1
|
Wang Y, Qu R, Du W, Li W, Wang A, Chen Z, Gao H, Wu D, Geng F, Scherman D, Wang X, Shi S, Zou L, Li H. In Situ Bioorthogonal Repair of the Vascular Endothelium Glycocalyx to Treat Acute Lung Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405092. [PMID: 39324256 DOI: 10.1002/smll.202405092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/11/2024] [Indexed: 09/27/2024]
Abstract
In acute lung injury, destruction of the lung endothelial glycocalyx leads to vessel permeabilization and contributes to pulmonary edema and inflammation. Heparan sulfate, which accounts for >70% of glycosaminoglycans in the endothelial glycocalyx, plays a crucial physiological anti-inflammatory role. To treat acute lung injury, it is explored whether a two-step in vivo bioorthogonal chemistry strategy can covalently link intravenously administered heparan sulfate to the lung vascular endothelium and the damaged glycocalyx. First, fusogenic liposomes (EBP-Tz-FLs) carrying the reactive group tetrazine (Tz), and an E-selectin-binding peptide (EBP) to target the lung inflammatory endothelium are administered intravenously. This step aimed to anchor the tetrazine group to the membrane of inflammatory endothelial cells. Second, heparan sulfate (HS-TCO) conjugated to the trans-cyclooctene (TCO) group, which spontaneously reacts with Tz, is injected intravenously, leading to covalent heparan sulfate addition to the vascular endothelium. In a mouse model of acute lung injury, this approach substantially reduced vascular permeability and attenuated lung tissue infiltration. The EBP-Tz-FLs and HS-TCO showed favorable biocompatibility and safety both in vitro and in vivo. The proposed strategy shows good promise in acute lung injury therapy and covalently anchoring functional molecules onto the membrane of target cells.
Collapse
Affiliation(s)
- Yao Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Rui Qu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Wenxuan Du
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Wei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Anqi Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhoujiang Chen
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research, Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Di Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Daniel Scherman
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Université Paris Cité, CNRS, Inserm, UTCBS, Paris, 75006, France
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Hanmei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
2
|
Tang F, Zhao XL, Xu LY, Zhang JN, Ao H, Peng C. Endothelial dysfunction: Pathophysiology and therapeutic targets for sepsis-induced multiple organ dysfunction syndrome. Biomed Pharmacother 2024; 178:117180. [PMID: 39068853 DOI: 10.1016/j.biopha.2024.117180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Sepsis and septic shock are critical medical conditions characterized by a systemic inflammatory response to infection, significantly contributing to global mortality rates. The progression to multiple organ dysfunction syndrome (MODS) represents the most severe complication of sepsis and markedly increases clinical mortality. Central to the pathophysiology of sepsis, endothelial cells play a crucial role in regulating microcirculation and maintaining barrier integrity across various organs and tissues. Recent studies have underscored the pivotal role of endothelial function in the development of sepsis-induced MODS. This review aims to provide a comprehensive overview of the pathophysiology of sepsis-induced MODS, with a specific focus on endothelial dysfunction. It also compiles compelling evidence regarding potential small molecules that could attenuate sepsis and subsequent multi-organ damage by modulating endothelial function. Thus, this review serves as an essential resource for clinical practitioners involved in the diagnosing, managing, and providing intensive care for sepsis and associated multi-organ injuries, emphasizing the importance of targeting endothelial cells to enhance outcomes of the patients.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Chen K, Wang D, Qian M, Weng M, Lu Z, Zhang K, Jin Y. Endothelial cell dysfunction and targeted therapeutic drugs in sepsis. Heliyon 2024; 10:e33340. [PMID: 39027563 PMCID: PMC11255673 DOI: 10.1016/j.heliyon.2024.e33340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by an abnormal host response to microbial infections. During its pathogenesis, vascular endothelial cells (ECs) play a pivotal role as essential components in maintaining microcirculatory homeostasis. This article aims to comprehensively review the multifaceted physiological functions of vascular ECs, elucidate the alterations in their functionality throughout the course of sepsis, and explore recent advancements in research concerning sepsis-related therapeutic drugs targeting ECs.
Collapse
Affiliation(s)
- Kunwei Chen
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Wang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minyue Qian
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengcao Weng
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongteng Lu
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Jin
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Ider M, Ceylan C, Naseri A, Ceylan O, Durgut MK, Ok M, Iyigun SS, Erol BB, Sahin HB, Kilickaya MC. Evaluation of endothelial glycocalyx injury biomarkers in feline hemotropic mycoplasmosis. Sci Rep 2024; 14:12931. [PMID: 38839816 PMCID: PMC11153643 DOI: 10.1038/s41598-024-62359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
The present study aimed to investigate endothelial glycocalyx (eGCx) damage in cats with feline hemotropic mycoplasmosis caused by Mycoplasma haemofelis using selected biomarkers and to determine the diagnostic and prognostic significance of these biomarkers. The study included 25 cats with feline hemotropic mycoplasmosis and 10 healthy cats. Clinical examination, blood gas analysis, complete blood count, and biochemical analysis were performed. Hemotropic mycoplasmosis diagnosed by microscopic examination and molecularly confirmed by PCR targeting the Mycoplasma haemofelis 16s rRNA gene. To evaluate endothelial glycocalyx damage, syndecan-1, endothelin-1 (ET-1), asymmetric dimethylarginine (ADMA), and vascular endothelial growth factor-A (VEGF-A) concentrations were measured using cat-specific commercial ELISA kits. Of the cats with feline hemotropic mycoplasmosis, 14 (56%) survived and 11 (44%) died. While syndecan-1 and ET-1 concentrations were significantly higher in cats with hemotropic mycoplasmosis compared to the control group (p < 0.001), no statistically significant difference was found for ADMA and VEGF-A concentrations (p > 0.05). Endothelial glycocalyx biomarkers showed significant correlations with each other and with hematological parameters (p < 0.01). The results of the ROC analysis showed that ET-1 with area under the curve (AUC) of 0.821 (p < 0.01) and VEGF-A with AUC of 0.805 (p < 0.010) were found to be significant prognostic indicators. In conclusion, this study demonstrated that serum syndecan-1 and ET-1 can be used as diagnostic and serum ET-1 and VEGF-A as prognostic biomarkers in cats with hemotropic mycoplasmosis. Our results indicate the development of eGCx damage in feline hemotropic mycoplasmosis and suggest that glycocalyx disruption may contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Merve Ider
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey.
| | - Ceylan Ceylan
- Department of Parasitology, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
| | - Amir Naseri
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Onur Ceylan
- Department of Parasitology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Murat Kaan Durgut
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Mahmut Ok
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Suleyman Serhat Iyigun
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Busra Burcu Erol
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Hatice Betul Sahin
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Merve Cansu Kilickaya
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
5
|
Hernández-Espinosa LC, Hernández-Muñoz R. Blood flow-bearing physical forces, endothelial glycocalyx, and liver enzyme mobilization: A hypothesis. J Gen Physiol 2024; 156:e202313462. [PMID: 38231124 PMCID: PMC10794122 DOI: 10.1085/jgp.202313462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/13/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024] Open
Abstract
Numerous elements involved in shear stress-induced signaling have been identified, recognizing their functions as mechanotransducing ion channels situated at cellular membranes. This form of mechanical signaling relies on transmembrane proteins and cytoplasmic proteins that restructure the cytoskeleton, contributing to mechanotransduction cascades. Notably, blood flow generates mechanical forces that significantly impact the structure and remodeling of blood vessels. The primary regulation of blood vessel responses occurs through hemodynamic forces acting on the endothelium. These mechanical events intricately govern endothelial biophysical, biochemical, and genetic responses. Endothelial cells, positioned on the intimal surface of blood vessels, have the capability to express components of the glycocalyx. This endothelial structure emerges as a pivotal factor in mechanotransduction and the regulation of vascular tone. The endothelial glycocalyx assumes diverse roles in both health and disease. Our findings propose a connection between the release of specific enzymes from the rat liver and variations in the hepatic blood flow/mass ratio. Importantly, this phenomenon is not correlated with liver necrosis. Consequently, this review serves as an exploration of the potential involvement of membrane proteins in a hypothetical mechanotransducing phenomenon capable of controlling the release of liver enzymes.
