1
|
Mousavian AH, Zare Garizi F, Ghoreshi B, Ketabi S, Eslami S, Ejtahed HS, Qorbani M. The association of infant and mother gut microbiomes with development of allergic diseases in children: a systematic review. J Asthma 2024; 61:1121-1135. [PMID: 38506489 DOI: 10.1080/02770903.2024.2332921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE It is believed that gut microbiota alteration leads to both intestinal and non-intestinal diseases in children. Since infants inherit maternal microbiota during pregnancy and lactation, recent studies suggest that changes in maternal microbiota can cause immune disorders as well. This systematic review was designed to assess the association between the child and mother's gut microbiome and allergy development in childhood. DATA SOURCES In this systematic review, international databases including PubMed, Scopus, and ISI/WOS were searched until January 2023 to identify relevant studies. STUDY SELECTIONS Observational studies that analyzed infant or maternal stool microbiome and their association with allergy development in children were included in this study. Data extraction and quality assessment of the included studies were independently conducted by two researchers. RESULTS Of the 1694 papers evaluated, 21 studies examined neonate gut microbiome by analyzing stool samples and six studies examined maternal gut microbiota. A total of 5319 participants were included in this study. Asthma followed by eczema and dermatitis were the most common allergy disorders among children. Urbanization caused a lack of diversity in the bacterial microbiota as well as lower levels of Bifidobacterium and Lachnospira associated with a higher risk of allergy. In contrast, higher levels of Roseburia and Flavonifractor were associated with lower allergy risk. CONCLUSIONS This systematic review shows that gut microbiota may be associated with allergy development. Further studies are required to provide a definitive answer.
Collapse
Affiliation(s)
- Amir-Hossein Mousavian
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Zare Garizi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Behnaz Ghoreshi
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Siavash Ketabi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
2
|
Jan T, Negi R, Sharma B, Kumar S, Singh S, Rai AK, Shreaz S, Rustagi S, Chaudhary N, Kaur T, Kour D, Sheikh MA, Kumar K, Yadav AN, Ahmed N. Next generation probiotics for human health: An emerging perspective. Heliyon 2024; 10:e35980. [PMID: 39229543 PMCID: PMC11369468 DOI: 10.1016/j.heliyon.2024.e35980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Over recent years, the scientific community has acknowledged the crucial role of certain microbial strains inhabiting the intestinal ecosystem in promoting human health, and participating in various beneficial functions for the host. These microorganisms are now referred to as next-generation probiotics and are currently considered as biotherapeutic products and food or nutraceutical supplements. However, the majority of next-generation probiotic candidates pose nutritional demands and exhibit high sensitivity towards aerobic conditions, leading to numerous technological hurdles in large-scale production. This underscores the need for the development of suitable delivery systems capable of enhancing the viability and functionality of these probiotic strains. Currently, potential candidates for next generation probiotics (NGP) are being sought among gut bacteria linked to health, which include strains from the genera Bacteroids, Faecalibacterium, Akkermansia and Clostridium. In contrast to Lactobacillus spp. and Bifidobacterium spp., NGP, particularly Bacteroids spp. and Clostridium spp., appear to exhibit greater ambiguity regarding their potential to induce infectious diseases. The present review provides a comprehensive overview of NGPs in terms of their health beneficial effects, regulation framework and risk assessment targeting relevant criteria for commercialization in food and pharmaceutical markets.
Collapse
Affiliation(s)
- Tawseefa Jan
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Sanjeev Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sheikh Shreaz
- Desert Agriculture and Ecosystem Department, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Sarvesh Rustagi
- Depratment of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Nisha Chaudhary
- Depratment of Food Science and Technology, Agriculture University, Jodhpur, Rajasthan, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Mohd Aaqib Sheikh
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Krishan Kumar
- Department of Food Technology, Rajiv Gandhi University, Doimukh, Arunachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Naseer Ahmed
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| |
Collapse
|
3
|
Aslam R, Herrles L, Aoun R, Pioskowik A, Pietrzyk A. Link between gut microbiota dysbiosis and childhood asthma: Insights from a systematic review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100289. [PMID: 39105129 PMCID: PMC11298874 DOI: 10.1016/j.jacig.2024.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 08/07/2024]
Abstract
Asthma, a chronic inflammatory disorder of the airways, is a prevalent childhood chronic disease with a substantial global health burden. The complex etiology and pathogenesis of asthma involve genetic and environmental factors, posing challenges in diagnosis, severity prediction, and therapeutic strategies. Recent studies have highlighted the significant role of the gut microbiota and its interaction with the immune system in the development of asthma. Dysbiosis, an imbalance in microbial composition, has been associated with respiratory diseases through the gut-lung axis. This axis is an interaction between the gut and lungs, allowing microbial metabolites to influence the host immune system. This systematic review examines the association between gut microbiota composition, measured using 16S rRNA sequencing, during infancy and childhood, and the subsequent development of atopic wheeze and asthma. The results suggest that higher alpha diversity of bacteria such as Bifidobacterium, Faecalibacterium, and Roseburia may have protective effects against asthmatic outcomes. Conversely, lower relative abundances of bacteria like Bacteroides and certain fungi, including Malassezia, were associated with asthma. These findings highlight the potential of early screening and risk assessment of gut microbiota to identify individuals at risk of asthma. Furthermore, investigations targeting gut microbiota, such as dietary modifications and probiotic supplementation, may hold promise for asthma prevention and management. Future research should focus on identifying specific microbial signatures associated with asthma susceptibility and further investigate approaches like fecal microbiota transplantation. Understanding the role of gut microbiota in asthma pathogenesis can contribute to early detection and development of interventions to mitigate the risk of asthmatic pathogenesis in childhood.
Collapse
Affiliation(s)
- Rabbiya Aslam
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Laura Herrles
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Raquel Aoun
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Pioskowik
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Pietrzyk
- Scientific Group of Microbiology and Parasitology and the Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
4
|
Jiang S, Cai M, Li D, Chen X, Chen X, Huang Q, Zhong C, Zheng X, Zhou D, Chen Z, Zhang L, Ching JY, Chen A, Lu S, Zhang L, Hu L, Liao Y, Li Y, He Z, Wu J, Huo H, Liang Y, Li W, Zou Y, Luo W, Ng SC, Chan FK, Chen X, Deng Y. Association of breast milk-derived arachidonic acid-induced infant gut dysbiosis with the onset of atopic dermatitis. Gut 2024:gutjnl-2024-332407. [PMID: 39084687 DOI: 10.1136/gutjnl-2024-332407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE The specific breast milk-derived metabolites that mediate host-microbiota interactions and contribute to the onset of atopic dermatitis (AD) remain unknown and require further investigation. DESIGN We enrolled 250 mother-infant pairs and collected 978 longitudinal faecal samples from infants from birth to 6 months of age, along with 243 maternal faecal samples for metagenomics. Concurrently, 239 corresponding breast milk samples were analysed for metabolomics. Animal and cellular experiments were conducted to validate the bioinformatics findings. RESULTS The clinical findings suggested that a decrease in daily breastfeeding duration was associated with a reduced incidence of AD. This observation inspired us to investigate the effects of breast milk-derived fatty acids. We found that high concentrations of arachidonic acid (AA), but not eicosapentaenoic acid (EPA) or docosahexaenoic acid, induced gut dysbiosis in infants. Further investigation revealed that four specific bacteria degraded mannan into mannose, consequently enhancing the mannan-dependent biosynthesis of O-antigen and lipopolysaccharide. Correlation analysis confirmed that in infants with AD, the abundance of Escherichia coli under high AA concentrations was positively correlated with some microbial pathways (eg, 'GDP-mannose-derived O-antigen and lipopolysaccharide biosynthesis'). These findings are consistent with those of the animal studies. Additionally, AA, but not EPA, disrupted the ratio of CD4/CD8 cells, increased skin lesion area and enhanced the proportion of peripheral Th2 cells. It also promoted IgE secretion and the biosynthesis of prostaglandins and leukotrienes in BALB/c mice fed AA following ovalbumin immunostimulation. Moreover, AA significantly increased IL-4 secretion in HaCaT cells costimulated with TNF-α and INF-γ. CONCLUSIONS This study demonstrates that AA is intimately linked to the onset of AD via gut dysbiosis.
Collapse
Affiliation(s)
- Suhua Jiang
- Department of paediatrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Mengyun Cai
- Institute of translational medicine, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Dingru Li
- Institute of translational medicine, The First People's Hospital of Foshan, Foshan, People's Republic of China
- South China University of Technology School of Biology and Biological Engineering, Guangzhou, Guangdong, People's Republic of China
| | - Xiangping Chen
- Institute of translational medicine, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Xiaoqian Chen
- Department of paediatrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Qitao Huang
- Department of obstetrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Caimei Zhong
- Department of Dermatology, Shunde District Center for Prevention and Cure of Chronic Diseases, Foshan, China
| | - Xiufeng Zheng
- Department of Dermatology, Shunde Hospital, Southern Medical University, Lunjiao, Shunde, Foshan, People's Republic of China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Zhiyan Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Lin Zhang
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinse University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jessica Yl Ching
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ailing Chen
- Department of paediatrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Shaoxia Lu
- Department of obstetrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Lifang Zhang
- Institute of translational medicine, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Ling Hu
- Institute of translational medicine, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Yan Liao
- Department of obstetrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Ying Li
- Department of paediatrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Zhihua He
- Department of obstetrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Jingjing Wu
- Department of obstetrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Huiyi Huo
- Department of paediatrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Yongqi Liang
- Department of paediatrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Wanwen Li
- Department of paediatrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Yanli Zou
- The Second People's Hospital of Foshan, Foshan, People's Republic of China
| | - Wei Luo
- Institute of translational medicine, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Siew C Ng
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinse University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Francis Kl Chan
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Xia Chen
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Yuhua Deng
- Institute of translational medicine, The First People's Hospital of Foshan, Foshan, People's Republic of China
| |
Collapse
|
5
|
Yan T, Bao Y, Cao S, Jiang P, Zhang Z, Li L, Kang Y, Wu Q. The investigation of the role of oral-originated Prevotella-induced inflammation in childhood asthma. Front Microbiol 2024; 15:1400079. [PMID: 38863747 PMCID: PMC11165567 DOI: 10.3389/fmicb.2024.1400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 06/13/2024] Open
Abstract
Background and objectives The oral and gut microbiota play significant roles in childhood asthma pathogenesis. However, the communication dynamics and pathogenic mechanisms by which oral microbiota influence gut microbiota and disease development remain incompletely understood. This study investigated potential mechanisms by which oral-originated gut microbiota, specifically Prevotella genus, may contribute to childhood asthma etiology. Methods Oral swab and fecal samples from 30 asthmatic children and 30 healthy controls were collected. Microbiome composition was characterized using 16S rRNA gene sequencing and metagenomics. Genetic distances identified potential oral-originated bacteria in asthmatic children. Functional validation assessed pro-inflammatory properties of in silico predicted microbial mimicry peptides from enriched asthma-associated species. Fecal metabolome profiling combined with metagenomic correlations explored links between gut microbiota and metabolism. HBE cells treated with Prevotella bivia culture supernatant were analyzed for lipid pathway impacts using UPLC-MS/MS. Results Children with asthma exhibited distinct oral and gut microbiota structures. Prevotella bivia, P. disiens, P. oris and Bacteroides fragilis were enriched orally and intestinally in asthmatics, while Streptococcus thermophilus decreased. P. bivia, P. disiens and P. oris in asthmatic gut likely originated orally. Microbial peptides induced inflammatory cytokines from immune cells. Aberrant lipid pathways characterized asthmatic children. P. bivia increased pro-inflammatory and decreased anti-inflammatory lipid metabolites in HBE cells. Conclusion This study provides evidence of Prevotella transfer from oral to gut microbiota in childhood asthma. Prevotella's microbial mimicry peptides and effects on lipid metabolism contribute to disease pathogenesis by eliciting immune responses. Findings offer mechanistic insights into oral-gut connections in childhood asthma etiology.
Collapse
Affiliation(s)
- Tongtong Yan
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuling Bao
- Department of Respiratory Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shuyuan Cao
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ping Jiang
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhan Zhang
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Li
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yulin Kang
- Institute of Environmental Information, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Qian Wu
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Oldendorff F, Nordberg V, Giske CG, Navér L. A decade of neonatal sepsis in Stockholm, Sweden: Gram-positive pathogens were four times as common as Gram-negatives. Eur J Clin Microbiol Infect Dis 2024; 43:959-968. [PMID: 38517573 PMCID: PMC11108929 DOI: 10.1007/s10096-024-04809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
PURPOSE To assess Gram-positive bacterial (GPB) bloodstream infection (BSI) in neonates, covering incidence, morbidity, mortality, antimicrobial resistance patterns and biomarkers in Region Stockholm, Sweden between 2006 and 2016. METHODS A population-based retrospective epidemiological study including infants with GPB-BSI, admitted to the neonatal units at Karolinska University Hospital (KUH). Data were collected from patient records, the Swedish Neonatal Quality Register, the microbiological laboratory at KUH and the Swedish Public Health Agency. RESULTS We identified 357 infants with GPB-BSI, representing an incidence of 1.47/1000 live births (LB). Group B streptococcus (GBS) was the most common pathogen causing BSI in full-term infants and early-onset sepsis (EOS) (0.20/1000 LB), while coagulase-negative staphylococci (CoNS) were predominant in infants born very preterm and in late-onset sepsis (LOS) (0.79/1000 LB). There were no fatal GBS BSI cases, but 10.2% developed meningitis. The GPB case fatality rate was 9.5% and the sepsis fatality rate 2.8%. In GPB-BSI, 1/10 did not have an elevated C-reactive protein level. Staphylococcus aureus (S. aureus) BSI increased during the study period, but no methicillin or vancomycin resistant strains were found. The antimicrobial resistance (AMR) rate was highest in CoNS isolates. CONCLUSION GPB-BSI was four times more common than Gram-negative BSI in neonates but resulted in lower mortality rate. GBS was the most common pathogen in full-term infants and in EOS. CoNS was the most common pathogen in LOS and infants born very preterm, and the AMR rate was high in these isolates. The increasing trend of S. aureus BSI indicates a need of further investigation.
