Liu L, Fang YY, Mu Y, Zhao Y, Huang SH, Liu T, Wang XJ. Cerebral Dopamine Neurotrophic Factor (CDNF) Has Neuroprotective Effects against Cerebral Ischemia That May Occur through the Endoplasmic Reticulum Stress Pathway. Int J Mol Sci 2018; 19:ijms19071905. [PMID: 29966219 PMCID: PMC6073452 DOI: 10.3390/ijms19071905] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF), previously known as the conserved dopamine neurotrophic factor, belongs to the evolutionarily conserved CDNF/mesencephalic astrocyte-derived neurotrophic factor MANF family of neurotrophic factors that demonstrate neurotrophic activities in dopaminergic neurons. The function of CDNF during brain ischemia is still not known. MANF is identified as an endoplasmic reticulum (ER) stress protein; however, the role of CDNF in ER stress remains to be fully elucidated. Here, we test the neuroprotective effect of CDNF on middle cerebral artery occlusion (MCAO) rats and neurons and astrocytes treated with oxygen–glucose depletion (OGD). We also investigate the expression of CDNF in cerebral ischemia and in primary neurons treated with ER stress-inducing agents. Our results show that CDNF can significantly reduce infarct volume, reduce apoptotic cells and improve motor function in MCAO rats, while CDNF can increase the cell viability of neurons and astrocytes treated by OGD. The expression of CDNF was upregulated in the peri-infarct tissue at 2 h of ischemia/24 h reperfusion. ER stress inducer can induce CDNF expression in primary cultured neurons. Our data indicate that CDNF has neuroprotective effects on cerebral ischemia and the OGD cell model and the protective mechanism of CDNF may occur through ER stress pathways.
Collapse
Affiliation(s)
- Geng-Lin Zhang
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
- Key Laboratory for Biotech-Drugs Ministry of Health and Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan 250062, China.
| | - Li-Hong Wang
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Xing-Yu Liu
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Ya-Xuan Zhang
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Meng-Yang Hu
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Lin Liu
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Yuan-Yuan Fang
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Yu Mu
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Yan Zhao
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Shu-Hong Huang
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Ting Liu
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| | - Xiao-Jing Wang
- Department of Cell Biology and Neurobiology, School of Basic Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan 250012, China.
| |
Collapse
|
17
|
Ni H, Rui Q, Xu Y, Zhu J, Gao F, Dang B, Li D, Gao R, Chen G. RACK1 upregulation induces neuroprotection by activating the IRE1-XBP1 signaling pathway following traumatic brain injury in rats. Exp Neurol 2018. [DOI: 10.1016/j.expneurol.2018.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Ni H, Rui Q, Li D, Gao R, Chen G. The Role of IRE1 Signaling in the Central Nervous System Diseases. Curr Neuropharmacol 2018; 16:1340-1347. [PMID: 29663887 PMCID: PMC6251047 DOI: 10.2174/1570159x16666180416094646] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/07/2017] [Accepted: 02/28/2018] [Indexed: 01/14/2023] Open
Abstract
The accumulation of misfolded or unfolded proteins in endoplasmic reticulum (ER) lumen results in the activation of an adaptive stress process called the unfolded protein response (UPR). As the most conserved signaling branch of the UPR, Inositol-requiring enzyme 1 (IRE1) possesses both Ser/Thr kinase and RNase activities operating as major stress sensors, mediating both adaptive and pro-apoptotic pathways under ER stress. Over the last three decades, a mounting body of evidence has shown that IRE1 signaling dysfunction is involved in the pathology of various neurological disorders. Targeting this pathway has emerged as a promising therapeutic strategy against these diseases. In this review, we provide a general overview about the expression and physiological function of IRE1 signaling and its pathophysiological roles in the central nervous system diseases.
Collapse
Affiliation(s)
| | | | - Di Li
- Address correspondence to this author at the Department of Translational Medicine Center, The First People’s Hospital of Zhangjiagang City, Suzhou, Jiangsu, P.R. China; Tel: +86-18921962599; E-mail:
| | | | | |
Collapse
|
19
|
Zhao Y, Fang Y, Zhao H, Li J, Duan Y, Shi W, Huang Y, Gao L, Luo Y. Chrysophanol inhibits endoplasmic reticulum stress in cerebral ischemia and reperfusion mice. Eur J Pharmacol 2017; 818:1-9. [PMID: 29031902 DOI: 10.1016/j.ejphar.2017.10.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/26/2022]
Abstract
Endoplasmic reticulum (ER) stress plays a critical role in mediating ischemia/reperfusion (I/R) damage in the brain. Our previous study showed that Chrysophanol (CHR) alleviated cerebral ischemic injury in mice and nuclear factor-κB (NF-κB) involved in its neuroprotective effect, but the precise mechanism remains not fully understood. The present study investigated the effect of CHR treatment on I/R-induced ER stress. Mice were subjected to middle cerebral artery occlusion (MCAO) for 45min and received either vehicle or CHR (0.1mg/kg) for 14 days after reperfusion. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) was used to detect apoptotic cells in penumbral tissue. The expression of ER stress-related factors including glucose-regulated protein 78 (GRP78), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), CCAAT-enhancer-binding protein homologous protein (CHOP), and caspase-12 as well as inhibitory κB-α (IκB-α), the inhibitor of NF-κB, was assessed. Our results demonstrated that CHR treatment reduced MCAO-induced upregulation of GRP78, p-eIF2α, CHOP, and caspase-12 in the ischemic brain. Moreover, the TUNEL-positive neuronal cells, which were colocalized with CHOP and caspase-12, decreased in response to CHR treatment, indicating that CHR protects against I/R injury by inhibiting ER stress-associated neuronal apoptosis. In addition, CHR reversed the decrease in IκB-α level induced by MCAO, which was attributed at least in part to the attenuation of translational inhibition induced by eIF2α phosphorylation, indicating that CHR exerts anti-inflammatory effects following I/R by inhibiting ER stress response. These results suggest that attenuation of ER stress may be involved in the mechanisms of neuroprotective effects of CHR.
Collapse
Affiliation(s)
- Yongmei Zhao
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.
| | - Yalan Fang
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Haiping Zhao
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Jincheng Li
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yunxia Duan
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Wenjuan Shi
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yuyou Huang
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Li Gao
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
20
|
Jiang M, Yu S, Yu Z, Sheng H, Li Y, Liu S, Warner DS, Paschen W, Yang W. XBP1 (X-Box-Binding Protein-1)-Dependent O-GlcNAcylation Is Neuroprotective in Ischemic Stroke in Young Mice and Its Impairment in Aged Mice Is Rescued by Thiamet-G. Stroke 2017; 48:1646-1654. [PMID: 28487326 DOI: 10.1161/strokeaha.117.016579] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/09/2017] [Accepted: 03/27/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Impaired protein homeostasis induced by endoplasmic reticulum dysfunction is a key feature of a variety of age-related brain diseases including stroke. To restore endoplasmic reticulum function impaired by stress, the unfolded protein response is activated. A key unfolded protein response prosurvival pathway is controlled by the endoplasmic reticulum stress sensor (inositol-requiring enzyme-1), XBP1 (downstream X-box-binding protein-1), and O-GlcNAc (O-linked β-N-acetylglucosamine) modification of proteins (O-GlcNAcylation). Stroke impairs endoplasmic reticulum function, which activates unfolded protein response. The rationale of this study was to explore the potentials of the IRE1/XBP1/O-GlcNAc axis as a target for neuroprotection in ischemic stroke. METHODS Mice with Xbp1 loss and gain of function in neurons were generated. Stroke was induced by transient or permanent occlusion of the middle cerebral artery in young and aged mice. Thiamet-G was used to increase O-GlcNAcylation. RESULTS Deletion of Xbp1 worsened outcome after transient and permanent middle cerebral artery occlusion. After stroke, O-GlcNAcylation was activated in neurons of the stroke penumbra in young mice, which was largely Xbp1 dependent. This activation of O-GlcNAcylation was impaired in aged mice. Pharmacological increase of O-GlcNAcylation before or after stroke improved outcome in both young and aged mice. CONCLUSIONS Our study indicates a critical role for the IRE1/XBP1 unfolded protein response branch in stroke outcome. O-GlcNAcylation is a prosurvival pathway that is activated in the stroke penumbra in young mice but impaired in aged mice. Boosting prosurvival pathways to counterbalance the age-related decline in the brain's self-healing capacity could be a promising strategy to improve ischemic stroke outcome in aged brains.