Collapse
Affiliation(s)
- Lorena Carmina Hernández-Espinosa
- Department of Cell Biology and Development, Institute of Cellular Physiology, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rolando Hernández-Muñoz
- Department of Cell Biology and Development, Institute of Cellular Physiology, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
6
|
Li L, Xu S, Li M, Yin X, Xi H, Yang P, Ma L, Zhang L, Li X. Combined gestational age and serum fucose for early prediction of risk for bronchopulmonary dysplasia in premature infants. BMC Pediatr 2024; 24:107. [PMID: 38347448 PMCID: PMC10860215 DOI: 10.1186/s12887-024-04556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE As the predominant complication in preterm infants, Bronchopulmonary Dysplasia (BPD) necessitates accurate identification of infants at risk and expedited therapeutic interventions for an improved prognosis. This study evaluates the potential of Monosaccharide Composite (MC) enriched with environmental information from circulating glycans as a diagnostic biomarker for early-onset BPD, and, concurrently, appraises BPD risk in premature neonates. MATERIALS AND METHODS The study incorporated 234 neonates of ≤32 weeks gestational age. Clinical data and serum samples, collected one week post-birth, were meticulously assessed. The quantification of serum-free monosaccharides and their degraded counterparts was accomplished via High-performance Liquid Chromatography (HPLC). Logistic regression analysis facilitated the construction of models for early BPD diagnosis. The diagnostic potential of various monosaccharides for BPD was determined using Receiver Operating Characteristic (ROC) curves, integrating clinical data for enhanced diagnostic precision, and evaluated by the Area Under the Curve (AUC). RESULTS Among the 234 neonates deemed eligible, BPD development was noted in 68 (29.06%), with 70.59% mild (48/68) and 29.41% moderate-severe (20/68) cases. Multivariate analysis delineated several significant risk factors for BPD, including gestational age, birth weight, duration of both invasive mechanical and non-invasive ventilation, Patent Ductus Arteriosus (PDA), pregnancy-induced hypertension, and concentrations of two free monosaccharides (Glc-F and Man-F) and five degraded monosaccharides (Fuc-D, GalN-D, Glc-D, and Man-D). Notably, the concentrations of Glc-D and Fuc-D in the moderate-to-severe BPD group were significantly diminished relative to the mild BPD group. A potent predictive capability for BPD development was exhibited by the conjunction of gestational age and Fuc-D, with an AUC of 0.96. CONCLUSION A predictive model harnessing the power of gestational age and Fuc-D demonstrates promising efficacy in foretelling BPD development with high sensitivity (95.0%) and specificity (94.81%), potentially enabling timely intervention and improved neonatal outcomes.
Collapse
Affiliation(s)
- Liangliang Li
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Shimin Xu
- Division of Neonatology, Beijing jingdu Children's Hospital, Beijing, China
| | - Miaomiao Li
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Xiangyun Yin
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Hongmin Xi
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Ping Yang
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Lili Ma
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Lijuan Zhang
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China.
| | - Xianghong Li
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China.
| |
Collapse
|
7
|
Wang Z, Xu S, Qiu Z, Zheng C, Cheng F, Li L, Xu Z, Song Q, Zhang F. Effect of sodium bicarbonate Ringer's solution on lung injury in rats with traumatic hemorrhagic shock. J Biochem Mol Toxicol 2024; 38:e23608. [PMID: 38084607 DOI: 10.1002/jbt.23608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/07/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
This study aimed to explore the impact of different pH values of resuscitation fluid on traumatic hemorrhagic shock (THS), focusing on their effects on glycocalyx and inflammation. A rat model of THS was induced by hemorrhage from a left femur fracture, while an oxygen-glucose deprivation/reoxygenation (OGD/R)-induced HULEC-5a cell model was considered as an in vitro THS model. The lung tissue pathology and glycocalyx structure were assessed through hematoxylin-eosin (H&E) staining and transmission electron microscope examination. The levels of glycocalyx-related factors and inflammation-related factors were determined by enzyme-linked immunosorbent assay (ELISA). The expression of glycocalyx-related proteins, cell junction-related proteins, and proteins involved in the PI3K/Akt/NF-κB signaling pathway was analyzed by western blot. The results showed that both sodium bicarbonate Ringer's solution (BRS) and lactate Ringer's solution (LRS) were effective in restoring mean arterial pressure and heart rate in THS rats. However, LRS has a stronger impact on promoting inflammation and damaging the glycocalyx compared with BRS. In OGD/R-induced HULEC-5a cells, a pH of 7.4 and 6.5 increased inflammation and disrupted the glycocalyx, while a pH of 8.1 had no significant effect on inflammation or glycocalyx. Furthermore, the PI3K/Akt/NF-κB signaling pathway was activated by fluid resuscitation and different pH values. However, the activating effect of BRS and pH 8.1 on the PI3K/Akt/NF-κB signaling pathway was milder compared with LRS and pH6.5. In conclusion, an alkaline recovery environment was more beneficial for the treatment of THS.
Collapse
Affiliation(s)
- Zhenjie Wang
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Shugen Xu
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Zhaolei Qiu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Chuanming Zheng
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Feng Cheng
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Lei Li
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Zhipeng Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Qi Song
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Fulong Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
8
|
Cao J, Chen Y. The impact of vascular endothelial glycocalyx on the pathogenesis and treatment of disseminated intravascular coagulation. Blood Coagul Fibrinolysis 2023; 34:465-470. [PMID: 37823419 PMCID: PMC10754481 DOI: 10.1097/mbc.0000000000001257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Disseminated intravascular coagulation (DIC) is a complex disorder characterized by widespread activation of blood clotting mechanisms throughout the body. Understanding the role of vascular endothelial glycocalyx in the pathogenesis and treatment of DIC is crucial for advancing our knowledge in this field. The vascular endothelial glycocalyx is a gel-like layer that coats the inner surface of blood vessels. It plays a significant role in maintaining vascular integrity, regulating fluid balance, and preventing excessive clotting. In the pathogenesis of DIC, the disruption of the vascular endothelial glycocalyx is a key factor. Pathological conditions trigger the activation of enzymes, including heparanase, hyaluronase, and matrix metalloproteinase. This activation leads to glycocalyx degradation, subsequently exposing endothelial cells to procoagulant stimuli. Additionally, the ANGPTs/Tie-2 signaling pathway plays a role in the imbalance between the synthesis and degradation of VEG, exacerbating endothelial dysfunction and DIC. Understanding the mechanisms behind glycocalyx degradation and its impact on DIC can provide valuable insights for the development of targeted therapies. Preservation of the glycocalyx integrity may help prevent the initiation and propagation of DIC. Strategies such as administration of exogenous glycocalyx components, anticoagulant agents, or Tie-2 antibody agents have shown promising results in experimental models. In conclusion, the vascular endothelial glycocalyx plays a crucial role in the pathogenesis and treatment of DIC. Further research in this field is warranted to unravel the complex interactions between the glycocalyx and DIC, ultimately leading to the development of novel therapies.
Collapse
Affiliation(s)
- Jingjing Cao
- Department of Intensive Care Medicine, Binhaiwan Central Hospital of Dongguan, Dongguan City, Guangdong Province, China
| | | |
Collapse
|
9
|
Cao J, Ding C, Huang J, Chen Y, Chen Y. PULMONARY VASCULAR ENDOTHELIAL GLYCOCALYX DEGRADATION CONTRIBUTES TO ACUTE LUNG INJURY IN EXPERIENCING HEATSTROKE. Shock 2023; 59:966-972. [PMID: 37040184 DOI: 10.1097/shk.0000000000002130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
ABSTRACT Objectives: This study investigated the role and potential involvement of pulmonary vascular glycocalyx degradation in acute lung injury in rats with severe heatstroke (HS). Methods: Rats in an established HS model were exposed to a heated environment for 60 min in an incubator (temperature, 40°C ± 2°C; humidity, 65% ± 5%). Following pretreatment with heparanase III (HPSE III) or heparin, pathological lung injury, arterial blood gas, alveolar barrier disruption, and hemodynamic changes were evaluated. The vascular endothelial structures of the lungs were examined using electron microscopy. The concentration of Evans blue dye in the lungs and arterial blood gas were assessed. An enzyme-linked immunosorbent assay was used to quantify the plasma concentration of heparan sulfate proteoglycan. The expression of glypican-1 and syndecan-1 in pulmonary vessels was measured using immunofluorescence. Western blots were used to detect the expression of TNF-α, IL-6, and vascular endothelial biomarkers in the rat lungs. Pulmonary apoptosis was assessed using a TUNEL (terminal dUTP nick end labeling) assay, and the concentrations of malondialdehyde were measured. Results: Glycocalyx shedding aggravated lung injuries. Severe histopathological damage was observed, and indexes of lung function deviated from abnormal ranges. In addition, pulmonary vascular endothelial cells were disrupted. Compared with the HS group, the plasma concentration of heparan sulfate proteoglycan significantly increased in the HPSE group ( P < 0.05). The expression of glypican-1 and syndecan-1 decreased, and the extravasation of Evans blue dye increased ( P < 0.01). Endothelial biomarker expression increased in the lung tissue, whereas occludin expression decreased. Moreover, TNF-α and IL-6 were overexpressed following heat stress. Furthermore, apoptosis of pulmonary tissues and the concentration of malondialdehyde in rat lungs increased in the HS and HPSE groups. Conclusions : Heatstroke induced pulmonary glycocalyx degradation, which increased vascular permeability and aggravated vascular endothelial dysfunction, contributing to apoptosis, inflammation, and oxidation in the pulmonary tissues.
