1
|
Selzer L, VanderVeen LA, Parvangada A, Martin R, Collins SE, Mehrotra M, Callebaut C. Susceptibility Screening of HIV-1 Viruses to Broadly Neutralizing Antibodies, Teropavimab and Zinlirvimab, in People With HIV-1 Suppressed by Antiretroviral Therapy. J Acquir Immune Defic Syndr 2025; 98:64-71. [PMID: 39298557 DOI: 10.1097/qai.0000000000003528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/01/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND HIV envelope (env) diversity may result in resistance to broadly neutralizing antibodies (bNAbs). Assessment of genotypic or phenotypic susceptibility to antiretroviral treatment is often performed in people with HIV-1 (PWH) and used for clinical trial screening for HIV-1 bNAb susceptibility. Optimal bNAb susceptibility screening methods are not yet clear. METHODS Phenotypic and genotypic analyses were conducted on 124 screening samples from a phase 1b study of bNAbs teropavimab (3BNC117-LS) and zinlirvimab (10-1074-LS) administered with lenacapavir in virally suppressed PWH. Phenotypic analysis was conducted on integrated HIV-1 provirus and stimulated outgrowth virus, with susceptibility to bNAbs defined as 90% inhibitory concentration ≤2 μg/mL. The proviral DNA HIV env gene was genotyped using deep sequencing, and bNAb susceptibility predicted using published env amino acid signatures. RESULTS Proviral phenotypic results were reported for 109 of 124 samples; 75% (82/109) were susceptible to teropavimab, 65% (71/109) to zinlirvimab, and 50% (55/109) to both bNAbs. Phenotypic susceptibility of outgrowth viruses was available for 39 samples; 56% (22/39) were susceptible to teropavimab, and 64% (25/39) to zinlirvimab. Phenotypic susceptibilities correlated between these methods: teropavimab r = 0.82 ( P < 0.0001); zinlirvimab r = 0.77 ( P < 0.0001). Sixty-seven samples had genotypic and phenotypic data. Proviral genotypic signatures predicted proviral phenotypic susceptibility with high positive predictive value (68%-86% teropavimab; 63%-90% zinlirvimab). CONCLUSIONS bNAb susceptibility was correlated among all 3 in vitro assays used to determine teropavimab and zinlirvimab susceptibility in virally suppressed PWH. These findings may help refine PWH selection criteria for eligibility for future studies.
Collapse
|
2
|
Vemparala B, Guedj J, Dixit NM. Advances in the mathematical modeling of posttreatment control of HIV-1. Curr Opin HIV AIDS 2025; 20:92-98. [PMID: 39633541 DOI: 10.1097/coh.0000000000000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Several new intervention strategies have shown significant improvements over antiretroviral therapy (ART) in eliciting lasting posttreatment control (PTC) of HIV-1. Advances in mathematical modelling have offered mechanistic insights into PTC and the workings of these interventions. We review these advances. RECENT FINDINGS Broadly neutralizing antibody (bNAb)-based therapies have shown large increases over ART in the frequency and the duration of PTC elicited. Early viral dynamics models of PTC with ART have been advanced to elucidate the underlying mechanisms, including the role of CD8+ T cells. These models characterize PTC as an alternative set-point, with low viral load, and predict routes to achieving it. Large-scale omic datasets have offered new insights into viral and host factors associated with PTC. Correspondingly, new classes of models, including those using learning techniques, have helped exploit these datasets and deduce causal links underlying the associations. Models have also offered insights into therapies that either target the proviral reservoir, modulate immune responses, or both, assessing their translatability. SUMMARY Advances in mathematical modeling have helped better characterize PTC, elucidated and quantified mechanisms with which interventions elicit it, and informed translational efforts.
Collapse
Affiliation(s)
- Bharadwaj Vemparala
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | | | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
3
|
Pérez-Saucedo D, Castro-Perea NV, Ruíz-Cruz A, Bustos-Jaimes I, Viveros-Rogel M, Huerta-Hernández L, Moreno-Fierros L. Design and evaluation of a multi-epitope HIV-1 vaccine based on human parvovirus virus-like particles. Vaccine 2024; 45:126663. [PMID: 39721354 DOI: 10.1016/j.vaccine.2024.126663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The development of a protective HIV vaccine remains a challenge given the high antigenic diversity and mutational rate of the virus, which leads to viral escape and establishment of reservoirs in the host. Modern antigen design can guide immune responses towards conserved sites, consensus sequences or normally subdominant epitopes, thus enabling the development of broadly neutralizing antibodies and polyfunctional lymphocyte responses. Conventional epitope vaccines can often be impaired by low immunogenicity, a limitation that may be overcome by using a carrier system. In this work, Virus-Like Particles (VLPs) of the B19 human parvovirus were used as a carrier system for multiple HIV-1 epitopes displayed on the surface. Epitopes were selected based on being the binding site of broadly neutralizing antibodies (bnAbs) in patients. Full capsid assembly was confirmed by dynamic light scattering and morphology was confirmed by transmission electron imaging. The resulting chimeric VLPs were termed "VLP-MHIV-A". Antigenicity was confirmed by HIV+ patient sera binding to the chimeric VLP-MHIV-A. To evaluate immunogenicity, female C57bl/6 mice were immunized with the chimeric VLPs either via the intramuscular or subcutaneous route, specific humoral and cellular responses were evaluated, and neutralizing activity was measured in an in vitro reporter cell system. Substantial antibodies against whole-VLPs were induced in serum and vaginal lavages for both immunization routes. Antibody responses against the CD4 binding site, V3 loop and several epitopes of gp41 were detected. Both immunization routes demonstrated neutralizing activity; however, the I.M. route was more effective, showing significant neutralizing activity with up to 50 % inhibition of a tier 1 clade B virus infection. Taken as a whole, these results show that chimeric VLPs are an effective antigen capable of inducing HIV-1 specific antibodies with neutralizing activity.