Collapse
Affiliation(s)
- Frida Oldendorff
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
- Department of Clinical Science Intervention and Technology (CLINTEC), Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden.
| | - Viveka Nordberg
- Department of Neonatology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science Intervention and Technology (CLINTEC), Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
| | - Christian G Giske
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Navér
- Department of Neonatology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science Intervention and Technology (CLINTEC), Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Guertler A, Hering P, Pacífico C, Gasche N, Sladek B, Irimi M, French LE, Clanner-Engelshofen BM, Reinholz M. Characteristics of Gut Microbiota in Rosacea Patients-A Cross-Sectional, Controlled Pilot Study. Life (Basel) 2024; 14:585. [PMID: 38792606 PMCID: PMC11122217 DOI: 10.3390/life14050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Recent studies have suggested a possible connection between rosacea and patients' gut microbiota. OBJECTIVE To investigate the differences in fecal microbial profiles between patients with rosacea and healthy controls. METHODS Gut microbiota of 54 rosacea patients (RP) were analyzed using MiSeq 16S rRNA sequencing. Enterotypes, the Firmicutes/Bacteroides (F/B) ratio, the significance of alpha and beta diversity, and differential abundance analysis (DAA) were calculated and compared with age- and gender-matched controls (CP, n = 50). RESULTS Significant changes in the enterotypes and F/B ratio were observed between the RP and CP (p = 0.017 and p = 0.002, respectively). The RP showed a decreased microbial richness and diversity compared to the CP (Shannon p = 0.012, inverse Simpson p = 0.034). Beta diversity also differed between both groups (PERMANOVA, p = 0.006). Fourteen significantly different taxa were detected according to DAA. Faecalibacterium prausnitzii (coef. -0.0800, p = 0.008), Lachnoospiraceae ND 3007 group sp. (coef. -0.073, p < 0.001), and Ruminococcaceae (coef. -0.072, p = 0.015) were significantly decreased; Oscillobacter sp. (coef. 0.023, p = 0.031), Flavonifractor plautii (coef. 0.011, p = 0.037), and Ruminococccaceae UBA 1819 (coef. 0.010, p = 0.031) were significantly increased in the RP compared to the CP. CONCLUSION Significant alterations in gut microbiota were present in the RP. Taxonomic shifts and reduced richness and diversity were observed when compared to the CP. Larger prospective studies are needed to investigate correlations with clinical features and to translate these findings into future therapeutic approaches.
Collapse
Affiliation(s)
- Anne Guertler
- Department of Dermatology and Allergy, LMU University Hospital Munich, 80337 Munich, Germany (L.E.F.)
| | - Pascal Hering
- Department of Dermatology and Allergy, LMU University Hospital Munich, 80337 Munich, Germany (L.E.F.)
| | | | | | | | - Miriam Irimi
- Department of Dermatology and Allergy, LMU University Hospital Munich, 80337 Munich, Germany (L.E.F.)
| | - Lars E. French
- Department of Dermatology and Allergy, LMU University Hospital Munich, 80337 Munich, Germany (L.E.F.)
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | - Markus Reinholz
- Department of Dermatology and Allergy, LMU University Hospital Munich, 80337 Munich, Germany (L.E.F.)
| |
Collapse
|
8
|
Zhu L, Wang B, Liu L, Han P, Ji L, Zhang Z, Zhang J. High-Throughput Sequencing Technology Assisted Investigation of the Correlation Between Intestinal Flora, Serum Biochemistry, Blood Lipids, and Tumour Markers in Patients with Gastric Cancer and Healthy Plateau Residents. Comb Chem High Throughput Screen 2024; 27:996-1010. [PMID: 37559540 DOI: 10.2174/1386207326666230808110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023]
Abstract
AIM The goal is to use high-throughput sequencing technology to compare and study the structure and variety of intestinal flora in people with gastric cancer and healthy people in the Qinghai-Tibet Plateau. BACKGROUND Recent research has connected gut flora structure to numerous disorders. Metabolites, endotoxins, and immunomodulatory modulation might cause gastrointestinal or other systemic diseases and affect gastric cancer treatment and prognosis. We used the correlation study to uncover biomarkers associated with good intestinal flora and gastric cancer groups on the plateau to investigate their involvement in gastric cancer development. OBJECTIVES To investigate the possible links between intestinal flora and gastric cancer in the Qinghai Plateau region using a variety of clinical phenotypic data and to investigate the flora that may be linked to gastric cancer. METHODS The 22 Qinghai Province tertiary hospital gastric cancer patients and 30 healthy people had their fresh faeces collected. To examine intestinal flora diversity and composition, 52 patients underwent 16S rDNA high-throughput gene sequencing of intestinal bacteria. The correlation between clinical phenotypes and the top 15 dominant intestinal flora at the phylum level was analyzed. RESULTS The difference in total protein TP between the healthy group and the gastric cancer group was statistically significant (P<0.001). Globulin was significantly different (P<0.05), TC of total cholesterol was significantly different (P<0.05). High-density lipoprotein showed statistical significance (P<0.05).The difference in low-density lipoprotein was statistically significant (P<0.001). Alphafetoprotein was significantly different (P<0.05). CA72-4 carbohydrate antigen (P<0.05). CONCLUSION There were significant differences in total protein, globulin, total cholesterol, high density lipoprotein, low-density lipoprotein, alpha-fetoprotein and carbohydrate antigen CA72-4 in patients with gastric cancer in the plateau area compared with the healthy group, and the different clinical variables were correlated with intestinal flora at some phylum and genus levels.
Collapse
Affiliation(s)
- Linghong Zhu
- Department of Science and Education, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Bo Wang
- Department of Science and Education, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Linxun Liu
- Department of General Surgery, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Pei Han
- Department of Science and Education, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Li Ji
- Department of Science and Education, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Zilong Zhang
- Department of Oncosurgery, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| | - Jingni Zhang
- Department of Science and Education, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai Province, China
| |
Collapse
|
9
|
Abstract
Human breast milk is the optimal nutrition for all infants and is comprised of many bioactive and immunomodulatory components. The components in human milk, such as probiotics, human milk oligosaccharides (HMOs), extracellular vesicles, peptides, immunoglobulins, growth factors, cytokines, and vitamins, play a critical role in guiding neonatal development beyond somatic growth. In this review, we will describe the bioactive factors in human milk and discuss how these factors shape neonatal immunity, the intestinal microbiome, intestinal development, and more from the inside out.
Collapse
Affiliation(s)
- Sarah F Andres
- Department of Pediatrics, Pediatric GI Division, School of Medicine, Oregon Health and Science University, Portland, OR 97229, United States
| | - Brian Scottoline
- Division of Neonatology, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, United States
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, 101 Manning Drive, Campus Box 7596, Chapel Hill, NC 27599, United States.
| |
Collapse
|
10
|
Valverde-Molina J, García-Marcos L. Microbiome and Asthma: Microbial Dysbiosis and the Origins, Phenotypes, Persistence, and Severity of Asthma. Nutrients 2023; 15:nu15030486. [PMID: 36771193 PMCID: PMC9921812 DOI: 10.3390/nu15030486] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The importance of the microbiome, and of the gut-lung axis in the origin and persistence of asthma, is an ongoing field of investigation. The process of microbial colonisation in the first three years of life is fundamental for health, with the first hundred days of life being critical. Different factors are associated with early microbial dysbiosis, such as caesarean delivery, artificial lactation and antibiotic therapy, among others. Longitudinal cohort studies on gut and airway microbiome in children have found an association between microbial dysbiosis and asthma at later ages of life. A low α-diversity and relative abundance of certain commensal gut bacterial genera in the first year of life are associated with the development of asthma. Gut microbial dysbiosis, with a lower abundance of Phylum Firmicutes, could be related with increased risk of asthma. Upper airway microbial dysbiosis, especially early colonisation by Moraxella spp., is associated with recurrent viral infections and the development of asthma. Moreover, the bacteria in the respiratory system produce metabolites that may modify the inception of asthma and is progression. The role of the lung microbiome in asthma development has yet to be fully elucidated. Nevertheless, the most consistent finding in studies on lung microbiome is the increased bacterial load and the predominance of proteobacteria, especially Haemophilus spp. and Moraxella catarrhalis. In this review we shall update the knowledge on the association between microbial dysbiosis and the origins of asthma, as well as its persistence, phenotypes, and severity.
Collapse
Affiliation(s)
- José Valverde-Molina
- Department of Paediatrics, Santa Lucía General University Hospital, 30202 Cartagena, Spain
| | - Luis García-Marcos
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children’s Hospital, University of Murcia and IMIB Biomedical Research Institute, 20120 Murcia, Spain
- Correspondence:
| |
Collapse
|
11
|
Fan X, Zang T, Dai J, Wu N, Hope C, Bai J, Liu Y. The associations of maternal and children's gut microbiota with the development of atopic dermatitis for children aged 2 years. Front Immunol 2022; 13:1038876. [PMID: 36466879 PMCID: PMC9714546 DOI: 10.3389/fimmu.2022.1038876] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/03/2022] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND It is critical to investigate the underlying pathophysiological mechanisms in the development of atopic dermatitis. The microbiota hypothesis suggested that the development of allergic diseases may be attributed to the gut microbiota of mother-offspring pairs. The purpose of this study was to investigate the relationship among maternal-offspring gut microbiota and the subsequent development of atopic dermatitis in infants and toddlers at 2 years old. METHODS A total of 36 maternal-offspring pairs were enrolled and followed up to 2 years postpartum in central China. Demographic information and stool samples were collected perinatally from pregnant mothers and again postpartum from their respective offspring at the following time intervals: time of birth, 6 months, 1 year and 2 years. Stool samples were sequenced with the 16S Illumina MiSeq platform. Logistic regression analysis was used to explore the differences in gut microbiota between the atopic dermatitis group and control group. RESULTS Our results showed that mothers of infants and toddlers with atopic dermatitis had higher abundance of Candidatus_Stoquefichus and Pseudomonas in pregnancy and that infants and toddlers with atopic dermatitis had higher abundance of Eubacterium_xylanophilum_group at birth, Ruminococcus_gauvreauii_group at 1 year and UCG-002 at 2 years, and lower abundance of Gemella and Veillonella at 2 years. Additionally, the results demonstrated a lower abundance of Prevotella in mothers of infants and toddlers with atopic dermatitis compared to mothers of the control group, although no statistical difference was found in the subsequent analysis. CONCLUSION The results of this study support that gut microbiota status among mother-offspring pairs appears to be associated with the pathophysiological development of pediatric atopic dermatitis.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Tianzi Zang
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Jiamiao Dai
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Ni Wu
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Chloe Hope
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, United States
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, United States
| | - Yanqun Liu
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Alves E, Gregório J, Rijo P, Rosado C, Monteiro Rodrigues L. Kefir and the Gut-Skin Axis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113791. [PMID: 36360671 PMCID: PMC9653948 DOI: 10.3390/ijerph192113791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 05/31/2023]
Abstract
The human gastrointestinal (GI) tract is a dynamic system influenced by various environmental factors, including diet and exposure to ingested probiotics, and prone to various functional impairments. These impairments are mostly related to any combination of motility alterations, visceral hypersensitivity, and changes in the mucosa, immune function, and intestinal microbiota. Intestinal microbial imbalance and immunological dysfunction have been linked to several chronic inflammatory disease states, including atopic dermatitis (AD). Disruption of the intestinal microbial balance, known as gut dysbiosis, has been demonstrated to negatively impact skin function by increasing the intestinal permeability. Consequently, the gut-skin axis may be receptive to modulation via dietary modification, namely, via ingestion of probiotics, thus representing interesting potential as an AD therapy. Kefir is an ancient probiotic food that has been demonstrated to positively impact the general condition of the digestive system, including the intestinal microbiota. However, the literature is still scarce on the impact on the gut-skin relationship of a diet containing kefir. This study, continuing research in our group, aimed to evaluate the impact of kefir intake on GI symptoms in healthy and AD skin subjects. Results showed a significant improvement in GI status, namely, in functional constipation, abdominal pain intensity, and abdominal distension, thus supporting the hypothesis that kefir intake is positively associated with improvement in GI status. The existence of a relationship between the improvement in skin parameters and the improvement in GI status after kefir consumption was established, thus reinforcing the role of homemade kefir as a potential modulator of the gut-skin axis in both healthy and atopic individuals.
Collapse
Affiliation(s)
- Emília Alves
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- Health Sciences Ph.D. Program, University of Alcalá, Carretera Madrid-Barcelona, Km 33.100, 28805 Alcalá de Henares, Spain
| | - João Gregório
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Patrícia Rijo
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Catarina Rosado
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Luis Monteiro Rodrigues
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| |
Collapse
|
13
|
Xiang M, Zheng L, Pu D, Lin F, Ma X, Ye H, Pu D, Zhang Y, Wang D, Wang X, Zou K, Chen L, Zhang Y, Sun Z, Zhang T, Wu G. Intestinal Microbes in Patients With Schizophrenia Undergoing Short-Term Treatment: Core Species Identification Based on Co-Occurrence Networks and Regression Analysis. Front Microbiol 2022; 13:909729. [PMID: 35783418 PMCID: PMC9247572 DOI: 10.3389/fmicb.2022.909729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/12/2022] [Indexed: 01/12/2023] Open
Abstract
Schizophrenia, a common mental disorder, has a tremendous impact on the health and economy of people worldwide. Evidence suggests that the microbial-gut-brain axis is an important pathway for the interaction between the gut microbiome and the development of schizophrenia. What is not clear is how changes in the gut microbiota composition and structure during antipsychotic treatment improve the symptoms of schizophrenia. In this study, 25 patients with schizophrenia were recruited. Their fecal samples were collected before and after hospital treatment for 14–19 days. The composition and structure of the intestinal microbiota were evaluated by 16S rRNA sequencing analysis, and the results showed significant differences in fecal microbiota before and after treatment. Firmicutes (relative abundances of 82.60 and 86.64%) and Gemminger (relative abundances of 14.17 and 13.57%) were the first dominant species at the phylum and genus levels, respectively. The random forest algorithm and co-occurrence network analysis demonstrated that intestinal flora (especially the core species ASV57) could be used as biomarkers to distinguish different clinical states and match treatment regimens accordingly. In addition, after fecal microbiota transplantation, antibiotic-treated recipient mice showed multiple behavioral improvements. These included decreased psychomotor hyperactivity, increased social interaction, and memory. In conclusion, this study suggests that differences in the composition and structure of gut microbiota after treatment are associated with the development and severity of schizophrenia. Results may provide a potential target for the treatment of this disorder.