Collapse
Affiliation(s)
- Jingjing Cao
- Department of Intensive Care Medicine, Dongguan Affiliated Hospital of Jinan University, Dongguan City, Guangdong Province, China
| | - Chengjia Ding
- Department of Intensive Care Medicine, Binhaiwan Central Hospital of Dongguan, Dongguan City, Guangdong Province, China
| | - Jieen Huang
- Department of Intensive Care Medicine, Dongguan Affiliated Hospital of Jinan University, Dongguan City, Guangdong Province, China
| | - Yanzhu Chen
- Department of Intensive Care Medicine, Binhaiwan Central Hospital of Dongguan, Dongguan City, Guangdong Province, China
| | - Yi Chen
- Department of Intensive Care Medicine, Binhaiwan Central Hospital of Dongguan, Dongguan City, Guangdong Province, China
| |
Collapse
|
10
|
Fatmi A, Saadi W, Beltrán-García J, García-Giménez JL, Pallardó FV. The Endothelial Glycocalyx and Neonatal Sepsis. Int J Mol Sci 2022; 24:364. [PMID: 36613805 PMCID: PMC9820255 DOI: 10.3390/ijms24010364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Sepsis carries a substantial risk of morbidity and mortality in newborns, especially preterm-born neonates. Endothelial glycocalyx (eGC) is a carbohydrate-rich layer lining the vascular endothelium, with important vascular barrier function and cell adhesion properties, serving also as a mechano-sensor for blood flow. eGC shedding is recognized as a fundamental pathophysiological process generating microvascular dysfunction, which in turn contributes to multiple organ failure and death in sepsis. Although the disruption of eGC and its consequences have been investigated intensively in the adult population, its composition, development, and potential mechanisms of action are still poorly studied during the neonatal period, and more specifically, in neonatal sepsis. Further knowledge on this topic may provide a better understanding of the molecular mechanisms that guide the sepsis pathology during the neonatal period, and would increase the usefulness of endothelial glycocalyx dysfunction as a diagnostic and prognostic biomarker. We reviewed several components of the eGC that help to deeply understand the mechanisms involved in the eGC disruption during the neonatal period. In addition, we evaluated the potential of eGC components as biomarkers and future targets to develop therapeutic strategies for neonatal sepsis.
Collapse
Affiliation(s)
- Ahlam Fatmi
- INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
| | - Wiam Saadi
- Department of Biology, Faculty of Nature, Life and Earth Sciences, University of Djillali Bounaama, Khemis Miliana 44225, Algeria
| | - Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, CA 92093, USA
| | - José Luis García-Giménez
- INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Federico V. Pallardó
- INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
11
|
Li L, Cook C, Liu Y, Li J, Jiang J, Li S. Endothelial glycocalyx in hepatopulmonary syndrome: An indispensable player mediating vascular changes. Front Immunol 2022; 13:1039618. [PMID: 36618396 PMCID: PMC9815560 DOI: 10.3389/fimmu.2022.1039618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular complication that causes respiratory insufficiency in patients with chronic liver diseases. HPS is characterized by two central pathogenic features-intrapulmonary vascular dilatation (IPVD) and angiogenesis. Endothelial glycocalyx (eGCX) is a gel-like layer covering the luminal surface of blood vessels which is involved in a variety of physiological and pathophysiological processes including controlling vascular tone and angiogenesis. In terms of lung disorders, it has been well established that eGCX contributes to dysregulated vascular contraction and impaired blood-gas barrier and fluid clearance, and thus might underlie the pathogenesis of HPS. Additionally, pharmacological interventions targeting eGCX are dramatically on the rise. In this review, we aim to elucidate the potential role of eGCX in IPVD and angiogenesis and describe the possible degradation-reconstitution equilibrium of eGCX during HPS through a highlight of recent literature. These studies strongly underscore the therapeutic rationale in targeting eGCX for the treatment of HPS.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| | - Christopher Cook
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yale Liu
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shaomin Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| |
Collapse
|
12
|
Mitra R, Nersesyan A, Pentland K, Melin MM, Levy RM, Ebong EE. Diosmin and its glycocalyx restorative and anti-inflammatory effects on injured blood vessels. FASEB J 2022; 36:e22630. [PMID: 36315163 DOI: 10.1096/fj.202200053rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/10/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022]
Abstract
The endothelium, a crucial homeostatic organ, regulates vascular permeability and tone. Under physiological conditions, endothelial stimulation induces vasodilator endothelial nitric oxide (eNO) release and prevents adhesion molecule accessibility and leukocyte adhesion and migration into vessel walls. Endothelium dysfunction is a principal event in cardiovascular disorders, including atherosclerosis. Minimal attention is given to an important endothelial cell structure, the endothelial glycocalyx (GCX), a negatively charged heterogeneous polysaccharide that serves as a protective covering for endothelial cells and enables endothelial cells to transduce mechanical stimuli into various biological and chemical activities. Endothelial GCX shedding thus plays a role in endothelial dysfunction, for example by increasing vascular permeability and decreasing vessel tone. Consequently, there is increasing interest in developing therapies that focus on GCX repair to limit downstream endothelium dysfunction and prevent further downstream cardiovascular events. Here, we present diosmin (3',5,7-trihydroxy-4'-methoxyflavone-7-rhamnoglucoside), a flavone glycoside of diosmetin, which downregulates adhesive molecule expression, decreases inflammation and capillary permeability, and upregulates eNO expression. Due to these pleiotropic effects of diosmin on the vasculature, a possible unidentified mechanism of action is through GCX restoration. We hypothesize that diosmin positively affects GCX integrity along with GCX-related endothelial functions. Our hypothesis was tested in a partial ligation left carotid artery (LCA) mouse model, where the right carotid artery was the control for each mouse. Diosmin (50 mg/kg) was administered daily for 7 days, 72 h after ligation. Within the ligated mice LCAs, diosmin treatment elevated the activated eNO synthase level, inhibited inflammatory cell uptake, decreased vessel wall thickness, increased vessel diameter, and increased GCX coverage of the vessel wall. ELISA showed a decrease in hyaluronan concentration in plasma samples of diosmin-treated mice, signifying reduced GCX shedding. In summary, diosmin supported endothelial GCX integrity, to which we attribute diosmin's preservation of endothelial function as indicated by attenuated expression of inflammatory factors and restored vascular tone.