Collapse
Affiliation(s)
- David Pérez-Saucedo
- Mucosal Immunoogy Laboratory, Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México 54090, Mexico
| | - Nancy Vanessa Castro-Perea
- National Technological of Mexico/Tijuana Technological Institute, Center for Graduate and Research in Chemistry, Postal Box 1166, Tijuana, Baja California 22000, Mexico
| | - Antonio Ruíz-Cruz
- Mucosal Immunoogy Laboratory, Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México 54090, Mexico
| | - Ismael Bustos-Jaimes
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Mónica Viveros-Rogel
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Leonor Huerta-Hernández
- Biomedical Research Institute, Department of Immunology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Leticia Moreno-Fierros
- Mucosal Immunoogy Laboratory, Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México 54090, Mexico.
| |
Collapse
|
4
|
Voss K, Kaur KM, Banerjee R, Breden F, Pennell M. Applying phylogenetic methods for species delimitation to distinguish B-cell clonal families. Front Immunol 2024; 15:1505032. [PMID: 39687606 PMCID: PMC11646844 DOI: 10.3389/fimmu.2024.1505032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024] Open
Abstract
The adaptive immune system generates a diverse array of B-cell receptors through the processes of V(D)J recombination and somatic hypermutation. B-cell receptors that bind to an antigen will undergo clonal expansion, creating a Darwinian evolutionary dynamic within individuals. A key step in studying these dynamics is to identify sequences derived from the same ancestral V(D)J recombination event (i.e. a clonal family). There are a number of widely used methods for accomplishing this task but a major limitation of all of them is that they rely, at least in part, on the ability to map sequences to a germline reference set. This requirement is particularly problematic in non-model systems where we often know little about the germline allelic diversity in the study population. Recognizing that delimiting B-cell clonal families is analogous to delimiting species from single locus data, we propose a novel strategy of reconstructing the phylogenetic tree of all B-cell sequences in a sample and using a popular species delimitation method, multi-rate Poisson Tree Processes (mPTP), to delimit clonal families. Using extensive simulations, we show that not only does this phylogenetically explicit approach perform well for the purpose of delimiting clonal families when no reference allele set is available, it performs similarly to state-of-the-art techniques developed specifically for B-cell data even when we have a complete reference allele set. Additionally, our analysis of an empirical dataset shows that mPTP performs similarly to leading methods in the field. These findings demonstrate the utility of using off-the-shelf phylogenetic techniques for analyzing B-cell clonal dynamics in non-model systems, and suggests that phylogenetic inference techniques may be potentially combined with mapping based approaches for even more robust inferences, even in model systems.
Collapse
Affiliation(s)
- Katalin Voss
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, United States
| | - Katrina M. Kaur
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Rituparna Banerjee
- Bioinformatics Graduate Program, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Richel E, Cordsmeier A, Bauer L, Fraedrich K, Vestweber R, Roshani B, Stolte-Leeb N, Ensser A, Stahl-Hennig C, Überla K. Mechanisms of sterilizing immunity provided by an HIV-1 neutralizing antibody against mucosal infection. PLoS Pathog 2024; 20:e1012777. [PMID: 39724193 DOI: 10.1371/journal.ppat.1012777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Broadly neutralizing antibodies (bnAbs) against HIV-1 have been shown to protect from systemic infection. When employing a novel challenge virus that uses HIV-1 Env for entry into target cells during the first replication cycle, but then switches to SIV Env usage, we demonstrated that bnAbs also prevented mucosal infection of the first cells. However, it remained unclear whether antibody Fc-effector functions contribute to this sterilizing immunity. Therefore, additional challenge viruses were produced that contain SIV Env and graded doses of a fusion-defective trimer of HIV-1 Env, to which the bnAb, PGT121 can bind without interfering with the SIV Env-based cell entry. After administration of either PGT121 or its mutant deficient in Fc-effector functions, rhesus macaques were intrarectally exposed to these challenge viruses and to those using either HIV-1 Env or SIV Env for entry into the first cells. Both antibodies similarly reduced infection events with the challenge virus using HIV-1 Env by a factor close to 200. Incorporating fusion-defective HIV-1 Env trimers into the particles of the challenge viruses at densities observed in primary virus isolates did not reduce SIV Env-mediated infection events. The results indicate that the sparsity of bnAb binding-sites on HIV-1 virions limits the contribution of Fc-effector functions to provide sterilizing immunity against mucosal viral infection. Hence, harnessing Fc-effector functions for sterilizing immunity against mucosal HIV-1 infection may require strategies to increase the degree of antibody opsonization.
Collapse
Affiliation(s)
- Elie Richel
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Arne Cordsmeier
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Larissa Bauer
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Kirsten Fraedrich
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | | | | | | - Armin Ensser
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | | - Klaus Überla
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
6
|
Schriek AI, Falck D, Wuhrer M, Kootstra NA, van Gils MJ, de Taeye SW. Functional comparison of Fc-engineering strategies to improve anti-HIV-1 antibody effector functions. Antiviral Res 2024; 231:106015. [PMID: 39343065 DOI: 10.1016/j.antiviral.2024.106015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Substantial reduction of the intact proviral reservoir is essential towards HIV-1 cure. In vivo administration of broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) trimer can decrease the viral reservoir, through Fc-mediated killing of infected cells. In this study, we compared three commonly used antibody engineering strategies to enhance Fc-mediated effector functions: (i) glyco-engineering, (ii) protein engineering, and (iii) subclass/hinge modifications in a panel of anti-HIV-1 antibodies. We found that antibody-dependent cellular phagocytosis (ADCP) was improved by elongating the hinge domain and switching to an IgG3 constant domain. In addition, potent NK cell activation and ADCC activity was observed for afucosylated antibodies and antibodies bearing the GASDALIE mutations. The combination of these engineering strategies further increased NK cell activation and induced antibody dependent cytotoxicity (ADCC) of infected cells at low antibody concentrations. The bNAb N6 was most effective at killing HIV-1 infected cells, likely due to its high affinity and optimal angle of approach. Overall, the findings of this study are applicable to other antibody formats, and can aid the development of effective immunotherapies and antibody-based treatments for HIV-1 cure strategies.