Collapse
Affiliation(s)
- Meng Jiang
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Shu Yu
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Zhui Yu
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Huaxin Sheng
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Ying Li
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Shuai Liu
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - David S Warner
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Wulf Paschen
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.).
| | - Wei Yang
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.).
| |
Collapse
|
21
|
Yu Z, Sheng H, Liu S, Zhao S, Glembotski CC, Warner DS, Paschen W, Yang W. Activation of the ATF6 branch of the unfolded protein response in neurons improves stroke outcome. J Cereb Blood Flow Metab 2017; 37:1069-1079. [PMID: 27217380 PMCID: PMC5363481 DOI: 10.1177/0271678x16650218] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Impaired function of the endoplasmic reticulum (ER stress) is a hallmark of many human diseases including stroke. To restore ER function in stressed cells, the unfolded protein response (UPR) is induced, which activates 3 ER stress sensor proteins including activating transcription factor 6 (ATF6). ATF6 is then cleaved by proteases to form the short-form ATF6 (sATF6), a transcription factor. To determine the extent to which activation of the ATF6 UPR branch defines the fate and function of neurons after stroke, we generated a conditional and tamoxifen-inducible sATF6 knock-in mouse. To express sATF6 in forebrain neurons, we crossed our sATF6 knock-in mouse line with Emx1-Cre mice to generate ATF6-KI mice. After the ATF6 branch was activated in ATF6-KI mice with tamoxifen, mice were subjected to transient middle cerebral artery occlusion. Forced activation of the ATF6 UPR branch reduced infarct volume and improved functional outcome at 24 h after stroke. Increased autophagic activity at early reperfusion time after stroke may contribute to the ATF6-mediated neuroprotection. We concluded that the ATF6 UPR branch is crucial to ischemic stroke outcome. Therefore, boosting UPR pro-survival pathways may be a promising therapeutic strategy for stroke.
Collapse
Affiliation(s)
- Zhui Yu
- 1 Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,2 Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huaxin Sheng
- 1 Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Shuai Liu
- 1 Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Shengli Zhao
- 3 Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | | | - David S Warner
- 1 Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wulf Paschen
- 1 Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wei Yang
- 1 Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
22
|
Li WH, Yu J, Lin YP, Tan X, Song Y. Effect of electroacupuncture at Neiguan (PC 6) and Baihui (GV 20) on CHOP and caspase-12 gene expressions in rats after ischemia-reperfusion injury. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2017. [DOI: 10.1007/s11726-017-0967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
DeGracia DJ. Regulation of mRNA following brain ischemia and reperfusion. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28097803 DOI: 10.1002/wrna.1415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/11/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022]
Abstract
There is growing appreciation that mRNA regulation plays important roles in disease and injury. mRNA regulation and ribonomics occur in brain ischemia and reperfusion (I/R) following stroke and cardiac arrest and resuscitation. It was recognized over 40 years ago that translation arrest (TA) accompanies brain I/R and is now recognized as part of the intrinsic stress responses triggered in neurons. However, neuron death correlates to a prolonged TA in cells fated to undergo delayed neuronal death (DND). Dysfunction of mRNA regulatory processes in cells fated to DND prevents them from translating stress-induced mRNAs such as heat shock proteins. The morphological and biochemical studies of mRNA regulation in postischemic neurons are discussed in the context of the large variety of molecular damage induced by ischemic injury. Open issues and areas of future investigation are highlighted. A sober look at the molecular complexity of ischemia-induced neuronal injury suggests that a network framework will assist in making sense of this complexity. The ribonomic network sits between the gene network and the various protein and metabolic networks. Thus, targeting the ribonomic network may prove more effective at neuroprotection than targeting specific molecular pathways, for which all efforts have failed to the present time to stop DND in stroke and after cardiac arrest. WIREs RNA 2017, 8:e1415. doi: 10.1002/wrna.1415 For further resources related to this article, please visit the WIREs website.
Collapse
|
24
|
Yang W, Paschen W. Unfolded protein response in brain ischemia: A timely update. J Cereb Blood Flow Metab 2016; 36:2044-2050. [PMID: 27733676 PMCID: PMC5363674 DOI: 10.1177/0271678x16674488] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/23/2016] [Indexed: 01/13/2023]
Abstract
Folding and processing newly synthesized proteins are vital functions of the endoplasmic reticulum that are sensitive to a variety of stress conditions. The unfolded protein response is activated to restore endoplasmic reticulum function impaired by stress. While we know that brain ischemia impairs endoplasmic reticulum function, the role of unfolded protein response activation in post-ischemic recovery of neurologic function is only beginning to emerge. Here, we summarize what is known about endoplasmic reticulum stress and unfolded protein response in brain ischemia and discuss recent findings from myocardial ischemia studies that could help to advance research on endoplasmic reticulum stress and unfolded protein response in brain ischemia.
Collapse
Affiliation(s)
- Wei Yang
- Department of Anesthesiology, Duke University Medical Center, Durham, USA
| | - Wulf Paschen
- Department of Anesthesiology, Duke University Medical Center, Durham, USA.,Department of Neurobiology, Duke University Medical Center, Durham, USA
| |
Collapse
|
25
|
Mollereau B, Rzechorzek NM, Roussel BD, Sedru M, Van den Brink DM, Bailly-Maitre B, Palladino F, Medinas DB, Domingos PM, Hunot S, Chandran S, Birman S, Baron T, Vivien D, Duarte CB, Ryoo HD, Steller H, Urano F, Chevet E, Kroemer G, Ciechanover A, Calabrese EJ, Kaufman RJ, Hetz C. Adaptive preconditioning in neurological diseases - therapeutic insights from proteostatic perturbations. Brain Res 2016; 1648:603-616. [PMID: 26923166 PMCID: PMC5010532 DOI: 10.1016/j.brainres.2016.02.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 02/06/2023]
Abstract
In neurological disorders, both acute and chronic neural stress can disrupt cellular proteostasis, resulting in the generation of pathological protein. However in most cases, neurons adapt to these proteostatic perturbations by activating a range of cellular protective and repair responses, thus maintaining cell function. These interconnected adaptive mechanisms comprise a 'proteostasis network' and include the unfolded protein response, the ubiquitin proteasome system and autophagy. Interestingly, several recent studies have shown that these adaptive responses can be stimulated by preconditioning treatments, which confer resistance to a subsequent toxic challenge - the phenomenon known as hormesis. In this review we discuss the impact of adaptive stress responses stimulated in diverse human neuropathologies including Parkinson׳s disease, Wolfram syndrome, brain ischemia, and brain cancer. Further, we examine how these responses and the molecular pathways they recruit might be exploited for therapeutic gain. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- B Mollereau
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France.