Collapse
Affiliation(s)
- Min Xiang
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Liqin Zheng
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Daoshen Pu
- The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Feng Lin
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Xiaodong Ma
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Huiqian Ye
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Daoqiong Pu
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Ying Zhang
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Dong Wang
- Psychiatry Department, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Xiaoli Wang
- Internal Medicine, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Kaiqing Zou
- The Outpatient Department, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Linqi Chen
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhanjiang Sun
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
- Tao Zhang
| | - Guolin Wu
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
- *Correspondence: Guolin Wu
| |
Collapse
|
14
|
Zhang L, Jia X, Lai P, Wang K, Bao Y, Li X. Relevance of Intestinal Microbiota in Immunoglobulin A Vasculitis With Abdominal Involvement. Front Pediatr 2022; 10:943267. [PMID: 35911834 PMCID: PMC9329519 DOI: 10.3389/fped.2022.943267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND We explored the intestinal microbiota changes in IgAV with abdominal involvement (IgAV-GI) at the acute and convalescent stages and evaluated the role of intestinal microbiota in the clinical course of patients with IgAV. METHODS A total of 37 patients with IgAV were included, and the control group comprised 37 age- and sex-matched healthy children. Stool samples were collected from 28 children with IgAV-GI (19 in the acute stage and 9 in the recovery stage) and from nine children with non-abdominal involvement. Fecal specimens were selected and DNA was obtained using an extraction kit which was then subjected to high-throughput sequencing and analysis. RESULTS There was no significant difference in the community structure of the intestinal microbiota among the IgAV-GI acute, IgAV-GI convalescence, and IgAV-non-GI stages. The abundance of Veillonella in the acute stage of IgAV-GI was significantly higher than that in IgAV-non-GI and convalescence stages, and Ruminococcus was the most abundant in IgAV-GI convalescence. The α-diversity of children with IgAV was significantly lower than that of healthy children, and healthy children had higher intestinal microbiota richness and more evenly distributed species. In terms of changes in intestinal microbial diversity in patients with IgAV at the genus level, obligate anaerobes such as Bifidobacterium, Prevotella, Coprobacter, Prevotella_9, Blautia, Romboutsia, Parabacteroide, Subdoligranulum, and Roseburia were significantly reduced, and the enrichment of facultative anaerobe was represented by Bacteroides, Lachnoclostridium, and Alistipe. CONCLUSION Different bacterial species may be involved in the pathogenesis of different types of IgAV-GI. Differences were observed in the intestinal microbiota between healthy children and children with IgAV.
Collapse
Affiliation(s)
- Linqian Zhang
- Jinhua Maternal and Child Health Care Hospital, Jinhua Women's and Children's Hospital, Jinhua, China
| | - Xinyi Jia
- Jinhua Maternal and Child Health Care Hospital, Jinhua Women's and Children's Hospital, Jinhua, China.,Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Panjian Lai
- Jinhua Maternal and Child Health Care Hospital, Jinhua Women's and Children's Hospital, Jinhua, China
| | - Kang Wang
- Jinhua Maternal and Child Health Care Hospital, Jinhua Women's and Children's Hospital, Jinhua, China
| | - Yunguang Bao
- Jinhua Maternal and Child Health Care Hospital, Jinhua Women's and Children's Hospital, Jinhua, China
| | - Xiaobing Li
- Jinhua Maternal and Child Health Care Hospital, Jinhua Women's and Children's Hospital, Jinhua, China
| |
Collapse
|
15
|
Mahmud MR, Akter S, Tamanna SK, Mazumder L, Esti IZ, Banerjee S, Akter S, Hasan MR, Acharjee M, Hossain MS, Pirttilä AM. Impact of gut microbiome on skin health: gut-skin axis observed through the lenses of therapeutics and skin diseases. Gut Microbes 2022; 14:2096995. [PMID: 35866234 PMCID: PMC9311318 DOI: 10.1080/19490976.2022.2096995] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/08/2023] Open
Abstract
The human intestine hosts diverse microbial communities that play a significant role in maintaining gut-skin homeostasis. When the relationship between gut microbiome and the immune system is impaired, subsequent effects can be triggered on the skin, potentially promoting the development of skin diseases. The mechanisms through which the gut microbiome affects skin health are still unclear. Enhancing our understanding on the connection between skin and gut microbiome is needed to find novel ways to treat human skin disorders. In this review, we systematically evaluate current data regarding microbial ecology of healthy skin and gut, diet, pre- and probiotics, and antibiotics, on gut microbiome and their effects on skin health. We discuss potential mechanisms of the gut-skin axis and the link between the gut and skin-associated diseases, such as psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. This review will increase our understanding of the impacts of gut microbiome on skin conditions to aid in finding new medications for skin-associated diseases.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | | | | |
Collapse
|
16
|
Zhu W, Wu Y, Liu H, Jiang C, Huo L. Gut-Lung Axis: Microbial Crosstalk in Pediatric Respiratory Tract Infections. Front Immunol 2021; 12:741233. [PMID: 34867963 PMCID: PMC8637285 DOI: 10.3389/fimmu.2021.741233] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is an important regulator for maintaining the organ microenvironment through effects on the gut-vital organs axis. Respiratory tract infections are one of the most widespread and harmful diseases, especially in the last 2 years. Many lines of evidence indicate that the gut microbiota and its metabolites can be considered in therapeutic strategies to effectively prevent and treat respiratory diseases. However, due to the different gut microbiota composition in children compared to adults and the dynamic development of the immature immune system, studies on the interaction between children's intestinal flora and respiratory infections are still lacking. Here, we describe the changes in the gut microbiota of children with respiratory tract infections and explain the relationship between the microbiota of children with their immune function and disease development. In addition, we will provide perspectives on the direct manipulation of intestinal microbes to prevent or treat pediatric respiratory infections.
Collapse
Affiliation(s)
- Wenxia Zhu
- Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yilin Wu
- Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Liu
- Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Caini Jiang
- Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Huo
- Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Alves E, Gregório J, Baby AR, Rijo P, Rodrigues LM, Rosado C. Homemade Kefir Consumption Improves Skin Condition-A Study Conducted in Healthy and Atopic Volunteers. Foods 2021; 10:foods10112794. [PMID: 34829075 PMCID: PMC8622502 DOI: 10.3390/foods10112794] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Diet has a fundamental role in the homeostasis of bodily functions, including the skin, which, as an essential protective barrier, plays a crucial role in this balance. The skin and intestine appear to share a series of indirect metabolic pathways, in a dual relationship known as the “gut-skin axis”. Hence, the gut-skin axis might be receptive to modulation via dietary modification, where probiotics can be included, thus representing a potential therapeutic target in inflammatory skin diseases, such as atopic dermatitis (AD), in order to control and/or ameliorate symptoms. Kefir is one of the most ancient fermented foods, with probiotic characteristics that have been associated with a wide variety of health-promoting benefits, and it presents a microbiological diversity that makes its application as a probiotic in the gut-skin relationship of the utmost interest. However, the impact of a diet containing kefir on skin health has yet to be reported in scientific literature. This study aimed to assess the impact of the intake of homemade kefir in the skin of healthy and atopic volunteers. The intervention resulted in a boost on barrier function in both skin types verified only in the respective kefir intake groups. An improvement in the degree of severity of AD was also confirmed for the kefir intake group. Atopic individuals may benefit from kefir intake, especially in regard to their skin hydration. Finally, the effects observed on skin barrier function in this study probably culminate from the effects of all the ingredients in kefir, including the complex microbiota, its metabolites and macro- and micronutrients resulting from the fermentation. This work opens the way for more advanced research on the impact of the probiotic kefir on cutaneous health, further clarifying its mechanism of action namely via gut-skin axis.
Collapse
Affiliation(s)
- Emília Alves
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (J.G.); (P.R.)
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Carretera Madrid-Barcelona, Km 33.100, 28805 Alcalá de Henares, Spain
| | - João Gregório
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (J.G.); (P.R.)
| | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Pharmacy, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Patrícia Rijo
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (J.G.); (P.R.)
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Luis M. Rodrigues
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (J.G.); (P.R.)
- Correspondence: (L.M.R.); (C.R.)
| | - Catarina Rosado
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (J.G.); (P.R.)
- Correspondence: (L.M.R.); (C.R.)
| |
Collapse
|
18
|
Altered diversity and composition of gut microbiota in patients with allergic rhinitis. Microb Pathog 2021; 161:105272. [PMID: 34740809 DOI: 10.1016/j.micpath.2021.105272] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recently, multiple studies have suggested an association between gut dysbiosis and allergic rhinitis (AR) development. However, the role of gut microbiota in AR development remains obscure. METHODS The goal of this study was to compare the gut microbiota composition and short-chain fatty acid (SCFAs) differences associated with AR (N = 18) and HCs (healthy controls, N = 17). Gut microbiota 16SrRNA gene sequences were analyzed based on next-generation sequencing. SCFAs in stool samples were analyzed by gas chromatography-mass spectrometry (GC-MS). RESULTS Compared with HCs, the gut microbiota composition of AR was significantly different in diversity and richness. At the phylum level, the abundance of Firmicutes in the AR group were significantly lower than those in the HCs group. At the genus level, the abundance of Blautia, Eubacterium_hallii_group, Romboutsia, Collinsella, Dorea, Subdoligranulum and Fusicatenibacter in the AR group were significantly lower than that in the HCs group. The concentrations of SCFAs were significantly lower in the AR group compared with the HCs group. Correlation analysis showed that the Eubacterium-hallii-group and Blautia correlated positively with SCFAs. CONCLUSION Our results demonstrate compositional and functional alterations of the gut microbiome in AR.
Collapse
|
19
|
Mahdavinia M, Greenfield LR, Moore D, Botha M, Engen P, Gray C, Lunjani N, Hlela C, Basera W, Hobane L, Watkins A, Mankahla A, Gaunt B, Facey-Thomas H, Landay A, Keshavarzian A, Levin ME. House dust microbiota and atopic dermatitis; effect of urbanization. Pediatr Allergy Immunol 2021; 32:1006-1012. [PMID: 33570236 DOI: 10.1111/pai.13471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Previous studies have shown that a child's risk of developing atopic disease is impacted by both genetic and environmental factors. Because small children spend the majority of their time in their homes, exposure to microbial factors in their home environment may be protective or risk factors for development of atopic diseases, such as atopic dermatitis. METHODS Dust samples from the homes of 86 Black South African children 12 to 36 months old were collected for analysis of the bacterial microbiome. This case-control study design included children with and without atopic dermatitis from rural and urban environments. RESULTS Significant differences in bacterial composition and diversity were found when comparing children with and without atopic dermatitis. Furthermore, house dust microbiota was significantly different in rural and urban areas. Differences were best accounted for by higher relative abundance of Ruminococcaceae, Lachnospiraceae, and Bacteroidaceae families in rural compared with urban houses. Levels of Ruminococcaceae were also found to be significantly depleted in the house dust of rural children with atopic dermatitis as compared to control children. CONCLUSIONS House dust composition may be an important risk factor for the development of atopic disease, and this association may be driven in part by the gut microbiome. Low levels of the Ruminococcaceae family from Clostridia class in particular may explain the association between urban living and atopy. However, further research is needed to elucidate these links.
Collapse
Affiliation(s)
- Mahboobeh Mahdavinia
- Department of Internal Medicine, Allergy and Immunology Division, Rush University Medical Center, Chicago, IL, USA.,InVivo Planetary Health Network, Chicago, IL, USA
| | - Leah R Greenfield
- Department of Internal Medicine, Allergy and Immunology Division, Rush University Medical Center, Chicago, IL, USA.,Rush Medical College, Chicago, IL, USA
| | - Donyea Moore
- Department of Internal Medicine, Allergy and Immunology Division, Rush University Medical Center, Chicago, IL, USA
| | - Maresa Botha
- InVivo Planetary Health Network, Chicago, IL, USA.,Division of Allergy, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | | | - Claudia Gray
- Division of Allergy, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa.,Department of Dermatology, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla Lunjani
- Division of Allergy, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Carol Hlela
- Department of Dermatology, University of Cape Town, Cape Town, South Africa
| | - Wisdom Basera
- Division of Allergy, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Lelani Hobane
- Division of Allergy, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Alexandra Watkins
- Division of Allergy, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Avumile Mankahla
- Eastern Cape Department of Health, Zithulele Hospital, Mqanduli, South Africa
| | - Ben Gaunt
- Division of Dermatology, Department of Medicine and Pharmacology, Walter Sisulu University, Mthatha, South Africa
| | - Heidi Facey-Thomas
- Division of Allergy, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Alan Landay
- Geriatrics Division, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Michael E Levin
- InVivo Planetary Health Network, Chicago, IL, USA.,Division of Allergy, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
20
|
Zhou C, Chen LL, Lu RQ, Ma WW, Xiao R. Alteration of Intestinal Microbiota Composition in Oral Sensitized C3H/HeJ Mice Is Associated With Changes in Dendritic Cells and T Cells in Mesenteric Lymph Nodes. Front Immunol 2021; 12:631494. [PMID: 34177885 PMCID: PMC8222730 DOI: 10.3389/fimmu.2021.631494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
This research aimed to investigate the allergic reaction of C3H/HeJ mice after sensitization with ovalbumin (OVA) without any adjuvant and to analyze the association between intestinal microbiota and allergy-related immune cells in mesenteric lymph nodes (MLN). The allergic responses of C3H/HeJ mice orally sensitized with OVA were evaluated, and immune cell subsets in spleen and MLN and cytokines were also detected. The intestinal bacterial community structure was analyzed, followed by Spearman correlation analysis between changed gut microbiota species and allergic parameters. Sensitization induced a noticeable allergic response to the gavage of OVA without adjuvant. Increased levels of Th2, IL-4, CD103+CD86+ DC, and MHCII+CD86+ DC and decreased levels of Th1, Treg, IFN-γ, TGF-β1, and CD11C+CD103+ DC were observed in allergic mice. Furthermore, families of Lachnospiraceae, Clostridiaceae_1, Ruminococcaceae, and peprostreptococcaceae, all of which belonging to the order Clostridiales, were positively related to Treg and CD11C+CD103+ DC, while they were negatively related to an allergic reaction, levels of Th2, CD103+CD86+ DC, and MHCII+CD86+ DC in MLN. The family of norank_o_Mollicutes_RF39 belonging to the order Mollicutes_RF39 was similarly correlated with allergic reaction and immune cells in MLN of mice. To sum up, allergic reactions and intestinal flora disturbances could be induced by OVA oral administration alone. The orders of Clostridiales and Mollicutes_RF39 in intestinal flora are positively correlated with levels of Treg and CD11C+CD103+ DC in MLN of mice.