Collapse
Affiliation(s)
- Ronodeep Mitra
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Alina Nersesyan
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Kaleigh Pentland
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - M Mark Melin
- M Health Fairview Wound Healing Institute, Edina, Minnesota, USA
| | - Robert M Levy
- Director of Clinical Development, Primus Pharmaceuticals, Inc., Scottsdale, Arizona, USA
| | - Eno E Ebong
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA.,Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA.,Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States
| |
Collapse
|
13
|
Xu S, Qiu Z, Zheng C, Li L, Jiang H, Zhang F, Wang Z. Effect of miR-21-3p on lung injury in rats with traumatic hemorrhagic shock resuscitated with sodium bicarbonate Ringer's solution. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1331. [PMID: 36660723 PMCID: PMC9843335 DOI: 10.21037/atm-22-5148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/18/2022] [Indexed: 12/27/2022]
Abstract
Background Restricted fluid resuscitation is the most important early method for treating traumatic hemorrhagic shock (THS). This study sought to explore whether micro ribonucleic acid (miR)-21-3p affected resuscitated THS rats by regulating the glycocalyx and inflammation. Methods MiRNAs extracted from the lung tissues were analyzed by miRNA microarray assays. A rat model of THS was induced by hemorrhage from a left femur fracture. The pathological change in the lung tissues and glycocalyx structure was observed by hematoxylin and eosin staining and a transmission electron microscope examination. The miR-21-3p expression in the lung tissues and serum was detected by real-time quantitative polymerase chain reaction (RT-qPCR). The levels of glycocalyx-related factors and inflammation-related factors were determined by enzyme linked immunosorbent assays. The expression of glycocalyx-related proteins, cell junction-related proteins, and the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/nuclear factor kappa B (NF-κB) signaling pathway-related proteins was analyzed by Western blot. Results After RT-qPCR verification, the variation trend of miR-21-3p was in line with expected trends. The mean arterial pressure (MAP) and heart rate (HR) were decreased, and the lung injury and damage to the glycocalyx were all aggravated in the THS rats resuscitated with sodium bicarbonate Ringer's solution (BRS) or sodium lactate Ringer's solution (LRS). The expression of miR-21-3p was decreased in the THS rats resuscitated with BRS and increased in the THS rats resuscitated with LRS, and the upregulation of miR-21-3p further decreased the MAP and HR, and increased the levels of syndecan-1 (SDC-1), heparanase-1 (HPA1), interleukin (IL)-6, IL-1β, and tumor necrosis factor alpha (TNF-α) in the serum of the THS rats resuscitated with BRS. The upregulation of miR-21-3p also increased the expression of SDC-1, HPA1, β-catenin, matrix metallopeptidase (MMP)2, and MMP9, but decreased the expression of E-cadherin (E-cad) and activated the PI3K/Akt/NF-κB signaling pathway in the THS rats resuscitated with BRS and transfected with miR-21-3p compared to that of the THS rats resuscitated with BRS and transfected with miR-negative control (NC). Conclusions miR-21-3p promoted inflammation and glycocalyx damage by activating the PI3K/Akt/NF-κB signaling pathway, thereby aggravating the lung injury in the THS rats resuscitated with BRS.
Collapse
Affiliation(s)
- Shugen Xu
- Cheeloo College of Medicine, Shandong University, Jinan, China;,Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China;,Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Zhaolei Qiu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China;,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chuanming Zheng
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China;,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lei Li
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China;,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hai Jiang
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China;,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Fulong Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China;,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhenjie Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China;,Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China;,Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China;,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
14
|
Feng Z, Fan Y, Xie J, Liu S, Duan C, Wang Q, Ye Y, Yin W. HIF-1α promotes the expression of syndecan-1 and inhibits the NLRP3 inflammasome pathway in vascular endothelial cells under hemorrhagic shock. Biochem Biophys Res Commun 2022; 637:83-92. [DOI: 10.1016/j.bbrc.2022.10.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/13/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
15
|
Ziganshina MM, Ziganshin AR, Khalturina EO, Baranov II. Arterial hypertension as a consequence of endothelial glycocalyx dysfunction: a modern view of the problem of cardiovascular diseases. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022. [DOI: 10.15829/1728-8800-2022-3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Arterial hypertension (AH) is a leading risk factor for the development of cardiovascular, cerebrovascular, and renal diseases, which are among the top 10 most common causes of death in the world. The etiology of hypertension has not been fully elucidated, but it has been established that endothelial dysfunction is the most significant pathogenetic link in the formation and progression of the disease. The data obtained in the last 10-15 years on endothelial glycocalyx (eGC) studies indicate that endothelial dysfunction is preceded by destabilization and shedding of eGC with the appearance of its soluble components in the blood, which is equivalent to a process that can be designated as eGC dysfunction. Signs of eGC dysfunction are expressed in the development of hypertension, diseases of the cardiovascular system, and their complications. The purpose of this review is to analyze and substantiate the pathophysiological role of eGC dysfunction in hypertension and cardiovascular diseases and to describe approaches for its assessment and pharmacological correction. Abstracts and full-size articles of 425 publications in Pubmed/MEDLINE databases over 20 years were studied. The review discusses the role of eGC in the regulation of vascular tone, endothelial barrier function, and anti-adhesive properties of eGC. Modifications of eGC under the influence of pro-inflammatory stimuli, changes in eGC with age, and with increased salt load are considered. The aspect associated with eGC dysfunction in atherosclerosis, hyperglycemia and hypertension is covered. Assessment of eGC dysfunction is difficult but can be performed by indirect methods, in particular by detecting eGC components in blood. A brief description of the main approaches to pharmacoprevention and pharmacocorrection of hypertension is given from the position of exposure effects on eGC, which currently has more a fundamental than practical orientation. This opens up great opportunities for clinical studies of eGC dysfunction for the prevention and treatment of hypertension and justifies a new direction in the clinical pharmacology of antihypertensive drugs.
Collapse
Affiliation(s)
- M. M. Ziganshina
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology
| | - A. R. Ziganshin
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology
| | - E. O. Khalturina
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology;
I. M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I. I. Baranov
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology
| |
Collapse
|
16
|
Charfeddine S, Ibnhadjamor H, Jdidi J, Torjmen S, Kraiem S, Bahloul A, Makni A, Kallel N, Moussa N, Boudaya M, Touil I, Ghrab A, Elghoul J, Meddeb Z, Thabet Y, Ben Salem K, Addad F, Bouslama K, Milouchi S, Hammami R, Abdessalem S, Abid L. Sulodexide Significantly Improves Endothelial Dysfunction and Alleviates Chest Pain and Palpitations in Patients With Long-COVID-19: Insights From TUN-EndCOV Study. Front Cardiovasc Med 2022; 9:866113. [PMID: 35647070 PMCID: PMC9133483 DOI: 10.3389/fcvm.2022.866113] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/23/2022] [Indexed: 01/02/2023] Open
Abstract
Objective Non-respiratory long-coronavirus disease 2019 (COVID-19) symptoms are mainly related to a long-lasting endothelial dysfunction and microcirculation impairment. We hypothesized that Sulodexide, a purified glycosaminoglycan mixture with a beneficial endothelial effect in arterial and venous peripheral diseases, may be effective in a subset of patients with long COVID-19. Approach and Results We conducted a multicenter prospective quasi-experimental study. A total of 290 patients from the TUN-EndCOV study with long-COVID-19 symptoms and endothelial dysfunction were included. The endothelial function was clinically assessed using a post-occlusive reactive hyperemia protocol with finger thermal monitoring device. Endothelial quality index (EQI) was assessed at inclusion and at 21 days later. The study population was assigned to a sulodexide group (144 patients) or a no-medical treatment group (146 patients). Clinical characteristics were similar at inclusion in the two groups. Fatigue, shortness of breath, and chest pain were the most common symptoms, respectively, 54.5, 53.8, and 28.3%. At 21 days, the sulodexide group improved significantly better than the no-medical treatment group in chest pain (83.7 vs. 43.6%, p < 10-3), palpitations (85.2 vs. 52.9%, p = 0.009), and endothelial function [median delta-EQI 0.66 (0.6) vs. 0.18 (0.3); p < 10-3]. Endothelial function improvement was significantly correlated with chest pain and palpitations recovery (AUC, i.e., area under the curve = 0.66, CI [0.57- 0.75], p = 0.001 and AUC = 0.60, CI [0.51- 0.69], p = 0.03, respectively). Conclusion Sulodexide significantly improves long-lasting post-COVID-19 endothelial dysfunction and alleviates chest pain and palpitations.
