1
|
Wang Q, Chi J, Zeng W, Xu F, Li X, Wang Z, Qu M. Discovery of crucial cytokines associated with deep vein thrombus formation by protein array analysis. BMC Cardiovasc Disord 2024; 24:374. [PMID: 39026176 PMCID: PMC11256513 DOI: 10.1186/s12872-024-04030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Expanding the number of biomarkers is imperative for studying the etiology and improving venous thromboembolism prediction. In this study, we aimed to identify promising biomarkers or targeted therapies to improve the detection accuracy of early-stage deep vein thrombosis (DVT) or reduce complications. METHODS Quantibody Human Cytokine Antibody Array 440 (QAH-CAA-440) was used to screen novel serum-based biomarkers for DVT/non-lower extremity DVT (NDVT). Differentially expressed proteins in DVT were analyzed using bioinformatics methods and validated using a customized array. Diagnostic accuracy was calculated using receiver operating characteristics, and machine learning was applied to establish a biomarker model for evaluating the identified targets. Twelve targets were selected for validation. RESULTS Cytokine profiling was conducted using a QAH-CAA-440 (RayBiotech, USA) quantimeter array. Cross-tabulation analysis with Venn diagrams identified common differential factors, leading to the selection of 12 cytokines for validation based on their clinical significance. These 12 biomarkers were consistent with the results of previous array analysis: FGF-6 (AUC = 0.956), Galectin-3 (AUC = 0.942), EDA-A2 (AUC = 0.933), CHI3L1 (AUC = 0.911), IL-1 F9 (AUC = 0.898), Dkk-4 (AUC = 0.88), IG-H3 (AUC = 0.876), IGFBP (AUC = 0.858), Gas-1 (AUC = 0.858), Layilin (AUC = 0.849), ULBP-2 (AUC = 0.813)and FGF-9 (AUC = 0.773). These cytokines are expected to serve as biomarkers, targets, or therapeutic targets to differentiate DVT from NDVT. CONCLUSIONS EDA-A2, FGF-6, Dkk-4, IL-1 F9, Galentin-3, Layilin, Big-h3, CHI3L1, ULBP-2, Gas-1, IGFBP-5, and FGF-9 are promising targets for DVT diagnosis and treatment.
Collapse
Affiliation(s)
- Qitao Wang
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Hebei province, Zhangjiakou, 075000, China
| | - Junyu Chi
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Hebei province, Zhangjiakou, 075000, China
| | - Wenjie Zeng
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Hebei province, Zhangjiakou, 075000, China
| | - Fang Xu
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Hebei province, Zhangjiakou, 075000, China
| | - Xin Li
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Hebei province, Zhangjiakou, 075000, China
| | - Zhen Wang
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Hebei province, Zhangjiakou, 075000, China
| | - Ming Qu
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Hebei province, Zhangjiakou, 075000, China.
| |
Collapse
|
2
|
Li F, Li M, Hu L, Zhu W, Cheng D. Identification of key modules and hub genes for eosinophilic asthma by weighted gene co-expression network analysis. J Asthma 2022; 60:1038-1049. [PMID: 36165511 DOI: 10.1080/02770903.2022.2128372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Objective: Eosinophilic asthma (EA) is one of the most important asthma phenotypes with distinct features. However, its genetic characteristics are not fully understood. This study aimed to investigate the transcriptome features and to identify hub genes of EA.Methods: Differentially expressed genes (DEGs) analysis, weighted gene coexpression network analysis (WGCNA) and protein-protein interaction (PPI) network analysis were performed to construct gene networks and to identify hub genes. Enrichment analyses were performed to investigate the biological processes, pathways and immune status of EA. The hub genes were validated in another dataset. The diagnostic value of the identified hub genes was assessed by receiver operator characteristic curve (ROC) analysis.Results: Compared with NEA, EA had a different gene expression pattern, in which 81 genes were differentially expressed. WGCNA identified two gene modules significantly associated with EA. Intersections of the DEGs and the genes in the modules associated with EA were mainly enriched in chemotaxis and signal transduction by GO and KEGG enrichment analyses. Single-sample gene set enrichment analysis indicated that EA had different immune infiltration and functions compared with NEA. Seven hub genes of EA were identified and validated, including CCL17, CCL26, CD1C, CXCL11, CXCL10, CCL22 and CCR7, all of which have diagnostic value for distinguishing EA from NEA (All AUC >0.7) .Conclusions: This study demonstrated the distinct gene expression patterns, biological processes and immune status of EA. Hub genes of EA were identified and validated. Our study could provide a framework of co-expression gene modules and potential therapeutic targets for EA.
Collapse
Affiliation(s)
- Fanmin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,General Practice Department, The People's Hospital of Leshan, Leshan, China
| | - Min Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lijia Hu
- Department of Ultrasound Imaging, The People's Hospital of Leshan, Leshan, China
| | - Wenye Zhu
- Department of Pharmacy, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Deyun Cheng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Parker J, Roth O. Comparative assessment of immunological tolerance in fish with natural immunodeficiency. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104393. [PMID: 35276317 DOI: 10.1016/j.dci.2022.104393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Natural occurrences of immunodeficiency by definition should lead to compromised immune function. The major histocompatibility complexes (MHC) are key components of the vertebrate adaptive immune system, charged with mediating allorecognition and antigen presentation functions. To this end, the genomic loss of the MHC II pathway in Syngnathus pipefishes raises questions regarding their immunological vigilance and allorecognition capabilities. Utilising allograft and autograft fin-transplants, we compared the allorecognition immune responses of two pipefish species, with (Nerophis ophidion) and without (Syngnathus typhle) a functional MHC II. Transcriptome-wide assessments explored the immunological tolerance and potential compensatory measures occupying the role of the absent MHC II. Visual observations suggested a more acute rejection response in N. ophidion allografts compared with S. typhle allografts. Differentially expressed genes involved in innate immunity, angiogenesis and tissue recovery were identified among transplantees. The intriguing upregulation of the cytotoxic T-cell implicated gzma in S. typhle allografts, suggests a prominent MHC I related response, which may compensate for the MHC II and CD4 loss. MHC I related downregulation in N. ophidion autografts hints at an immunological tolerance related reaction. These findings may indicate alternative measures evolved to cope with the MHC II genomic loss enabling the maintenance of appropriate tolerance levels. This study provides intriguing insights into the immune and tissue recovery mechanisms associated with syngnathid transplantation, and can be a useful reference for future studies focusing on transplantation transcriptomics in non-model systems.
Collapse
Affiliation(s)
- Jamie Parker
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, D-24105, Kiel, Germany; Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany.
| | - Olivia Roth
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, D-24105, Kiel, Germany; Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany
| |
Collapse
|
4
|
Advances in microfluidics devices and its applications in personalized medicines. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:191-201. [PMID: 35033284 DOI: 10.1016/bs.pmbts.2021.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Microfluidics is an exponentially growing area and is being used for numerous applications from basic science to advanced biotechnology and medicines. Microfluidics provides a platform to the research community for studying and building new strategies for the diagnosis and therapeutics applications. In the last decade, microfluidic have enriched the field of diagnostics by providing new solutions which was not possible with conventional detection and treatment methods. Microfluidics has the ability to precisely control and perform high-throughput functions. It has been proven as an efficient and rapid method for biological sample preparation, analysis and controlled drug delivery system. Microfluidics plays significant role in personalized medicine. These personalized medicines are used for medical decisions, practices and other interventions as well as for individual patients based on their predicted response or risk of disease. This chapter highlights microfluidics in developing personalized medical applications for its applications in diseases such as cancer, cardiovascular disease, diabetes, pulmonary disease and several others.
Collapse
|
5
|
Min SY, Park CH, Yu HW, Park YJ. Anti-Inflammatory and Anti-Allergic Effects of Saponarin and Its Impact on Signaling Pathways of RAW 264.7, RBL-2H3, and HaCaT Cells. Int J Mol Sci 2021; 22:ijms22168431. [PMID: 34445132 PMCID: PMC8395081 DOI: 10.3390/ijms22168431] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
Saponarin{5-hydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-7-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one}, a flavone found in young green barley leaves, is known to possess antioxidant, antidiabetic, and hepatoprotective effects. In the present study, the anti-inflammatory, anti-allergic, and skin-protective effects of saponarin were investigated to evaluate its usefulness as a functional ingredient in cosmetics. In lipopolysaccharide-induced RAW264.7 (murine macrophage) cells, saponarin (80 μM) significantly inhibited cytokine expression, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, inducible nitric oxide synthase, and cyclooxygenase (COX)-2. Saponarin (80 μM) also inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 involved in the mitogen-activated protein kinase signaling pathway in RAW264.7 cells. Saponarin (40 μM) significantly inhibited β-hexosaminidase degranulation as well as the phosphorylation of signaling effectors (Syk, phospholipase Cγ1, ERK, JNK, and p38) and the expression of inflammatory mediators (tumor necrosis factor [TNF]-α, IL-4, IL-5, IL-6, IL-13, COX-2, and FcεRIα/γ) in DNP-IgE- and DNP-BSA-stimulated RBL-2H3 (rat basophilic leukemia) cells. In addition, saponarin (100 μM) significantly inhibited the expression of macrophage-derived chemokine, thymus and activation-regulated chemokine, IL-33, thymic stromal lymphopoietin, and the phosphorylation of signaling molecules (ERK, p38 and signal transducer and activator of transcription 1 [STAT1]) in TNF-α- and interferon (IFN)-γ-stimulated HaCaT (human immortalized keratinocyte) cells. Saponarin (100 μM) also significantly induced the expression of hyaluronan synthase-3, aquaporin 3, and cathelicidin antimicrobial peptide (LL-37) in HaCaT cells, which play an important role as skin barriers. Saponarin remarkably inhibited the essential factors involved in the inflammatory and allergic responses of RAW264.7, RBL-2H3, and HaCaT cells, and induced the expression of factors that function as physical and chemical skin barriers in HaCaT cells. Therefore, saponarin could potentially be used to prevent and relieve immune-related skin diseases, including atopic dermatitis.
Collapse
|
6
|
Catherine J, Roufosse F. What does elevated TARC/CCL17 expression tell us about eosinophilic disorders? Semin Immunopathol 2021; 43:439-458. [PMID: 34009399 PMCID: PMC8132044 DOI: 10.1007/s00281-021-00857-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Eosinophilic disorders encompass a large spectrum of heterogeneous diseases sharing the presence of elevated numbers of eosinophils in blood and/or tissues. Among these disorders, the role of eosinophils can vary widely, ranging from a modest participation in the disease process to the predominant perpetrator of tissue damage. In many cases, eosinophilic expansion is polyclonal, driven by enhanced production of interleukin-5, mainly by type 2 helper cells (Th2 cells) with a possible contribution of type 2 innate lymphoid cells (ILC2s). Among the key steps implicated in the establishment of type 2 immune responses, leukocyte recruitment toward inflamed tissues is particularly relevant. Herein, the contribution of the chemo-attractant molecule thymus and activation-regulated chemokine (TARC/CCL17) to type 2 immunity will be reviewed. The clinical relevance of this chemokine and its target, C-C chemokine receptor 4 (CCR4), will be illustrated in the setting of various eosinophilic disorders. Special emphasis will be put on the potential diagnostic, prognostic, and therapeutic implications related to activation of the TARC/CCL17-CCR4 axis.