Collapse
Affiliation(s)
- Cui Zhou
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Ling-Ling Chen
- Nutritional Department, Handan First Hospital, Handan, China
| | - Rui-Qi Lu
- School of Basic Medicine, Capital Medical University, Beijing, China
| | - Wei-Wei Ma
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Rong Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Disordered Gut Microbiota in Children Who Have Chronic Pancreatitis and Different Functional Gene Mutations. Clin Transl Gastroenterol 2021; 11:e00150. [PMID: 32352720 PMCID: PMC7145041 DOI: 10.14309/ctg.0000000000000150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic pancreatitis (CP) is a serious condition whose pathogenic mechanism is unclear. Interactions of host genetic factors with gut microbiota have a role, but little is known, especially in children with CP (CCP), in which the external factors are less important. Our objective was to identify the main gut microbiota genera in CCP and to characterize the functional mutations of these patients.
Collapse
|
22
|
Gargano D, Appanna R, Santonicola A, De Bartolomeis F, Stellato C, Cianferoni A, Casolaro V, Iovino P. Food Allergy and Intolerance: A Narrative Review on Nutritional Concerns. Nutrients 2021; 13:1638. [PMID: 34068047 PMCID: PMC8152468 DOI: 10.3390/nu13051638] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Adverse food reactions include immune-mediated food allergies and non-immune-mediated intolerances. However, this distinction and the involvement of different pathogenetic mechanisms are often confused. Furthermore, there is a discrepancy between the perceived vs. actual prevalence of immune-mediated food allergies and non-immune reactions to food that are extremely common. The risk of an inappropriate approach to their correct identification can lead to inappropriate diets with severe nutritional deficiencies. This narrative review provides an outline of the pathophysiologic and clinical features of immune and non-immune adverse reactions to food-along with general diagnostic and therapeutic strategies. Special emphasis is placed on specific nutritional concerns for each of these conditions from the combined point of view of gastroenterology and immunology, in an attempt to offer a useful tool to practicing physicians in discriminating these diverging disease entities and planning their correct management. We conclude that a correct diagnostic approach and dietary control of both immune- and non-immune-mediated food-induced diseases might minimize the nutritional gaps in these patients, thus helping to improve their quality of life and reduce the economic costs of their management.
Collapse
Affiliation(s)
- Domenico Gargano
- Allergy and Clinical Immunology Unit, San Giuseppe Moscati Hospital, 83100 Avellino, Italy; (D.G.); (F.D.B.)
| | - Ramapraba Appanna
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| | - Antonella Santonicola
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| | - Fabio De Bartolomeis
- Allergy and Clinical Immunology Unit, San Giuseppe Moscati Hospital, 83100 Avellino, Italy; (D.G.); (F.D.B.)
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| | - Antonella Cianferoni
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| | - Paola Iovino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| |
Collapse
|
23
|
Saturio S, Nogacka AM, Suárez M, Fernández N, Mantecón L, Mancabelli L, Milani C, Ventura M, de los Reyes-Gavilán CG, Solís G, Arboleya S, Gueimonde M. Early-Life Development of the Bifidobacterial Community in the Infant Gut. Int J Mol Sci 2021; 22:ijms22073382. [PMID: 33806135 PMCID: PMC8036440 DOI: 10.3390/ijms22073382] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
The establishment of the gut microbiota poses implications for short and long-term health. Bifidobacterium is an important taxon in early life, being one of the most abundant genera in the infant intestinal microbiota and carrying out key functions for maintaining host-homeostasis. Recent metagenomic studies have shown that different factors, such as gestational age, delivery mode, or feeding habits, affect the gut microbiota establishment at high phylogenetic levels. However, their impact on the specific bifidobacterial populations is not yet well understood. Here we studied the impact of these factors on the different Bifidobacterium species and subspecies at both the quantitative and qualitative levels. Fecal samples were taken from 85 neonates at 2, 10, 30, 90 days of life, and the relative proportions of the different bifidobacterial populations were assessed by 16S rRNA–23S rRNA internal transcribed spacer (ITS) region sequencing. Absolute levels of the main species were determined by q-PCR. Our results showed that the bifidobacterial population establishment is affected by gestational age, delivery mode, and infant feeding, as it is evidenced by qualitative and quantitative changes. These data underline the need for understanding the impact of perinatal factors on the gut microbiota also at low taxonomic levels, especially in the case of relevant microbial populations such as Bifidobacterium. The data obtained provide indications for the selection of the species best suited for the development of bifidobacteria-based products for different groups of neonates and will help to develop rational strategies for favoring a healthy early microbiota development when this process is challenged.
Collapse
Affiliation(s)
- Silvia Saturio
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, 33300 Villaviciosa, Spain; (S.S.); (A.M.N.); (C.G.d.l.R.-G.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Alicja M. Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, 33300 Villaviciosa, Spain; (S.S.); (A.M.N.); (C.G.d.l.R.-G.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Marta Suárez
- Pediatrics Service, Hospital Universitario Central de Asturias, SESPA, 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
- Pediatrics Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Nuria Fernández
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Pediatrics Service, Hospital de Cabueñes, SESPA, 33203 Gijón, Spain
| | - Laura Mantecón
- Pediatrics Service, Hospital Universitario Central de Asturias, SESPA, 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
- Pediatrics Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43121 Parma, Italy; (L.M.); (C.M.); (M.V.)
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43121 Parma, Italy; (L.M.); (C.M.); (M.V.)
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43121 Parma, Italy; (L.M.); (C.M.); (M.V.)
| | - Clara G. de los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, 33300 Villaviciosa, Spain; (S.S.); (A.M.N.); (C.G.d.l.R.-G.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Gonzalo Solís
- Pediatrics Service, Hospital Universitario Central de Asturias, SESPA, 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
- Pediatrics Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, 33300 Villaviciosa, Spain; (S.S.); (A.M.N.); (C.G.d.l.R.-G.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Correspondence: (S.A.); (M.G.); Tel.: +34-985-892-131 (S.A. & M.G.)
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, 33300 Villaviciosa, Spain; (S.S.); (A.M.N.); (C.G.d.l.R.-G.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Correspondence: (S.A.); (M.G.); Tel.: +34-985-892-131 (S.A. & M.G.)
| |
Collapse
|
24
|
Ezechukwu HC, Diya CA, Egoh IJ, Abiodun MJ, Grace JUA, Okoh GR, Adu KT, Adegboye OA. Lung microbiota dysbiosis and the implications of SARS-CoV-2 infection in pregnancy. Ther Adv Infect Dis 2021; 8:20499361211032453. [PMID: 35035953 PMCID: PMC8753069 DOI: 10.1177/20499361211032453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
There are a great number of beneficial commensal microorganisms constitutively colonizing the mucosal lining of the lungs. Alterations in the microbiota profile have been associated with several respiratory diseases such as pneumonia and allergies. Lung microbiota dysbiosis might play an important role in the pathogenic mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as elicit other opportunistic infections associated with coronavirus disease 2019 (COVID-19). With its increasing prevalence and morbidity, SARS-CoV-2 infection in pregnant mothers is inevitable. Recent evidence shows that angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) act as an entry receptor and viral spike priming protein, respectively, for SARS-CoV-2 infection. These receptor proteins are highly expressed in the maternal-fetal interface, including the placental trophoblast, suggesting the possibility of maternal-fetal transmission. In this review, we discuss the role of lung microbiota dysbiosis in respiratory diseases, with an emphasis on COVID-19 and the possible implications of SARS-CoV-2 infection on pregnancy outcome and neonatal health.
Collapse
Affiliation(s)
- Henry C. Ezechukwu
- Department of Medical Biochemistry, Eko University of Medicine and Health Sciences, Ijanikin, Lagos, Nigeria
| | - Cornelius A. Diya
- Department of Medical Biochemistry, Eko University of Medicine and Health Sciences, Ijanikin, Lagos State, Nigeria
| | | | - Mayowa J. Abiodun
- Department of Cell Biology, University of Lagos, Akoka, Lagos State, Nigeria
| | | | - God’spower R. Okoh
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Kayode T. Adu
- ProbioWorld Consulting Group, James Cook University, Townsville, QLD, Australia
- Cann Group Ltd., Walter and Eliza Hall Institute, VIC, Australia
| | - Oyelola A. Adegboye
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
25
|
Wang L, de Ángel Solá D, Acevedo Flores M, Schriefer A, Wang L, Gerónimo López K, Chang A, Warner B, Shan L, Holtz LR, Rosario Matos N. Prenatal food insecurity post Hurricane Maria is associated with decreased Veillonella in the infant gut. Pediatr Res 2020; 88:917-924. [PMID: 32172280 PMCID: PMC7492397 DOI: 10.1038/s41390-020-0839-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hurricane Maria struck Puerto Rico on 20 September 2017 causing catastrophic devastation. Prolonged shortage of food had been a substantial challenge to the residents after Maria. Experiencing food insecurity in utero has been associated with negative health outcomes later in life. We aim to examine whether there is any alteration in the infant gut microbiome that is associated with prenatal food insecurity. METHODS We established a cohort of infants aged 2-6 months who were exposed in utero to Hurricane Maria near San Juan, Puerto Rico and examined the gut microbiota (n = 29) using 16S ribosomal RNA gene sequencing. RESULTS Among the enrolled infants, 30% of their mothers experienced "post-Maria poor access to food" for at least 1 month during pregnancy. The relative abundance of gut Veillonella spp. is significantly decreased among infants who experienced prenatal food insecurity, compared to those who did not (adjusted p = 0.025). There is no significant difference observed by prenatal food insecurity at the microbial community level in this cohort. CONCLUSIONS Our finding indicated that infants who experienced prenatal food insecurity post hurricane harbor microbial alternations of specific bacterial taxa, which may further influence the microbial maturation and place the individual at a high-risk health trajectory. IMPACT We identified that in utero exposure to food insecurity post Hurricane Maria is associated with decreased abundance of Veillonella in the infant gut. Our findings indicated that infants who experienced prenatal food insecurity post hurricane may harbor alterations of specific bacterial taxa in their gut microbiota. This study showed the association between prenatal adverse exposure and alterations of gut microbiome early in life in the context of an extreme event. This study provided insights into the mechanisms underlying prenatal adverse exposure and increased disease risks later in life. Our findings will potentially raise awareness of the negative impact of extreme climate events on the unborn.
Collapse
Affiliation(s)
- Leyao Wang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - David de Ángel Solá
- Departments of Pediatrics and Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Midnela Acevedo Flores
- San Juan City Hospital Research Unit, Department of Pediatrics and Obstetrics and Gynecology, San Juan Hospital, San Juan, Puerto Rico
| | - Andrew Schriefer
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Leran Wang
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kamil Gerónimo López
- San Juan City Hospital Research Unit, Department of Pediatrics and Obstetrics and Gynecology, San Juan Hospital, San Juan, Puerto Rico
| | - Alison Chang
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Barbara Warner
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Liang Shan
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Lori R Holtz
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Nicolás Rosario Matos
- San Juan City Hospital Research Unit, Department of Pediatrics and Obstetrics and Gynecology, San Juan Hospital, San Juan, Puerto Rico
| |
Collapse
|
26
|
Terada-Ikeda C, Kitabatake M, Hiraku A, Kato K, Yasui S, Imakita N, Ouji-Sageshima N, Iwabuchi N, Hamada K, Ito T. Maternal supplementation with Bifidobacterium breve M-16V prevents their offspring from allergic airway inflammation accelerated by the prenatal exposure to an air pollutant aerosol. PLoS One 2020; 15:e0238923. [PMID: 32915886 PMCID: PMC7485856 DOI: 10.1371/journal.pone.0238923] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Bifidobacterium breve M-16V is a probiotic bacterial strain with efficacy in infants achieved by suppressing T-helper type (Th) 2 immune responses and modulating the systemic Th1/Th2 balance. Exposure to air pollution during pregnancy increases asthma susceptibility in offspring. The aim of this study was to investigate the effects of the maternal intake of B. breve M-16V on susceptibility to asthma accelerated by prenatal exposure to air pollution. The intake of B. breve M-16V in residual oil fly ash (ROFA)-exposed pregnant mice resulted in fewer eosinophils in the bronchoalveolar lavage fluid of neonatal mice and reduced allergic lung inflammation. The expressions of Th2 cytokines including IL-5 and IL-13 were decreased in neonatal mice from ROFA-exposed mothers fed B. breve M-16V. The analysis of fecal microbiota from neonatal mice revealed that the intake of B. breve M-16V by mothers changed the composition of fecal microbiota in neonatal mice, which resulted in a decreased population of Firmicutes. Moreover, several bacterial strains of fecal microbiota from neonatal mice had a strong correlation with Th2 cytokines and histological score. These results suggest that the maternal intake of M-16V might have beneficial effects in neonates by preventing and/or alleviating allergic reactions accelerated by prenatal exposure to air pollution.
Collapse
Affiliation(s)
| | | | - Akari Hiraku
- R&D Division, Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Kumiko Kato
- R&D Division, Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Satsuki Yasui
- Department of Immunology, Nara Medical University, Kashihara, Nara, Japan
| | - Natsuko Imakita
- Department of Immunology, Nara Medical University, Kashihara, Nara, Japan
| | | | - Noriyuki Iwabuchi
- R&D Division, Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Kaoru Hamada
- Department of Clinical and Investigative Medicine, Faculty of Nursing, Nara Medical University, Kashihara, Nara, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara, Japan
- * E-mail:
| |
Collapse
|
27
|
Bidder TM. Effective management of adult patients with asthma. Nurs Stand 2020; 34:43-50. [PMID: 31468778 DOI: 10.7748/ns.2019.e11411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 11/09/2022]
Abstract
Asthma is a chronic respiratory condition that can affect people of all ages. Globally, asthma is one of the most common non-communicable diseases and is associated with significant personal, financial and societal costs. In some cases, asthma can be fatal, although many fatalities would have been preventable with appropriate management. People with asthma often underestimate the effects of their symptoms, and nurses should develop their knowledge and skills so that they can provide appropriate management advice. This article outlines the causes of asthma and its symptoms. It also explains the interventions used in the management of this condition, including medicines, patient education, appropriate lifestyle changes and referral to specialist services.