| | - N M Rzechorzek
- Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom; Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, United Kingdom
| | - B D Roussel
- Inserm, UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, 14000 Caen, France
| | - M Sedru
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| | - D M Van den Brink
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| | - B Bailly-Maitre
- INSERM U1065, C3M, Team 8 (Hepatic Complications in Obesity), Nice, France
| | - F Palladino
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France
| | - D B Medinas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Faculty of Medicine, University of Chile, Santiago, Chile
| | - P M Domingos
- ITQB-UNL, Av. da Republica, EAN, 2780-157 Oeiras, Portugal
| | - S Hunot
- Inserm, U 1127, F-75013 Paris, France; CNRS, UMR 7225, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - S Chandran
- Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - S Birman
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS UMR 8249, ESPCI ParisTech, PSL Research University, 75005 Paris, France
| | - T Baron
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Neurodegenerative Diseases Unit, 31, avenue Tony Garnier, 69364 Lyon Cedex 07, France
| | - D Vivien
- Inserm, UMR-S U919 Serine Proteases and Pathophysiology of the Neurovascular Unit, 14000 Caen, France
| | - C B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Rua Larga, and Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
| | - H D Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - H Steller
- Howard Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - F Urano
- Washington University School of Medicine, Department of Internal Medicine, St. Louis, MO 63110 USA
| | - E Chevet
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - G Kroemer
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Cell Biology and Metabolomics platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France; INSERM, U1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Karolinska Institute, Department of Women׳s and Children׳s Health, Karolinska University Hospital, Stockholm, Sweden
| | - A Ciechanover
- The Polak Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 30196, Israel
| | - E J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Morrill I, N344, Amherst, MA 01003, USA
| | - R J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - C Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
26
|
Liu S, Sheng H, Yu Z, Paschen W, Yang W. O-linked β-N-acetylglucosamine modification of proteins is activated in post-ischemic brains of young but not aged mice: Implications for impaired functional recovery from ischemic stress. J Cereb Blood Flow Metab 2016; 36:393-8. [PMID: 26661187 PMCID: PMC4759674 DOI: 10.1177/0271678x15608393] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/14/2015] [Indexed: 11/15/2022]
Abstract
To evaluate the effect of age on the response of brains to an ischemic challenge, we subjected young and aged mice to transient forebrain ischemia, and analyzed the heat shock response and unfolded protein response, ubiquitin conjugation and SUMO conjugation, and O-linked β-N-acetylglucosamine modification of proteins (O-GlcNAcylation). The most prominent age-related difference was an inability of aged mice to activate O-GlcNAcylation. Considering many reports on the protective role of O-GlcNAcylation in various stress conditions including myocardial ischemia, this pathway could be a promising target for therapeutic intervention to improve functional recovery of aged patients following brain ischemia.
Collapse
Affiliation(s)
- Shuai Liu
- Laboratory of Molecular Neurobiology, Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Huaxin Sheng
- Laboratory of Molecular Neurobiology, Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Zhui Yu
- Laboratory of Molecular Neurobiology, Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wulf Paschen
- Laboratory of Molecular Neurobiology, Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Wei Yang
- Laboratory of Molecular Neurobiology, Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
27
|
Nakka VP, Prakash-Babu P, Vemuganti R. Crosstalk Between Endoplasmic Reticulum Stress, Oxidative Stress, and Autophagy: Potential Therapeutic Targets for Acute CNS Injuries. Mol Neurobiol 2016; 53:532-544. [PMID: 25482050 PMCID: PMC4461562 DOI: 10.1007/s12035-014-9029-6] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/30/2014] [Indexed: 01/06/2023]
Abstract
Endoplasmic reticulum (ER) stress induces a variety of neuronal cell death pathways that play a critical role in the pathophysiology of stroke. ER stress occurs when unfolded/misfolded proteins accumulate and the folding capacity of ER chaperones exceeds the capacity of ER lumen to facilitate their disposal. As a consequence, a complex set of signaling pathways will be induced that transmit from ER to cytosol and nucleus to compensate damage and to restore the normal cellular homeostasis, collectively known as unfolded protein response (UPR). However, failure of UPR due to severe or prolonged stress leads to cell death. Following acute CNS injuries, chronic disturbances in protein folding and oxidative stress prolong ER stress leading to sustained ER dysfunction and neuronal cell death. While ER stress responses have been well studied after stroke, there is an emerging need to study the association of ER stress with other cell pathways that exacerbate neuronal death after an injury. In this review, we summarize the current understanding of the role for ER stress in acute brain injuries, highlighting the diverse molecular mechanisms associated with ER stress and its relation to oxidative stress and autophagy. We also discussed the existing and developing therapeutic options aimed to reduce ER stress to protect the CNS after acute injuries.
Collapse
Affiliation(s)
- Venkata Prasuja Nakka
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA
- Department of Biotechnology & Bioinformatics, School of Life sciences, University of Hyderabad, Hyderabad, India
| | - Phanithi Prakash-Babu
- Department of Biotechnology & Bioinformatics, School of Life sciences, University of Hyderabad, Hyderabad, India
| | - Raghu Vemuganti
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA.
| |
Collapse
|
28
|
Cheng D, Zhang K, Zhen G, Xue Z. The -116C/G polymorphism in XBP1 gene is associated with psychiatric illness in Asian population: A meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:665-72. [PMID: 25231123 DOI: 10.1002/ajmg.b.32271] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/26/2014] [Indexed: 11/07/2022]
Abstract
X-box binding protein 1 (XBP1) is a pivotal transcription factor and plays an important role in the pathogenesis of psychiatric illness. The association between XBP1-116C/G polymorphism and risk of psychiatric illness has been investigated in different populations. However, the results of these studies remain conflicting. Therefore, we performed a systematic meta-analysis to evaluate the association between XBP1-116C/G polymorphism and the overall psychiatric illness risk. Pubmed, Embase, and Chinese Biomedical Literature Database (CBM) were searched for case-control studies on the association between XBP1-116C/G polymorphism and psychiatric illness risk published up to July 31, 2014. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to access the strength of this association. Fourteen case-control studies including 3,512 cases and 4,889 controls were included. Overall, no significant association was found between XBP1-116C/G polymorphism and the risk of psychiatric illness (C/G vs. C/C: OR = 1.04, 95%CI = 0.92-1.17, P = 0.54). However, there was a significant association between this polymorphism and the psychiatric illness in Asian population (C/G vs. C/C: OR = 1.27, 95%CI = 1.00-1.61, P = 0.05; G/G + C/G vs. C/C: OR = 1.32, 95%CI = 1.05-1.65, P = 0.02). Furthermore, we found a significant association between XBP1-116C/G polymorphism and the risk of bipolar disorder in Asian population (C/G vs. C/C: OR = 1.81, 95%CI = 1.15-2.86, P = 0.01). The XBP1-116C/G polymorphism is associated with an increased risk of bipolar disorder in Asian population.