Collapse
Affiliation(s)
- Angela I Schriek
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands.
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Neeltje A Kootstra
- Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
| | - Marit J van Gils
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Steven W de Taeye
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Grant-McAuley W, Morgenlander WR, Ruczinski I, Kammers K, Laeyendecker O, Hudelson SE, Thakar M, Piwowar-Manning E, Clarke W, Breaud A, Ayles H, Bock P, Moore A, Kosloff B, Shanaube K, Meehan SA, van Deventer A, Fidler S, Hayes R, Larman HB, Eshleman SH. Identification of antibody targets associated with lower HIV viral load and viremic control. PLoS One 2024; 19:e0305976. [PMID: 39288118 PMCID: PMC11407625 DOI: 10.1371/journal.pone.0305976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND High HIV viral loads (VL) are associated with increased morbidity, mortality, and on-going transmission. HIV controllers maintain low VLs in the absence of antiretroviral therapy (ART). We previously used a massively multiplexed antibody profiling assay (VirScan) to compare antibody profiles in HIV controllers and persons living with HIV (PWH) who were virally suppressed on ART. In this report, we used VirScan to evaluate whether antibody reactivity to specific HIV targets and broad reactivity across the HIV genome was associated with VL and controller status 1-2 years after infection. METHODS Samples were obtained from participants who acquired HIV infection in a community-randomized trial in Africa that evaluated an integrated strategy for HIV prevention (HPTN 071 PopART). Controller status was determined using VL and antiretroviral (ARV) drug data obtained at the seroconversion visit and 1 year later. Viremic controllers had VLs <2,000 copies/mL at both visits; non-controllers had VLs >2,000 copies/mL at both visits. Both groups had no ARV drugs detected at either visit. VirScan testing was performed at the second HIV-positive visit (1-2 years after HIV infection). RESULTS The study cohort included 13 viremic controllers and 64 non-controllers. We identified ten clusters of homologous peptides that had high levels of antibody reactivity (three in gag, three in env, two in integrase, one in protease, and one in vpu). Reactivity to 43 peptides (eight unique epitopes) in six of these clusters was associated with lower VL; reactivity to six of the eight epitopes was associated with HIV controller status. Higher aggregate antibody reactivity across the eight epitopes (more epitopes targeted, higher mean reactivity across all epitopes) and across the HIV genome was also associated with lower VL and controller status. CONCLUSIONS We identified HIV antibody targets associated with lower VL and HIV controller status 1-2 years after infection. Robust aggregate responses to these targets and broad antibody reactivity across the HIV genome were also associated with lower VL and controller status. These findings provide novel insights into the relationship between humoral immunity and viral containment that could help inform the design of antibody-based approaches for reducing HIV VL.
Collapse
Affiliation(s)
- Wendy Grant-McAuley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William R Morgenlander
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kai Kammers
- Quantitative Sciences Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Oliver Laeyendecker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Sarah E Hudelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Manjusha Thakar
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Estelle Piwowar-Manning
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Autumn Breaud
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Helen Ayles
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter Bock
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Ayana Moore
- FHI 360, Durham, North Carolina, United States of America
| | - Barry Kosloff
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kwame Shanaube
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
| | - Sue-Ann Meehan
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Anneen van Deventer
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Richard Hayes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - H Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Susan H Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
8
|
Schwarzmüller M, Lozano C, Schanz M, Abela IA, Grosse-Holz S, Epp S, Curcio M, Greshake J, Rusert P, Huber M, Kouyos RD, Günthard HF, Trkola A. Decoupling HIV-1 antiretroviral drug inhibition from plasma antibody activity to evaluate broadly neutralizing antibody therapeutics and vaccines. Cell Rep Med 2024; 5:101702. [PMID: 39216479 PMCID: PMC11524982 DOI: 10.1016/j.xcrm.2024.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
The development of broadly neutralizing antibody (bnAb)-based therapeutic HIV-1 vaccines and cure concepts depends on monitoring bnAb plasma activity in people with HIV (PWH) on suppressive antiretroviral therapy (ART). To enable this, analytical strategies must be defined to reliably distinguish antibody-based neutralization from drug inhibition. Here, we explore strategies that either utilize drug-resistant viruses or remove drugs from plasma. We develop ART-DEX (ART dissociation and size exclusion), an approach which quantitatively separates drugs from plasma proteins following pH-triggered release allowing accurate definition of antibody-based neutralization. We demonstrate that ART-DEX, alone or combined with ART-resistant viruses, provides a highly effective and scalable means of assessing antibody neutralization during ART. Implementation of ART-DEX in standard neutralization protocols should be considered to enhance the analytical capabilities of studies evaluating bnAb therapeutics and therapeutic vaccines, furthering the development of advanced ART and HIV-1 cure strategies.
Collapse
Affiliation(s)
| | - Cristina Lozano
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Merle Schanz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Irene A Abela
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Silvan Grosse-Holz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Martina Curcio
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Jule Greshake
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Roger D Kouyos
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Huldrych F Günthard
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
9
|
Vemparala B, Chowdhury S, Guedj J, Dixit NM. Modelling HIV-1 control and remission. NPJ Syst Biol Appl 2024; 10:84. [PMID: 39117718 PMCID: PMC11310323 DOI: 10.1038/s41540-024-00407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Remarkable advances are being made in developing interventions for eliciting long-term remission of HIV-1 infection. The success of these interventions will obviate the need for lifelong antiretroviral therapy, the current standard-of-care, and benefit the millions living today with HIV-1. Mathematical modelling has made significant contributions to these efforts. It has helped elucidate the possible mechanistic origins of natural and post-treatment control, deduced potential pathways of the loss of such control, quantified the effects of interventions, and developed frameworks for their rational optimization. Yet, several important questions remain, posing challenges to the translation of these promising interventions. Here, we survey the recent advances in the mathematical modelling of HIV-1 control and remission, highlight their contributions, and discuss potential avenues for future developments.