Collapse
Affiliation(s)
- Therese Marie Bidder
- Department of Specialist Allergy and Clinical Immunology, Royal National Throat, Nose and Ear Hospital, University College London Hospitals NHS Foundation Trust, London, England
| |
Collapse
|
28
|
Galazzo G, van Best N, Bervoets L, Dapaah IO, Savelkoul PH, Hornef MW, Lau S, Hamelmann E, Penders J. Development of the Microbiota and Associations With Birth Mode, Diet, and Atopic Disorders in a Longitudinal Analysis of Stool Samples, Collected From Infancy Through Early Childhood. Gastroenterology 2020; 158:1584-1596. [PMID: 31958431 DOI: 10.1053/j.gastro.2020.01.024] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Establishment of the gastrointestinal microbiota during infancy affects immune system development and oral tolerance induction. Perturbations in the microbiome during this period can contribute to development of immune-mediated diseases. We monitored microbiota maturation and associations with subsequent development of allergies in infants and children. METHODS We collected 1453 stool samples, at 5, 13, 21, and 31 weeks postpartum (infants), and once at school age (6-11 years), from 440 children (49.3% girls, 24.8% born by cesarean delivery; all children except for 6 were breastfed for varying durations; median 40 weeks; interquartile range, 30-53 weeks). Microbiota were analyzed by amplicon sequencing. Children were followed through 3 years of age for development of atopic dermatitis; data on allergic sensitization and asthma were collected when children were school age. RESULTS Diversity of fecal microbiota, assessed by Shannon index, did not differ significantly among children from 5 through 13 weeks after birth, but thereafter gradually increased to 21 and 31 weeks. Most bacteria within the Bacteroidetes and Proteobacteria phyla were already present at 5 weeks after birth, whereas many bacteria of the Firmicutes phylum were acquired at later times in infancy. At school age, many new Actinobacteria, Firmicutes, and Bacteroidetes bacterial taxa emerged. The largest increase in microbial diversity occurred after 31 weeks. Vaginal, compared with cesarean delivery, was most strongly associated with an enrichment of Bacteroides species at 5 weeks through 31 weeks. From 13 weeks onward, diet became the most important determinant of microbiota composition; cessation of breastfeeding, rather than solid food introduction, was associated with changes. For example, Bifidobacteria, staphylococci, and streptococci significantly decreased on cessation of breastfeeding, whereas bacteria within the Lachnospiraceae family (Pseudobutyrivibrio, Lachnobacterium, Roseburia, and Blautia) increased. When we adjusted for confounding factors, we found fecal microbiota composition to be associated with development of atopic dermatitis, allergic sensitization, and asthma. Members of the Lachnospiraceae family, as well as the genera Faecalibacterium and Dialister, were associated with a reduced risk of atopy. CONCLUSIONS In a longitudinal study of fecal microbiota of children from 5 weeks through 6 to 11 years, we tracked changes in diversity and composition associated with the development of allergies and asthma.
Collapse
Affiliation(s)
- Gianluca Galazzo
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Medical Microbiology, Maastricht University Medical Centre, Maastricht, the Netherlands; School for Public Health and Primary Care (Caphri), Department of Medical Microbiology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Niels van Best
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Medical Microbiology, Maastricht University Medical Centre, Maastricht, the Netherlands; Institute of Medical Microbiology, RWTH University Hospital Aachen, RWTH University, Aachen, Germany; in Vivo Planetary Health: an affiliate of the World Universities Network (WUN), West New York, New Jersey
| | - Liene Bervoets
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Medical Microbiology, Maastricht University Medical Centre, Maastricht, the Netherlands; in Vivo Planetary Health: an affiliate of the World Universities Network (WUN), West New York, New Jersey
| | - Isaac Oteng Dapaah
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Medical Microbiology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Paul H Savelkoul
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Medical Microbiology, Maastricht University Medical Centre, Maastricht, the Netherlands; School for Public Health and Primary Care (Caphri), Department of Medical Microbiology, Maastricht University Medical Centre, Maastricht, the Netherlands; Department of Medical Microbiology and Infection Control, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital Aachen, RWTH University, Aachen, Germany
| | | | - Susanne Lau
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Germany
| | - Eckard Hamelmann
- Children's Center Bethel, Protestant Hospital Bethel, University of Bielefeld, Germany
| | - John Penders
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Medical Microbiology, Maastricht University Medical Centre, Maastricht, the Netherlands; School for Public Health and Primary Care (Caphri), Department of Medical Microbiology, Maastricht University Medical Centre, Maastricht, the Netherlands; in Vivo Planetary Health: an affiliate of the World Universities Network (WUN), West New York, New Jersey.
| |
Collapse
|
29
|
Liu X, Tao J, Li J, Cao X, Li Y, Gao X, Fu Y. Dysbiosis of Fecal Microbiota in Allergic Rhinitis Patients. Am J Rhinol Allergy 2020; 34:650-660. [PMID: 32340468 DOI: 10.1177/1945892420920477] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background The gut microbiota plays an important role in shaping the immune system and may be closely connected to the development of allergic diseases. Objective This study aimed to determine the gut microbiota composition in Chinese allergic rhinitis (AR) patients as compared with healthy controls (HCs). Methods We collected stool samples from 93 AR patients and 72 age- and sex-matched HCs. Gut microbiota composition was analyzed using QIIME targeting the 16S rRNA gene. Functional pathways were predicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States. Statistical analysis was performed using the R program, linear discriminant analysis effect size (LefSe), analysis of QIIME, and statistical analysis of metagenomic profiles, among other tests. Results Compared with HCs, AR patients had significantly lower gut-microbiota α-diversity ( P < .001). The gut microbiota composition significantly differed between the 2 study groups. At the phylum level, the relative abundance of Bacteroidetes was higher while those of Actinobacteria and Proteobacteria were lower in the AR group than in the HC group ( P < .001, q < 0.001). At the genus level, Escherichia-Shigella, Prevotella, and Parabacteroides ( P < .001, q < 0.001) had significantly higher relative abundances in the AR group than in the HC group. LefSe analysis indicated that Escherichia-Shigella, Lachnoclostridium, Parabacteroides, and Dialister were potential biomarkers for AR. In addition, predictive metagenome functional analysis showed that pyruvate, porphyrin, chlorophyll, purine metabolism, and peptidoglycan biosynthesis significantly differed between the AR and HC groups. Conclusion A comparison of the gut microbiota of AR patients and HCs suggested that dysbiosis of the fecal microbiota is involved in the development of AR. The present results may reveal key differences and identify targets for preventive or therapeutic intervention.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Otolaryngology and Head and Neck Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Tao
- Department of ENT and Head and Neck Surgery, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Li
- Department of Otolaryngology and Head and Neck Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolin Cao
- Department of Otolaryngology and Head and Neck Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Li
- Department of Otolaryngology and Head and Neck Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuefeng Gao
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Yong Fu
- Department of ENT and Head and Neck Surgery, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
30
|
Abstract
The interest in the therapeutic use of probiotic microorganisms has been increased during the last decade although the doubts have ascended about the probiotics mainly because their beneficial effects are not fully understood, and, in many cases, their usefulness has not been validated in clinical trials. Consequently, the notion got a considerable interest in those strains having proven probiotic potential to be engineered for improvement in their beneficial features. The process of genetic engineering can also be used for probiotic strains for the reversion of antimicrobial resistance and other modifications for their safer and effective human applications. The lactic acid bacilli are predominantly opposite as they already have gained attention owing to their health-promoting benefits and their safety for human consumption; therefore, their use, especially as a delivery agent of vaccines and drugs, is gaining attention. The tailoring of probiotic strains will not only improve the data regarding the probiotic potential of these strains but also clinch the doubts concerning these probiotics. This article focuses on the approaches of bioengineered probiotics and discusses the potential prospects for their therapeutic applications including immunomodulation, cognitive health, and anticancer therapeutics.
Collapse
|
31
|
Wang D, Guo S, He H, Gong L, Cui H. Gut Microbiome and Serum Metabolome Analyses Identify Unsaturated Fatty Acids and Butanoate Metabolism Induced by Gut Microbiota in Patients With Chronic Spontaneous Urticaria. Front Cell Infect Microbiol 2020; 10:24. [PMID: 32154184 PMCID: PMC7047433 DOI: 10.3389/fcimb.2020.00024] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/15/2020] [Indexed: 01/22/2023] Open
Abstract
Chronic urticaria (CU) is defined as the continuous or intermittent presence of urticaria for a period exceeding 6 weeks and sometimes occurring with angioedema. Between 66 and 93% of patients with CU have chronic spontaneous urticaria (CSU), the precise pathogenesis of which is largely unknown. The aim of this study was to determine the relationship between gut microbiota and serum metabolites and the possible pathogenesis underlying CSU. We collected feces and blood samples from CSU patients and healthy controls and the relationship between gut microbiota and serum metabolites was assessed using 16S rRNA gene sequencing and untargeted metabolomic analyses. The CSU group exhibited decreased alpha diversity of the microbial population compared to the control group. The abundance of unidentified Enterobacteriaceae was increased, while the abundance of Bacteroides, Faecalibacterium, Bifidobacterium, and unidentified Ruminococcaceae was significantly reduced in CSU patients. The serum metabolome analysis revealed altered levels of docosahexaenoic acid, arachidonic acid, glutamate, and succinic acid, suggesting changes in unsaturated fatty acids and the butanoate metabolism pathway. The combined serum metabolomics and gut microbiome datasets were correlated; specifically, docosahexaenoic acid, and arachidonic acid were positively correlated with Bacteroides. We speculate that alterations in gut microbes and metabolites may contribute to exacerbated inflammatory responses and dysregulated immune function with or without regulatory T cell dependence in the pathogenesis of CSU.
Collapse
Affiliation(s)
- Detong Wang
- Department of Dermatology, First Hospital of Shanxi Medical University, Taiyuan, China.,The First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Shuping Guo
- Department of Dermatology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongxia He
- Department of Dermatology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Gong
- The First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Hongzhou Cui
- Department of Dermatology, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
32
|
Turroni F, Milani C, Duranti S, Lugli GA, Bernasconi S, Margolles A, Di Pierro F, van Sinderen D, Ventura M. The infant gut microbiome as a microbial organ influencing host well-being. Ital J Pediatr 2020; 46:16. [PMID: 32024556 PMCID: PMC7003403 DOI: 10.1186/s13052-020-0781-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
Initial establishment of the human gut microbiota is generally believed to occur immediately following birth, involving key gut commensals such as bifidobacteria that are acquired from the mother. The subsequent development of this early gut microbiota is driven and modulated by specific dietary compounds present in human milk that support selective colonization. This represents a very intriguing example of host-microbe co-evolution, where both partners are believed to benefit. In recent years, various publications have focused on dissecting microbial infant gut communities and their interaction with their human host, being a determining factor in host physiology and metabolic activities. Such studies have highlighted a reduction of microbial diversity and/or an aberrant microbiota composition, sometimes referred to as dysbiosis, which may manifest itself during the early stage of life, i.e., in infants, or later stages of life. There are growing experimental data that may explain how the early human gut microbiota affects risk factors related to adult health conditions. This concept has fueled the development of various nutritional strategies, many of which are based on probiotics and/or prebiotics, to shape the infant microbiota. In this review, we will present the current state of the art regarding the infant gut microbiota and the role of key commensal microorganisms like bifidobacteria in the establishment of the first microbial communities in the human gut.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124, Parma, Italy
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124, Parma, Italy
| | | | - Abelardo Margolles
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, IPLA - CSIC, Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias-ISPA, Oviedo, Spain
| | | | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
| |
Collapse
|
33
|
Mastrorilli C, Santoro A, Caffarelli C. Primary Prevention of Allergic Diseases: The Role of Early Exposure to Cow's Milk Formula. Front Pediatr 2020; 8:420. [PMID: 32850536 PMCID: PMC7399633 DOI: 10.3389/fped.2020.00420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
The burden of atopic disorders is continuously worsening worldwide, especially in childhood. Therefore, risk factors and preventive measures have been called into question. The age when infants introduce complementary foods, varies greatly according to traditional habits, clinical practice recommendations, and breastfeeding duration. It is still debated the impact of early exposure to cow's milk on the increase of allergic diseases, mainly food allergy, and atopic dermatitis. Many factors may play a role in this potential link, such as genetic variation, parental atopy, infant feeding regimens. Recent evidences suggest that the early introduction of complementary foods (up to 6 months of age), including cow's milk, could prevent the development of food allergies. So, several countries included this new approach into feeding guidelines. Our review will focus on the influence of early exposure to cow's milk formula on the development of allergic diseases. Some trials found that cow's milk supplementation in the first days of life could even increase the development of IgE sensitization and food allergies. Other trials did not show any efficacy on prevention of allergic disorders. Further studies are needed to understand the prospective for allergy prevention related to optimal timing of cow's milk formula introduction.