Collapse
Affiliation(s)
- Julien Catherine
- Department of Internal Medicine, Hôpital Erasme, 808 Route de Lennik, 1070, Brussels, Belgium. .,Institute for Medical Immunology, Université Libre de Bruxelles, 6041 Gosselies, Brussels, Belgium.
| | - Florence Roufosse
- Department of Internal Medicine, Hôpital Erasme, 808 Route de Lennik, 1070, Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles, 6041 Gosselies, Brussels, Belgium
| |
Collapse
|
7
|
Niu S, Yang L, Geng R, Zuo H, Guo Z, Weng S, He J, Xu X. A double chitin catalytic domain-containing chitinase targeted by c-Jun is involved in immune responses in shrimp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103808. [PMID: 32738335 DOI: 10.1016/j.dci.2020.103808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Chitinases are a group of chitin-degrading enzymes widely distributed in organisms. Chitinases containing two chitin catalytic domains have been widely found in arthropods but their functions remain unclear. In this study, a member of these chitinases from Litopenaeus vannamei (dChi) was identified and functionally studied in the context of immunity. The promoter of dChi contained activator protein 1 (AP-1) binding sites and could be regulated by c-Jun. The recombinant dChi protein showed no bacteriostatic activity in vitro but knockdown of dChi in vivo increased the mortality of shrimp and the bacterial load in tissues after Vibrio parahaemolyticus infection, suggesting that dChi could play a positive role in antibacterial responses. However, silencing of dChi expression significantly decreased the mortality of WSSV-infected shrimp and down-regulated the viral load in tissues, indicating that dChi could facilitate WSSV infection. We further demonstrated that dChi was involved in regulation of the bacterial phagocytosis of hemocytes and expression of a series of immune related transcription factors and antimicrobial peptides. These indicated that the roles of dChi in antibacterial responses and anti-WSSV responses in vivo could result from its regulatory effects on the immune system. Taken together, the current study suggests that double chitin catalytic domain-containing chitinases could be important players in immune regulation in crustaceans.
Collapse
Affiliation(s)
- Shengwen Niu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| | - Linwei Yang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| | - Ran Geng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| | - Hongliang Zuo
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| | - Zhixun Guo
- South China Sea Fisheries Research Institute (CAFS), Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xiaopeng Xu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
8
|
Song MK, Kim DI, Lee K. Kathon Induces Fibrotic Inflammation in Lungs: The First Animal Study Revealing a Causal Relationship between Humidifier Disinfectant Exposure and Eosinophil and Th2-Mediated Fibrosis Induction. Molecules 2020; 25:molecules25204684. [PMID: 33066398 PMCID: PMC7587358 DOI: 10.3390/molecules25204684] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
Currently available toxicity data on humidifier disinfectants are primarily limited to polyhexamethylene guanidine phosphate-induced lung fibrosis. We, therefore, investigated whether the sterilizer component Kathon, which is a mixture of chloromethylisothiazolinone and methylisothiazolinone, induces fibrotic lung injury following direct lung exposure in an animal model. Mice were intratracheally instilled with either the vehicle or Kathon. Differential cell counts, cytokine analysis, and histological analysis of lung tissue were then performed to characterize the injury features, and we investigated whether Kathon altered fibrosis-related gene expression in lung tissues via RNA-Seq and bioinformatics. Cell counting showed that Kathon exposure increased the proportion of macrophages, eosinophils, and neutrophils. Moreover, T helper 2 (Th2) cytokine levels in the bronchoalveolar lavage were significantly increased in the Kathon groups. Histopathological analysis revealed increased perivascular/alveolar inflammation, eosinophilic cells, mucous cell hyperplasia, and pulmonary fibrosis following Kathon exposure. Additionally, Kathon exposure modulated the expression of genes related to fibrotic inflammation, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, extracellular signal regulated kinase (ERK)1 and ERK2 cascade, extracellular matrix (ECM)-receptor interaction pathway, transforming growth factor beta receptor signaling pathway, cellular response to tumor necrosis factor, and collagen fibril organization. Our results suggest that Kathon exposure is associated with fibrotic lung injury via a Th2-dependent pathway and is thus a possible risk factor for fibrosis.
Collapse
Affiliation(s)
- Mi-Kyung Song
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, 30 Baehak1-gil, Jongeup, Jeollabuk-do 56212, Korea; (M.-K.S.); (D.I.K.)
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea
| | - Dong Im Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, 30 Baehak1-gil, Jongeup, Jeollabuk-do 56212, Korea; (M.-K.S.); (D.I.K.)
| | - Kyuhong Lee
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, 30 Baehak1-gil, Jongeup, Jeollabuk-do 56212, Korea; (M.-K.S.); (D.I.K.)
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: or ; Tel.: +82-63-570-8740
| |
Collapse
|
9
|
Wang L, Bao A, Zheng Y, Ma A, Wu Y, Shang H, Fang D, Ben S. Adenovirus vector-mediated YKL-40 shRNA attenuates eosinophil airway inflammation in a murine asthmatic model. Gene Ther 2020; 28:177-185. [PMID: 33046836 DOI: 10.1038/s41434-020-00202-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
Recent studies have revealed that YKL-40 is involved in the pathogenesis of asthma. However, its specific mechanism remains unclear. The present study aims to investigate the effect of adenovirus vector-mediated YKL-40 short hairpin RNA (shRNA) on regulation of airway inflammation in a murine asthmatic model. Mice were assessed for airway hyperresponsiveness (AHR), total leukocytes and the percentage of eosinophil cells in bronchoalveolar lavage fluid (BALF). YKL-40 mRNA and protein expression levels were detected using quantitative real-time PCR and western blot assays. Enzyme-linked immunosorbent assay (ELISA) was used to detect YKL-40 and eosinophil-related chemokine expression levels in BALF and serum. Lung histology analyses were performed to evaluate the degree of inflammatory cell infiltration around the airway and airway mucus secretion.YKL-40 shRNA significantly inhibited the YKL-40 gene expression in asthmatic mice. In addition, YKL-40 shRNA alleviated eosinophilic airway inflammation, AHR, airway mucus secretion and decreased the levels of YKL-40 in BALF and serum in a murine asthmatic model. The levels and mRNA expression of IL-5, IL-13 in asthmatic mice lung tissues, eotaxin, and GM-CSF in BALF and serum significantly decreased. Bone marrow signaling molecules including IL-5, eotaxin, and GM-CSF were correlated with decreased levels of YKL-40. The study reveals that YKL-40 could be involved in asthma inflammation by altering bone marrow signaling molecules. YKL-40 gene RNA interference could provide new therapeutic strategies for asthma.
Collapse
Affiliation(s)
- Ling Wang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aihua Bao
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zheng
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aying Ma
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Wu
- Department of Respiratory Medicine, The Affiliated Hospital of Nantong University, Nantong, China
| | - Huanxia Shang
- Department of Respiratory Medicine, Chest Hospital of Hebei Province, Shijiazhuang, China
| | - Danruo Fang
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suqin Ben
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Dietschmann A, Schruefer S, Krappmann S, Voehringer D. Th2 cells promote eosinophil-independent pathology in a murine model of allergic bronchopulmonary aspergillosis. Eur J Immunol 2020; 50:1044-1056. [PMID: 32108934 DOI: 10.1002/eji.201948411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/23/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
Repeated inhalation of airborne conidia derived from the fungus Aspergillus fumigatus (Af) can lead to a severe eosinophil-dominated inflammatory condition of the lung termed allergic bronchopulmonary aspergillosis (ABPA). ABPA affects about 5 million individuals worldwide and the mechanisms regulating lung pathology in ABPA are poorly understood. Here, we used a mouse model of ABPA to investigate the role of eosinophils and T cell-derived IL-4/IL-13 for induction of allergic lung inflammation. Selective deletion of IL-4/IL-13 in T cells blunted the Af-induced lung eosinophilia and further resulted in lower expression of STAT6-regulated chemokines and effector proteins such as Arginase 1, Relm-α, Relm-β, and Muc5a/c. Eosinophil-deficient ΔdblGata mice showed lower IL-4 expression in the lung and the number of Th2 cells in the lung parenchyma was reduced. However, expression of the goblet cell markers Clca1 and Muc5a/c, abundance of mucin-positive cells, as well as weight gain of lungs were comparable between Af-challenged ΔdblGata and WT mice. Based on these results, we conclude that T cell-derived IL-4/IL-13 is essential for Af-induced lung eosinophilia and inflammation while eosinophils may play a more subtle immunomodulatory role and should not simply be regarded as pro-inflammatory effector cells in ABPA.
Collapse
Affiliation(s)
- Axel Dietschmann
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, 91054, Germany
| | - Sebastian Schruefer
- Institute of Clinical Microbiology, Immuology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, 91054, Germany
| | - Sven Krappmann
- Institute of Clinical Microbiology, Immuology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, 91054, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, 91054, Germany
| |
Collapse
|
11
|
Parisi GF, Papale M, Tardino L, Nenna R, Midulla F, Leonardi S. Biomarkers in Pediatric Lung Diseases Including Cystic Fibrosis. CURRENT RESPIRATORY MEDICINE REVIEWS 2020. [DOI: 10.2174/1573398x15666190521112824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent decades, scientific studies of chemical processes involving metabolites have been
steadily increasing, indicating that we are well into the metabolomics era. This has resulted in
numerous studies that explore the field of biomarkers. One of the medical areas most concerned with
these innovations is certainly that of childhood respiratory disorders, including asthma and cystic
fibrosis. This current study is a review of the literature about biomarkers used or studied in the field
of pediatric pulmonology, including asthma and cystic fibrosis.
Collapse
Affiliation(s)
- Giuseppe Fabio Parisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Papale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lucia Tardino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Raffaella Nenna
- Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Fabio Midulla
- Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
12
|
Lee YG, Reader BF, Herman D, Streicher A, Englert JA, Ziegler M, Chung S, Karpurapu M, Park GY, Christman JW, Ballinger MN. Sirtuin 2 enhances allergic asthmatic inflammation. JCI Insight 2019; 4:124710. [PMID: 30668546 PMCID: PMC6478424 DOI: 10.1172/jci.insight.124710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
Allergic eosinophilic asthma is a chronic condition causing airway remodeling resulting in lung dysfunction. We observed that expression of sirtuin 2 (Sirt2), a histone deacetylase, regulates the recruitment of eosinophils after sensitization and challenge with a triple antigen: dust mite, ragweed, and Aspergillus fumigatus (DRA). Our data demonstrate that IL-4 regulates the expression of Sirt2 isoform 3/5. Pharmacological inhibition of Sirt2 by AGK2 resulted in diminished cellular recruitment, decreased CCL17/TARC, and reduced goblet cell hyperplasia. YM1 and Fizz1 expression was reduced in AGK2-treated, IL-4-stimulated lung macrophages in vitro as well as in lung macrophages from AGK2-DRA-challenged mice. Conversely, overexpression of Sirt2 resulted in increased cellular recruitment, CCL17 production, and goblet cell hyperplasia following DRA challenge. Sirt2 isoform 3/5 was upregulated in primary human alveolar macrophages following IL-4 and AGK2 treatment, which resulted in reduced CCL17 and markers of alternative activation. These gain-of-function and loss-of-function studies indicate that Sirt2 could be developed as a treatment for eosinophilic asthma.