Collapse
Affiliation(s)
- Bharadwaj Vemparala
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Shreya Chowdhury
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Jérémie Guedj
- Université Paris Cité, IAME, INSERM, F-75018, Paris, France
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
10
|
Becerra JC, Hitchcock L, Vu K, Gach JS. Neutralizing the threat: harnessing broadly neutralizing antibodies against HIV-1 for treatment and prevention. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:207-220. [PMID: 38975023 PMCID: PMC11224682 DOI: 10.15698/mic2024.07.826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024]
Abstract
Broadly neutralizing antibodies (bnAbs) targeting the human immunodeficiency virus-1 (HIV-1) have played a crucial role in elucidating and characterizing neutralization-sensitive sites on the HIV-1 envelope spike and in informing vaccine development. Continual advancements in identifying more potent bnAbs, along with their capacity to trigger antibody-mediated effector functions, coupled with modifications to extend their half-life, position them as promising candidates for both HIV-1 treatment and prevention. While current pharmacological interventions have made significant progress in managing HIV-1 infection and enhancing quality of life, no definitive cure or vaccines have been developed thus far. Standard treatments involve daily oral anti-retroviral therapy, which, despite its efficacy, can lead to notable long-term side effects. Recent clinical trial data have demonstrated encouraging therapeutic and preventive potential for bnAb therapies in both HIV-1-infected individuals and those without the infection. This review provides an overview of the advancements in HIV-1-specific bnAbs and discusses the insights gathered from recent clinical trials regarding their application in treating and preventing HIV-1 infection.
Collapse
Affiliation(s)
- Juan C Becerra
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Lauren Hitchcock
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Khoa Vu
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Johannes S Gach
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| |
Collapse
|
11
|
Voss K, Kaur KM, Banerjee R, Breden F, Pennell M. Evaluating methods for B-cell clonal family assignment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596491. [PMID: 38853833 PMCID: PMC11160721 DOI: 10.1101/2024.05.29.596491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The adaptive immune response relies on a diverse repertoire of B-cell receptors, each of which is characterized by a distinct sequence resulting from VDJ-recombination. Upon binding to an antigen, B-cells undergo clonal expansion and in a process unique to B-cells the overall binding affinity of the repertoire is further enhanced by somatic hypermutations in the receptor sequence. For B-cell repertoires it is therefore particularly important to analyze the dynamics of clonal expansion and patterns of somatic hypermutations and thus it is necessary to group the sequences into distinct clones to determine the number and identity of expanding clonal families responding to an antigen. Multiple methods are currently used to identify clones from sequences, employing distinct approaches to the problem. Until now there has not been an extensive comparison of how well these methods perform under the same conditions. Furthermore, since this is fundamentally a phylogenetics problem, we speculated that the mPTP method, which delimits species based on an analysis of changes in the underlying process of diversification, might perform as well as or better than existing methods. Here we conducted extensive simulations of B-cell repertoires under a diverse set of conditions and studied errors in clonal assignment and in downstream ancestral state reconstruction. We demonstrated that SCOPer-H consistently yielded superior results across parameters. However, this approach relies on a good reference assembly for the germline immunoglobulin genes which is lacking for many species. Using mPTP had lower error rates than tailor-made immunogenetic methods and should therefore be considered by researchers studying antibody evolution in non-model organisms without a reference genome.
Collapse
Affiliation(s)
- Katalin Voss
- Department of Quantitative and Computational Biology, University of Southern California, USA
| | - Katrina M. Kaur
- Department of Zoology, University of British Columbia, Canada
| | - Rituparna Banerjee
- Bioinformatics Graduate Program, Faculty of Science, University of British Columbia, Canada
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Canada
| | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, USA
- Department of Biological Sciences, University of Southern California, USA
| |
Collapse
|
12
|
Iketani S, Ho DD. SARS-CoV-2 resistance to monoclonal antibodies and small-molecule drugs. Cell Chem Biol 2024; 31:632-657. [PMID: 38640902 PMCID: PMC11084874 DOI: 10.1016/j.chembiol.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Over four years have passed since the beginning of the COVID-19 pandemic. The scientific response has been rapid and effective, with many therapeutic monoclonal antibodies and small molecules developed for clinical use. However, given the ability for viruses to become resistant to antivirals, it is perhaps no surprise that the field has identified resistance to nearly all of these compounds. Here, we provide a comprehensive review of the resistance profile for each of these therapeutics. We hope that this resource provides an atlas for mutations to be aware of for each agent, particularly as a springboard for considerations for the next generation of antivirals. Finally, we discuss the outlook and thoughts for moving forward in how we continue to manage this, and the next, pandemic.