Collapse
Affiliation(s)
- Dan Cheng
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Respiratory Diseases, National Health and Family Planning Commission of the People's Republic of China, China
| | | | | | | |
Collapse
|
29
|
Zhang X, Yuan Y, Jiang L, Zhang J, Gao J, Shen Z, Zheng Y, Deng T, Yan H, Li W, Hou WW, Lu J, Shen Y, Dai H, Hu WW, Zhang Z, Chen Z. Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: Involvement of PARK2-dependent mitophagy. Autophagy 2014; 10:1801-13. [PMID: 25126734 PMCID: PMC4198364 DOI: 10.4161/auto.32136] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Transient cerebral ischemia leads to endoplasmic reticulum (ER) stress. However, the contributions of ER stress to cerebral ischemia are not clear. To address this issue, the ER stress activators tunicamycin (TM) and thapsigargin (TG) were administered to transient middle cerebral artery occluded (tMCAO) mice and oxygen-glucose deprivation-reperfusion (OGD-Rep.)-treated neurons. Both TM and TG showed significant protection against ischemia-induced brain injury, as revealed by reduced brain infarct volume and increased glucose uptake rate in ischemic tissue. In OGD-Rep.-treated neurons, 4-PBA, the ER stress releasing mechanism, counteracted the neuronal protection of TM and TG, which also supports a protective role of ER stress in transient brain ischemia. Knocking down the ER stress sensor Eif2s1, which is further activated by TM and TG, reduced the OGD-Rep.-induced neuronal cell death. In addition, both TM and TG prevented PARK2 loss, promoted its recruitment to mitochondria, and activated mitophagy during reperfusion after ischemia. The neuroprotection of TM and TG was reversed by autophagy inhibition (3-methyladenine and Atg7 knockdown) as well as Park2 silencing. The neuroprotection was also diminished in Park2(+/-) mice. Moreover, Eif2s1 and downstream Atf4 silencing reduced PARK2 expression, impaired mitophagy induction, and counteracted the neuroprotection. Taken together, the present investigation demonstrates that the ER stress induced by TM and TG protects against the transient ischemic brain injury. The PARK2-mediated mitophagy may be underlying the protection of ER stress. These findings may provide a new strategy to rescue ischemic brains by inducing mitophagy through ER stress activation.
Collapse
Affiliation(s)
- Xiangnan Zhang
- Department of Pharmacology; Key Laboratory of Medical Neurobiology of the Ministry of Health of China; Zhejiang Province Key Laboratory of Neurobiology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
- Collaborative Innovation Center for Infectious Diseases; Zhejiang University; Hangzhou, China
| | - Yang Yuan
- Department of Pharmacology; Key Laboratory of Medical Neurobiology of the Ministry of Health of China; Zhejiang Province Key Laboratory of Neurobiology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Lei Jiang
- Department of Pharmacology; Key Laboratory of Medical Neurobiology of the Ministry of Health of China; Zhejiang Province Key Laboratory of Neurobiology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Jingying Zhang
- Department of Pharmacology; Key Laboratory of Medical Neurobiology of the Ministry of Health of China; Zhejiang Province Key Laboratory of Neurobiology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Jieqiong Gao
- Zhejiang Provincial Key Laboratory of Medical Genetics; School of Life Sciences; Wenzhou Medical College; Wenzhou, China
| | - Zhe Shen
- Department of Pharmacology; Key Laboratory of Medical Neurobiology of the Ministry of Health of China; Zhejiang Province Key Laboratory of Neurobiology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Yanrong Zheng
- Department of Pharmacology; Key Laboratory of Medical Neurobiology of the Ministry of Health of China; Zhejiang Province Key Laboratory of Neurobiology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Tian Deng
- Department of Pharmacology; Key Laboratory of Medical Neurobiology of the Ministry of Health of China; Zhejiang Province Key Laboratory of Neurobiology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Haijing Yan
- Department of Pharmacology; Key Laboratory of Medical Neurobiology of the Ministry of Health of China; Zhejiang Province Key Laboratory of Neurobiology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Wenlu Li
- Department of Pharmacology; Key Laboratory of Medical Neurobiology of the Ministry of Health of China; Zhejiang Province Key Laboratory of Neurobiology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
- Department of Pharmacy; the Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou, China
| | - Wei-Wei Hou
- Department of Pharmacology; Key Laboratory of Medical Neurobiology of the Ministry of Health of China; Zhejiang Province Key Laboratory of Neurobiology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Jianxin Lu
- Zhejiang Provincial Key Laboratory of Medical Genetics; School of Life Sciences; Wenzhou Medical College; Wenzhou, China
| | - Yao Shen
- Zhejiang Provincial Key Laboratory of Medical Genetics; School of Life Sciences; Wenzhou Medical College; Wenzhou, China
| | - Haibing Dai
- Department of Pharmacy; the Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou, China
| | - Wei-Wei Hu
- Department of Pharmacology; Key Laboratory of Medical Neurobiology of the Ministry of Health of China; Zhejiang Province Key Laboratory of Neurobiology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
- Collaborative Innovation Center for Infectious Diseases; Zhejiang University; Hangzhou, China
| | - Zhuohua Zhang
- State Key Laboratory of Medical Genetics; Central South University; Changsha, China
| | - Zhong Chen
- Department of Pharmacology; Key Laboratory of Medical Neurobiology of the Ministry of Health of China; Zhejiang Province Key Laboratory of Neurobiology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
- Collaborative Innovation Center for Infectious Diseases; Zhejiang University; Hangzhou, China
- Correspondence to: Zhong Chen,
| |
Collapse
|
30
|
Characterization of the ubiquitin-modified proteome regulated by transient forebrain ischemia. J Cereb Blood Flow Metab 2014; 34:425-32. [PMID: 24301296 PMCID: PMC3948117 DOI: 10.1038/jcbfm.2013.210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/05/2013] [Accepted: 11/05/2013] [Indexed: 02/04/2023]
Abstract
Ubiquitylation is a posttranslational protein modification that modulates various cellular processes of key significance, including protein degradation and DNA damage repair. In animals subjected to transient cerebral ischemia, ubiquitin-conjugated proteins accumulate in Triton-insoluble aggregates. Although this process is widely considered to modulate the fate of postischemic neurons, few attempts have been made to characterize the ubiquitin-modified proteome in these aggregates. We performed proteomics analyses to identify ubiquitylated proteins in postischemic aggregates. Mice were subjected to 10 minutes of forebrain ischemia and 4 hours of reperfusion. The hippocampi were dissected, aggregates were isolated, and trypsin-digested after spiking with GG-BSA as internal standard. K-ɛ-GG-containing peptides were immunoprecipitated and analyzed by label-free quantitative liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. We identified 1,664 peptides to 520 proteins containing at least one K-ɛ-GG. Sixty-six proteins were highly ubiquitylated, with 10 or more K-ɛ-GG peptides. Based on selection criteria of greater than fivefold increase and P<0.001, 763 peptides to 272 proteins were highly enriched in postischemic aggregates. These included proteins involved in important neuronal functions and signaling pathways that are impaired after ischemia. Results of this study could serve as an important platform to uncover the mechanisms linking insoluble ubiquitin aggregates to the functions of postischemic neurons.