Collapse
Affiliation(s)
- Yong Gyu Lee
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Brenda F. Reader
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Derrick Herman
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Adam Streicher
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Joshua A. Englert
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Mathias Ziegler
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Sangwoon Chung
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Manjula Karpurapu
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Gye Young Park
- Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - John W. Christman
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Megan N. Ballinger
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| |
Collapse
|
13
|
Hirata H, Yukawa T, Tanaka A, Miyao T, Fukuda T, Fukushima Y, Kurasawa K, Arima M. Th2 cell differentiation from naive CD4 + T cells is enhanced by autocrine CC chemokines in atopic diseases. Clin Exp Allergy 2018; 49:474-483. [PMID: 30431203 DOI: 10.1111/cea.13313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/22/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chemokines are involved not only in regulating leucocyte recruitment, but also in other activities. However, functions other than cell recruitment remain poorly understood. We have already shown that the production of CC chemokine ligand (CCL)17 and CCL22 by antigen-stimulated naïve CD4+ T cells was higher in asthmatic patients than in healthy controls. However, the role of these chemokines in stimulated naïve CD4+ T cells remains unclear. OBJECTIVE To clarify the biological function of CCL17 and CCL22 on naïve CD4+ T, we examined effects of these two chemokines on naïve CD4+ T cells expressing CC chemokine receptor (CCR)4 (a receptor for CCL17 and CCL22) during differentiation of Th2 cells in asthmatic patients as allergic subjects. METHODS Naïve CD4+ T cells were prepared from healthy controls and patients with asthma. We analysed effect of CCL17 and CCL22, and blocking their receptor on differentiation of Th2 cells. RESULTS Production of CCL17 and CCL22 by activated naive CD4+ T cells under Th2 condition was much more in asthmatic patients than in healthy controls. Proliferation and survival of the Th2 differentiating cells and restimulation-induced IL-4 production were much greater in asthmatic patients than in healthy controls. These cell biological phenomena were inhibited by blockade of CCR4. The biological effects of exogenous CCL17 and CCL22 were apparently observed in both healthy controls and asthmatic patients. The effectiveness of these chemokines on naïve CD4+ T cells from healthy controls was stronger than those from asthmatic patients. We found that thymic stromal lymphopoietin (TSLP), a Th2 promoting chemokine, is involved in the activation of CD4+ naïve T cells via production of CCL17 and CCL22. CONCLUSIONS AND CLINICAL RELEVANCE These data suggest that CCL17 and CCL22 produced by TSLP-primed naïve CD4+ T cells in asthma might contribute to an increase in Th2 cells via autocrine loops.
Collapse
Affiliation(s)
- Hirokuni Hirata
- Department of Respiratory Medicine and Clinical Immunology, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Japan
| | - Tatsuo Yukawa
- Department of Pulmonary Medicine and Clinical Immunology, School of Medicine, Dokkyo Medical University, Mibu, Japan
| | - Ayae Tanaka
- Department of Rheumatology, School of Medicine, Dokkyo Medical University, Mibu, Japan
| | - Tomoyuki Miyao
- Department of Rheumatology, School of Medicine, Dokkyo Medical University, Mibu, Japan
| | - Takeshi Fukuda
- Department of Pulmonary Medicine and Clinical Immunology, School of Medicine, Dokkyo Medical University, Mibu, Japan
| | - Yasutsugu Fukushima
- Department of Respiratory Medicine and Clinical Immunology, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Japan
| | - Kazuhiro Kurasawa
- Department of Rheumatology, School of Medicine, Dokkyo Medical University, Mibu, Japan
| | - Masafumi Arima
- Department of Rheumatology, School of Medicine, Dokkyo Medical University, Mibu, Japan
| |
Collapse
|
14
|
Jung YY, Kim KC, Park MH, Seo Y, Park H, Park MH, Chang J, Hwang DY, Han SB, Kim S, Son DJ, Hong JT. Atherosclerosis is exacerbated by chitinase-3-like-1 in amyloid precursor protein transgenic mice. Am J Cancer Res 2018; 8:749-766. [PMID: 29344304 PMCID: PMC5771091 DOI: 10.7150/thno.20183] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023] Open
Abstract
Although the important role of amyloid precursor protein (APP) in vascular diseases associated with Alzheimer's disease (AD) has been demonstrated, the underlying molecular mechanisms and physiological consequences are unclear. We aimed to evaluate vascular inflammation and atherosclerosis in Swedish mutant of human APP transgenic (APPsw-Tg) and ApoE-/-/APPsw-Tg mice. We also aimed to explore the mechanisms underlying any changes observed in these mice compared with non-Tg controls. Methods: The transgenic and non-Tg mouse strains were subjected to partial ligation of the left carotid artery to induce atherosclerotic changes, which were measured using histological approaches, immunohistochemistry, quantitative polymerase chain reaction, and gene expression microarrays. Results: Our results showed increased vascular inflammation, arterial wall thickness, and atherosclerosis in APPsw-Tg and ApoE-/-/APPsw-Tg mice. We further found that the expression of chitinase-3-like-1 (Chi3l1) is increased in the APPsw-Tg mouse artery and Chi3l1 mediates endothelial cell (EC) inflammation and vascular smooth muscle cell (VSMC) activation, which in turn exacerbates atherosclerosis. In addition, using two publicly available microarray datasets from the dorsolateral prefrontal cortex of people with AD and unaffected controls as well as inflamed human umbilical vein endothelial cells, we found that Chi3l1 and associated inflammatory gene were significantly associated with AD, evaluated by co-expression network analysis and functional annotation. Knockdown of Chi3l1 in the arterial endothelium in vivo suppressed the development of atherosclerosis. We also show that microRNA 342-3p (miR-342-3p) inhibits EC inflammation and VSMC activation through directly targeting Chi3l1, and that APPsw increased Chi3l1 expression by reducing miR-342-3p expression in the arterial endothelium, promoting atherosclerosis. Conclusion: Our findings suggest that targeting Chi3l1 might provide new diagnostic and therapeutic strategies for vascular diseases in patients with AD.
Collapse
|
15
|
Fülle L, Steiner N, Funke M, Gondorf F, Pfeiffer F, Siegl J, Opitz FV, Haßel SK, Erazo AB, Schanz O, Stunden HJ, Blank M, Gröber C, Händler K, Beyer M, Weighardt H, Latz E, Schultze JL, Mayer G, Förster I. RNA Aptamers Recognizing Murine CCL17 Inhibit T Cell Chemotaxis and Reduce Contact Hypersensitivity In Vivo. Mol Ther 2017; 26:95-104. [PMID: 29103909 PMCID: PMC5763148 DOI: 10.1016/j.ymthe.2017.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 01/21/2023] Open
Abstract
The chemokine CCL17, mainly produced by dendritic cells (DCs) in the immune system, is involved in the pathogenesis of various inflammatory diseases. As a ligand of CCR4, CCL17 induces chemotaxis and facilitates T cell-DC interactions. We report the identification of two novel RNA aptamers, which were validated in vitro and in vivo for their capability to neutralize CCL17. Both aptamers efficiently inhibited the directed migration of the CCR4+ lymphoma line BW5147.3 toward CCL17 in a dose-dependent manner. To study the effect of these aptamers in vivo, we used a murine model of contact hypersensitivity. Systemic application of the aptamers significantly prevented ear swelling and T cell infiltration into the ears of sensitized mice after challenge with the contact sensitizer. The results of this proof-of-principle study establish aptamers as potent inhibitors of CCL17-mediated chemotaxis. Potentially, CCL17-specific aptamers may be used therapeutically in humans to treat or prevent allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Lorenz Fülle
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Nancy Steiner
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Markus Funke
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany; Centre of Aptamer Research and Development, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Fabian Gondorf
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Franziska Pfeiffer
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany; Centre of Aptamer Research and Development, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Julia Siegl
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany; Centre of Aptamer Research and Development, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Friederike V Opitz
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Silvana K Haßel
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany; Centre of Aptamer Research and Development, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Anna Belen Erazo
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Oliver Schanz
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - H James Stunden
- Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Michael Blank
- AptaIT, Am Klopferspitz 19a, 82152 Planegg-Martinsried, Germany
| | - Carsten Gröber
- AptaIT, Am Klopferspitz 19a, 82152 Planegg-Martinsried, Germany
| | - Kristian Händler
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany; Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn, Sigmund-Freud-Straße 27, 53127 Bonn, Germany
| | - Marc Beyer
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany; Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn, Sigmund-Freud-Straße 27, 53127 Bonn, Germany; Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Straße 27, 53127 Bonn, Germany
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany; Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn, Sigmund-Freud-Straße 27, 53127 Bonn, Germany
| | - Günter Mayer
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany; Centre of Aptamer Research and Development, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany.
| |
Collapse
|
16
|
Komi DEA, Kazemi T, Bussink AP. New Insights Into the Relationship Between Chitinase-3-Like-1 and Asthma. Curr Allergy Asthma Rep 2017; 16:57. [PMID: 27438466 DOI: 10.1007/s11882-016-0637-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW CHI3L1 (also known as YKL-40), a member of "mammalian chitinase-like proteins," is a serum protein lacking enzymatic activity. Although the protein is highly conserved in mammals, a consensus regarding its role in human pathologies is currently lacking. In an attempt to shed light on the many physiological functions of the protein, specifically with regard to asthma, a comprehensive overview of recent studies is provided. RECENT FINDINGS In asthma, CHI3L1 is secreted from macrophages and airway epithelial cells through an IL-13 related mechanism. Th2-associated inflammatory responses due to allergen exposure, resulting in airway hyper-responsiveness and smooth muscle contraction, play a role in tissue remodeling. The importance of CHI3L1 in initiation and development of asthma is not limited to its involvement in highly orchestrated events of inflammatory cytokines but further research is needed for further elucidation. Levels of the protein are associated with severity for numerous pathologies, including asthma, suggesting limited specificity as a biomarker.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, International Branch of Aras, Tabriz University of Medical Sciences, Tabriz, Iran.,Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
17
|
Increased sputum levels of thymus and activation-regulated chemokine in children with asthma not eosinophilic bronchitis. Allergol Immunopathol (Madr) 2017; 45:220-226. [PMID: 28238403 DOI: 10.1016/j.aller.2016.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/16/2016] [Accepted: 12/03/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Thymus and activation-regulated chemokine (TARC), a member of the CC chemokine family, plays a crucial role in Th2-specific inflammation. We aimed to determine the concentration of sputum TARC in children with asthma and eosinophilic bronchitis (EB) and its relation with eosinophilic inflammation, pulmonary function, and bronchial hyper-responsiveness. METHODS In total, 90 children with asthma, 38 with EB, and 45 control subjects were enrolled. TARC levels were measured in sputum supernatants using an ELISA. We performed pulmonary function tests and measured exhaled fractional nitric oxide, eosinophil counts in blood, and sputum and serum levels of total IgE in all children. RESULTS Sputum TARC levels were significantly higher in children with asthma than in either children with EB (p=0.004) or the control subjects (p=0.014). Among patients with asthma, sputum TARC concentration was higher in children with sputum eosinophilia than in those without sputum eosinophilia (p=0.035). Sputum TARC levels positively correlated with eosinophil counts in sputum, serum total IgE levels, exhaled fractional nitric, and the bronchodilator response. Negative significant correlations were found between sputum TARC and FEV1/FVC (the ratio of forced expiratory volume in one second and forced expiratory vital capacity) or PC20 (the provocative concentration of methacholine causing a 20% decrease in the FEV1). CONCLUSION Elevated TARC levels in sputum were detected in children with asthma but not in children with EB. Sputum TARC could be a supportive marker for discrimination of asthma from EB in children showing characteristics of eosinophilic airway inflammation.