Collapse
Affiliation(s)
- Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
13
|
Sakoi-Mosetlhi M, Ajibola G, Haghighat R, Batlang O, Maswabi K, Pretorius-Holme M, Powis KM, Lockman S, Makhema J, Litcherfeld M, Kuritzkes DR, Shapiro R. Caregivers of children with HIV in Botswana prefer monthly IV Broadly Neutralizing Antibodies (bNAbs) to daily oral ART. PLoS One 2024; 19:e0299942. [PMID: 38536810 PMCID: PMC10971757 DOI: 10.1371/journal.pone.0299942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/20/2024] [Indexed: 04/01/2024] Open
Abstract
INTRODUCTION Monthly intravenous infusion of broadly neutralizing monoclonal antibodies may be an attractive alternative to daily oral antiretroviral treatment for children living with HIV. However, acceptability among caregivers remains unknown. METHODS We evaluated monthly infusion of dual bNAbs (VRCO1LS and 10-1074) as a treatment alternative to ART among children participating in the Tatelo Study in Botswana. Eligible children aged 2-5 years received 8-32 weeks of bNAbs overlapping with ART, and up to 24 weeks of bNAbs alone as monthly intravenous infusion. Using closed-ended questionnaires, we evaluated caregiver acceptability of each treatment strategy prior to the first bNAb administration visit (pre-intervention) and after the completion of the final bNAb administration visit (post-intervention). RESULTS Twenty-five children completed the intervention phase of the study, and acceptability data were available from 24 caregivers at both time points. Responses were provided by the child's mother at both visits (60%), an extended family member at both visits (28%), or a combination of mother and an extended family member (12%). Caregiver acceptance of monthly bNAb infusions was extremely high both pre-and post-intervention, with 21/24 (87.5%) preferring bNAbs to ART pre-intervention, and 21/25 (84%) preferring bNAbs post-intervention. While no caregiver preferred ART pre-intervention, 2/25 preferred it post-intervention. Pre-intervention, 3 (13%) caregivers had no preference between monthly bNAbs or daily ART, and 2 (8%) had no preference post-intervention. Pre-intervention, the most common reasons for preferring bNAbs over ART were the perception that bNAbs were better at suppressing the virus than ART (n = 10) and the fact that infusions were dosed once monthly compared to daily ART (n = 9). Post-intervention, no dominant reason for preferring bNAbs over ART emerged from caregivers. CONCLUSIONS Monthly intravenous bNAb infusions were highly acceptable to caregivers of children with HIV in Botswana and preferred over standard ART by the majority of caregivers. CLINICAL TRIAL NUMBER NCT03707977.
Collapse
Affiliation(s)
| | | | - Roxanna Haghighat
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Oganne Batlang
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Kenneth Maswabi
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Molly Pretorius-Holme
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Kathleen M. Powis
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Departments of Internal Medicine and Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Shahin Lockman
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Joseph Makhema
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Mathias Litcherfeld
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Daniel R. Kuritzkes
- Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Roger Shapiro
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
14
|
Zacharopoulou P, Lee M, Oliveira T, Thornhill J, Robinson N, Brown H, Kinloch S, Goulder P, Fox J, Fidler S, Ansari MA, Frater J. Prevalence of resistance-associated viral variants to the HIV-specific broadly neutralising antibody 10-1074 in a UK bNAb-naïve population. Front Immunol 2024; 15:1352123. [PMID: 38562938 PMCID: PMC10982389 DOI: 10.3389/fimmu.2024.1352123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Broadly neutralising antibodies (bNAbs) targeting HIV show promise for both prevention of infection and treatment. Among these, 10-1074 has shown potential in neutralising a wide range of HIV strains. However, resistant viruses may limit the clinical efficacy of 10-1074. The prevalence of both de novo and emergent 10-1074 resistance will determine its use at a population level both to protect against HIV transmission and as an option for treatment. To help understand this further, we report the prevalence of pre-existing mutations associated with 10-1074 resistance in a bNAb-naive population of 157 individuals presenting to UK HIV centres with primary HIV infection, predominantly B clade, receiving antiretroviral treatment. Single genome analysis of HIV proviral envelope sequences showed that 29% of participants' viruses tested had at least one sequence with 10-1074 resistance-associated mutations. Mutations interfering with the glycan binding site at HIV Env position 332 accounted for 95% of all observed mutations. Subsequent analysis of a larger historic dataset of 2425 B-clade envelope sequences sampled from 1983 to 2019 revealed an increase of these mutations within the population over time. Clinical studies have shown that the presence of pre-existing bNAb mutations may predict diminished therapeutic effectiveness of 10-1074. Therefore, we emphasise the importance of screening for these mutations before initiating 10-1074 therapy, and to consider the implications of pre-existing resistance when designing prevention strategies.
Collapse
Affiliation(s)
| | - Ming Lee
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Thiago Oliveira
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY, United States
| | - John Thornhill
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Nicola Robinson
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen Brown
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sabine Kinloch
- Institute of Immunity and Transplantation, Royal Free Hospital, London, United Kingdom
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Julie Fox
- Department of Infection, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - M. Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford National Institute of Health Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
15
|
VanderVeen LA, Selzer L, Moldt B, Parvangada A, Li J, Ananworanich J, Crowell TA, Eron JJ, Daar ES, Haubrich R, Geleziunas R, Cyktor J, Mellors JW, Callebaut C. HIV-1 envelope diversity and sensitivity to broadly neutralizing antibodies across stages of acute HIV-1 infection. AIDS 2024; 38:607-610. [PMID: 38416554 PMCID: PMC10906214 DOI: 10.1097/qad.0000000000003792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 02/29/2024]
Abstract
We studied the relationship between viral diversity and susceptibility to broadly neutralizing antibodies (bNAbs) in longitudinal plasma and peripheral blood mononuclear cells from 89 people with HIV who initiated antiretroviral therapy (ART) during acute and early HIV-1 infection (AEHI). HIV-1 diversity and predicted bNAb susceptibility were comparable across AEHI. Diversity evolution was not observed during ART, suggesting (pro)viruses at initiation or during treatment may identify individuals with susceptible virus for bNAb interventional trials.