Collapse
Affiliation(s)
- Salma Charfeddine
- Cardiology Department, Hedi Chaker University Hospital, Sfax, Tunisia
- Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | | | - Jihen Jdidi
- Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Preventive Medicine Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Slim Torjmen
- Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Pneumology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Salma Kraiem
- Cardiology Department, Tahar Sfar Hospital, Mahdia, Tunisia
| | - Amine Bahloul
- Cardiology Department, Hedi Chaker University Hospital, Sfax, Tunisia
- Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Ahmed Makni
- Cardiology Department, Hedi Chaker University Hospital, Sfax, Tunisia
- Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Nesrine Kallel
- Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Pneumology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Nedia Moussa
- Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Pneumology Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Mariem Boudaya
- Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Biochemistry Laboratory, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Imen Touil
- Pneumology Department, Tahar Sfar Hospital, Mahdia, Tunisia
| | - Aiman Ghrab
- Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Cardiology Department, Habib Bourguiba Hospital Medenine, Medenine, Tunisia
| | - Jamel Elghoul
- Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Pneumology Department, Habib Bourguiba Hospital Medenine, Medenine, Tunisia
| | - Zeineb Meddeb
- Internal Medicine Department, Mongi Slim LaMarsa Hospital, Tunis, Tunisia
| | - Yamina Thabet
- Internal Medicine Department, Mongi Slim LaMarsa Hospital, Tunis, Tunisia
| | | | | | - Kamel Bouslama
- Internal Medicine Department, Mongi Slim LaMarsa Hospital, Tunis, Tunisia
| | - Sami Milouchi
- Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Cardiology Department, Habib Bourguiba Hospital Medenine, Medenine, Tunisia
| | - Rania Hammami
- Cardiology Department, Hedi Chaker University Hospital, Sfax, Tunisia
- Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | | | - Leila Abid
- Cardiology Department, Hedi Chaker University Hospital, Sfax, Tunisia
- Faculty of Medicine, University of Sfax, Sfax, Tunisia
| |
Collapse
|
17
|
Egorova AV, Baranich TI, Brydun AV, Glinkina VV, Sukhorukov VS. Morphological and Histophysiological Features of the Brain Capillary Endothelium. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Kobayashi A, Mimuro S, Katoh T, Kobayashi K, Sato T, Kien TS, Nakajima Y. Dexmedetomidine suppresses serum syndecan-1 elevation and improves survival in a rat hemorrhagic shock model. Exp Anim 2022; 71:281-287. [PMID: 35110424 PMCID: PMC9388338 DOI: 10.1538/expanim.21-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hemorrhagic shock causes vascular endothelial glycocalyx (EGCX) damage and systemic inflammation. Dexmedetomidine (DEX) has anti-inflammatory and EGCX-protective effects, but its effect on
hemorrhagic shock has not been investigated. Therefore, we investigated whether DEX reduces inflammation and protects EGCX during hemorrhagic shock. Anesthetized Sprague-Dawley rats were
randomly assigned to five groups (n=7 per group): no shock (SHAM), hemorrhagic shock (HS), hemorrhagic shock with DEX (HS+DEX), hemorrhagic shock with DEX and the α7 nicotinic type
acetylcholine receptor antagonist methyllycaconitine citrate (HS+DEX/MLA), and hemorrhagic shock with MLA (HS+MLA). HS was induced by shedding blood to a mean blood pressure of 25–30 mmHg,
which was maintained for 30 min, after which rats were resuscitated with Ringer’s lactate solution at three times the bleeding volume. The survival rate was assessed up to 3 h after the
start of fluid resuscitation. Serum tumor necrosis factor-alpha (TNF-α) and syndecan-1 concentrations, and wet-to-dry ratio of the heart were measured 90 min after the start of fluid
resuscitation. The survival rate after 3 h was significantly higher in the HS+DEX group than in the HS group. Serum TNF-α and syndecan-1 concentrations, and the wet-to-dry ratio of heart
were elevated by HS, but significantly decreased by DEX. These effects were antagonized by MLA. DEX suppressed the inflammatory response and serum syndecan-1 elevation, and prolonged
survival in rats with HS.
Collapse
Affiliation(s)
- Atsushi Kobayashi
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine
| | - Soichiro Mimuro
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine
| | - Takasumi Katoh
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine
| | - Kensuke Kobayashi
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine
| | - Tsunehisa Sato
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine
| | - Truong Sang Kien
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine
| | - Yoshiki Nakajima
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine
| |
Collapse
|
19
|
Gokduman HC, Aygun E, Canbolat N, Canbaz M, Abdullah T, Ersen A, Buget MI. Fluid preloading before beach chair positioning for arthroscopic shoulder procedures: a randomized controlled trial. Braz J Anesthesiol 2021; 72:702-710. [PMID: 34563558 DOI: 10.1016/j.bjane.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/10/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The Beach Chair Position (BCP) has many advantages such as less neurovascular injury and better intra-articular visualization, but it has also negative consequences, including hemodynamic instability. Although maintaining normal Mean Arterial Pressure (MAP) is important, fluid management is also a crucial concept for hemodynamic stability. The main objective of this study is whether preloading before positioning would be effective for less hemodynamic instability. METHODS This randomized, controlled study was conducted in a single center in the Istanbul University, Istanbul Faculty of Medicine. Forty-nine patients undergoing elective arthroscopic surgery in the BCP were recruited. In the study group, crystalloid fluid at 10 mL.kg-1 of ideal body weight was administered intravenously 30 min before the BCP for preloading. The primary outcome measures were differences of hemodynamic variables as MAP, Stroke Volume (SV), Heart Rate (HR), and Cardiac Output (CO). The secondary outcome measures were Postoperative Nausea and Vomiting (PONV) rates in postoperative first day, surgical satisfaction scale, total ephedrine dose used during surgery, and total amount of fluid. RESULTS The MAP, CO, and SV measurements of the study group were higher than those of the control group in the 5th minute after the BCP (respectively, p = 0.001, p = 0.016, p = 0.01). The total amount of crystalloid and surgical satisfaction scales were higher in the study group (respectively, p = 0.016, p = 0.001). Total amount of colloid and ephedrine dose used in the intraoperative period, and PONV rates were lower in the study group (p = 0.003, p = 0.018, p = 0.019, respectively). CONCLUSION Consequently, preloading can be favorable approach to preserve hemodynamic stability.
Collapse
Affiliation(s)
- Huru Ceren Gokduman
- Istanbul University, Istanbul Faculty of Medicine, Anesthesiology, Istanbul, Turkey
| | - Elif Aygun
- Istanbul University, Istanbul Faculty of Medicine, Anesthesiology, Istanbul, Turkey
| | - Nur Canbolat
- Istanbul University, Istanbul Faculty of Medicine, Anesthesiology, Istanbul, Turkey.
| | - Mert Canbaz
- Istanbul University, Istanbul Faculty of Medicine, Anesthesiology, Istanbul, Turkey
| | - Taner Abdullah
- Istanbul University, Istanbul Faculty of Medicine, Anesthesiology, Istanbul, Turkey
| | - Ali Ersen
- Istanbul University, Istanbul Faculty of Medicine, Traumatology and Orthopedics, Istanbul, Turkey
| | - Mehmet I Buget
- Istanbul University, Istanbul Faculty of Medicine, Anesthesiology, Istanbul, Turkey
| |
Collapse
|
20
|
Soerensen M, Debrabant B, Halekoh U, Møller JE, Hassager C, Frydland M, Hjelmborg J, Beck HC, Rasmussen LM. Does diabetes modify the effect of heparin on plasma proteins? - A proteomic search for plasma protein biomarkers for diabetes-related endothelial dysfunction. J Diabetes Complications 2021; 35:107906. [PMID: 33785251 DOI: 10.1016/j.jdiacomp.2021.107906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/11/2021] [Accepted: 03/07/2021] [Indexed: 11/23/2022]
Abstract
AIM Heparin administration affects the concentrations of many plasma proteins through their displacement from the endothelial glycocalyx. A differentiated protein response in diabetes will therefore, at least partly, reflect glycocalyx changes. This study aims at identifying biomarkers of endothelial dysfunction in diabetes by statistical exploration of plasma proteome data for interactions between diabetes status and heparin treatment. METHODS Diabetes-by-heparin interactions in relation to protein levels were inspected by regression modelling in plasma proteome data from 497 patients admitted for acute angiography. Analyses were conducted separately for all 273 proteins and as set-based analyses of 44 heparin-relevant proteins identified by gene ontology analysis and 42 heparin-influenced proteins previously reported. RESULTS Seventy-five patients had diabetes and 361 received heparin before hospitalization. The proteome-wide analysis displayed no proteins with diabetes-heparin interaction to pass correction for multiple testing. The overall set-based analyses revealed significant association for both protein sets (p-values<2*10-4), while constraining on opposite directions of effect in diabetics and none-diabetics was insignificant (p-values = 0.11 and 0.17). CONCLUSIONS Our plasma proteome-wide interaction approach supports that diabetes influences heparin effects on protein levels, however the direction of effects and individual proteins could not be definitively pinpointed, likely reflecting a complex protein-basis for glycocalyx dysfunction in diabetes.