Collapse
|
18
|
Skallerup P, Nejsum P, Cirera S, Skovgaard K, Pipper CB, Fredholm M, Jørgensen CB, Thamsborg SM. Transcriptional immune response in mesenteric lymph nodes in pigs with different levels of resistance to Ascaris suum. Acta Parasitol 2017; 62:141-153. [PMID: 28030356 DOI: 10.1515/ap-2017-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 10/14/2016] [Indexed: 12/24/2022]
Abstract
A single nucleotide polymorphism on chromosome 4 (SNP TXNIP) has been reported to be associated with roundworm (Ascaris suum) burden in pigs. The objective of the present study was to analyse the immune response to A. suum mounted by pigs with genotype AA (n = 24) and AB (n = 23) at the TXNIP locus. The pigs were repeatedly infected with A. suum from eight weeks of age until necropsy eight weeks later. An uninfected control group (AA; n = 5 and AB; n = 5) was also included. At post mortem, we collected mesenteric lymph nodes and measured the expression of 28 selected immune-related genes. Recordings of worm burdens confirmed our previous results that pigs of the AA genotype were more resistant to infection than AB pigs. We estimated the genotype difference in relative expression levels in infected and uninfected animals. No significant change in expression levels between the two genotypes due to infection was observed for any of the genes, although IL-13 approached significance (P = 0.08; Punadjusted = 0.003). Furthermore, statistical analysis testing for the effect of infection separately in each genotype showed significant up-regulation of IL-13 (P<0.05) and CCL17 (P<0.05) following A. suum infection in the 'resistant' AA genotype and not in the 'susceptible' AB genotype. Pigs of genotype AB had higher expression of the high-affinity IgG receptor (FCGR1A) than AA pigs in both infected and non-infected animals (P = 1.85*10-11).
Collapse
|
19
|
Jang Y, Lee AY, Kim JE, Jeong SH, Kim JS, Cho MH. Benomyl-induced effects of ORMDL3 overexpression via oxidative stress in human bronchial epithelial cells. Food Chem Toxicol 2016; 98:100-106. [PMID: 27784618 DOI: 10.1016/j.fct.2016.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/19/2016] [Accepted: 10/22/2016] [Indexed: 11/17/2022]
Abstract
The respiratory system is a major site of exposure route during pesticide use. Although pesticide exposure is associated with chronic respiratory diseases including asthma, the underlying pathophysiological mechanism remains to be elucidated. In this study, we investigated the in vitro effects of benomyl-induced ORMDL3 overexpression on the toxicological mechanism using the human bronchial epithelial cell line 16HBE14o-. Benomyl increased reactive oxygen species and Ca2+ levels, and asthma-related ADAM33 and ORMDL3 expression in 16HBE14o- cells. Considering the change in Ca2+ level and protein expression, we focused on ORMDL3 to elucidate the mechanism of benomyl-induced asthma. Antioxidant treatment showed that benomyl-induced ORMDL3 and endoplasmic reticulum stress could be triggered by oxidative stress. Furthermore, ORMDL3 knockdown alleviated the effects of benomyl on intracellular Ca2+, and the expression of metalloproteinases, and proinflammatory cytokines involved in the pathogenesis of asthma. In conclusion, our results suggest that benomyl-induced ORMDL3 overexpression via oxidative stress might be a mechanism involved in asthma. Moreover, antioxidants and alleviating mechanisms that reduce ORMDL3 levels could serve as promising therapeutic targets for pesticide-induced asthma.
Collapse
Affiliation(s)
- Yoonjeong Jang
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Ah Young Lee
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-Eun Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Hee Jeong
- Department of Bio Applied Toxicology, Hoseo Toxicology Research Center, Hoseo University, Asan 31499, Republic of Korea
| | - Jun Sung Kim
- R&D Center, Biterials, Goyang 10326, Republic of Korea.
| | - Myung-Haing Cho
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
20
|
Usemann J, Frey U, Mack I, Schmidt A, Gorlanova O, Röösli M, Hartl D, Latzin P. CHI3L1 polymorphisms, cord blood YKL-40 levels and later asthma development. BMC Pulm Med 2016; 16:81. [PMID: 27193312 PMCID: PMC4870763 DOI: 10.1186/s12890-016-0239-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in chitinase 3-like 1 (CHI3L1), the gene encoding YKL-40, and increased serum YKL-40 levels are associated with severe forms of asthma. It has never been addressed whether SNPs in CHI3L1 and cord blood YKL-40 levels could already serve as potential biomarkers for milder forms of asthma. We assessed in an unselected population whether SNPs in CHI3L1 and cord blood YKL-40 levels at birth are associated with respiratory symptoms, lung function changes, asthma, and atopy. METHODS In a prospective birth cohort of healthy term-born neonates (n = 260), we studied CHI3L1 polymorphisms, and measured cord blood YKL-40 levels by ELISA in (n = 170) infants. Lung function was performed at 5 weeks and 6 years. Respiratory health during the first year of life was assessed weekly by telephone interviews. Diagnosis of asthma and allergic sensitisation was assessed at 6 years (n = 142). RESULTS The SNP rs10399805 was significantly associated with asthma at 6 years. The odds ratio for asthma was 4.5 (95 % CI 1.59-12.94) per T-allele. This finding was unchanged when adjusting for cord blood YKL-40 levels. There was no significant association for cord blood YKL-40 levels and asthma. SNPs in CHI3L1 and cord blood YKL-40 were not associated with lung function measurements at 5 weeks and 6 years, respiratory symptoms in the first year, and allergic sensitisation at 6 years. CONCLUSION Genetic variation in CHI3L1 might be related to the development of milder forms of asthma. Larger studies are warranted to establish the role of YKL-40 in that pathway.
Collapse
Affiliation(s)
- Jakob Usemann
- University of Basel Children's Hospital, University of Basel, Basel, 4056, Switzerland.,Division of Respiratory Medicine, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland
| | - Urs Frey
- University of Basel Children's Hospital, University of Basel, Basel, 4056, Switzerland.
| | - Ines Mack
- University of Basel Children's Hospital, University of Basel, Basel, 4056, Switzerland
| | - Anne Schmidt
- University of Basel Children's Hospital, University of Basel, Basel, 4056, Switzerland.,Division of Respiratory Medicine, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland
| | - Olga Gorlanova
- University of Basel Children's Hospital, University of Basel, Basel, 4056, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute Basel, Basel, 4051, Switzerland.,University of Basel, Basel, 4003, Switzerland
| | - Dominik Hartl
- Children's Hospital, University of Tuebingen, Tuebingen, 72076, Germany
| | - Philipp Latzin
- University of Basel Children's Hospital, University of Basel, Basel, 4056, Switzerland.,Division of Respiratory Medicine, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland
| |
Collapse
|
21
|
Hector A, Chotirmall SH, Lavelle GM, Mirković B, Horan D, Eichler L, Mezger M, Singh A, Ralhan A, Berenbrinker S, Mack I, Ensenauer R, Riethmüller J, Graepler-Mainka U, Murray MA, Griese M, McElvaney NG, Hartl D. Chitinase activation in patients with fungus-associated cystic fibrosis lung disease. J Allergy Clin Immunol 2016; 138:1183-1189.e4. [PMID: 27056270 DOI: 10.1016/j.jaci.2016.01.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/16/2015] [Accepted: 01/14/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Chitinases have recently gained attention in the field of pulmonary diseases, particularly in asthma and chronic obstructive pulmonary disease, but their potential role in patients with cystic fibrosis (CF)-associated lung disease remains unclear. OBJECTIVE The aim of this study was to assess chitinase activity systemically and in the airways of patients with CF and asthma compared with healthy subjects. Additionally, we assessed factors that regulate chitinase activity within the lungs of patients with CF. METHODS Chitinase activities were quantified in serum and bronchoalveolar lavage fluid from patients with CF, asthmatic patients, and healthy control subjects. Mechanistically, the role of CF airway proteases and genetic chitinase deficiency was assessed. RESULTS Chitinase activity was systemically increased in patients with CF compared with that in healthy control subjects and asthmatic patients. Further stratification showed that chitinase activity was enhanced in patients with CF colonized with Candida albicans compared with that in noncolonized patients. CF proteases degraded chitinases in the airway microenvironment of patients with CF. Genetic chitinase deficiency was associated with C albicans colonization in patients with CF. CONCLUSION Patients with CF have enhanced chitinase activation associated with C albicans colonization. Therefore chitinases might represent a novel biomarker and therapeutic target for CF-associated fungal disease.
Collapse
Affiliation(s)
- Andreas Hector
- CF Center, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Gillian M Lavelle
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Bojana Mirković
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Deirdre Horan
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Laura Eichler
- CF Center, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Markus Mezger
- CF Center, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Anurag Singh
- CF Center, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Anjai Ralhan
- CF Center, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Sina Berenbrinker
- CF Center, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Ines Mack
- Department of Paediatrics, University of Basel, Basel, Switzerland
| | - Regina Ensenauer
- Experimental Pediatrics, Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, and the Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Michelle A Murray
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Matthias Griese
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, and Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung, Munich, Germany
| | - N Gerry McElvaney
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dominik Hartl
- CF Center, Children's Hospital, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
22
|
Kültz D, Li J, Sacchi R, Morin D, Buckpitt A, Van Winkle L. Alterations in the proteome of the respiratory tract in response to single and multiple exposures to naphthalene. Proteomics 2015; 15:2655-68. [PMID: 25825134 DOI: 10.1002/pmic.201400445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/16/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
Abstract
Protein adduction is considered to be critical to the loss of cellular homeostasis associated with environmental chemicals undergoing metabolic activation. Despite considerable effort, our understanding of the key proteins mediating the pathologic consequences from protein modification by electrophiles is incomplete. This work focused on naphthalene (NA) induced acute injury of respiratory epithelial cells and tolerance which arises after multiple toxicant doses to define the initial cellular proteomic response and later protective actions related to tolerance. Airways and nasal olfactory epithelium from mice exposed to 15 ppm NA either for 4 h (acute) or for 4 h/day × 7 days (tolerant) were used for label-free protein quantitation by LC/MS/MS. Cytochrome P450 2F2 and secretoglobin 1A1 are decreased dramatically in airways of mice exposed for 4 h, a finding consistent with the fact that CYPs are localized primarily in Clara cells. A number of heat shock proteins and protein disulfide isomerases, which had previously been identified as adduct targets for reactive metabolites from several lung toxicants, were upregulated in airways but not olfactory epithelium of tolerant mice. Protein targets that are upregulated in tolerance may be key players in the pathophysiology associated with reactive metabolite protein adduction. All MS data have been deposited in the ProteomeXchange with identifier PXD000846 (http://proteomecentral.proteomexchange.org/dataset/PXD000846).
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA
| | - Johnathon Li
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA
| | - Romina Sacchi
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA
| | - Dexter Morin
- Depatment of Molecular Biosciences, University of California, Davis, CA, USA
| | - Alan Buckpitt
- Depatment of Molecular Biosciences, University of California, Davis, CA, USA
| | - Laura Van Winkle
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
23
|
Mack I, Hector A, Ballbach M, Kohlhäufl J, Fuchs KJ, Weber A, Mall MA, Hartl D. The role of chitin, chitinases, and chitinase-like proteins in pediatric lung diseases. Mol Cell Pediatr 2015; 2:3. [PMID: 26542293 PMCID: PMC4530573 DOI: 10.1186/s40348-015-0014-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/09/2015] [Indexed: 01/27/2023] Open
Abstract
Chitin, after cellulose, the second most abundant biopolymer on earth, is a key component of insects, fungi, and house-dust mites. Lower life forms are endowed with chitinases to defend themselves against chitin-bearing pathogens. Unexpectedly, humans were also found to express chitinases as well as chitinase-like proteins that modulate immune responses. Particularly, increased levels of the chitinase-like protein YKL-40 have been associated with severe asthma, cystic fibrosis, and other inflammatory disease conditions. Here, we summarize and discuss the potential role of chitin, chitinases, and chitinase-like proteins in pediatric lung diseases.