Collapse
Affiliation(s)
| | | | - Brian Moldt
- Gilead Sciences, Inc., Foster City, CA, USA
- GSK Vaccines, Rixensart, Belgium (Current)
| | | | - Jiani Li
- Gilead Sciences, Inc., Foster City, CA, USA
| | - Jintanat Ananworanich
- Amsterdam University Medical Centers, and Department of Global Health, Amsterdam Institute for Global Health & Development, Amsterdam, Netherlands
| | - Trevor A. Crowell
- U.S. Military HIV Research Program at Walter Reed Army Institute of Research, Silver Spring, and The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD
| | | | - Eric S. Daar
- The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA
| | | | | | | | | | | |
Collapse
|
16
|
Feist WN, Luna SE, Ben-Efraim K, Filsinger Interrante MV, Amorin NA, Johnston NM, Bruun TUJ, Ghanim HY, Lesch BJ, Dudek AM, Porteus MH. Combining Cell-Intrinsic and -Extrinsic Resistance to HIV-1 By Engineering Hematopoietic Stem Cells for CCR5 Knockout and B Cell Secretion of Therapeutic Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.583956. [PMID: 38496600 PMCID: PMC10942466 DOI: 10.1101/2024.03.08.583956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Autologous transplantation of CCR5 null hematopoietic stem and progenitor cells (HSPCs) is the only known cure for HIV-1 infection. However, this treatment is limited because of the rarity of CCR5 -null matched donors, the morbidities associated with allogeneic transplantation, and the prevalence of HIV-1 strains resistant to CCR5 knockout (KO) alone. Here, we propose a one-time therapy through autologous transplantation of HSPCs genetically engineered ex vivo to produce both CCR5 KO cells and long-term secretion of potent HIV-1 inhibiting antibodies from B cell progeny. CRISPR-Cas9-engineered HSPCs maintain engraftment capacity and multi-lineage potential in vivo and can be engineered to express multiple antibodies simultaneously. Human B cells engineered to express each antibody secrete neutralizing concentrations capable of inhibiting HIV-1 pseudovirus infection in vitro . This work lays the groundwork for a potential one-time functional cure for HIV-1 through combining the long-term delivery of therapeutic antibodies against HIV-1 and the known efficacy of CCR5 KO HSPC transplantation.
Collapse
|
17
|
Matsuda K, Maeda K. HIV Reservoirs and Treatment Strategies toward Curing HIV Infection. Int J Mol Sci 2024; 25:2621. [PMID: 38473868 DOI: 10.3390/ijms25052621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Combination antiretroviral therapy (cART) has significantly improved the prognosis of individuals living with human immunodeficiency virus (HIV). Acquired immunodeficiency syndrome has transformed from a fatal disease to a treatable chronic infection. Currently, effective and safe anti-HIV drugs are available. Although cART can reduce viral production in the body of the patient to below the detection limit, it cannot eliminate the HIV provirus integrated into the host cell genome; hence, the virus will be produced again after cART discontinuation. Therefore, research into a cure (or remission) for HIV has been widely conducted. In this review, we focus on drug development targeting cells latently infected with HIV and assess the progress including our current studies, particularly in terms of the "Shock and Kill", and "Block and Lock" strategies.
Collapse
Affiliation(s)
- Kouki Matsuda
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Kenji Maeda
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
18
|
Schriek AI, Aldon YLT, van Gils MJ, de Taeye SW. Next-generation bNAbs for HIV-1 cure strategies. Antiviral Res 2024; 222:105788. [PMID: 38158130 DOI: 10.1016/j.antiviral.2023.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Despite the ability to suppress viral replication using anti-retroviral therapy (ART), HIV-1 remains a global public health problem. Curative strategies for HIV-1 have to target and eradicate latently infected cells across the body, i.e. the viral reservoir. Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) have the capacity to neutralize virions and bind to infected cells to initiate elimination of these cells. To improve the efficacy of bNAbs in terms of viral suppression and viral reservoir eradication, next generation antibodies (Abs) are being developed that address the current limitations of Ab treatment efficacy; (1) low antigen (Env) density on (reactivated) HIV-1 infected cells, (2) high viral genetic diversity, (3) exhaustion of immune cells and (4) short half-life of Abs. In this review we summarize and discuss preclinical and clinical studies in which anti-HIV-1 Abs demonstrated potent viral control, and describe the development of engineered Abs that could address the limitations described above. Next generation Abs with optimized effector function, avidity, effector cell recruitment and immune cell activation have the potential to contribute to an HIV-1 cure or durable control.
Collapse
Affiliation(s)
- A I Schriek
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| | - Y L T Aldon
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - M J van Gils
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - S W de Taeye
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| |
Collapse
|
19
|
Stamatatos L. 'Immunization during ART and ATI for HIV-1 vaccine discovery/development'. Curr Opin HIV AIDS 2023; 18:309-314. [PMID: 37712859 PMCID: PMC10552831 DOI: 10.1097/coh.0000000000000817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
PURPOSE OF REVIEW Explore whether immunization with germline-targeting Env immunogens during ART, followed by ATI, leads to the identification of viral envelope glycoproteins (Envs) that promote and guide the full maturation of broadly neutralizing antibody responses. RECENT FINDINGS The HIV-1 envelope glycoprotein (Env) does not efficiently engage the germline precursors of broadly neutralizing antibodies (bnAbs). However, Env-derived proteins specifically designed to precisely do that, have been recently developed. These 'germline-targeting' Env immunogens activate naïve B cells that express the germline precursors of bnAbs but by themselves cannot guide their maturation towards their broadly neutralizing forms. This requires sequential immunizations with heterologous sets of Envs. These 'booster' Envs are currently unknown. SUMMARY Combining germline-targeting Env immunization approaches during ART with ATI could lead to the identification of natural Envs that are responsible for the maturation of broadly neutralizing antibody responses during infection. Such Envs could then serve as booster immunogens to guide the maturation of glBCRs that have become activated by germline-targeting immunogens in uninfected subjects.