Collapse
Affiliation(s)
- Carla Mastrorilli
- UO Pediatria e Pronto Soccorso, Azienda Ospedaliero-Universitaria Consorziale Policlinico, Ospedale Pediatrico Giovanni XXIII, Bari, Italy
| | - Angelica Santoro
- Clinica Pediatrica, Dipartimento Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Carlo Caffarelli
- Clinica Pediatrica, Dipartimento Medicina e Chirurgia, Università di Parma, Parma, Italy
| |
Collapse
|
34
|
Kim HJ, Lee SH, Hong SJ. Antibiotics-Induced Dysbiosis of Intestinal Microbiota Aggravates Atopic Dermatitis in Mice by Altered Short-Chain Fatty Acids. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:137-148. [PMID: 31743970 PMCID: PMC6875482 DOI: 10.4168/aair.2020.12.1.137] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Alterations in the intestinal microbiota in early life affects the development of atopic dermatitis (AD) in humans. This study aimed to further investigate the effects of gut dysbiosis in early life in an ovalbumin (OVA)-induced mouse model of AD. METHODS The AD mouse model was developed by serial OVA sensitization and mice were treated with an antibiotic cocktail in their drinking water for 2 weeks before primary sensitization. Probiotics (Lactobacillus rhamnosus, 1 × 10⁹ CFU) or 100 μL of fresh fecal supernatant were orally administered daily from 1 week before the first sensitization until the end of the study. RESULTS The AD mice which received antibiotics had significantly aggravated phenotypes, including clinical score, transepidermal water loss, and histopathology, compared to those treated with healthy feces or probiotics. Total systemic immunoglobulin E production and skin interleukin (IL) 4 levels were significantly increased in the antibiotic-treated mice compared to the other groups. Antibiotic treatment also increased the levels of IL17 and group 3 innate lymphoid cells (ILC3) in the gut and significantly suppressed the production of short-chain fatty acids (SCFAs) and decreased the number FOXP3⁺ cells. CONCLUSIONS Our results suggest that the status of the gut microbiota in early life in the mouse may play a crucial role in AD development through intestinal SCFA production through regulate the numbers of CD4⁺IL17⁺/CD4⁺FOXP3⁺ regulatory T cells and ILC3s.
Collapse
Affiliation(s)
- Ha Jung Kim
- Department of Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Seung Hwa Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Environmental Health Center, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
35
|
Loo EXL, Wang DY, Siah KTH. Association between Irritable Bowel Syndrome and Allergic Diseases: To Make a Case for Aeroallergen. Int Arch Allergy Immunol 2019; 181:31-42. [PMID: 31694023 DOI: 10.1159/000503629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/21/2019] [Indexed: 11/19/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disease and the most common cause of prolonged abdominal pain and bowel disturbances in the developed world. While initially thought to be functional or psychosomatic in nature, IBS is now recognized as a heterogeneous group of conditions. A subset of IBS patients and patients with allergic diseases share some characteristic inflammatory features. In fact, atopic children show an increased likelihood of developing IBS as adults. Given these findings, a subset of IBS may be suffering from allergy-related gut diseases. In this review, we present the allergy-related comorbidities of IBS, including genetic, environmental, and immunologic factors. We discuss studies demonstrating an increased sensitization of IBS patients to aeroallergens compared to food allergens. We then postulate potential pathophysiological mechanisms underlying both IBS and aeroallergens in the gut, followed by potential implications in the screening and treatment of allergies in IBS patients.
Collapse
Affiliation(s)
- Evelyn Xiu Ling Loo
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Pediatrics, Yong Loo School of Medicine, National University of Singapore, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kewin Tien Ho Siah
- Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Hospital, Singapore, Singapore, .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,
| |
Collapse
|
36
|
Guadamuro L, Diaz M, Jiménez S, Molinos-Norniella C, Pérez-Solis D, Rodríguez JM, Bousoño C, Gueimonde M, Margolles A, Delgado S, Díaz JJ. Fecal Changes Following Introduction of Milk in Infants With Outgrowing Non-IgE Cow's Milk Protein Allergy Are Influenced by Previous Consumption of the Probiotic LGG. Front Immunol 2019; 10:1819. [PMID: 31428100 PMCID: PMC6689952 DOI: 10.3389/fimmu.2019.01819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022] Open
Abstract
Cow's milk protein allergy (CMPA) is the most common allergy in the first year of life. Non-IgE mediated CMPA is characterized by digestive symptoms and tolerance development before the age of three. Gut microbiota composition in early life has been associated with food allergy. The ingestion of different foods/nutrients may mark different shifts in the microbial colonization of the infant intestine as well as the consumption of probiotics. Aim: To analyze changes in microbiota composition and metabolic and cytokine profiles in fecal samples from infants with non-IgE mediated CMPA after successful milk challenges, tolerance acquisition, and increasing dairy introduction in their diet. Methods: Twelve children with CMPA, aged between 1 and 2 years old, were recruited for the study. Participants were initially consuming hypoallergenic hydrolyzed formulas (four of them supplemented with the probiotic Lactobacillus rhamnosus GG), before being exposed to a standardized oral challenge (SOC) with cow's milk. Fecal samples were collected before, 1 week, and 1 month after performing the SOC. Changes in gut microbiota were determined by high-throughput amplicon sequencing of the 16S rRNA gene. Levels of lactobacilli were also determined by quantitative PCR (qPCR). Microbial metabolites were analyzed by chromatographic methods and fecal cytokines related to the Th1/Th2 balance were determined by immunoassay. Results: Lactic acid bacteria significantly increased in infants who outgrew non-IgE CMPA, after the introduction of milk. Microbial metabolites derived from the fermentation of proteins, such as branched chain fatty acids, and p-cresol, diminished. After the SOC, some cytokines related to inflammation (TNF-α, IFN-γ) increased. Accompanying the introduction of an unrestricted diet, we found significant differences in fecal microbial composition, metabolites, and cytokines between infants who did not consume the probiotic L. rhamnosus GG and those that did. Conclusions: These findings indicate that the introduction of intact milk proteins is followed by modifications in the infant gut environment through changes in immune mediators, microbiota, and its metabolic end-products. Consumption of probiotics during CMPA may contribute to gut homeostasis by fine-tuning these profiles.
Collapse
Affiliation(s)
- Lucía Guadamuro
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA)-Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Spain
| | - Maria Diaz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA)-Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Spain
| | - Santiago Jiménez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Pediatric Gastroenterology, Hepatology and Nutrition Section, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | | | - David Pérez-Solis
- Pediatrics Service, Hospital Universitario San Agustín, Avilés, Spain
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Carlos Bousoño
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Pediatric Gastroenterology, Hepatology and Nutrition Section, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA)-Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA)-Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Susana Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA)-Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Juan José Díaz
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Pediatric Gastroenterology, Hepatology and Nutrition Section, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| |
Collapse
|
37
|
Guo J, Lv Q, Ariff A, Zhang X, Peacock CS, Song Y, Wen X, Saiganesh A, Melton PE, Dykes GA, Moses EK, LE Souëf PN, Lu F, Zhang G. Western oropharyngeal and gut microbial profiles are associated with allergic conditions in Chinese immigrant children. World Allergy Organ J 2019; 12:100051. [PMID: 31440325 PMCID: PMC6699559 DOI: 10.1016/j.waojou.2019.100051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The allergy epidemic resulting from western environment/lifestyles is potentially due to modifications of the human microbiome. Therefore, it is of interest to study immigrants living in a western environment as well as their counterparts in the country of origin to understand differences in their microbiomes and health status. METHODS We investigated 58 Australian Chinese (AC) children from Perth, Western Australia as well as 63 Chinese-born Chinese (CC) children from a city in China. Oropharyngeal (OP) and fecal samples were collected. To assess the microbiomes, 16s ribosomal RNA (rRNA) sequencing for variable regions V3 and V4 was used. Skin prick tests (SPT) were performed to measure the children's atopic status. Information on food allergy and wheezing were acquired from a questionnaire. RESULTS AC children had more allergic conditions than CC children. The alpha diversity (mean species diversity) of both OP and gut microbiome was lower in AC children compared to CC children for richness estimate (Chao1), while diversity evenness (Shannon index) was higher. The beta diversity (community similarity) displayed a distinct separation of the OP and gut microbiota between AC and CC children. An apparent difference in microbial abundance was observed for many bacteria. In AC children, we sought to establish consistent trends in bacterial relative abundance that are either higher or lower in AC versus CC children and higher or lower in children with allergy versus those without allergy. The majority of OP taxa showed a consistent trend while the majority of fecal taxa showed a contrasting trend. CONCLUSION Distinct differences in microbiome compositions were found in both oropharyngeal and fecal samples of AC and CC children. The association of the OP microbiome with allergic condition is different from that of the gut microbiome in AC children. The microbiome profiles are changed by the western environment/lifestyle and are associated with allergies in Chinese immigrant children in Australia.
Collapse
Key Words
- AC, Australian Chinese
- Allergy
- Atopy
- BMI, body mass index
- CC, China-Born Chinese
- FDR, false discovery rate
- Immigration
- KEGG, Kyoto Encyclopaedia of Genes and Genomes
- LDA, The linear discriminant analysis
- LEfSe, The linear discriminant analysis effect size
- Microbiome
- OP, oropharyngeal
- PICRUSt, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
- SPT, skin prick test
- Western environment
- rRNA, ribosomal RNA
Collapse
Affiliation(s)
- Jing Guo
- School of Public Health, Curtin University of Technology, Perth, WA, Australia
- Centre for Genetic Origins of Health and Disease, Faculty of Health Sciences, Curtin University of Technology, Faculty of Health and Medical Sciences, The University of Western Australia, Royal Perth Hospital Medical Research Foundation, Perth, WA, Australia
| | - Quanjun Lv
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Amir Ariff
- Centre for Genetic Origins of Health and Disease, Faculty of Health Sciences, Curtin University of Technology, Faculty of Health and Medical Sciences, The University of Western Australia, Royal Perth Hospital Medical Research Foundation, Perth, WA, Australia
| | - Xiaoping Zhang
- China National Bamboo Research Centre, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou, Zhejiang, China
| | - Christopher S. Peacock
- Marshall Centre for Infectious Disease, School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Yong Song
- School of Public Health, Curtin University of Technology, Perth, WA, Australia
- Centre for Genetic Origins of Health and Disease, Faculty of Health Sciences, Curtin University of Technology, Faculty of Health and Medical Sciences, The University of Western Australia, Royal Perth Hospital Medical Research Foundation, Perth, WA, Australia
| | - Xiajie Wen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Aarti Saiganesh
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Phillip E. Melton
- Centre for Genetic Origins of Health and Disease, Faculty of Health Sciences, Curtin University of Technology, Faculty of Health and Medical Sciences, The University of Western Australia, Royal Perth Hospital Medical Research Foundation, Perth, WA, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University of Technology, Perth, WA, Australia
| | - Gary A. Dykes
- School of Public Health, Curtin University of Technology, Perth, WA, Australia
| | - Eric K. Moses
- Centre for Genetic Origins of Health and Disease, Faculty of Health Sciences, Curtin University of Technology, Faculty of Health and Medical Sciences, The University of Western Australia, Royal Perth Hospital Medical Research Foundation, Perth, WA, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University of Technology, Perth, WA, Australia
| | - Peter N. LE Souëf
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Centre, School of Basic Medical Sciences, Peking University Health Science Centre, Beijing, China
| | - Guicheng Zhang
- School of Public Health, Curtin University of Technology, Perth, WA, Australia
- Centre for Genetic Origins of Health and Disease, Faculty of Health Sciences, Curtin University of Technology, Faculty of Health and Medical Sciences, The University of Western Australia, Royal Perth Hospital Medical Research Foundation, Perth, WA, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- Division of Cardiovascular and Respiratory Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
38
|
Wang JJ, Zhang QM, Ni WW, Zhang X, Li Y, Li AL, Du P, Li C, Yu SS. Modulatory effect of Lactobacillus acidophilus KLDS 1.0738 on intestinal short-chain fatty acids metabolism and GPR41/43 expression in β-lactoglobulin-sensitized mice. Microbiol Immunol 2019; 63:303-315. [PMID: 31218724 DOI: 10.1111/1348-0421.12723] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/20/2019] [Accepted: 06/11/2019] [Indexed: 01/28/2023]
Abstract
We investigated the correlation between the beneficial effect of Lactobacillus acidophilus on gut microbiota composition, metabolic activities, and reducing cow's milk protein allergy. Mice sensitized with β-lactoglobulin (β-Lg) were treated with different doses of L. acidophilus KLDS 1.0738 for 4 weeks, starting 1 week before allergen induction. The results showed that intake of L. acidophilus significantly suppressed the hypersensitivity responses, together with increased fecal microbiota diversity and short-chain fatty acids (SCFAs) concentration (including propionate, butyrate, isobutyrate, and isovalerate) when compared with the allergic group. Moreover, treatment with L. acidophilus induced the expression of SCFAs receptors, G-protein-coupled receptors 41 (GPR41) and 43 (GPR43), in the spleen and colon of the allergic mice. Further analysis revealed that the GPR41 and GPR43 messenger RNA expression both positively correlated with the serum concentrations of transforming growth factor-β and IFN-γ (p < .05), but negatively with the serum concentrations of IL-17, IL-4, and IL-6 in the L. acidophilus-treated group compared with the allergic group (p < .05). These results suggested that L. acidophilus protected against the development of allergic inflammation by improving the intestinal flora, as well as upregulating SCFAs and their receptors GPR41/43.
Collapse
Affiliation(s)
- Jun-Juan Wang
- Food Science College, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qi-Min Zhang
- Food Science College, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wei-Wei Ni
- Food Science College, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Zhang
- Food Science College, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Li
- Food Science College, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ai-Li Li
- Food Science College, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Peng Du
- Food Science College, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chun Li
- Food Science College, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Su-Su Yu
- Food Science College, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
39
|
Principi N, Esposito S. Antibiotic-related adverse events in paediatrics: unique characteristics. Expert Opin Drug Saf 2019; 18:795-802. [PMID: 31305171 DOI: 10.1080/14740338.2019.1640678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Antibiotics have saved and are still saving countless human lives from the burden of infectious diseases. However, as with all other drugs, they can cause adverse events. Generally, these are uncommon, mild and spontaneously resolving. However, in some cases, they can cause relevant clinical problems. Compared with adults, children, particularly in the first years of life, have a higher risk of antibiotic-related adverse events for several reasons. Areas covered: In this paper, the conditions that can contribute to the elevated risk of antibiotic-related adverse events in children are discussed. Expert opinion: Antibiotic stewardship can be a solution to limit antibiotic abuse and misuse and consequently the incidence of antibiotic-related adverse events in children. Moreover, most of the antibiotic-associated adverse events can be avoided with more extensive pre-marketing medicine investigations, improved postmarket safety surveillance system, increased transparency throughout the clinical research enterprise, increased training of clinical pharmacologists and paediatric researchers, expanded pool of paediatric patients, and providing additional funding and incentives for paediatric drug development.