Collapse
Affiliation(s)
- Mette Soerensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000 Odense C, Denmark; Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Clinical Genetics, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark.
| | - Birgit Debrabant
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000 Odense C, Denmark.
| | - Ulrich Halekoh
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000 Odense C, Denmark.
| | - Jacob Eifer Møller
- Department of Clinical Cardiology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Cardiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Martin Frydland
- Department of Cardiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Jacob Hjelmborg
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000 Odense C, Denmark.
| | - Hans Christian Beck
- Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark.
| | - Lars Melholt Rasmussen
- Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark.
| |
Collapse
|
21
|
Gonzalez-Ochoa AJ, Raffetto JD, Hernández AG, Zavala N, Gutiérrez O, Vargas A, Loustaunau J. Sulodexide in the Treatment of Patients with Early Stages of COVID-19: A Randomized Controlled Trial. Thromb Haemost 2021; 121:944-954. [PMID: 33677827 DOI: 10.1055/a-1414-5216] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may induce several vascular endothelial-dependent systemic complications, and sulodexide has pleiotropic actions on the vascular endothelium, which may prove beneficial. We aimed to assess the effect of sulodexide when used within 3 days of coronavirus disease 2019 (COVID-19) clinical onset. We conducted a randomized placebo-controlled outpatient trial. To be included, patients must have been at high risk for severe clinical progression. Participants received sulodexide (oral 1,000 LRU/d) or placebo for 21 days. The primary endpoint was the need for hospital care. Also assessed were patients' need for supplemental oxygen as well as D-dimer and C-reactive protein (CRP) levels, thromboembolic events, major bleeding, and mortality. A total of 243 patients were included in the per-protocol analysis from June 5 to August 30, 2020. Of these, 124 received sulodexide and 119 received a placebo. Only 17.7% of the patients in the sulodexide group required hospitalization, compared with 29.4% in the placebo group (p = 0.03). This benefit persisted in the intention-to-treat analysis (15% in sulodexide group vs. 24% with placebo [p = 0.04]). With sulodexide, fewer patients required supplemental oxygen (30 vs. 42% [p = 0.05]). After 2 weeks, fewer patients had D-dimer levels >500 ng/dL (22 vs. 47% [p < 0.01]), and patients also had lower mean CRP levels (12.5 vs. 17.8 mg/dL [p < 0.01]). There were no between-group differences in thromboembolic events, major bleeding, or mortality. Treatment of COVID-19 patients with sulodexide, when provided within 3 days of clinical onset, improved their clinical outcomes. Although the results should be confirmed, sulodexide could be valuable in an outpatient setting.
Collapse
Affiliation(s)
- Alejandro J Gonzalez-Ochoa
- Department of Vascular-Endovascular Surgery, CLINEDEM, Colonia Comercial, San Luis Rio Colorado, Sonora, México.,Division of Vascular Surgery, Department of Surgery, Hospital General de Zona No12 Instituto Mexicano Seguro Social, San Luis Rio Colorado, Sonora, México
| | - Joseph D Raffetto
- Department of Surgery, Brigham and Women's Hospital, VA Boston Healthcare System, Harvard University, Boston, Massachusetts, United States
| | - Ana G Hernández
- Department of Otorhinolaryngology, CLINEDEM, Colonia Comercial, San Luis Rio Colorado, Sonora, México
| | - Nestor Zavala
- Hospital General de Zona No12 Instituto Mexicano Seguro Social, San Luis Rio Colorado, Sonora, México
| | - Obed Gutiérrez
- Department of Emergency Medicine, Hospital General de Zona No12 Instituto Mexicano Seguro Social, San Luis Rio Colorado, Sonora, México.,Department of Emergency, Hospital General, San Luis Rio Colorado, Sonora, México
| | - Arturo Vargas
- Urban Outpatient Care Center, Secretaria de Salud, San Luis Rio Colorado, Sonora, México
| | - Jorge Loustaunau
- Department of Emergency, Hospital General de Zona No12 Instituto Mexicano Seguro Social, San Luis Rio Colorado, Sonora, México
| |
Collapse
|
22
|
Langlo KAR, Silva GJJ, Overrein TS, Adams V, Wisløff U, Dalen H, Rolim N, Hallan SI. Circulating microRNAs May Serve as Biomarkers for Hypertensive Emergency End-Organ Injuries and Address Underlying Pathways in an Animal Model. Front Cardiovasc Med 2021; 7:626699. [PMID: 33644125 PMCID: PMC7906971 DOI: 10.3389/fcvm.2020.626699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/31/2020] [Indexed: 11/20/2022] Open
Abstract
There is an incomplete understanding of the underlying pathophysiology in hypertensive emergencies, where severely elevated blood pressure causes acute end-organ injuries, as opposed to the long-term manifestations of chronic hypertension. Furthermore, current biomarkers are unable to detect early end-organ injuries like hypertensive encephalopathy and renal thrombotic microangiopathy. We hypothesized that circulating microRNAs (c-miRs) could identify acute and chronic complications of severe hypertension, and that combinations of c-miRs could elucidate important pathways involved. We studied the diagnostic accuracy of 145 c-miRs in Dahl salt-sensitive rats fed either a low-salt (N = 20: 0.3% NaCl) or a high-salt (N = 60: 8% NaCl) diet. Subclinical hypertensive encephalopathy and thrombotic microangiopathy were diagnosed by histopathology. In addition, heart failure with preserved ejection fraction was evaluated with echocardiography and N-terminal pro-brain natriuretic peptide; and endothelial dysfunction was studied using acetylcholine-induced aorta ring relaxation. Systolic blood pressure increased severely in animals on a high-salt diet (high-salt 205 ± 20 mm Hg vs. low-salt 152 ± 18 mm Hg, p < 0.001). Partial least squares discriminant analysis revealed 68 c-miRs discriminating between animals with and without hypertensive emergency complications. Twenty-nine c-miRs were strongly associated with hypertensive encephalopathy, 24 c-miRs with thrombotic microangiopathy, 30 c-miRs with heart failure with preserved ejection fraction, and 28 c-miRs with endothelial dysfunction. Hypertensive encephalopathy, thrombotic microangiopathy and heart failure with preserved ejection fraction were associated with deviations in many of the same c-miRs, whereas endothelial dysfunction was associated with a different set of c-miRs. Several of these c-miRs demonstrated fair to good diagnostic accuracy for a composite outcome of hypertensive encephalopathy, thrombotic microangiopathy and heart failure with preserved ejection fraction in receiver-operating-curve analyses (area-under-curve 0.75–0.88). Target prediction revealed an enrichment of genes related to several pathways relevant for cardiovascular disease (e.g., mucin type O-glycan biosynthesis, MAPK, Wnt, Hippo, and TGF-beta signaling). C-miRs could potentially serve as biomarkers of severe hypertensive end-organ injuries and elucidate important pathways involved.