Collapse
Affiliation(s)
- Ines Mack
- Department of Pediatrics/UKBB, University of Basel, Petersplatz 1, 4003, Basel, Switzerland.
| | - Andreas Hector
- Children's Hospital, University of Tübingen, Hoppe-Seyler-Strasse 1, 72076, Tübingen, Germany.
| | - Marlene Ballbach
- Children's Hospital, University of Tübingen, Hoppe-Seyler-Strasse 1, 72076, Tübingen, Germany.
| | - Julius Kohlhäufl
- Children's Hospital, University of Tübingen, Hoppe-Seyler-Strasse 1, 72076, Tübingen, Germany.
| | - Katharina J Fuchs
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Geschwister-Scholl-Platz, 72074, Tübingen, Germany.
| | - Alexander Weber
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Geschwister-Scholl-Platz, 72074, Tübingen, Germany.
| | - Marcus A Mall
- Department of Translational Pulmonology, Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Grabengasse 1, 69117, Heidelberg, Germany.
| | - Dominik Hartl
- Children's Hospital, University of Tübingen, Hoppe-Seyler-Strasse 1, 72076, Tübingen, Germany.
| |
Collapse
|
24
|
Verheijden KAT, Willemsen LEM, Braber S, Leusink-Muis T, Delsing DJM, Garssen J, Kraneveld AD, Folkerts G. Dietary galacto-oligosaccharides prevent airway eosinophilia and hyperresponsiveness in a murine house dust mite-induced asthma model. Respir Res 2015; 16:17. [PMID: 25849971 PMCID: PMC4327967 DOI: 10.1186/s12931-015-0171-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/17/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Allergic asthma is strongly associated with the exposure to house dust mite (HDM) and is characterized by eosinophilic pulmonary inflammation and airway hyperresponsiveness (AHR). Recently, there is an increased interest in using dietary oligosaccharides, also known as prebiotics, as a novel strategy to prevent the development of, or reduce, symptoms of allergy. AIM We investigated the preventive capacity of dietary galacto-oligosaccharides (GOS) compared to an intra-airway therapeutic treatment with budesonide on the development of HDM-induced allergic asthma in mice. METHODS BALB/c mice were intranasally sensitized with 1 μg HDM on day 0 followed by daily intranasal challenge with PBS or 10 μg HDM on days 7 to 11. Two weeks prior to the first sensitization and throughout the experiment mice were fed a control diet or a diet containing 1% GOS. Reference mice were oropharyngeally instilled with budesonide (500 μg/kg) on days 7, 9, 11, and 13, while being fed the control diet. On day 14, AHR was measured by nebulizing increasing doses of methacholine into the airways. At the end of the experiment, bronchoalveolar lavage fluid (BALF) and lungs were collected. RESULTS Sensitization and challenge with HDM resulted in AHR. In contrast to budesonide, dietary intervention with 1% GOS prevented the development of AHR. HDM sensitization and challenge resulted in a significant increase in BALF leukocytes numbers, which was suppressed by budesonide treatment and dietary intervention with 1% GOS. Moreover, HDM sensitization and challenge resulted in significantly enhanced concentrations of IL-6, CCL17, IL-33, CCL5 and IL-13 in lung tissue. Both dietary intervention with 1% GOS or budesonide treatment significantly decreased the HDM-induced increased concentrations of CCL5 and IL-13 in lung tissue, while budesonide also reduced the HDM-enhanced concentrations of IL-6 and CCL17 in lung tissue. CONCLUSION Not only did dietary intervention with 1% GOS during sensitization and challenge prevent the induction of airway eosinophilia and Th2-related cytokine and chemokine concentrations in the lung equally effective as budesonide treatment, it also prevented AHR development in HDM-allergic mice. GOS might be useful for the prevention and/or treatment of symptoms in asthmatic disease.
Collapse
|
25
|
Lai T, Chen M, Deng Z, L Y, Wu D, Li D, Wu B. YKL-40 is correlated with FEV1 and the asthma control test (ACT) in asthmatic patients: influence of treatment. BMC Pulm Med 2015; 15:1. [PMID: 25578181 PMCID: PMC4417200 DOI: 10.1186/1471-2466-15-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/06/2015] [Indexed: 11/28/2022] Open
Abstract
Background YKL-40 is also called chitinase-3-like-1 (CHI3L1) protein and may be a marker for asthma. The aims of the present study were to investigate whether serum YKL-40 levels are stable or decreased in patients with asthma after appropriate treatment and to evaluate the correlation of YKL-40 levels with lung function and asthma control test (ACT) results. Methods A total of 103 asthmatic patients (mean age 33.1 ± 0.9 years) with diagnosed asthma were enrolled in our study. All patients underwent a detailed clinical examination and completed the ACT questionnaire, serum YKL-40 measurement, and spirometry before (visit 1) and 8 weeks after initiation of treatment (visit 2). Results At the follow-up, the median serum YKL-40 level was significantly decreased compared to the levels at visit 1 (75.2 [55.8-86.8] ng/ml versus 54.5 [46.4-58.4] ng/ml, p < 0.001). The serum YKL-40 level was negatively correlated with %FEV1 (r = -0.37, p < 0.001) and ACT score (r = -0.26, p = 0.007) at visit 1. The change in serum YKL-40 levels between the visits was significantly correlated with changes in FEV1 (r = -0.28, p = 0.006) and ACT score (r = -0.22, p = 0.037). Patients with elevated YKL-40 levels had significantly greater corticosteroid use than patients with lower levels. Conclusions YKL-40 was reduced in the serum of asthmatic patients after appropriate treatment, and the levels correlated with improvements in %FEV1 and ACT. High levels of serum YKL-40 may be refractory to current asthma treatments. Trial registration ChiCTR-OCC-13003316 Electronic supplementary material The online version of this article (doi:10.1186/1471-2466-15-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tianwen Lai
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, Affiliated Hospital, Guangdong Medicine College, Zhanjiang, 524000, China.
| | - Min Chen
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, Affiliated Hospital, Guangdong Medicine College, Zhanjiang, 524000, China.
| | - Zaichun Deng
- Department of Respiratory Medicine, Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, 315020, China.
| | - Yingying L
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, Affiliated Hospital, Guangdong Medicine College, Zhanjiang, 524000, China.
| | - Dong Wu
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, Affiliated Hospital, Guangdong Medicine College, Zhanjiang, 524000, China.
| | - Dongming Li
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, Affiliated Hospital, Guangdong Medicine College, Zhanjiang, 524000, China.
| | - Bin Wu
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, Affiliated Hospital, Guangdong Medicine College, Zhanjiang, 524000, China.
| |
Collapse
|
26
|
miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development. Nat Commun 2014; 5:5214. [PMID: 25358394 PMCID: PMC4217126 DOI: 10.1038/ncomms6214] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 09/10/2014] [Indexed: 12/19/2022] Open
Abstract
Identification and treatment of abdominal aortic aneurysm (AAA) remain among the most prominent challenges in vascular medicine. MicroRNAs (miRNAs) are crucial regulators of cardiovascular pathology and represent intriguing targets to limit AAA expansion. Here we show, by using two established murine models of AAA disease along with human aortic tissue and plasma analysis, that miR-24 is a key regulator of vascular inflammation and AAA pathology. In vivo and in vitro studies reveal chitinase 3-like 1 (Chi3l1) to be a major target and effector under the control of miR-24, regulating cytokine synthesis in macrophages as well as their survival, promoting aortic smooth muscle cell migration and cytokine production, and stimulating adhesion molecule expression in vascular endothelial cells. We further show that modulation of miR-24 alters AAA progression in animal models, and that miR-24 and CHI3L1 represent novel plasma biomarkers of AAA disease progression in humans. Abdominal aortic aneurysm (AAA) is a potentially fatal and often asymptomatic disease whose causes remain unclear. Here the authors show that a microRNA, miR-24, and its target, the glycoprotein chitinase 3-like 1, represent key regulators of AAA development.
Collapse
|
27
|
Salem HH, Trojanowski B, Fiedler K, Maier HJ, Schirmbeck R, Wagner M, Boehm BO, Wirth T, Baumann B. Long-term IKK2/NF-κB signaling in pancreatic β-cells induces immune-mediated diabetes. Diabetes 2014; 63:960-75. [PMID: 24296718 DOI: 10.2337/db13-1037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes is a multifactorial inflammatory disease in genetically susceptible individuals characterized by progressive autoimmune destruction of pancreatic β-cells initiated by yet unknown factors. Although animal models of type 1 diabetes have substantially increased our understanding of disease pathogenesis, heterogeneity seen in human patients cannot be reflected by a single model and calls for additional models covering different aspects of human pathophysiology. Inhibitor of κB kinase (IKK)/nuclear factor-κB (NF-κB) signaling is a master regulator of inflammation; however, its role in diabetes pathogenesis is controversially discussed by studies using different inhibition approaches. To investigate the potential diabetogenic effects of NF-κB in β-cells, we generated a gain-of-function model allowing conditional IKK2/NF-κB activation in β-cells. A transgenic mouse model that expresses a constitutively active mutant of human IKK2 dependent on Pdx-1 promoter activity (IKK2-CA(Pdx-1)) spontaneously develops full-blown immune-mediated diabetes with insulitis, hyperglycemia, and hypoinsulinemia. Disease development involves a gene expression program mimicking virus-induced diabetes and allergic inflammatory responses as well as increased major histocompatibility complex class I/II expression by β-cells that could collectively promote diabetes development. Potential novel diabetes candidate genes were also identified. Interestingly, animals successfully recovered from diabetes upon transgene inactivation. Our data give the first direct evidence that β-cell-specific IKK2/NF-κB activation is a potential trigger of immune-mediated diabetes. Moreover, IKK2-CA(Pdx-1) mice provide a novel tool for studying critical checkpoints in diabetes pathogenesis and mechanisms governing β-cell degeneration/regeneration.
Collapse
Affiliation(s)
- Heba H Salem
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fantino E, Gangell CL, Hartl D, Sly PD. Airway, but not serum or urinary, levels of YKL-40 reflect inflammation in early cystic fibrosis lung disease. BMC Pulm Med 2014; 14:28. [PMID: 24576297 PMCID: PMC3946043 DOI: 10.1186/1471-2466-14-28] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/24/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cystic fibrosis (CF) lung disease begins in early life and is progressive with the major risk factor being an exaggerated inflammatory response. Currently, assessment of neutrophilic inflammation in early cystic fibrosis (CF) lung disease relies on bronchoalveolar lavage (BAL). The chitinase-like protein YKL-40 is raised in sputum and serum of adults with CF. We investigated YKL-40 in BAL, serum and urine to determine whether this reflected inflammation and infection in young children with CF. METHODS YKL-40 was measured in matched samples of BAL, serum and urine obtained from 36 infants and young children with CF participating in an early surveillance program. Levels were compared to clinical data and markers of inflammation detected in the lung. RESULTS YKL-40 in BAL correlated with pulmonary infection [β=1.30 (SE 0.34), p < 0.001] and BAL markers of inflammation [macrophage number: r2 = 0.34, p < 0.001; neutrophil number: r2 = 0.74, p < 0.001; neutrophil elastase: r2 = 0.47, p < 0.001; CXCL8: r2 = 0.45, p < 0.001; IL-β: r2 = 0.62, p < 0.001]. YKL-40 was detectable in serum but levels did not correlate with BAL levels in the same individuals (r2 = 0.04, p = 0.14) or with inflammatory markers. YKL-40 was below the limit of detection in urine (30 pg/ml). CONCLUSIONS This study demonstrates that levels of the chitinase-like protein YKL-40 reflect airway inflammation and infection in early CF lung disease. The lack of increased YKL-40 in serum in the absence of systemic inflammation limits the benefit of this potential biomarker in early disease.