Collapse
Affiliation(s)
| | - Susanna Esposito
- b Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia , Perugia , Italy
| |
Collapse
|
40
|
Khan I, Yasir M, Farman M, Kumosani T, AlBasri SF, Bajouh OS, Azhar EI. Evaluation of gut bacterial community composition and antimicrobial resistome in pregnant and non-pregnant women from Saudi population. Infect Drug Resist 2019; 12:1749-1761. [PMID: 31417292 PMCID: PMC6593780 DOI: 10.2147/idr.s200213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Gut microbiota (GM) has recently been described as a functional reservoir of antimicrobial resistant genes (ARGs). However, the ARG-carrying bacterial species in the human gut has been poorly studied. This study, for the first time, is reporting bacterial communities' composition and antimicrobial resistome in the stool samples of pregnant and non-pregnant (NP) Saudi females. Methods: Gut bacterial community composition was analyzed by 16S amplicon sequencing and culturomics. High throughput MALDI-TOF technique was used for identification of the isolates from stool samples and evaluated for resistance against 13 antibiotics using the agar dilution method. Clinically important ARGs were PCR amplified from genomic DNA of the stool samples using gene-specific primers. Results: 16S amplicon sequencing revealed that GM of pregnant and NP women were predominantly comprised of phyla Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Bacterial diversity decreased in pregnant groups, whereas phylum Bacteroidetes declined significantly (p<0.05) in the first trimester. We noticed a relatively high abundance of butyrate-producing bacteria (eg, Faecalibacterium spp. and Eubacterium spp.) in the gut of pregnant women, whereas Prevotella copri was found at significantly (p<0.01) higher abundance in NP women. Moreover, about 14,694 isolates were identified and classified into 132 distinct species. The majority of the species belonged to phyla Firmicutes and Proteobacteria. About 8,125 isolates exhibited resistance against antibiotics. Out of 73 resistant-species, Enterococcus was the most diverse genus and Escherichia coli was the highly prevalent bacterium. The majority of the isolates were resistant to antibiotics; trimethoprim/sulfamethoxazole, cycloserine, and cefixime. ARGs encoding resistance against aminoglycoside, macrolide, quinolone, β-lactam, and tetracycline antibiotics were predominantly found in genomic DNA of the stool samples. Conclusion: We conclude that pregnancy-associated GM modulations may help to sustain a healthy pregnancy, but a higher proportion of antibiotic resistance could be deleterious for both maternal and fetal health.
Collapse
Affiliation(s)
- Imran Khan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Biochemistry Department, Faculty of Science; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology Taipa, Macau, People's Republic of China
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Farman
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Taha Kumosani
- Biochemistry Department, Faculty of Science; Production of Bio-products for Industrial Applications Research Group, and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samera F AlBasri
- Department of Obstetrics & Gynecology, King Abdul Aziz University Hospital, Jeddah, Saudi Arabia
| | - Osama S Bajouh
- Department of Obstetrics & Gynecology, King Abdul Aziz University Hospital, Jeddah, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Microbiota consist of symbiotic microscopic neighbors that interact on and within our bodies in diverse and incompletely understood ways throughout our lifetime. Though various associations with allergic disease have been described, clear effective therapeutic interventions to prevent allergy have been elusive. RECENT FINDINGS The human microbiome is influenced by multiple factors, including: mode of infant delivery (vaginal vs. cesarean section), breastfeeding, diet, presence of siblings and pets, exposure to antibiotics and other medications (particularly antacids), lifestyle, and developmental context. Microbial species promoting atopic responses and tolerance have been described. Specific microbiota likely act through distinct metabolic pathways to promote the health of their human hosts, optimally directing the developing immune system away from pro-allergic, Th2-dominated responses to more T-regulatory-influenced behaviors. SUMMARY Evidence suggests that specific healthy infant microbiome signatures may influence development of some components of the allergic march of childhood by decreasing atopic dermatitis, asthma, and food allergy. Further understanding of factors that influence healthy microbiota may lead to specific strategies tailored for early intervention and disease prevention.
Collapse
|
42
|
Nicklaus S, Divaret‐Chauveau A, Chardon M, Roduit C, Kaulek V, Ksiazek E, Dalphin M, Karvonen AM, Kirjavainen P, Pekkanen J, Lauener R, Schmausser‐Hechfellner E, Renz H, Braun‐Fahrländer C, Riedler J, Vuitton DA, Mutius EV, Dalphin J. The protective effect of cheese consumption at 18 months on allergic diseases in the first 6 years. Allergy 2019; 74:788-798. [PMID: 30368847 DOI: 10.1111/all.13650] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/19/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The effect of exposure to microorganisms on allergic diseases has been well studied. The protective effect of early food diversity against allergic diseases was previously shown in the PASTURE cohort study. The consumption of cheese, a food potentially rich in microbial diversity, deserves further examination. We aimed to evaluate whether cheese consumption is associated with allergic diseases. METHODS In the PASTURE study (birth cohort in 5 European countries), data on feeding practices, environmental factors, and allergic diseases were collected by questionnaires from birth to 6 years (N = 931). Cheese consumption at 18 months of age was quantified in terms of frequency and diversity (ie, number of consumed types among 6 types: hard pressed, semipressed, soft, blue, fresh cheese, and cheese from the farm). Multiple logistic regressions were performed to evaluate the effect of cheese consumption on atopic dermatitis (AD), food allergy (FA), allergic rhinitis, asthma, and atopic sensitization at 6 years after adjustment for confounders of atopy. RESULTS Cheese consumption (vs. nonconsumption) had a significant protective effect on AD (OR = 0.51 [0.29-0.90], P = 0.02) and FA (OR = 0.32, [0.15-0.71], P = 0.004), but no effect on atopic sensitization, allergic rhinitis, and asthma at 6 years. This effect on AD and FA may be related to the diversity of consumed cheeses (OR = 0.64 [0.48-0.85] per cheese type, P = 0.002; OR = 0.55 [0.33-0.92], P = 0.02, respectively). CONCLUSION Although reverse causality cannot totally be ruled out, cheese diversity at 18 months had a protective effect against AD and FA at 6 years in addition to the protective effect of diversity of other foods.
Collapse
Affiliation(s)
- Sophie Nicklaus
- Centre des Sciences du Goût et de l'Alimentation AgroSup Dijon, CNRS INRA Université Bourgogne Franche‐Comté Dijon France
| | - Amandine Divaret‐Chauveau
- Pediatrics Department University Hospital of Besançon Besançon France
- Pediatric Allergy Department University Hospital of Nancy Nancy France
| | - Marie‐Laure Chardon
- University Hospital of Besançon, Respiratory Disease Besançon France
- Hospital of Haute‐Saône, Respiratory disease Vesoul France
| | - Caroline Roduit
- Christine Kühne Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
- Children's Hospital University of Zürich Zürich Switzerland
| | - Vincent Kaulek
- University Hospital of Besançon, Respiratory Disease UMR6249 ChronoEnvironnement CNRS and Université Bourgogne Franche‐Comté Besançon France
| | - Eléa Ksiazek
- Centre des Sciences du Goût et de l'Alimentation AgroSup Dijon, CNRS INRA Université Bourgogne Franche‐Comté Dijon France
| | - Marie‐Laure Dalphin
- University Hospital of Besançon, Respiratory Disease UMR6249 ChronoEnvironnement CNRS and Université Bourgogne Franche‐Comté Besançon France
| | - Anne M. Karvonen
- Department of Health Security National Institute for Health and Welfare Kuopio Finland
| | - Pirkka Kirjavainen
- Department of Health Security National Institute for Health and Welfare Kuopio Finland
| | - Juha Pekkanen
- Department of Health Security National Institute for Health and Welfare Kuopio Finland
- Department of Public Health University of Helsinki Helsinki Finland
| | - Roger Lauener
- Christine Kühne Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
- Children's Hospital of Eastern Switzerland St. Gallen Switzerland
| | | | - Harald Renz
- Department of Clinical Chemistry and Molecular Diagnostics Philipps University of Marburg Marburg Germany
| | | | - Josef Riedler
- Children's Hospital Schwarzach Schwarzach Austria
- Teaching Hospital of Paracelsus Medical Private University Salzburg Salzburg Austria
| | | | - Erika Von Mutius
- Dr. Von Hauner Children's Hospital Ludwig Maximilians University Munich Munich Germany
- Institute for Asthma and Allergy Prevention Helmholtz Centre Munich Neuherberg Germany
- German Center for Lung Research Munich Germany
| | - Jean‐Charles Dalphin
- University Hospital of Besançon, Respiratory Disease UMR6249 ChronoEnvironnement CNRS and Université Bourgogne Franche‐Comté Besançon France
| | | |
Collapse
|
43
|
Ventura M, Milani C, Lugli GA, van Sinderen D. Health benefits conferred by the human gut microbiota during infancy. Microb Biotechnol 2019; 12:243-248. [PMID: 30411507 PMCID: PMC6389842 DOI: 10.1111/1751-7915.13334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 12/19/2022] Open
Abstract
Development of the human gut throughout the entire life.
Collapse
Affiliation(s)
- Marco Ventura
- Laboratory of ProbiogenomicsDepartment of Chemical Sciences, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Christian Milani
- Laboratory of ProbiogenomicsDepartment of Chemical Sciences, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Gabriele A. Lugli
- Laboratory of ProbiogenomicsDepartment of Chemical Sciences, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Douwe van Sinderen
- APC Microbiome Institute and School of MicrobiologyNational University of IrelandCorkIreland
| |
Collapse
|
44
|
Vatanen T, Plichta DR, Somani J, Münch PC, Arthur TD, Hall AB, Rudolf S, Oakeley EJ, Ke X, Young RA, Haiser HJ, Kolde R, Yassour M, Luopajärvi K, Siljander H, Virtanen SM, Ilonen J, Uibo R, Tillmann V, Mokurov S, Dorshakova N, Porter JA, McHardy AC, Lähdesmäki H, Vlamakis H, Huttenhower C, Knip M, Xavier RJ. Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life. Nat Microbiol 2019; 4:470-479. [PMID: 30559407 PMCID: PMC6384140 DOI: 10.1038/s41564-018-0321-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022]
Abstract
The human gut microbiome matures towards the adult composition during the first years of life and is implicated in early immune development. Here, we investigate the effects of microbial genomic diversity on gut microbiome development using integrated early childhood data sets collected in the DIABIMMUNE study in Finland, Estonia and Russian Karelia. We show that gut microbial diversity is associated with household location and linear growth of children. Single nucleotide polymorphism- and metagenomic assembly-based strain tracking revealed large and highly dynamic microbial pangenomes, especially in the genus Bacteroides, in which we identified evidence of variability deriving from Bacteroides-targeting bacteriophages. Our analyses revealed functional consequences of strain diversity; only 10% of Finnish infants harboured Bifidobacterium longum subsp. infantis, a subspecies specialized in human milk metabolism, whereas Russian infants commonly maintained a probiotic Bifidobacterium bifidum strain in infancy. Groups of bacteria contributing to diverse, characterized metabolic pathways converged to highly subject-specific configurations over the first two years of life. This longitudinal study extends the current view of early gut microbial community assembly based on strain-level genomic variation.
Collapse
Affiliation(s)
- Tommi Vatanen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Juhi Somani
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Philipp C Münch
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, Brunswick, Germany
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig-Maximilian University of Munich, Munich, Germany
| | | | | | - Sabine Rudolf
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Edward J Oakeley
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Xiaobo Ke
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Rachel A Young
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Henry J Haiser
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Raivo Kolde
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Moran Yassour
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kristiina Luopajärvi
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Heli Siljander
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Suvi M Virtanen
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
- Faculty of Social Sciences/Health Sciences, University of Tampere, Tampere, Finland
- Science Centre, Pirkanmaa Hospital District and Research Center for Child Health, University Hospital, Tampere, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Raivo Uibo
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Vallo Tillmann
- Department of Pediatrics, University of Tartu and Tartu University Hospital, Tartu, Estonia
| | - Sergei Mokurov
- Ministry of Health and Social Development, Karelian Republic of the Russian Federation, Petrozavodsk, Russia
| | - Natalya Dorshakova
- Petrozavodsk State University, Department of Family Medicine, Petrozavodsk, Russia
| | - Jeffrey A Porter
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Alice C McHardy
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, Brunswick, Germany
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Gastrointestinal Unit, and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.
| |
Collapse
|
45
|
Novel strains of Bacteroides fragilis and Bacteroides ovatus alleviate the LPS-induced inflammation in mice. Appl Microbiol Biotechnol 2019; 103:2353-2365. [PMID: 30666361 DOI: 10.1007/s00253-019-09617-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 02/08/2023]
Abstract
Lipopolysaccharide (LPS) can promote the expression of pro-inflammatory cytokines, damage the tight junction of epithelial walls, and thereby lead to chronic low-grade intestinal inflammatory disorders. Evidences of many beneficial functions from Bacteroides strains suggest their intervention capabilities in LPS-induced inflammation. In the present study, both healthy and LPS-treated mice were consistently treated with Bacteroides strains for 5 days. The intestinal microbiota alteration, epithelial permeability, cytokine expression, and autoimmune and innate immune responses were analyzed. B. fragilis HCK-B3 and B. ovatus ELH-B2 from our laboratory collection were demonstrated to assist intestinal equilibrium by maintaining the diversity of gut microbiota and relieve LPS-induced inflammation by either modulating cytokine production or restoring the Treg/Th-17 balance. Our research indicated that the Bacteroides strains with capabilities of alleviating inflammation have the potential as therapeutics to prevent intestinal inflammatory disorders and provided scientific supports for discovering next-generation probiotics.
Collapse
|
46
|
Yan N, Xu J, Zhao C, Wu Y, Gao F, Li C, Zhou W, Xiao T, Zhou X, Shao Q, Xia S. Human umbilical cord-derived mesenchymal stem cells ameliorate the enteropathy of food allergies in mice. Exp Ther Med 2018; 16:4445-4456. [PMID: 30546392 PMCID: PMC6256969 DOI: 10.3892/etm.2018.6763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Food allergy prevalence has steadily increased worldwide over the past decades and immunotherapeutic treatment strategies are gaining attention. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) exhibit similar immune regulatory properties to bone marrow-derived MSCs. hUC-MCSs can be prepared with fewer ethical constraints and are potential candidates for allergic disorder therapies. The current study aimed to investigate potential antiallergic properties of hUC-MSCs in mice with ovalbumin (OVA)-induced food allergy. Administration of hUC-MSCs cells intraperitoneally combined with oral gavage of the culture medium significantly alleviated OVA-induced diarrhea symptoms. Additionally, this treatment significantly decreased IgE levels and the percentage of T helper 2 cells in the blood, which were increased in mice with OVA-induced food allergy. The mRNA levels of the inflammatory cytokines interleukin-4 and tumor necrosis factor-α, and inflammatory cell infiltration in mouse colons were significantly decreased in hUC-MSCs-treated animals compared with mice with OVA-induced food allergy. Goblet cells were detected in colons of allergy-induced mice and their numbers were reduced following treatment with hUC-MSCs. In addition, treatment with hUC-MSCs reestablished the gut flora. The results revealed that hUC-MSCs may have a potential application in food allergy therapy.