Collapse
Affiliation(s)
- Knut Asbjørn Rise Langlo
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Nephrology, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Gustavo Jose Justo Silva
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tina Syvertsen Overrein
- Division of Pathology and Medical Genetics, Department of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Volker Adams
- Department of Cardiology, Heart Center Dresden, TU Dresden, Dresden, Germany
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,School of Human Movement & Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Håvard Dalen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Natale Rolim
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stein Ivar Hallan
- Department of Nephrology, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
23
|
Taghavi S, Abdullah S, Duchesne J, Pociask D, Kolls J, Jackson-Weaver O. Interleukin 22 mitigates endothelial glycocalyx shedding after lipopolysaccharide injury. J Trauma Acute Care Surg 2021; 90:337-345. [PMID: 33502147 PMCID: PMC7872437 DOI: 10.1097/ta.0000000000003019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The endothelial glycocalyx (EG) on the luminal surface of endothelial cells contributes to the permeability barrier of vessels and prevents activation of the coagulation cascade. Endothelial glycocalyx damage, which occurs in the shock state, results in endotheliopathy. Interleukin (IL)-22 is a cytokine with both proinflammatory and anti-inflammatory properties, and how IL-22 affects the EG has not been studied. We hypothesized that IL-22:Fc, a recombinant fusion protein with human IL-22 and the Fc portion of human immunoglobulin G1 (which extends the protein half-life), would not affect EG shedding in endothelium after injury. METHODS Human umbilical vein endothelial cells (HUVECs) were exposed to 1 μg/mL lipopolysaccharide (LPS). Lipopolysaccharide-injured cells (n = 284) were compared with HUVECs with LPS injury plus 0.375 μg/mL of IL-22:Fc treatment (n = 293) for 12 hours. These two cohorts were compared with control HUVECs (n = 286) and HUVECs exposed to IL-22:Fc alone (n = 269). Cells were fixed and stained with fluorescein isothiocyanate-labeled wheat germ agglutinin to quantify EG. Total RNA was collected, and select messenger RNAs were quantified by real time - quantitative polymerase chain reaction (RT-qPCR) using SYBR green fluorescence. RESULTS Exposure of HUVECs to LPS resulted in degradation of the EG compared with control (5.86 vs. 6.09 arbitrary unit [AU], p = 0.01). Interleukin-22:Fc alone also resulted in degradation of EG (5.08 vs. 6.09 AU, p = 0.01). Treatment with IL-22:Fc after LPS injury resulted in less degradation of EG compared with LPS injury alone (5.86 vs. 5.08 AU, p = 0.002). Expression of the IL-22Ra1 receptor was not different for IL-22:Fc treated compared with LPS injury only (0.69 vs. 0.86 relative expression, p = 0.10). Treatment with IL-22:Fc after LPS injury resulted in less matrix metalloproteinase 2 (0.79 vs. 1.70 relative expression, p = 0.005) and matrix metalloproteinase 14 (0.94 vs. 2.04 relative expression, p = 0.02). CONCLUSIONS Interleukin-22:Fc alone induces EG degradation. However, IL-22:Fc treatment after LPS injury appears to mitigate EG degradation. This protective effect appears to be mediated via reduced expression of metalloproteinases.
Collapse
Affiliation(s)
- Sharven Taghavi
- From the Department of Surgery (S.T., S.A., J.D., O.J.-W.), and Center for Translational Research in Infection and Inflammation (D.P., J.K.), Tulane University School of Medicine, New Orleans, Louisiana
| | | | | | | | | | | |
Collapse
|
24
|
Vertkin A, Avdeev S, Roitman E, Suchkov I, Kuznetsova I, Zamyatin M, Stoiko Y, Zhuravleva M, Zayratyants O. Treatment of COVID-19 from the perspective of endotheliopathy correction and prevention of thrombotic complications. The agreed position of the experts. PROFILAKTICHESKAYA MEDITSINA 2021; 24:45. [DOI: 10.17116/profmed20212404145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
|
25
|
Prikryl P, Satrapova V, Frydlova J, Hruskova Z, Zima T, Tesar V, Vokurka M. Mass spectrometry-based proteomic exploration of the small urinary extracellular vesicles in ANCA-associated vasculitis in comparison with total urine. J Proteomics 2020; 233:104067. [PMID: 33307252 DOI: 10.1016/j.jprot.2020.104067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/11/2020] [Accepted: 11/29/2020] [Indexed: 01/07/2023]
Abstract
ANCA-associated vasculitis (AAV) is a rare, but potentially severe autoimmune disease, even nowadays displaying increased mortality and morbidity. Finding early biomarkers of activity and prognosis is thus very important. Small extracellular vesicles (EVs) isolated from urine can be considered as a non-invasive source of biomarkers. We evaluated several protocols for urinary EV isolation. To eliminate contaminating non-vesicular proteins due to AAV associated proteinuria we used proteinase K treatment. We investigated the differences in proteomes of small EVs of patients with AAV compared to healthy controls by label-free LC-MS/MS. In parallel, we performed an analogous proteomic analysis of urine samples from identical patients. The study results showed significant differences and similarities in both EV and urine proteome, the latter one being highly affected by proteinuria. Using bioinformatics tools we explored differentially changed proteins and their related pathways with a focus on the pathophysiology of AAV. Our findings indicate significant regulation of Golgi enzymes, such as MAN1A1, which can be involved in T cell activation by N-glycans glycosylation and may thus play a key role in pathogenesis and diagnosis of AAV. SIGNIFICANCE: The present study explores for the first time the changes in proteomes of small extracellular vesicles and urine of patients with renal ANCA-associated vasculitis compared to healthy controls by label-free LC-MS/MS. Isolation of vesicles from proteinuric urine samples has been modified to minimize contamination by plasma proteins and to reduce co-isolation of extraluminal proteins. Differentially changed proteins and their related pathways with a role in the pathophysiology of AAV were described and discussed. The results could be helpful for the research of potential biomarkers in renal vasculitis associated with ANCA.
Collapse
Affiliation(s)
- Petr Prikryl
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Satrapova
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jana Frydlova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zdenka Hruskova
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomas Zima
- Institute of Clinical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Vladimir Tesar
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
26
|
Dehghani T, Panitch A. Endothelial cells, neutrophils and platelets: getting to the bottom of an inflammatory triangle. Open Biol 2020; 10:200161. [PMID: 33050789 PMCID: PMC7653352 DOI: 10.1098/rsob.200161] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Severe fibrotic and thrombotic events permeate the healthcare system, causing suffering for millions of patients with inflammatory disorders. As late-state consequences of chronic inflammation, fibrosis and thrombosis are the culmination of pathological interactions of activated endothelium, neutrophils and platelets after vessel injury. Coupling of these three cell types ensures a pro-coagulant, cytokine-rich environment that promotes the capture, activation and proliferation of circulating immune cells and recruitment of key pro-fibrotic cell types such as myofibroblasts. As the first responders to sterile inflammatory injury, it is important to understand how endothelial cells, neutrophils and platelets help create this environment. There has been a growing interest in this intersection over the past decade that has helped shape the development of therapeutics to target these processes. Here, we review recent insights into how neutrophils, platelets and endothelial cells guide the development of pathological vessel repair that can also result in underlying tissue fibrosis. We further discuss recent efforts that have been made to translate this knowledge into therapeutics and provide perspective as to how a compound or combination therapeutics may be most efficacious when tackling fibrosis and thrombosis that is brought upon by chronic inflammation.
Collapse
Affiliation(s)
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, GBSF 2303, Davis, CA, USA
| |
Collapse
|
27
|
The protective role of estrogen on endothelial and glycocalyx barriers after shock conditions: A microfluidic study. Surgery 2020; 169:678-685. [PMID: 32988619 DOI: 10.1016/j.surg.2020.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/22/2020] [Accepted: 08/04/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Sexual dimorphism has been demonstrated after major trauma and hemorrhage shock with protective effects related to female sex or estrogen. Traumatic endotheliopathy is an important component of trauma-induced coagulopathy. Components of endothelial barrier dysfunction include degradation of the endothelial glycocalyx and endothelial cellular injury. Estrogen modulates endothelial function via its membrane and cellular receptors. The effects of estrogen on the vascular endothelial barrier after trauma and hemorrhage shock are, however, unknown. This topic was studied in an in vitro model under flow conditions. METHODS Monolayers of human umbilical vein endothelial cells were established in microfluidic flow devices. After overnight perfusion, cell monolayers were subjected to normoxic or hypoxic perfusion and then treated with either estrogen (as estradiol), testosterone (as dihydrotestosterone), or media alone. Endothelial activation/injury was indexed by soluble thrombomodulin and glycocalyx degradation by syndecan-1 and hyaluronic acid shedding as well as measurement of the thickness of the glycocalyx layer. The coagulation phenotype of the human umbilical vein endothelial cells was indexed by the relative values of the activities of tissue plasminogen activator and plasminogen activator inhibitor-1. Vascular endothelial growth factor was measured in cell culture supernatants using a solid-phase enzyme-linked immunosorbent assay. RESULTS Treatment with estrogen but not testosterone mitigated the adverse effect of shock on endothelial and glycocalyx barrier properties. Our biomimetic model suggests a beneficial effect of estrogen administration after trauma and hemorrhage shock on the glycocalyx and endothelial barriers. CONCLUSION Early estrogen treatment after trauma and hemorrhage shock may be a useful adjunct to mitigating the development of traumatic endotheliopathy.