Collapse
Affiliation(s)
| | | | | | - Peter D Sly
- The Queensland Children's Medical Research Institute, The University of Queensland, Level 4, Foundation Building, Royal Children's Hospital, Herston road, Herston, Brisbane, QLD 4059, Australia.
| | | |
Collapse
|
29
|
Liu C, Li Q, Zhou X, Kolosov VP, Perelman JM. The chitinase-like protein YKL-40 increases mucin5AC production in human bronchial epithelial cells. Exp Cell Res 2013; 319:2866-73. [PMID: 23994362 DOI: 10.1016/j.yexcr.2013.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 02/06/2023]
Abstract
Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases. However, the regulatory mechanisms that mediate excessive mucin production remain elusive. Recently, the level of YKL-40, a chitinase-like protein, has been found to be significantly increased in chronic inflammatory airway diseases and has been shown to be associated with the severity of these diseases. In this study, we sought to explore the effect of YKL-40 on mucin5AC (MUC5AC) production in chronic inflammatory airway diseases and the potential signaling pathways involved in this process. We found that elevated YKL-40 levels increased the mRNA and protein expression of MUC5AC in a dose- and time-dependent manner, in association with the phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB), reflecting their activation. These responses were significantly suppressed by the knockdown of protease-activating receptor 2 (PAR2) with specific small interfering RNA or the inhibitors of ERK and NF-κB. YKL-40-induced MUC5AC overproduction was also effectively attenuated by the inhibitor of focal adhesion kinase (FAK). Taken together, these results imply that YKL-40 can stimulate excessive MUC5AC production through PAR2- and FAK-mediated mechanisms.
Collapse
Affiliation(s)
- Chunyi Liu
- Division of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing 400010, China
| | | | | | | | | |
Collapse
|
30
|
Song SY, Seo YJ, Kim YW, Park SY, Bae CH, Kim YD. Effect of Onchocerca volvulus chitinase on MUC5B expression in human airway epithelial cells. Am J Rhinol Allergy 2013; 27:3-7. [PMID: 23406586 DOI: 10.2500/ajra.2013.27.3830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Chitin is an essential structural component of the wall of fungal cells and is present in the exoskeleton of arthropods. It has been generally assumed that mammals lack the ability to produce chitinase proteins, the enzymes responsible for chitin degradation. However, recent studies have indicated that mammals produce chitinases and chitinase-like proteins, and chitinase plays a potential role in human asthma and allergic inflammation. In this study, the effect and brief signaling pathway of chitinase on MUC5B expression were investigated in human airway epithelial cells. METHODS In the mucin-producing human NCI-H292 airway epithelial cells and the primary cultures of normal nasal epithelial cells, the effect and signaling pathway of chitinase on MUC5B expression were investigated using the reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassay, and immunoblot analysis with several specific inhibitors and small interfering RNA (siRNA). RESULTS In the mucin-producing human NCI-H292 airway epithelial cells, chitinase increased MUC5B expression. Chitinase significantly activated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) but not the phosphorylation of extracellular signa-l-related kinase (ERK) 1/2. The SB203580 (p38 MAPK inhibitor) significantly attenuated chitinase-induced MUC5B mRNA expression, but U0126 (ERK1/2 inhibitor) did not. Knockdown of p38 MAPK by p38 MAPK siRNA significantly blocked chitinase-induced MUC5B expression. In the primary cultures of normal nasal epithelial cells, chitinase significantly increased MUC5B gene expression and this was significantly attenuated after pretreatment with SB203580. CONCLUSION These results suggest that chitinase induces MUC5B expression by activation of the p38 MAPK signaling pathway in human airway epithelial cells.
Collapse
Affiliation(s)
- Si-Youn Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Yeungnam University Medical Center, Daegu, Republic of Korea
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Human beings come in all shapes and sizes. Heterogeneity makes life interesting, but leads to inter-individual variation in disease susceptibility and response to therapy. One major health challenge is to develop "personalised medicine"; therapeutic interventions tailored to an individual to ensure optimal treatment of disease. Asthma is a heterogeneous disease with several different phenotypes triggered by multiple gene-environment interactions. Inhaled corticosteroids and β2-agonists have been the mainstay asthma therapies for 30 years, but they are not effective in all patients, while high costs and side-effects also drive the need for better targeted treatment of asthma. Pharmacogenetics is the study of variations in the genetic code for proteins in signaling pathways targeted by pharmacological therapies. Biomarkers are biological markers obtained from patients that can aid in asthma diagnosis, prediction of treatment response, and monitoring of disease control. This review presents a broad discussion of the use of genetic profiling and biomarkers to better diagnose, monitor, and tailor the treatment of asthmatics. We also discuss possible future developments in personalised medicine, including the construction of artificially engineered airway tissues containing a patient's own cells for use as personalised drug-testing tools.
Collapse
|
32
|
Healey GD, Evans N, Hopkin JM, Davies G, Walker W. Evaluation of nasal epithelium sampling as a tool in the preclinical development of siRNA-based therapeutics for asthma. J Cell Mol Med 2013; 17:356-64. [PMID: 23402658 PMCID: PMC3823017 DOI: 10.1111/jcmm.12014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 11/28/2012] [Indexed: 01/14/2023] Open
Abstract
The development of siRNA-based asthma therapeutics is currently hampered by a paucity of relevant biomarkers and the need to ascertain tissue-specific gene targeting in the context of active disease. Epithelial STAT6 expression is fundamental to asthma pathogenesis in which inflammatory changes are found throughout the respiratory tract. Therefore, to improve preclinical evaluation, we tested the efficacy of STAT6-targeting siRNA within nasal epithelial cells (NEC's) obtained from asthmatic and non-asthmatic donors. STAT6 expression was invariant in both donor groups and amenable to suppression by siRNA treatment. In addition, STAT6 mRNA was also suppressible by apically delivered siRNA treatment in comparative differentiated nasal epithelial cell-line monolayer cultures. Analysis of donor NEC's showed consistent elevation in CCL26 (eotaxin-3) mRNA within the asthmatic group suggesting potential as a relevant biomarker. Furthermore, targeting of STAT6 with siRNA attenuated IL-13-driven CCL26 expression in these cells, pointing to the utility of this approach in preclinical testing. Finally, siRNA-mediated suppression of STAT6 was independent of donor disease phenotype or epithelial cell differentiation status, signifying therapeutic potential.
Collapse
Affiliation(s)
- Gareth D Healey
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK.
| | | | | | | | | |
Collapse
|
33
|
Khan MA. Inflammation signals airway smooth muscle cell proliferation in asthma pathogenesis. Multidiscip Respir Med 2013; 8:11. [PMID: 23388501 PMCID: PMC3568740 DOI: 10.1186/2049-6958-8-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/03/2013] [Indexed: 01/07/2023] Open
Abstract
Background Airway inflammation stimulates proliferation of airway smooth muscle cell, which contributes to the development of hyperplasia and hypertrophy of smooth muscle cell. The increase in airway smooth muscle cell mass is believed to be due to an up-regulation of inflammatory mediators in the airway. It is now well recognized that chronic inflammation as well as airway hyper-responsiveness and remodeling of airway during inflammation, are crucial to asthma. Airway hyper-responsiveness is caused by increased cell proliferation or by hypertrophy of airway smooth muscle cell depending on the nature of the inflammatory stimulation. Airway smooth muscle cell proliferation in asthma is regulated by the proinflammatory cytokines including IL-1β and TNF-α. These proinflammatory cytokines have been shown to influence human airway smooth muscle cell proliferation in vitro, which is due to cyclooxygenase-2 expression, production of prostaglandin E2, and increased cAMP levels. Conclusions This review highlights the role of different proinflammatory cytokines in regulating airway smooth muscle cell growth and also focuses on regulation of differential gene expression in airway smooth muscle cell by growth factors and cytokines, also to bestow unique insight into the effects of conventional asthma therapies on airway smooth muscle cell proliferation and development of new therapeutic strategies to control asthma.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Department of Medicine, Stanford University, VAPAHCS, 3801 Miranda Avenue, Building 101, Room B4-105, Palo Alto, California, 94304, USA.
| |
Collapse
|
34
|
Atamas SP, Chapoval SP, Keegan AD. Cytokines in chronic respiratory diseases. F1000 BIOLOGY REPORTS 2013; 5:3. [PMID: 23413371 PMCID: PMC3564216 DOI: 10.3410/b5-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cytokines are small, secreted proteins that control immune responses. Within the lung, they can control host responses to injuries or infection, resulting in clearance of the insult, repair of lung tissue, and return to homeostasis. Problems can arise when this response is over exuberant and/or cytokine production becomes dysregulated. In such cases, chronic and repeated inflammatory reactions and cytokine production can be established, leading to airway remodeling and fibrosis with unintended, maladaptive consequences. In this report, we describe the cytokines and molecular mechanisms behind the pathology observed in three major chronic diseases of the lung: asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis. Overlapping mechanisms are presented as potential sites for therapeutic intervention.
Collapse
Affiliation(s)
- Sergei P Atamas
- Department of Medicine, University of Maryland School of Medicine Baltimore, MD 21201 USA ; Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD 21201 USA ; Baltimore VA Medical Center Baltimore, MD 21201 USA
| | | | | |
Collapse
|
35
|
Livraghi-Butrico A, Kelly EJ, Wilkinson KJ, Rogers TD, Gilmore RC, Harkema JR, Randell SH, Boucher RC, O'Neal WK, Grubb BR. Loss of Cftr function exacerbates the phenotype of Na(+) hyperabsorption in murine airways. Am J Physiol Lung Cell Mol Physiol 2013; 304:L469-80. [PMID: 23377346 DOI: 10.1152/ajplung.00150.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway surface hydration depends on the balance between transepithelial Na(+) absorption and Cl(-) secretion. In adult mice, absence of functional cystic fibrosis transmembrane conductance regulator (Cftr) fails to recapitulate human cystic fibrosis (CF) lung disease. In contrast, overexpression of the epithelial Na(+) channel β subunit in transgenic mice (βENaC-Tg) produces unregulated Na(+) hyperabsorption and results in CF-like airway surface dehydration, mucus obstruction, inflammation, and increased neonatal mortality. To investigate whether the combination of airway Na(+) hyperabsorption and absent Cftr-mediated Cl(-) secretion resulted in more severe lung pathology, we generated double-mutant ΔF508 CF/βENaC-Tg mice. Survival of ΔF508 CF/βENaC-Tg mice was reduced compared with βENaC-Tg or ΔF508 CF mice. Absence of functional Cftr did not affect endogenous or transgenic ENaC currents but produced reduced basal components of Cl(-) secretion and tracheal cartilaginous defects in both ΔF508 CF and ΔF508 CF/βENaC-Tg mice. Neonatal ΔF508 CF/βENaC-Tg mice exhibited higher neutrophilic pulmonary inflammation and club cell (Clara cell) necrosis compared with βENaC-Tg littermates. Neonatal ΔF508 CF/βENaC-Tg mice also exhibited spontaneous bacterial infections, but the bacterial burden was similar to that of βENaC-Tg littermates. Adult ΔF508 CF/βENaC-Tg mice exhibited pathological changes associated with eosinophilic crystalline pneumonia, a phenotype not observed in age-matched βENaC-Tg mice. Collectively, these data suggest that the combined abnormalities in Na(+) absorption and Cl(-) secretion produce more severe lung disease than either defect alone. Airway cartilage abnormalities, airway cell necrosis, and exaggerated neutrophil infiltration likely interact with defective mucus clearance caused by βENaC overexpression and absent CFTR-mediated Cl(-) secretion to produce the increased neonatal mortality observed in ΔF508 CF/βENaC-Tg mice.