Collapse
|
31
|
Zhang F, Yin W, Chen J. Apoptosis in cerebral ischemia: executional and regulatory signaling mechanisms. Neurol Res 2013; 26:835-45. [PMID: 15727267 DOI: 10.1179/016164104x3824] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Programmed cell death, often in the form of apoptosis, is an important contributing mechanism in the pathogenesis of ischemic brain injury. Depending on the severity of the insult and the stage of the injury, the executional pathways that are directly responsible for cell death and the signaling mechanisms that participate in the regulation of these death pathways may vary. It is likely that molecular or pharmacological targeting of the upstream signaling mechanisms that control the death executional pathways may offer opportunities for more complete and long-term neuroprotection. This review summarizes the recent advancements in the understanding of the executional and regulatory signaling mechanisms in ischemic brain injury.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neurology and Institute of Neurodegenerative Disorders University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
32
|
Zeng L, Xiao Q, Chen M, Margariti A, Martin D, Ivetic A, Xu H, Mason J, Wang W, Cockerill G, Mori K, Li JYS, Chien S, Hu Y, Xu Q. Vascular endothelial cell growth-activated XBP1 splicing in endothelial cells is crucial for angiogenesis. Circulation 2013; 127:1712-22. [PMID: 23529610 DOI: 10.1161/circulationaha.112.001337] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Vascular endothelial cell growth factor plays a pivotal role in angiogenesis via regulating endothelial cell proliferation. The X-box binding protein 1 (XBP1) is believed to be a signal transducer in the endoplasmic reticulum stress response. It is unknown whether there is crosstalk between vascular endothelial cell growth factor signaling and XBP1 pathway. METHODS AND RESULTS We found that vascular endothelial cell growth factor induced the kinase insert domain receptor internalization and interaction through C-terminal domain with the unspliced XBP1 and the inositol requiring enzyme 1 α in the endoplasmic reticulum, leading to inositol requiring enzyme 1 α phosphorylation and XBP1 mRNA splicing, which was abolished by siRNA-mediated knockdown of kinase insert domain receptor. Spliced XBP1 regulated endothelial cell proliferation in a PI3K/Akt/GSK3β/β-catenin/E2F2-dependent manner and modulated the cell size increase in a PI3K/Akt/GSK3β/β-catenin/E2F2-independent manner. Knockdown of XBP1 or inositol requiring enzyme 1 α decreased endothelial cell proliferation via suppression of Akt/GSK3β phosphorylation, β-catenin nuclear translocation, and E2F2 expression. Endothelial cell-specific knockout of XBP1 (XBP1ecko) in mice retarded the retinal vasculogenesis in the first 2 postnatal weeks and impaired the angiogenesis triggered by ischemia. Reconstitution of XBP1 by Ad-XBP1s gene transfer significantly improved angiogenesis in ischemic tissue in XBP1ecko mice. Transplantation of bone marrow from wild-type o XBP1ecko mice could also slightly improve the foot blood reperfusion in ischemic XBP1ecko mice. CONCLUSIONS These results suggest that XBP1 can function via growth factor signaling pathways to regulate endothelial proliferation and angiogenesis.
Collapse
Affiliation(s)
- Lingfang Zeng
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London, UK. or
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Loss of endoplasmic reticulum Ca2+ homeostasis: contribution to neuronal cell death during cerebral ischemia. Acta Pharmacol Sin 2013; 34:49-59. [PMID: 23103622 DOI: 10.1038/aps.2012.139] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The loss of Ca(2+) homeostasis during cerebral ischemia is a hallmark of impending neuronal demise. Accordingly, considerable cellular resources are expended in maintaining low resting cytosolic levels of Ca(2+). These include contributions by a host of proteins involved in the sequestration and transport of Ca(2+), many of which are expressed within intracellular organelles, including lysosomes, mitochondria as well as the endoplasmic reticulum (ER). Ca(2+) sequestration by the ER contributes to cytosolic Ca(2+) dynamics and homeostasis. Furthermore, within the ER Ca(2+) plays a central role in regulating a host of physiological processes. Conversely, impaired ER Ca(2+) homeostasis is an important trigger of pathological processes. Here we review a growing body of evidence suggesting that ER dysfunction is an important factor contributing to neuronal injury and loss post-ischemia. Specifically, the contribution of the ER to cytosolic Ca(2+) elevations during ischemia will be considered, as will the signalling cascades recruited as a consequence of disrupting ER homeostasis and function.
Collapse
|
34
|
Abstract
Spinal cord injury (SCI) is a major cause of paralysis, and involves multiple cellular and tissular responses including demyelination, inflammation, cell death and axonal degeneration. Recent evidence suggests that perturbation on the homeostasis of the endoplasmic reticulum (ER) is observed in different SCI models; however, the functional contribution of this pathway to this pathology is not known. Here we demonstrate that SCI triggers a fast ER stress reaction (1–3 h) involving the upregulation of key components of the unfolded protein response (UPR), a process that propagates through the spinal cord. Ablation of X-box-binding protein 1 (XBP1) or activating transcription factor 4 (ATF4) expression, two major UPR transcription factors, leads to a reduced locomotor recovery after experimental SCI. The effects of UPR inactivation were associated with a significant increase in the number of damaged axons and reduced amount of oligodendrocytes surrounding the injury zone. In addition, altered microglial activation and pro-inflammatory cytokine expression were observed in ATF4 deficient mice after SCI. Local expression of active XBP1 into the spinal cord using adeno-associated viruses enhanced locomotor recovery after SCI, and was associated with an increased number of oligodendrocytes. Altogether, our results demonstrate a functional role of the UPR in SCI, offering novel therapeutic targets to treat this invalidating condition.
Collapse
|
35
|
Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12. Cell Death Dis 2011; 2:e149. [PMID: 21525936 PMCID: PMC3122062 DOI: 10.1038/cddis.2011.31] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Disturbance of calcium homeostasis and accumulation of misfolded proteins in the endoplasmic reticulum (ER) are considered contributory components of cell death after ischemia. However, the signal-transducing events that are activated by ER stress after cerebral ischemia are incompletely understood. In this study, we show that caspase-12 and the PERK and IRE pathways are activated following oxygen-glucose deprivation (OGD) of mixed cortical cultures or neonatal hypoxia–ischemia (HI). Activation of PERK led to a transient phosphorylation of eIF2α, an increase in ATF4 levels and the induction of gadd34 (a subunit of an eIF2α-directed phosphatase). Interestingly, the upregulation of ATF4 did not lead to an increase in the levels of CHOP. Additionally, IRE1 activation was mediated by the increase in the processed form of xbp1, which would be responsible for the observed expression of edem2 and the increased levels of the chaperones GRP78 and GRP94. We were also able to detect caspase-12 proteolysis after HI or OGD. Processing of procaspase-12 was mediated by NMDA receptor and calpain activation. Moreover, our data suggest that caspase-12 activation is independent of the unfolded protein response activated by ER stress.