Collapse
Affiliation(s)
- Nannan Yan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jie Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Chuanxiang Zhao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yi Wu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Fengwei Gao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Ci Li
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenhui Zhou
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Tengfei Xiao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiaoming Zhou
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qixiang Shao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Clinic Laboratory Diagnostic, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
47
|
Makrgeorgou A, Leonardi‐Bee J, Bath‐Hextall FJ, Murrell DF, Tang MLK, Roberts A, Boyle RJ. Probiotics for treating eczema. Cochrane Database Syst Rev 2018; 11:CD006135. [PMID: 30480774 PMCID: PMC6517242 DOI: 10.1002/14651858.cd006135.pub3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Eczema is a common chronic skin condition. Probiotics have been proposed as an effective treatment for eczema; their use is increasing, as numerous clinical trials are under way. This is an update of a Cochrane Review first published in 2008, which suggested that probiotics may not be an effective treatment for eczema but identified areas in which evidence was lacking. OBJECTIVES To assess the effects of probiotics for treating patients of all ages with eczema. SEARCH METHODS We updated our searches of the following databases to January 2017: the Cochrane Skin Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), in the Cochrane Library, the Global Resource of Eczema Trials (GREAT) database, MEDLINE, Embase, PsycINFO, the Allied and Complementary Medicine Database (AMED), and Latin American Caribbean Health Sciences Literature (LILACS). We searched five trials registers and checked the reference lists of included studies and relevant reviews for further references to relevant randomised controlled trials (RCTs). We also handsearched a number of conference proceedings. We updated the searches of the main databases in January 2018 and of trials registries in March 2018, but we have not yet incorporated these results into the review. SELECTION CRITERIA Randomised controlled trials of probiotics (live orally ingested micro-organisms) compared with no treatment, placebo, or other active intervention with no probiotics for the treatment of eczema diagnosed by a doctor. DATA COLLECTION AND ANALYSIS We used standard methodological procedures as expected by Cochrane. We recorded adverse events from the included studies and from a separate adverse events search conducted for the first review. We formally assessed reporting bias by preparing funnel plots, and we performed trial sequential analysis for the first primary outcome - eczema symptoms at the end of active treatment.We used GRADE to assess the quality of the evidence for each outcome (in italic font). MAIN RESULTS We included 39 randomised controlled trials involving 2599 randomised participants. We included participants of either gender, aged from the first year of life through to 55 years (only six studies assessed adults), who had mild to severe eczema. Trials were undertaken in primary and secondary healthcare settings, mainly in Europe or Asia. Duration of treatment ranged from four weeks to six months, and duration of follow-up after end of treatment ranged from zero to 36 months. We selected no standard dose: researchers used a variety of doses and concentrations of probiotics. The probiotics used were bacteria of the Lactobacillus and Bifidobacteria species, which were taken alone or combined with other probiotics, and were given with or without prebiotics. Comparators were no treatment, placebo, and other treatments with no probiotics.For all results described in this abstract, the comparator was no probiotics. Active treatment ranged from six weeks to three months for all of the following results, apart from the investigator-rated eczema severity outcome, for which the upper limit of active treatment was 16 weeks. With regard to score, the higher the score, the more severe were the symptoms. All key results reported in this abstract were measured at the end of active treatment, except for adverse events, which were measured during the active treatment period.Probiotics probably make little or no difference in participant- or parent-rated symptoms of eczema (13 trials; 754 participants): symptom severity on a scale from 0 to 20 was 0.44 points lower after probiotic treatment (95% confidence interval (CI) -1.22 to 0.33; moderate-quality evidence). Trial sequential analysis shows that target sample sizes of 258 and 456, which are necessary to demonstrate a minimum mean difference of -2 and -1.5, respectively, with 90% power, have been exceeded, suggesting that further trials with similar probiotic strains for this outcome at the end of active treatment may be futile.We found no evidence suggesting that probiotics make a difference in QoL for patients with eczema (six studies; 552 participants; standardised mean difference (SMD) 0.03, 95% CI -0.36 to 0.42; low-quality evidence) when measured by the participant or the parent using validated disease-specific QoL instruments.Probiotics may slightly reduce investigator-rated eczema severity scores (24 trials; 1596 participants). On a scale of 0 to 103 for total Severity Scoring of Atopic Dermatitis (SCORAD), a score combining investigator-rated eczema severity score and participant scoring for eczema symptoms of itch and sleep loss was 3.91 points lower after probiotic treatment than after no probiotic treatment (95% CI -5.86 to -1.96; low-quality evidence). The minimum clinically important difference for SCORAD has been estimated to be 8.7 points.We noted significant to extreme levels of unexplainable heterogeneity between the results of individual studies. We judged most studies to be at unclear risk of bias; six studies had high attrition bias, and nine were at low risk of bias overall.We found no evidence to show that probiotics make a difference in the risk of adverse events during active treatment (risk ratio (RR) 1.54, 95% CI 0.90 to 2.63; seven trials; 402 participants; low-quality evidence). Studies in our review that reported adverse effects described gastrointestinal symptoms. AUTHORS' CONCLUSIONS Evidence suggests that, compared with no probiotic, currently available probiotic strains probably make little or no difference in improving patient-rated eczema symptoms. Probiotics may make little or no difference in QoL for people with eczema nor in investigator-rated eczema severity score (combined with participant scoring for eczema symptoms of itch and sleep loss); for the latter, the observed effect was small and of uncertain clinical significance. Therefore, use of probiotics for the treatment of eczema is currently not evidence-based. This update found no evidence of increased adverse effects with probiotic use during studies, but a separate adverse events search from the first review revealed that probiotic treatment carries a small risk of adverse events.Results show significant, unexplainable heterogeneity between individual trial results. Only a small number of studies measured some outcomes.Future studies should better measure QoL scores and adverse events, and should report on new probiotics. Researchers should also consider studying subgroups of patients (e.g. patients with atopy or food allergies, adults) and standardising doses/concentrations of probiotics given.
Collapse
Affiliation(s)
- Areti Makrgeorgou
- West Ambulatory Care HospitalDepartment of DermatologyDalnair StreetGlasgowUKG3 8SJ
| | - Jo Leonardi‐Bee
- The University of NottinghamDivision of Epidemiology and Public HealthClinical Sciences BuildingNottingham City Hospital NHS Trust Campus, Hucknall RoadNottinghamUKNG5 1PB
| | - Fiona J Bath‐Hextall
- University of NottinghamSchool of Health SciencesB Floor, South Block LinkQueens Medical CentreNottinghamUKNG7 2HA
| | - Dedee F Murrell
- St George Hospital & University of New South WalesDepartment of DermatologyBelgrave StKogarahSydneyNSWAustralia2217
| | - Mimi LK Tang
- Royal Children's HospitalDepartment of Allergy and ImmunologyFlemington RoadMelbourneVictoriaAustralia3052
- Murdoch Childrens Research InstituteAllergy and Immune DisordersFlemington RoadParkvilleMelbourneVictoriaAustralia3052
- The University of MelbourneDepartment of PaediatricsMelbourneAustralia
| | - Amanda Roberts
- Nottingham Support Group for Carers of Children with EczemaNottinghamUKNG5 4FG
| | - Robert J Boyle
- Imperial College LondonSection of Paediatrics, Division of Infectious Diseases, Department of MedicineWright Fleming BuildingNorfolk PlaceLondonUKW2 1PG
| | | |
Collapse
|
48
|
Microbiota and Derived Parameters in Fecal Samples of Infants with Non-IgE Cow's Milk Protein Allergy under a Restricted Diet. Nutrients 2018; 10:nu10101481. [PMID: 30314304 PMCID: PMC6213916 DOI: 10.3390/nu10101481] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 12/26/2022] Open
Abstract
Cow’s milk protein allergy (CMPA) is the most common food allergy in infancy. Non-IgE mediated (NIM) forms are little studied and the responsible mechanisms of tolerance acquisition remain obscure. Our aim was to study the intestinal microbiota and related parameters in the fecal samples of infants with NIM-CMPA, to establish potential links between type of formula substitutes, microbiota, and desensitization. Seventeen infants between one and two years old, diagnosed with NIM-CMPA, were recruited. They were all on an exclusion diet for six months, consuming different therapeutic protein hydrolysates. After this period, stool samples were obtained and tolerance development was evaluated by oral challenges. A control group of 10 age-matched healthy infants on an unrestricted diet were included in the study. Microbiota composition, short-chain fatty acids, calprotectin, and transforming growth factor (TGF)-β1 levels were determined in fecal samples from both groups. Infants with NIM-CMPA that consumed vegetable protein-based formulas presented microbiota colonization patterns different from those fed with an extensively hydrolyzed formula. Differences in microbiota composition and fecal parameters between NIM-CMPA and healthy infants were observed. Non-allergic infants showed a significantly higher proportion of Bacteroides compared to infants with NIM-CMPA. The type of protein hydrolysate was found to determine gut microbiota colonization and influence food allergy resolution in NIM-CMPA cases.
Collapse
|
49
|
Wang Q, Li F, Liang B, Liang Y, Chen S, Mo X, Ju Y, Zhao H, Jia H, Spector TD, Xie H, Guo R. A metagenome-wide association study of gut microbiota in asthma in UK adults. BMC Microbiol 2018; 18:114. [PMID: 30208875 PMCID: PMC6134768 DOI: 10.1186/s12866-018-1257-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 09/04/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Asthma, one of the most common chronic respiratory disorders, is associated with the hyper-activation of the T-cell subset of adaptive immunity. The gut microbiota may be involved in the development of asthma through the production of short-chain fatty acids (SCFAs), exhibiting modulatory effects on Th. So, we performed a metagenome-wide association study (MWAS) of the fecal microbiota from individuals with asthma and healthy controls. And that was the first case to resolve the relationship between asthma and microbiome among UK adults. RESULTS The microbiota of the individuals with asthma consisted of fewer microbial entities than the microbiota of healthy individuals. Faecalibacterium prausnitzii, Sutterella wadsworthensis and Bacteroides stercoris were depleted in cases, whereas Clostridiums with Eggerthella lenta were over-represented in individuals with asthma. Functional analysis shows that the SCFAs might be altered in the microbiota of asthma patients. CONCLUSION In all, the adult human gut microbiome of asthma patients is clearly different from healthy controls. The functional and taxa results showed that the change of asthma patients might related to SCFAs.
Collapse
Affiliation(s)
- Qi Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.,BGI-Shenzhen, Shenzhen, 518083, China.,China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China
| | - Fei Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.,BGI-Shenzhen, Shenzhen, 518083, China.,China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China
| | - Bishan Liang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Yuhu Liang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.,BGI-Shenzhen, Shenzhen, 518083, China.,China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China
| | - Sijie Chen
- BGI-Shenzhen, Shenzhen, 518083, China.,China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xiaodong Mo
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.,BGI-Shenzhen, Shenzhen, 518083, China.,China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yanmei Ju
- BGI-Shenzhen, Shenzhen, 518083, China.,China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hui Zhao
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.,BGI-Shenzhen, Shenzhen, 518083, China.,China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China
| | - Huijue Jia
- BGI-Shenzhen, Shenzhen, 518083, China.,China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China.,Macau University of Science and Technology, Taipa, Macau, 999078, China.,Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen, 518083, China
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | | | - Ruijin Guo
- BGI-Shenzhen, Shenzhen, 518083, China. .,China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China. .,Macau University of Science and Technology, Taipa, Macau, 999078, China.
| |
Collapse
|
50
|
Carraro S, Bozzetto S, Giordano G, El Mazloum D, Stocchero M, Pirillo P, Zanconato S, Baraldi E. Wheezing preschool children with early-onset asthma reveal a specific metabolomic profile. Pediatr Allergy Immunol 2018; 29:375-382. [PMID: 29468750 DOI: 10.1111/pai.12879] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Many children of preschool age present with recurrent wheezing. Most of them outgrow their symptoms, while some have early-onset asthma. Aim of this prospective preliminary study was to apply a metabolomic approach to see whether biochemical-metabolic urinary profiles can have a role in the early identification of the children with asthma. METHODS Preschool children with recurrent wheezing were recruited and followed up for 3 years, after which they were classified as cases of transient wheezing or early-onset asthma. A urine sample was collected at recruitment and analyzed using a metabolomic approach based on UPLC mass spectrometry. RESULTS Among 34 children aged 4.0 ± 1.1 years recruited, at the end of the 3-year follow-up, 16 were classified as having transient wheezing and 16 as cases of early-onset asthma. Through a joint multivariate and univariate statistical analyses, we identified a subset of metabolomic variables that enabled the 2 groups to be clearly distinguished. The model built using the identified variables showed an AUC = 0.99 and an AUC = 0.88 on sevenfold full cross-validation (P = .002). CONCLUSIONS Metabolomic urinary profile can discriminate preschoolers with recurrent wheezing who will outgrow their symptoms from those who have early-onset asthma. These results may pave the way to the characterization of early non-invasive biomarkers capable of predicting asthma development.
Collapse
Affiliation(s)
- Silvia Carraro
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Sara Bozzetto
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Giuseppe Giordano
- Department of Women's and Children's Health, University of Padova, Padova, Italy.,Città della Speranza Institute of Pediatric Research (IRP), Padova, Italy
| | - Dania El Mazloum
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Matteo Stocchero
- Department of Women's and Children's Health, University of Padova, Padova, Italy.,Città della Speranza Institute of Pediatric Research (IRP), Padova, Italy
| | - Paola Pirillo
- Department of Women's and Children's Health, University of Padova, Padova, Italy.,Città della Speranza Institute of Pediatric Research (IRP), Padova, Italy
| | - Stefania Zanconato
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Eugenio Baraldi
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| |
Collapse
|