Collapse
Affiliation(s)
- Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center and University of Washington, Department of Global Health, Seattle, WA, USA
| |
Collapse
|
20
|
Bjorgen JC, Dick JK, Cromarty R, Hart GT, Rhein J. NK cell subsets and dysfunction during viral infection: a new avenue for therapeutics? Front Immunol 2023; 14:1267774. [PMID: 37928543 PMCID: PMC10620977 DOI: 10.3389/fimmu.2023.1267774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
In the setting of viral challenge, natural killer (NK) cells play an important role as an early immune responder against infection. During this response, significant changes in the NK cell population occur, particularly in terms of their frequency, location, and subtype prevalence. In this review, changes in the NK cell repertoire associated with several pathogenic viral infections are summarized, with a particular focus placed on changes that contribute to NK cell dysregulation in these settings. This dysregulation, in turn, can contribute to host pathology either by causing NK cells to be hyperresponsive or hyporesponsive. Hyperresponsive NK cells mediate significant host cell death and contribute to generating a hyperinflammatory environment. Hyporesponsive NK cell populations shift toward exhaustion and often fail to limit viral pathogenesis, possibly enabling viral persistence. Several emerging therapeutic approaches aimed at addressing NK cell dysregulation have arisen in the last three decades in the setting of cancer and may prove to hold promise in treating viral diseases. However, the application of such therapeutics to treat viral infections remains critically underexplored. This review briefly explores several therapeutic approaches, including the administration of TGF-β inhibitors, immune checkpoint inhibitors, adoptive NK cell therapies, CAR NK cells, and NK cell engagers among other therapeutics.
Collapse
Affiliation(s)
- Jacob C. Bjorgen
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ross Cromarty
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
21
|
Ringe RP, Colin P, Ozorowski G, Allen JD, Yasmeen A, Seabright GE, Lee JH, Antanasijevic A, Rantalainen K, Ketas T, Moore JP, Ward AB, Crispin M, Klasse PJ. Glycan heterogeneity as a cause of the persistent fraction in HIV-1 neutralization. PLoS Pathog 2023; 19:e1011601. [PMID: 37903160 PMCID: PMC10635575 DOI: 10.1371/journal.ppat.1011601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/09/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023] Open
Abstract
Neutralizing antibodies (NAbs) to multiple epitopes on the HIV-1-envelope glycoprotein (Env) have been isolated from infected persons. The potency of NAbs is measured more often than the size of the persistent fraction of infectivity at maximum neutralization, which may also influence preventive efficacy of active or passive immunization and the therapeutic outcome of the latter. Many NAbs neutralize HIV-1 CZA97.012, a clone of a Clade-C isolate, to ~100%. But here NAb PGT151, directed to a fusion-peptide epitope, left a persistent fraction of 15%. NAb PGT145, ligating the Env-trimer apex, left no detectable persistent fraction. The divergence in persistent fractions was further analyzed by depletion of pseudoviral populations of the most PGT151- and PGT145-reactive virions. Thereby, neutralization by the non-depleting NAb increased, whereas neutralization by the depleting NAb decreased. Furthermore, depletion by PGT151 increased sensitivity to autologous neutralization by sera from rabbits immunized with soluble native-like CZA97.012 trimer: substantial persistent fractions were reduced. NAbs in these sera target epitopes comprising residue D411 at the V4-β19 transition in a defect of the glycan shield on CZA97.012 Env. NAb binding to affinity-fractionated soluble native-like CZA97.012 trimer differed commensurately with neutralization in analyses by ELISA and surface plasmon resonance. Glycan differences between PGT151- and PGT145-purified trimer fractions were then demonstrated by mass spectrometry, providing one explanation for the differential antigenicity. These differences were interpreted in relation to a new structure at 3.4-Å resolution of the soluble CZA97.012 trimer determined by cryo-electron microscopy. The trimer adopted a closed conformation, refuting apex opening as the cause of reduced PGT145 binding to the PGT151-purified form. The evidence suggests that differences in binding and neutralization after trimer purification or pseudovirus depletion with PGT145 or PGT151 are caused by variation in glycosylation, and that some glycan variants affect antigenicity through direct effects on antibody contacts, whereas others act allosterically.
Collapse
Affiliation(s)
- Rajesh P. Ringe
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Philippe Colin
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Gemma E. Seabright
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jeong Hyun Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Kimmo Rantalainen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas Ketas
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - P. J. Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| |
Collapse
|
22
|
Grant-McAuley W, Morgenlander W, Hudelson SE, Thakar M, Piwowar-Manning E, Clarke W, Breaud A, Blankson J, Wilson E, Ayles H, Bock P, Moore A, Kosloff B, Shanaube K, Meehan SA, van Deventer A, Fidler S, Hayes R, Ruczinski I, Kammers K, Laeyendecker O, Larman HB, Eshleman SH. Comprehensive profiling of pre-infection antibodies identifies HIV targets associated with viremic control and viral load. Front Immunol 2023; 14:1178520. [PMID: 37744365 PMCID: PMC10512082 DOI: 10.3389/fimmu.2023.1178520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Background High HIV viral load (VL) is associated with increased transmission risk and faster disease progression. HIV controllers achieve viral suppression without antiretroviral (ARV) treatment. We evaluated viremic control in a community-randomized trial with >48,000 participants. Methods A massively multiplexed antibody profiling system, VirScan, was used to quantify pre- and post-infection antibody reactivity to HIV peptides in 664 samples from 429 participants (13 controllers, 135 viremic non-controllers, 64 other non-controllers, 217 uninfected persons). Controllers had VLs <2,000 copies/mL with no ARV drugs detected at the first HIV-positive visit and one year later. Viremic non-controllers had VLs 2,000 copies/mL with no ARV drugs detected at the first HIV-positive visit. Other non-controllers had either ARV drugs detected at the first HIV-positive visit (n=47) or VLs <2,000 copies/mL with no ARV drugs detected at only one HIV-positive visit (n=17). Results We identified pre-infection HIV antibody reactivities that correlated with post-infection VL. Pre-infection reactivity to an epitope in the HR2 domain of gp41 was associated with controller status and lower VL. Pre-infection reactivity to an epitope in the C2 domain of gp120 was associated with non-controller status and higher VL. Different patterns of antibody reactivity were observed over time for these two epitopes. Conclusion These studies suggest that pre-infection HIV antibodies are associated with controller status and modulation of HIV VL. These findings may inform research on antibody-based interventions for HIV treatment.