Collapse
|
36
|
Wang L, Popko B, Roos RP. The unfolded protein response in familial amyotrophic lateral sclerosis. Hum Mol Genet 2010; 20:1008-15. [PMID: 21159797 DOI: 10.1093/hmg/ddq546] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mutant superoxide dismutase type 1 (MTSOD1) is thought to cause ∼20% of cases of familial amyotrophic lateral sclerosis (FALS) because it misfolds and aggregates. Previous studies have shown that MTSOD1 accumulates inside the endoplasmic reticulum (ER) and activates the unfolded protein response (UPR), suggesting that ER stress is involved in the pathogenesis of FALS. We used a genetic approach to investigate the role of the UPR in FALS. We crossed G85RSOD1 transgenic mice with pancreatic ER kinase haploinsufficient (PERK(+/-)) mice to obtain G85R/PERK(+/-) mice. PERK(+/-) mice carry a loss of function mutation of PERK, which is the most rapidly activated UPR pathway, but have no abnormal phenotype. Compared with G85R transgenic mice, G85R/PERK(+/-) mice had a dramatically accelerated disease onset as well as shortened disease duration and lifespan. There was also acceleration of the pathology and earlier MTSOD1 aggregation. A diminished PERK response accelerated disease and pathology in G85R transgenic mice presumably because the mice had a reduced capacity to turn down synthesis of misfolded SOD1, leading to an early overloading of the UPR. The results indicate that the UPR has a significant influence on FALS, and suggest that enhancing the UPR may be effective in treating ALS.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Neurology/MC2030, The University of Chicago Pritzker School of Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | | | | |
Collapse
|
37
|
Protein misfolding induces hypoxic preconditioning via a subset of the unfolded protein response machinery. Mol Cell Biol 2010; 30:5033-42. [PMID: 20733002 DOI: 10.1128/mcb.00922-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prolonged cellular hypoxia results in energy failure and ultimately cell death. However, less-severe hypoxia can induce a cytoprotective response termed hypoxic preconditioning (HP). The unfolded protein response pathway (UPR) has been known for some time to respond to hypoxia and regulate hypoxic sensitivity; however, the role of the UPR, if any, in HP essentially has been unexplored. We have shown previously that a sublethal hypoxic exposure of the nematode Caenorhabditis elegans induces a protein chaperone component of the UPR (L. L. Anderson, X. Mao, B. A. Scott, and C. M. Crowder, Science 323:630-633, 2009). Here, we show that HP induces the UPR and that the pharmacological induction of misfolded proteins is itself sufficient to stimulate a delayed protective response to hypoxic injury that requires the UPR pathway proteins IRE-1, XBP-1, and ATF-6. HP also required IRE-1 but not XBP-1 or ATF-6; instead, GCN-2, which is known to suppress translation and induce an adaptive transcriptional response under conditions of UPR activation or amino acid deprivation, was required for HP. The phosphorylation of the translation factor eIF2α, an established mechanism of GCN-2-mediated translational suppression, was not necessary for HP. These data suggest a model where hypoxia-induced misfolded proteins trigger the activation of IRE-1, which along with GCN-2 controls an adaptive response that is essential to HP.
Collapse
|
38
|
Abstract
Cerebral ischemia-induced accumulation of unfolded proteins in vulnerable neurons triggers endoplasmic reticulum (ER) stress. Arginine-rich, mutated in early stage tumors (ARMET) is an ER stress-inducible protein and upregulated in the early stage of cerebral ischemia. The purposes of this study were to investigate the characteristics and implications of ARMET expression induced by focal cerebral ischemia. Focal cerebral ischemia in rats was induced by right middle cerebral artery occlusion with a suture; ischemic lesions were assessed by magnetic resonance imaging and histology; neuronal apoptosis was determined by TUNEL staining; the expressions of proteins were measured by immunohistochemistry, immunofluorescent labeling, and Western blotting. ARMET was found to be extensively upregulated in ischemic regions in a time-dependent manner. The expression of ARMET was neuronal in all examined structures in response to the ischemic insult. We also found that ARMET expression is earlier and more sensitive to ischemic stimulation than C/EBP homologous protein (CHOP). ER stress agent tunicamycin induced ARMET and CHOP expressions in the primary cultured neurons. Treatment with recombinant human ARMET promoted neuron proliferation and prevented from neuron apoptosis induced by tunicamycin. These results suggest that cerebral ischemia-induced ARMET expression may be protective to the neurons.
Collapse
|
39
|
Hosoi T, Ogawa K, Ozawa K. Homocysteine induces X-box-binding protein 1 splicing in the mice brain. Neurochem Int 2009; 56:216-20. [PMID: 20018221 DOI: 10.1016/j.neuint.2009.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 12/05/2009] [Accepted: 12/08/2009] [Indexed: 01/15/2023]
Abstract
Increasing evidence has been suggested that hyperhomocysteinemia is a risk factor of neurodegenerative diseases, although, the underlying mechanisms have not been elucidated. Here, we found peripheral application of homocysteine increases X-box-binding protein 1 (XBP1) splicing in the several areas of the mice brain, such as hippocampus, hypothalamus and cortex. Time-course experiments indicated that XBP1 splicing was observed from 2h, which was decreased thereafter. On the other hand, we did not observe GRP78 or CHOP induction in homocysteine-treated mice brain. As XBP1 is spliced in response to endoplasmic reticulum (ER) stress and ER stress has been implicated in the pathogenesis of CNS diseases such as Alzheimer's disease and Parkinson's disease, homocysteine-induced XBP1 splicing would be a key mechanism for such diseases.
Collapse
Affiliation(s)
- Toru Hosoi
- Department of Pharmacotherapy, Graduate School of Biomedical Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | | | | |
Collapse
|
40
|
Abstract
The endoplasmic reticulum is responsible for much of a cell's protein synthesis and folding, but it also has an important role in sensing cellular stress. Recently, it has been shown that the endoplasmic reticulum mediates a specific set of intracellular signalling pathways in response to the accumulation of unfolded or misfolded proteins, and these pathways are collectively known as the unfolded-protein response. New observations suggest that the unfolded-protein response can initiate inflammation, and the coupling of these responses in specialized cells and tissues is now thought to be fundamental in the pathogenesis of inflammatory diseases. The knowledge gained from this emerging field will aid in the development of therapies for modulating cellular stress and inflammation.
Collapse
Affiliation(s)
- Kezhong Zhang
- Department of Biological Chemistry, The University of Michigan Medical Center, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
41
|
Abstract
Neuronal cell death plays a role in many chronic neurodegenerative diseases with the loss of particular subsets of neurons. The loss of the neurons occurs during a period of many years, which can make the mode(s) of cell death and the initiating factors difficult to determine. In vitro and in vivo models have proved invaluable in this regard, yielding insight into cell death pathways. This review describes the main mechanisms of neuronal cell death, particularly apoptosis, necrosis, excitotoxicity and autophagic cell death, and their role in neurodegenerative diseases such as ischaemia, Alzheimer's, Parkinson's and Huntington's diseases. Crosstalk between these death mechanisms is also discussed. The link between cell death and protein mishandling, including misfolded proteins, impairment of protein degradation, protein aggregation is described and finally, some pro-survival strategies are discussed.