Collapse
|
28
|
Dunkel B. Science-in-brief: The role of the glycocalyx in critically ill patients with reference to the horse. Equine Vet J 2020; 52:790-793. [PMID: 32786127 DOI: 10.1111/evj.13328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Bettina Dunkel
- Department of Veterinary Clinical Sciences, The Royal Veterinary College, North Mymms, Hatfield, Hertfordshire, UK
| |
Collapse
|
29
|
Kummer L, Zaradzki M, Vijayan V, Arif R, Weigand MA, Immenschuh S, Wagner AH, Larmann J. Vascular Signaling in Allogenic Solid Organ Transplantation - The Role of Endothelial Cells. Front Physiol 2020; 11:443. [PMID: 32457653 PMCID: PMC7227440 DOI: 10.3389/fphys.2020.00443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Graft rejection remains the major obstacle after vascularized solid organ transplantation. Endothelial cells, which form the interface between the transplanted graft and the host’s immunity, are the first target for host immune cells. During acute cellular rejection endothelial cells are directly attacked by HLA I and II-recognizing NK cells, macrophages, and T cells, and activation of the complement system leads to endothelial cell lysis. The established forms of immunosuppressive therapy provide effective treatment options, but the treatment of chronic rejection of solid organs remains challenging. Chronic rejection is mainly based on production of donor-specific antibodies that induce endothelial cell activation—a condition which phenotypically resembles chronic inflammation. Activated endothelial cells produce chemokines, and expression of adhesion molecules increases. Due to this pro-inflammatory microenvironment, leukocytes are recruited and transmigrate from the bloodstream across the endothelial monolayer into the vessel wall. This mononuclear infiltrate is a hallmark of transplant vasculopathy. Furthermore, expression profiles of different cytokines serve as clinical markers for the patient’s outcome. Besides their effects on immune cells, activated endothelial cells support the migration and proliferation of vascular smooth muscle cells. In turn, muscle cell recruitment leads to neointima formation followed by reduction in organ perfusion and eventually results in tissue injury. Activation of endothelial cells involves antibody ligation to the surface of endothelial cells. Subsequently, intracellular signaling pathways are initiated. These signaling cascades may serve as targets to prevent or treat adverse effects in antibody-activated endothelial cells. Preventive or therapeutic strategies for chronic rejection can be investigated in sophisticated mouse models of transplant vasculopathy, mimicking interactions between immune cells and endothelium.
Collapse
Affiliation(s)
- Laura Kummer
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcin Zaradzki
- Institute of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Rawa Arif
- Institute of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Andreas H Wagner
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jan Larmann
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
30
|
Can Endothelial Glycocalyx Be a Major Morphological Substrate in Pre-Eclampsia? Int J Mol Sci 2020; 21:ijms21093048. [PMID: 32357469 PMCID: PMC7246531 DOI: 10.3390/ijms21093048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Today pre-eclampsia (PE) is considered as a disease of various theories; still all of them agree that endothelial dysfunction is the leading pathogenic factor. Endothelial dysfunction is a sequence of permanent immune activation, resulting in the change of both the phenotype and the functions of an endothelial cell and of the extracellular layer associated with the cell membrane—endothelial glycocalyx (eGC). Numerous studies demonstrate that eGC mediates and regulates the key functions of endothelial cells including regulation of vascular tone and thromboresistance; and these functions are disrupted during PE. Taking into account that eGC and its components undergo alterations under pathological conditions leading to endothelial activation, it is supposed that eGC plays a certain role in pathogenesis of PE. Envisaging the eGC damage as a key factor of PE, might be a new approach to prevention, treatment, and rehabilitation of patients with PE. This approach could include the development of drugs protecting eGC and promoting regeneration of this structure. Since the issue of PE is far from being solved, any effort in this direction might be valuable.
Collapse
|
31
|
Abassi Z, Armaly Z, Heyman SN. Glycocalyx Degradation in Ischemia-Reperfusion Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:752-767. [PMID: 32035883 DOI: 10.1016/j.ajpath.2019.08.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/13/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
The glycocalyx is a layer coating the luminal surface of vascular endothelial cells. It is vital for endothelial function as it participates in microvascular reactivity, endothelium interaction with blood constituents, and vascular permeability. Structural and functional damage to glycocalyx occurs in various disease states. A prominent clinical situation characterized by glycocalyx derangement is ischemia-reperfusion (I/R) of the whole body as well as during selective I/R to organs such as the kidney, heart, lung, or liver. Degradation of the glycocalyx is now considered a cornerstone in I/R-related endothelial dysfunction, which further impairs local microcirculation with a feed-forward loop of organ damage, due to vasoconstriction, leukocyte adherence, and activation of the immune response. Glycocalyx damage during I/R is evidenced by rising plasma levels of its principal constituents, heparan sulfate and syndecan-1. By contrast, the concentrations of these compounds in the circulation decrease after successful protective interventions in I/R, suggesting their use as surrogate biomarkers of endothelial integrity. In light of the importance of the glycocalyx in preserving endothelial cell integrity and its involvement in pathologic conditions, several promising therapeutic strategies to restore the damaged glycocalyx and to attenuate its deleterious consequences have been suggested. This review focuses on alterations of glycocalyx during I/R injury in general (to vital organs in particular), and on maneuvers aimed at glycocalyx recovery during I/R injury.
Collapse
Affiliation(s)
- Zaid Abassi
- Department of Physiology, The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa, Israel; Laboratory Medicine, Rambam Health Campus, Haifa, Israel.
| | - Zaher Armaly
- Department of Nephrology, Nazareth Hospital, Nazareth, Azrieli Faculty of Medicine-Bar Ilan University, Jerusalem, Israel
| | - Samuel N Heyman
- Department of Medicine, Hadassah Hebrew University Hospital, Mt. Scopus, Jerusalem, Israel
| |
Collapse
|
32
|
Elkbuli A, Zajd S, Ehrhardt JD, McKenney M, Boneva D. Aggressive Crystalloid Resuscitation Outcomes in Low-Severity Pediatric Trauma. J Surg Res 2019; 247:350-355. [PMID: 31676145 DOI: 10.1016/j.jss.2019.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Trauma is the leading cause of death among children. Studies have found that insufficient intravenous (IV) fluid resuscitation contributes significantly to morbidity and mortality in pediatric trauma. While large-volume resuscitation represents a potential solution, overly aggressive fluid management may complicate hospitalizations and recovery. Through this study, we aim to evaluate the impact of aggressive fluid resuscitation on outcomes in pediatric trauma. MATERIALS AND METHODS This is a retrospective review utilizing our level I trauma center registry for pediatric patients aged <16 y admitted from 2014 to 2017. Patients transferred from our center within 24 h and those who arrived from outside hospitals were excluded. Patients who received blood product transfusions were excluded. Included patients were divided into two crystalloid groups: <60 mL/kg/24 h and ≥60 mL/kg/24 h. Outcome measures included ICU length-of-stay, length-of-hospitalization, complications, and mortality rate. RESULTS Study sample included 320 patients (<60 mL/kg/24 h = 219; ≥60 mL/kg/24 h = 101). The ≥60 mL/kg/24 h group was younger (9.95 versus 5.27, P = 0.0001). There were no significant differences in GCS on arrival, injury severity score, Abbreviated Injury Scale, Revised Trauma Scores, traumatic brain injury, and operative intervention between groups. Outcome measures showed there was no significant difference in 30-day readmission rate, complications, or mortality. Large-volume crystalloid resuscitation was associated with longer mean ICU length-of-stay (1.5 d versus 0.8 d, P = 0.004). CONCLUSIONS In this single-institution retrospective database analysis, large-volume crystalloid resuscitation (≥60 mL/kg) was associated with a significant increase in ICU length-of-stay without survival benefit. More research in the form of randomized trials will help determine the optimal rate for fluid resuscitation in pediatric trauma patients while weighing potential critical care complications.
Collapse
Affiliation(s)
- Adel Elkbuli
- Department of Surgery, Kendall Regional Medical Center, Miami, Florida.
| | - Sarah Zajd
- Department of Surgery, Kendall Regional Medical Center, Miami, Florida
| | - John D Ehrhardt
- Department of Surgery, Kendall Regional Medical Center, Miami, Florida
| | - Mark McKenney
- Department of Surgery, Kendall Regional Medical Center, Miami, Florida; University of South Florida, Tampa, Florida
| | - Dessy Boneva
- Department of Surgery, Kendall Regional Medical Center, Miami, Florida; University of South Florida, Tampa, Florida
| |
Collapse
|