Collapse
Affiliation(s)
- Alessandra Livraghi-Butrico
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, The University of North Carolina at Chapel Hill, 6029 Thurston Bowles Bldg., Chapel Hill, NC 25799-7248, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Greenwell-Wild T, Moutsopoulos NM, Gliozzi M, Kapsogeorgou E, Rangel Z, Munson PJ, Moutsopoulos HM, Wahl SM. Chitinases in the salivary glands and circulation of patients with Sjögren's syndrome: macrophage harbingers of disease severity. ACTA ACUST UNITED AC 2013; 63:3103-15. [PMID: 21618203 DOI: 10.1002/art.30465] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Sjögren's syndrome (SS) is a chronic autoimmune disease of unknown etiology that targets salivary and lacrimal glands and may be accompanied by multiorgan systemic manifestations. To further the understanding of immunopathology associated with SS and identify potential therapeutic targets, we undertook the present study comparing the gene expression profiles of salivary glands with severe inflammation versus those of salivary glands with mild or no disease. METHODS Using microarray profiling of salivary gland tissue from patients with SS and control subjects, we identified target genes, which were further characterized in tissue, serum, and cultured cell populations by real-time polymerase chain reaction and protein analysis. RESULTS Among the most highly expressed SS genes were those associated with myeloid cells, including members of the mammalian chitinase family, which had not previously been shown to be associated with exocrinopathies. Both chitinase 3-like protein 1 and chitinase 1, highly conserved chitinase-like glycoproteins (one with enzymatic activity and one lacking enzymatic activity), were evident at the transcriptome level and were detected within inflamed tissue. Chitinases were expressed during monocyte-to-macrophage differentiation and their levels augmented by stimulation with cytokines, including interferon-α (IFNα). CONCLUSION Because elevated expression of these and other macrophage-derived molecules corresponded with more severe SS, the present observations suggest that macrophages have potential immunopathologic involvement in SS and that the tissue macrophage transcription profile reflects multiple genes induced by IFNα.
Collapse
Affiliation(s)
- Teresa Greenwell-Wild
- National Institute of Dental and Craniofacial Research, Oral Infection and Immunity Branch, NIH, Bethesda, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Tang H, Sun Y, Shi Z, Huang H, Fang Z, Chen J, Xiu Q, Li B. YKL-40 induces IL-8 expression from bronchial epithelium via MAPK (JNK and ERK) and NF-κB pathways, causing bronchial smooth muscle proliferation and migration. THE JOURNAL OF IMMUNOLOGY 2012. [PMID: 23197259 DOI: 10.4049/jimmunol.1201827] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, the serum levels of YKL-40, a chitinase-like glycoprotein, have been shown to be significantly elevated in asthmatics and are associated with asthma severity. Although these studies raise the possibility that YKL-40 may influence asthma, the mechanisms remain unknown. This study firstly investigated the mechanisms involved in YKL-40-mediated inflammation in human bronchial epithelial cells (HBECs) and analyzed the soluble factors secreted by bronchial epithelial cells exposed to YKL-40 that were responsible for increasing proliferation and migration of primary normal human bronchial smooth muscle cells (BSMCs). YKL-40-induced inflammation was assayed in two HBECs (BEAS-2B cell line and primary HBECs). In addition, we treated BEAS-2B cells and HBECs with YKL-40 and added the conditioned culture media to BSMCs. The proliferation and migration of BSMCs were determined by premixed WST-1 cell proliferation reagent (Clontech Laboratories) and QCM chemotaxis migration assay (Millipore), respectively. Bronchial epithelial cells treated with YKL-40 resulted in a significant increase of IL-8 production, which was dependent on MAPK (JNK and ERK) and NF-κB pathways activation. YKL-40-induced IL-8 was found to further stimulate proliferation and migration of BSMCs, and the effects were inhibited after neutralizing IL-8. Through investigating the interaction of airway epithelium and smooth muscle, our findings implicate that YKL-40 may be involved in the inflammation of asthma by induction of IL-8 from epithelium, subsequently contributing to BSMC proliferation and migration. Moreover, inhibition of IL-8 signaling is a potential therapeutic target for YKL-40-induced inflammation and remodeling of asthma.
Collapse
Affiliation(s)
- Hao Tang
- Department of Respiratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hartl D, Gaggar A, Bruscia E, Hector A, Marcos V, Jung A, Greene C, McElvaney G, Mall M, Döring G. Innate immunity in cystic fibrosis lung disease. J Cyst Fibros 2012; 11:363-82. [PMID: 22917571 DOI: 10.1016/j.jcf.2012.07.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 12/16/2022]
Abstract
Chronic lung disease determines the morbidity and mortality of cystic fibrosis (CF) patients. The pulmonary immune response in CF is characterized by an early and non-resolving activation of the innate immune system, which is dysregulated at several levels. Here we provide a comprehensive overview of innate immunity in CF lung disease, involving (i) epithelial dysfunction, (ii) pathogen sensing, (iii) leukocyte recruitment, (iv) phagocyte impairment, (v) mechanisms linking innate and adaptive immunity and (iv) the potential clinical relevance. Dissecting the complex network of innate immune regulation and associated pro-inflammatory cascades in CF lung disease may pave the way for novel immune-targeted therapies in CF and other chronic infective lung diseases.
Collapse
Affiliation(s)
- D Hartl
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Levels of YKL-40 in pleural effusions and blood from patients with pulmonary or pleural disease. Cytokine 2012; 58:336-43. [PMID: 22480951 DOI: 10.1016/j.cyto.2012.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 01/05/2012] [Accepted: 03/03/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND YKL-40 (a chitinase-like protein) is an inflammatory biomarker that is associated with lung injury pathogenesis. We aimed to identify the diagnostic values of YKL-40 in pleural effusions and to evaluate circulating YKL-40 levels during multiple etiological pulmonary/pleural diseases and the role of YKL-40 as a monitoring marker of inflammatory pulmonary disease. METHODS Pleural YKL-40 (n=197), YKL-39 (the most homologous chitinase-like protein to human YKL-40), and conventional pleural marker levels were measured in patients with pulmonary/pleural disease. Additionally, serum YKL-40 and YKL-39 levels were analyzed in both patients and controls (n=432) and serially monitored in patients with asthma (n=27) or pneumonia (n=22). RESULTS Pleural YKL-40 levels were higher than those in the serum and highest in tuberculous pleural effusions (TPEs; 1181 ng/mL), followed by parapneumonic, malignant, and cardiogenic effusions (560 ng/mL). The diagnostic accuracy of pleural YKL-40 (0.78) for discriminating between tuberculous and malignant effusion was comparable to or greater than those of YKL-39, total protein, C-reactive protein and CYFRA 21-1, and lower than those of adenosine deaminase (p<0.05) and carcinoembriogenic antigen (p=0.05). Serum YKL-40 levels were higher in the pneumonia group than in the cancer, asthma, or control groups. Following treatment, serum YKL-40 levels were more greatly reduced in pneumonia patients than in asthma patients. Serum YKL-39 levels did not differ between patients and controls. CONCLUSIONS Pleural YKL-40 levels are elevated in TPEs and have fairly good diagnostic efficacy for detecting TPEs. However, adenosine deaminase is more efficient for detecting TPEs than pleural YKL-40. Serum YKL-40 levels are highest during pneumonia compared to common pulmonary/pleural diseases and are more useful for monitoring pneumonia than asthma.
Collapse
|
40
|
Wang SF, Wang GX, Yu HF, Wang SL, Yu F, Cheng L, Zhang LY, Zhang LH. WITHDRAWN: Down-regulation of TIPE2 expression in peripheral blood mononuclear cells from patients with asthma in childhood. Cell Immunol 2012. [DOI: 10.1016/j.cellimm.2012.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Hector A, Kormann MSD, Mack I, Latzin P, Casaulta C, Kieninger E, Zhou Z, Yildirim AÖ, Bohla A, Rieber N, Kappler M, Koller B, Eber E, Eickmeier O, Zielen S, Eickelberg O, Griese M, Mall MA, Hartl D. The chitinase-like protein YKL-40 modulates cystic fibrosis lung disease. PLoS One 2011; 6:e24399. [PMID: 21949714 PMCID: PMC3176766 DOI: 10.1371/journal.pone.0024399] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/08/2011] [Indexed: 02/07/2023] Open
Abstract
The chitinase-like protein YKL-40 was found to be increased in patients with severe asthma and chronic obstructive pulmonary disease (COPD), two disease conditions featuring neutrophilic infiltrates. Based on these studies and a previous report indicating that neutrophils secrete YKL-40, we hypothesized that YKL-40 plays a key role in cystic fibrosis (CF) lung disease, a prototypic neutrophilic disease. The aim of this study was (i) to analyze YKL-40 levels in human and murine CF lung disease and (ii) to investigate whether YKL-40 single-nucleotide polymorphisms (SNPs) modulate CF lung disease severity. YKL-40 protein levels were quantified in serum and sputum supernatants from CF patients and control individuals. Levels of the murine homologue BRP-39 were analyzed in airway fluids from CF-like βENaC-Tg mice. YKL-40SNPs were analyzed in CF patients. YKL-40 levels were increased in sputum supernatants and in serum from CF patients compared to healthy control individuals. Within CF patients, YKL-40 levels were higher in sputum than in serum. BRP-39 levels were increased in airways fluids from βENaC-Tg mice compared to wild-type littermates. In both CF patients and βENaC-Tg mice, YKL-40/BRP-39 airway levels correlated with the severity of pulmonary obstruction. Two YKL-40 SNPs (rs871799 and rs880633) were found to modulate age-adjusted lung function in CF patients. YKL-40/BRP-39 levelsare increased in human and murine CF airway fluids, correlate with pulmonary function and modulate CF lung disease severity genetically. These findings suggest YKL-40 as a potential biomarker in CF lung disease.