Collapse
Affiliation(s)
- Adrienne M Gorman
- Department of Biochemistry, National University of Ireland, Galway Ireland.
| |
Collapse
|
42
|
Nitric oxide mediates NMDA-induced persistent inhibition of protein synthesis through dephosphorylation of eukaryotic initiation factor 4E-binding protein 1 and eukaryotic initiation factor 4G proteolysis. Biochem J 2008; 411:667-77. [DOI: 10.1042/bj20071060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cerebral ischaemia causes long-lasting protein synthesis inhibition that is believed to contribute to brain damage. Energy depletion promotes translation inhibition during ischaemia, and the phosphorylation of eIF (eukaryotic initiation factor) 2α is involved in the translation inhibition induced by early ischaemia/reperfusion. However, the molecular mechanisms underlying prolonged translation down-regulation remain elusive. NMDA (N-methyl-D-aspartate) excitotoxicity is also involved in ischaemic damage, as exposure to NMDA impairs translation and promotes the synthesis of NO (nitric oxide), which can also inhibit translation. In the present study, we investigated whether NO was involved in NMDA-induced protein synthesis inhibition in neurons and studied the underlying molecular mechanisms. NMDA and the NO donor DEA/NO (diethylamine–nitric oxide sodium complex) both inhibited protein synthesis and this effect persisted after a 30 min exposure. Treatments with NMDA or NO promoted calpain-dependent eIF4G cleavage and 4E-BP1 (eIF4E-binding protein 1) dephosphorylation and also abolished the formation of eIF4E–eIF4G complexes; however, they did not induce eIF2α phosphorylation. Although NOS (NO synthase) inhibitors did not prevent protein synthesis inhibition during 30 min of NMDA exposure, they did abrogate the persistent inhibition of translation observed after NMDA removal. NOS inhibitors also prevented NMDA-induced eIF4G degradation, 4E-BP1 dephosphorylation, decreased eIF4E–eIF4G-binding and cell death. Although the calpain inhibitor calpeptin blocked NMDA-induced eIF4G degradation, it did not prevent 4E-BP1 dephosphorylation, which precludes eIF4E availability, and thus translation inhibition was maintained. The present study suggests that eIF4G integrity and hyperphosphorylated 4E-BP1 are needed to ensure appropriate translation in neurons. In conclusion, our data show that NO mediates NMDA-induced persistent translation inhibition and suggest that deficient eIF4F activity contributes to this process.
Collapse
|
43
|
Belmont PJ, Tadimalla A, Chen WJ, Martindale JJ, Thuerauf DJ, Marcinko M, Gude N, Sussman MA, Glembotski CC. Coordination of growth and endoplasmic reticulum stress signaling by regulator of calcineurin 1 (RCAN1), a novel ATF6-inducible gene. J Biol Chem 2008; 283:14012-21. [PMID: 18319259 DOI: 10.1074/jbc.m709776200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Exposing cells to conditions that modulate growth can impair endoplasmic reticulum (ER) protein folding, leading to ER stress and activation of the transcription factor, ATF6. ATF6 binds to ER stress response elements in target genes, inducing expression of proteins that enhance the ER protein folding capacity, which helps overcome the stress and foster survival. To examine the mechanism of ATF6-mediated survival in vivo, we developed a transgenic mouse model that expresses a novel conditionally activated form of ATF6. We previously showed that activating ATF6 protected the hearts of ATF6 transgenic mice from ER stresses. In the present study, transcript profiling identified modulatory calcineurin interacting protein-1 (MCIP1), also known as regulator of calcineurin 1 (RCAN1), as a novel ATF6-inducible gene that encodes a known regulator of calcineurin/nuclear factor of activated T cells (NFAT)-mediated growth and development in many tissues. The ability of ATF6 to induce RCAN1 in vivo was replicated in cultured cardiac myocytes, where adenoviral (AdV)-mediated overexpression of activated ATF6 induced the RCAN1 promoter, up-regulated RCAN1 mRNA, inhibited calcineurin phosphatase activity, and exerted a striking growth modulating effect that was inhibited by RCAN1-targeted small interfering RNA. These results demonstrate that RCAN1 is a novel ATF6 target gene that may coordinate growth and ER stress signaling pathways. By modulating growth, RCAN1 may reduce the need for ER protein folding, thus helping to overcome the stress and enhance survival. Moreover, these results suggest that RCAN1 may also be a novel integrator of growth and ER stress signaling in many other tissues that depend on calcineurin/NFAT signaling for optimal growth and development.
Collapse
Affiliation(s)
- Peter J Belmont
- San Diego State University Heart Institute, San Diego State University, San Diego, California 92182, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Increased Expression of Endoplasmic Reticulum Stress-Related Signaling Pathway Molecules in Multiple Sclerosis Lesions. J Neuropathol Exp Neurol 2008; 67:200-11. [DOI: 10.1097/nen.0b013e318165b239] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
45
|
Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. Proc Natl Acad Sci U S A 2008; 105:757-62. [PMID: 18178615 DOI: 10.1073/pnas.0711094105] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The unfolded protein response (UPR) is a conserved adaptive reaction that increases cell survival under endoplasmic reticulum (ER) stress conditions. X-box-binding protein-1 (XBP-1) is a key transcriptional regulator of the UPR that activates genes involved in protein folding, secretion, and degradation to restore ER function. The occurrence of chronic ER stress has been extensively described in neurodegenerative conditions linked to protein misfolding and aggregation. However, the role of the UPR in the CNS has not been addressed directly. Here we describe the generation of a brain-specific XBP-1 conditional KO strain (XBP-1(Nes-/-)). XBP-1(Nes-/-) mice are viable and do not develop any spontaneous neurological dysfunction, although ER stress signaling in XBP-1(Nes-/-) primary neuronal cell cultures was impaired. To assess the function of XBP-1 in pathological conditions involving protein misfolding and ER stress, we infected XBP-1(Nes-/-) mice with murine prions. To our surprise, the activation of stress responses triggered by prion replication was not influenced by XBP-1 deficiency. Neither prion aggregation, neuronal loss, nor animal survival was affected. Hence, this most highly conserved arm of the UPR may not contribute to the occurrence or pathology of neurodegenerative conditions associated with prion protein misfolding despite predictions that such diseases are related to ER stress and irreversible neuronal damage.
Collapse
|
46
|
Roberts GG, Di Loreto MJ, Marshall M, Wang J, DeGracia DJ. Hippocampal cellular stress responses after global brain ischemia and reperfusion. Antioxid Redox Signal 2007; 9:2265-75. [PMID: 17715997 DOI: 10.1089/ars.2007.1786] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Brain ischemia and reperfusion (I/R) induce neuronal intracellular stress responses, including the heat-shock response (HSR) and the unfolded protein response (UPR), but the roles of each in neuronal survival or death are not well understood. We assessed the relative expression of UPR (ATF4, CHOP, GRP78, XBP-1) and HSR-related (HSP70 and HSC70) mRNAs and proteins after brain I/R. We evaluated these in hippocampal CA1 and CA3 after normothermic, transient global forebrain ischemia and up to 42 h of reperfusion. In CA1, chop and xbp-1 mRNA showed maximal 14- and 12-fold increases, and the only protein increase observed was for 30-kDa XBP-1. CA3 showed induction of only xbp-1. GRP78 protein declined in CA1, but increased twofold and then declined in CA3. Transcription of hsp70 was an order of magnitude greater than that of any UPR-induced transcript in either CA1 or CA3. HSP70 translation in CA1 lagged CA3 by approximately 24 h. We conclude that (a) in terms of functional end products, the ER stress response after brain ischemia and reperfusion more closely resembles the integrated stress response than the UPR; and (b) the HSR leads to quantitatively greater mRNA production in postischemic neurons, suggesting that cytoplasmic stress predominates over ER stress in reperfused neurons.
Collapse
Affiliation(s)
- George G Roberts
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | |
Collapse
|
47
|
Kudo T, Kanemoto S, Hara H, Morimoto N, Morihara T, Kimura R, Tabira T, Imaizumi K, Takeda M. A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ 2007; 15:364-75. [PMID: 18049481 DOI: 10.1038/sj.cdd.4402276] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The endoplasmic reticulum (ER) stress response is a defense system for dealing with the accumulation of unfolded proteins in the ER lumen. Recent reports have shown that ER stress is involved in the pathology of some neurodegenerative diseases and cerebral ischemia. In a screen for compounds that induce the ER-mediated chaperone BiP (immunoglobulin heavy-chain binding protein)/GRP78 (78 kDa glucose-regulated protein), we identified BiP inducer X (BIX). BIX preferentially induced BiP with slight inductions of GRP94 (94 kDa glucose-regulated protein), calreticulin, and C/EBP homologous protein. The induction of BiP mRNA by BIX was mediated by activation of ER stress response elements upstream of the BiP gene, through the ATF6 (activating transcription factor 6) pathway. Pretreatment of neuroblastoma cells with BIX reduced cell death induced by ER stress. Intracerebroventricular pretreatment with BIX reduced the area of infarction due to focal cerebral ischemia in mice. In the penumbra of BIX-treated mice, ER stress-induced apoptosis was suppressed, leading to a reduction in the number of apoptotic cells. Considering these results together, it appears that BIX induces BiP to prevent neuronal death by ER stress, suggesting that it may be a potential therapeutic agent for cerebral diseases caused by ER stress.
Collapse
Affiliation(s)
- T Kudo
- Psychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Suita, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Severino A, Campioni M, Straino S, Salloum FN, Schmidt N, Herbrand U, Frede S, Toietta G, Di Rocco G, Bussani R, Silvestri F, Piro M, Liuzzo G, Biasucci LM, Mellone P, Feroce F, Capogrossi M, Baldi F, Fandrey J, Ehrmann M, Crea F, Abbate A, Baldi A. Identification of protein disulfide isomerase as a cardiomyocyte survival factor in ischemic cardiomyopathy. J Am Coll Cardiol 2007; 50:1029-37. [PMID: 17825711 DOI: 10.1016/j.jacc.2007.06.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/07/2007] [Accepted: 06/04/2007] [Indexed: 11/20/2022]
Abstract
OBJECTIVES The aim of the study was to analyze the molecular mechanisms activated during postinfarction remodeling in human hearts. BACKGROUND The molecular mechanisms of initial response to ischemic insult in the heart and the pathways involved in compensation and remodeling are still largely unknown. METHODS Up-regulation or down-regulation of gene expression in the human viable peri-infarct (vs. remote) myocardial region was investigated by complementary deoxyribonucleic acid array technology and confirmed at a single-gene/protein level with reverse transcriptase polymerase chain reaction and immunohistochemistry. An in vitro model of cardiomyocyte hypoxia in HL1 cells was used to validate anti-apoptotic effects of the candidate gene/protein and to assess the associated downstream cascade. Finally, a mouse model of myocardial infarction was used to test the in vivo effects of exogenous transfection with the candidate gene/protein. RESULTS Protein disulfide isomerase (PDI), a member of the unfolded protein response, is 3-fold up-regulated in the viable peri-infarct myocardial region, and in a postmortem model, its expression is significantly inversely correlated with apoptotic rate and with presence of heart failure (HF) and biventricular dilatation. Induced PDI expression in HL1 cells conferred protection from hypoxia-induced apoptosis. Adenoviral-mediated PDI gene transfer to the mouse heart resulted in 2.5-fold smaller infarct size, significantly reduced cardiomyocyte apoptosis in the peri-infarct region, and smaller left ventricular end-diastolic diameter versus mice treated with a transgene-null adenoviral vector. CONCLUSIONS These results suggest that PDI promotes survival after ischemic damage and that zinc-superoxide dismutase is one of the PDI molecular targets. Pharmacological modulation of this pathway might prove useful for future prevention and treatment of HF.
Collapse
Affiliation(s)
- Anna Severino
- Institute of Cardiology, Catholic University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Irreversible translation arrest occurs in reperfused neurons that will die by delayed neuronal death. It is now recognized that suppression of protein synthesis is a general response of eukaryotic cells to exogenous stressors. Indeed, stress-induced translation arrest can be viewed as a component of cell stress responses, and consists of initiation, maintenance, and termination phases that work in concert with stress-induced transcriptional mechanisms. Within this framework, we review translation arrest in reperfused neurons. This framework provides a basis to recognize that phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is the initiator of translation arrest, and a key marker indicating activation of neuronal stress responses. However, eIF2 alpha phosphorylation is reversible. Other phases of stress-induced translation arrest appear to contribute to irreversible translation arrest specifically in ischemic vulnerable neuron populations. We detail two lines of evidence supporting this view. First, ischemia, as a stress stimulus, induces irreversible co-translational protein misfolding and aggregation after 4 to 6 h of reperfusion, trapping protein synthesis machinery into functionally inactive protein aggregates. Second, ischemia and reperfusion leads to modifications of stress granules (SGs) that sequester functionally inactive 48S preinitiation complexes to maintain translation arrest. At later reperfusion durations, these mechanisms may converge such that SGs become sequestered in protein aggregates. These mechanisms result in elimination of functionally active ribosomes and preclude recovery of protein synthesis in selectively vulnerable neurons. Thus, recognizing translation arrest as a component of endogenous cellular stress response pathways will aid in making sense of the complexities of postischemic translation arrest.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology and the Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
50
|
Martindale JJ, Fernandez R, Thuerauf D, Whittaker R, Gude N, Sussman MA, Glembotski CC. Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6. Circ Res 2006; 98:1186-93. [PMID: 16601230 DOI: 10.1161/01.res.0000220643.65941.8d] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ischemia/reperfusion (I/R) affects the integrity of the endoplasmic reticulum (ER), the site of synthesis and folding of numerous proteins. Therefore, I/R may activate the unfolded protein response (UPR), resulting in the induction of a collection of ER stress proteins, many of which are protective and function to resolve the ER stress. In this study, we showed that when mouse hearts were subjected to ex vivo I/R, the levels of 2 ER stress-inducible markers of the UPR, the ER-targeted cytoprotective chaperones glucose-regulated proteins 78 and 94 (GRP78 and GRP94), were increased, consistent with I/R-mediated UPR activation in the heart. The UPR-mediated activation of ATF6 (Activation of Transcription Factor 6) induces cytoprotective ER stress proteins, including GRP78 and GRP94. To examine whether ATF6 protects the myocardium from I/R injury in the heart, we generated transgenic (TG) mice featuring cardiac-restricted expression of a novel tamoxifen-activated form of ATF6, ATF6-MER. When NTG and ATF6-MER TG mice were treated with or without tamoxifen for 5 days, only the hearts from the tamoxifen-treated TG mice exhibited increased levels of many ER stress-inducible mRNAs and proteins; for example, GRP78 and GRP94 transcript levels were increased by 8- and 15-fold, respectively. The tamoxifen-treated TG mouse hearts also exhibited better functional recovery from ex vivo I/R, as well as significantly reduced necrosis and apoptosis. These results suggest that the UPR is activated in the heart during I/R and that, as a result, the ATF6 branch of the UPR may induce expression of proteins that can function to reduce I/R injury.
Collapse
Affiliation(s)
- Joshua J Martindale
- Heart Institute, Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | | | | | | | | | | | |
Collapse
|