Collapse
Affiliation(s)
- Andreas Hector
- Department I, Children's Hospital, University of Tübingen, Tübingen, Germany
| | | | - Ines Mack
- Research Center, Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Philipp Latzin
- Department of Paediatrics, University of Berne, Inselspital, Berne, Switzerland
| | - Carmen Casaulta
- Department of Paediatrics, University of Berne, Inselspital, Berne, Switzerland
| | - Elisabeth Kieninger
- Department of Paediatrics, University of Berne, Inselspital, Berne, Switzerland
| | - Zhe Zhou
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics III, University of Heidelberg, Heidelberg, Germany
| | - Ali Ö. Yildirim
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease (iLBD), University Hospital, Ludwig Maximilians University and Helmholtz ZentrumMünchen, Munich, Germany
| | - Alexander Bohla
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease (iLBD), University Hospital, Ludwig Maximilians University and Helmholtz ZentrumMünchen, Munich, Germany
| | - Nikolaus Rieber
- Department I, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Matthias Kappler
- Research Center, Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Barbara Koller
- Department of Dermatology and Allergy, Ludwig-Maximilians-University, Munich, Germany
| | - Ernst Eber
- Respiratory and Allergic Disease Division, Paediatric Department, Medical University of Graz, Graz, Austria
| | - Olaf Eickmeier
- Department of Pediatric Pulmonology, Allergy and Cystic Fibrosis, Children's Hospital, Frankfurt, Germany
| | - Stefan Zielen
- Department of Pediatric Pulmonology, Allergy and Cystic Fibrosis, Children's Hospital, Frankfurt, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease (iLBD), University Hospital, Ludwig Maximilians University and Helmholtz ZentrumMünchen, Munich, Germany
| | - Matthias Griese
- Research Center, Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Marcus A. Mall
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics III, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center, University of Heidelberg, Heidelberg, Germany
| | - Dominik Hartl
- Department I, Children's Hospital, University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
42
|
Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang MJ, He CH, Takyar S, Elias JA. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol 2011; 73:479-501. [PMID: 21054166 DOI: 10.1146/annurev-physiol-012110-142250] [Citation(s) in RCA: 642] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 18 glycosyl hydrolase family of chitinases is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In mammals, despite the absence of endogenous chitin, a number of chitinases and chitinase-like proteins (C/CLPs) have been identified. However, their roles have only recently begun to be elucidated. Acidic mammalian chitinase (AMCase) inhibits chitin-induced innate inflammation; augments chitin-free, allergen-induced Th2 inflammation; and mediates effector functions of IL-13. The CLPs BRP-39/YKL-40 (also termed chitinase 3-like 1) inhibit oxidant-induced lung injury, augments adaptive Th2 immunity, regulates apoptosis, stimulates alternative macrophage activation, and contributes to fibrosis and wound healing. In accord with these findings, levels of YKL-40 in the lung and serum are increased in asthma and other inflammatory and remodeling disorders and often correlate with disease severity. Our understanding of the roles of C/CLPs in inflammation, tissue remodeling, and tissue injury in health and disease is reviewed below.
Collapse
Affiliation(s)
- Chun Geun Lee
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8057, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wadsworth SJ, Sin DD, Dorscheid DR. Clinical update on the use of biomarkers of airway inflammation in the management of asthma. J Asthma Allergy 2011; 4:77-86. [PMID: 21792321 PMCID: PMC3140298 DOI: 10.2147/jaa.s15081] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biological markers are already used in the diagnosis and treatment of cardiovascular disease and cancer. Biomarkers have great potential use in the clinic as a noninvasive means to make more accurate diagnoses, monitor disease progression, and create personalized treatment regimes. Asthma is a heterogeneous disease with several different phenotypes, generally triggered by multiple gene-environment interactions. Pulmonary function tests are most often used objectively to confirm the diagnosis. However, airflow obstruction can be variable and thus missed using spirometry. Furthermore, lung function measurements may not reflect the precise underlying pathological processes responsible for different phenotypes. Inhaled corticosteroids and β(2)-agonists have been the mainstay of asthma therapy for over 30 years, but the heterogeneity of the disease means not all asthmatics respond to the same treatment. High costs and undesired side effects of drugs also drive the need for better targeted treatment of asthma. Biomarkers have the potential to indicate an individual's disease phenotype and thereby guide clinicians in their decisions regarding treatment. This review focuses on biomarkers of airway inflammation which may help us to identify, monitor, and guide treatment of asthmatics. We discuss biomarkers obtained from multiple physiological sources, including sputum, exhaled gases, exhaled breath condensate, serum, and urine. We discuss the inherent limitations and benefits of using biomarkers in a heterogeneous disease such as asthma. We also discuss how we may modify our study designs to improve the identification and potential use of potential biomarkers in asthma.
Collapse
Affiliation(s)
- SJ Wadsworth
- UBC James Hogg Research Centre, Providence Heart and Lung Institute, St Paul’s Hospital, Vancouver, Canada
- Department of Medicine, University of British Columbia, British Columbia, Canada
| | - DD Sin
- UBC James Hogg Research Centre, Providence Heart and Lung Institute, St Paul’s Hospital, Vancouver, Canada
- Department of Medicine, University of British Columbia, British Columbia, Canada
| | - DR Dorscheid
- UBC James Hogg Research Centre, Providence Heart and Lung Institute, St Paul’s Hospital, Vancouver, Canada
- Department of Medicine, University of British Columbia, British Columbia, Canada
| |
Collapse
|
44
|
Park JA, Drazen JM, Tschumperlin DJ. The chitinase-like protein YKL-40 is secreted by airway epithelial cells at base line and in response to compressive mechanical stress. J Biol Chem 2010; 285:29817-25. [PMID: 20650887 DOI: 10.1074/jbc.m110.103416] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chitinase-like protein YKL-40, encoded by the CHI3L1 gene, is a biomarker and functional effector of chronic inflammatory and allergic diseases. In the lung it is associated with asthma severity and reduced lung function. The cellular sources of YKL-40 in human airways and the mechanisms regulating YKL-40 expression are poorly understood. We previously showed that mechanical stress similar to that experienced during bronchoconstriction triggers epithelial cell signaling through epidermal growth factor receptor (EGFR), fibrotic mediator release, and goblet cell hyperplasia consistent with airway remodeling in asthma. We now show that well differentiated normal human bronchial epithelial cells express CHI3L1 and secrete YKL-40 under base-line culture conditions. Mechanical stress (30-cm H(2)O transcellular compressive stress) applied for 3 h induces CHI3L1 expression by ∼4-fold compared with time matched controls, resulting in increased secretion of YKL-40 by 3.6-fold 24 h after onset of the 3-h stimulus. Inhibition of EGFR or MEK1/2 (ERK kinase) significantly but incompletely attenuates mechanical stress-induced up-regulation of CHI3L1 expression in normal human bronchial epithelial cells. Direct activation of EGFR utilizing EGF-family ligands induces CHI3L1 expression. Our results reveal that human airway epithelial cells are a source of YKL-40 and demonstrate that mechanical stress potently induces CHI3L1 expression leading to increased secretion of YKL-40 protein in an EGFR and MEK1/2-dependent pathway. In the asthmatic airway mechanical stress may contribute to enhanced YKL-40 levels.
Collapse
Affiliation(s)
- Jin-Ah Park
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
45
|
Li G, Wang D, Sun M, Li G, Hu J, Zhang Y, Yuan Y, Ji H, Chen N, Liu G. Discovery and optimization of novel 3-piperazinylcoumarin antagonist of chemokine-like factor 1 with oral antiasthma activity in mice. J Med Chem 2010; 53:1741-54. [PMID: 20099827 DOI: 10.1021/jm901652p] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemokine-like factor 1 (CKLF1) is a novel functional cytokine that acts through its receptor CC chemokine receptor 4 (CCR4). Activation of CCR4 by CKLF1 plays an important role in diseases such as asthma and multiple sclerosis. This article describes a cell-based screening assay using an FITC-labeled CCR4 agonist (CKLF1-C27), a CKLF1 peptide fragment. Screening of our in-stock small-molecule library identified a 3-piperazinylcoumarin analogue 1 (IC(50) = 4.36 x 10(-6) M) that led to the discovery of orally active compound 41 (IC(50) = 2.12 x 10(-8) M) through systematic optimization. Compound 41 blocked the calcium mobilization and chemotaxis induced by CKLF1-C27 and reduced the asthmatic pathologic changes in lung tissue of human CKLF1-transfected mice. Further studies indicated that compound 41 ameliorated pathological changes via inhibition of the NF-kappaB signal pathway.
Collapse
Affiliation(s)
- Gang Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2 Nanwei Rd, Beijing 100050, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Muzzarelli RAA. Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar Drugs 2010; 8:292-312. [PMID: 20390107 PMCID: PMC2852840 DOI: 10.3390/md8020292] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/20/2010] [Indexed: 12/22/2022] Open
Abstract
Due to the fact that some individuals are allergic to crustaceans, the presumed relationship between allergy and the presence of chitin in crustaceans has been investigated. In vivo, chitin is part of complex structures with other organic and inorganic compounds: in arthropods chitin is covalently linked to proteins and tanned by quinones, in fungi it is covalently linked to glucans, while in bacteria chitin is diversely combined according to Gram(+/-) classification. On the other hand, isolated, purified chitin is a plain polysaccharide that, at the nano level, presents itself as a highly associated structure, recently refined in terms of regularity, nature of bonds, crystallinity degree and unusual colloidal behavior. Chitins and modified chitins exert a number of beneficial actions, i.e., (i) they stimulate macrophages by interacting with receptors on the macrophage surface that mediate the internalization of chitin particles to be degraded by lysozyme and N-acetyl-beta-glucosaminidase (such as Nod-like, Toll-like, lectin, Dectin-1, leukotriene 134 and mannose receptors); (ii) the macrophages produce cytokines and other compounds that confer non-specific host resistance against bacterial and viral infections, and anti-tumor activity; (iii) chitin is a strong Th1 adjuvant that up-regulates Th1 immunity induced by heat-killed Mycobacterium bovis, while down- regulating Th2 immunity induced by mycobacterial protein; (iv) direct intranasal application of chitin microparticles into the lung was also able to significantly down-regulate allergic response to Dermatophagoids pteronyssinus and Aspergillus fumigatus in a murine model of allergy; (v) chitin microparticles had a beneficial effect in preventing and treating histopathologic changes in the airways of asthmatic mice; (vi) authors support the fact that chitin depresses the development of adaptive type 2 allergic responses. Since the expression of chitinases, chitrotriosidase and chitinase-like proteins is greatly amplified during many infections and diseases, the common feature of chitinase-like proteins and chitinase activity in all organisms appears to be the biochemical defense of the host. Unfortunately, conceptual and methodological errors are present in certain recent articles dealing with chitin and allergy, i.e., (1) omitted consideration of mammalian chitinase and/or chitotriosidase secretion, accompanied by inactive chitinase-like proteins, as an ancestral defensive means against invasion, capable to prevent the insurgence of allergy; (2) omitted consideration of the fact that the mammalian organism recognizes more promptly the secreted water soluble chitinase produced by a pathogen, rather than the insoluble and well protected chitin within the pathogen itself; (3) superficial and incomplete reports and investigations on chitin as an allergen, without mentioning the potent allergen from crustacean flesh, tropomyosine; (4) limited perception of the importance of the chemical/biochemical characteristics of the isolated chitin or chitosan for the replication of experiments and optimization of results; and (5) lack of interdisciplinarity. There is quite a large body of knowledge today on the use of chitosans as biomaterials, and more specifically as drug carriers for a variety of applications: the delivery routes being the same as those adopted for the immunological studies. Said articles, that devote attention to the safety and biocompatibility aspects, never reported intolerance or allergy in individuals and animals, even when the quantities of chitosan used in single experiments were quite large. Therefore, it is concluded that crab, shrimp, prawn and lobster chitins, as well as chitosans of all grades, once purified, should not be considered as "crustacean derivatives", because the isolation procedures have removed proteins, fats and other contaminants to such an extent as to allow them to be classified as chemicals regardless of their origin.
Collapse
|