Collapse
Affiliation(s)
- Wendy Grant-McAuley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - William Morgenlander
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah E. Hudelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Manjusha Thakar
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Estelle Piwowar-Manning
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - William Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Autumn Breaud
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joel Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ethan Wilson
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Helen Ayles
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter Bock
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Western Cape, South Africa
| | | | - Barry Kosloff
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kwame Shanaube
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
| | - Sue-Ann Meehan
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Western Cape, South Africa
| | - Anneen van Deventer
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Western Cape, South Africa
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Richard Hayes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kai Kammers
- Quantitative Sciences Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Oliver Laeyendecker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, MD, United States
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Susan H. Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
23
|
Patel H, Dubé K. To prescreen or not to prescreen for broadly neutralizing antibody sensitivity in HIV cure-related trials. J Virus Erad 2023; 9:100339. [PMID: 37692548 PMCID: PMC10491646 DOI: 10.1016/j.jve.2023.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 09/12/2023] Open
Abstract
The use of broadly neutralizing antibodies (bNAbs) as a cure-related research strategy for human immunodeficiency virus (HIV) has gained attention from the scientific community. bNAbs are specialized antibodies that target HIV-1 by binding to proteins on the surface of the virus, preventing the infection of human cells. In HIV-1 clinical studies assessing the use of bNAbs, it has been common practice to prescreen potential participants for bNAb sensitivity. However, the use of pre-screening in HIV-1 bNAb clinical trials is a topic of ongoing debate, with regard to its potential benefits and limitations. In this paper, we examine the possible benefits and limitations of pre-screening for bNAb sensitivity in HIV-1 cure-related studies, and suggest alternative methods which may be more effective or efficient at saving costs and time. Ultimately, the decision to use pre-screening in HIV-1 bNAb clinical trials should be based on a careful assessment of the potential benefits and limitations of this approach, as well as the specific needs, goals, design, and population of the study in question.
Collapse
Affiliation(s)
- Hursch Patel
- University of California San Diego School of Medicine, Division of Infectious Diseases and Global Public Health (IDGPH), La Jolla, San Diego, CA, USA
| | - Karine Dubé
- University of California San Diego School of Medicine, Division of Infectious Diseases and Global Public Health (IDGPH), La Jolla, San Diego, CA, USA
- University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| |
Collapse
|
24
|
Foka FET, Mufhandu HT. Current ARTs, Virologic Failure, and Implications for AIDS Management: A Systematic Review. Viruses 2023; 15:1732. [PMID: 37632074 PMCID: PMC10458198 DOI: 10.3390/v15081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Antiretroviral therapies (ARTs) have revolutionized the management of human immunodeficiency virus (HIV) infection, significantly improved patient outcomes, and reduced the mortality rate and incidence of acquired immunodeficiency syndrome (AIDS). However, despite the remarkable efficacy of ART, virologic failure remains a challenge in the long-term management of HIV-infected individuals. Virologic failure refers to the persistent detectable viral load in patients receiving ART, indicating an incomplete suppression of HIV replication. It can occur due to various factors, including poor medication adherence, drug resistance, suboptimal drug concentrations, drug interactions, and viral factors such as the emergence of drug-resistant strains. In recent years, extensive efforts have been made to understand and address virologic failure in order to optimize treatment outcomes. Strategies to prevent and manage virologic failure include improving treatment adherence through patient education, counselling, and supportive interventions. In addition, the regular monitoring of viral load and resistance testing enables the early detection of treatment failure and facilitates timely adjustments in ART regimens. Thus, the development of novel antiretroviral agents with improved potency, tolerability, and resistance profiles offers new options for patients experiencing virologic failure. However, new treatment options would also face virologic failure if not managed appropriately. A solution to virologic failure requires a comprehensive approach that combines individualized patient care, robust monitoring, and access to a range of antiretroviral drugs.
Collapse
Affiliation(s)
- Frank Eric Tatsing Foka
- Department of Microbiology, Virology Laboratory, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, Private Bag, Mmabatho X2046, South Africa
| | - Hazel Tumelo Mufhandu
- Department of Microbiology, Virology Laboratory, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, Private Bag, Mmabatho X2046, South Africa
| |
Collapse
|
25
|
Niu J, Wang Q, Zhao W, Meng B, Xu Y, Zhang X, Feng Y, Qi Q, Hao Y, Zhang X, Liu Y, Xiang J, Shao Y, Yang B. Structures and immune recognition of Env trimers from two Asia prevalent HIV-1 CRFs. Nat Commun 2023; 14:4676. [PMID: 37542068 PMCID: PMC10403546 DOI: 10.1038/s41467-023-40321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/21/2023] [Indexed: 08/06/2023] Open
Abstract
Structure-guided immunofocusing HIV-1 vaccine design entails a comprehensive understanding of Envs from diverse HIV-1 subtypes, including circulating recombinant forms (CRFs). Here, we present the cryo-EM structures of Envs from two Asia prevalent CRFs (CRF01_AE and CRF07_BC) at 3.0 and 3.5 Å. We compare the structures and glycosylation patterns of Envs from different subtypes and perform cross-clade statistical analyses to reveal the unique features of CRF01_AE V1 region, which are associated with the resistance to certain bNAbs. We also solve a 4.1 Å cryo-EM structure of CRF01_AE Env in complex with F6, the first bNAb from CRF01_AE-infected individuals. F6 recognizes a gp120-gp41 spanning epitope to allosterically destabilize the Env trimer apex and weaken inter-protomer packing, which in turn hinders the receptor binding and induces Env trimer disassembly, demonstrating a dual mechanism of neutralization. These findings broaden our understanding of CRF Envs and shed lights on immunofocusing HIV-1 vaccine design.
Collapse
Affiliation(s)
- Jun Niu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wenwen Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Bing Meng
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Youwei Xu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xianfang Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yi Feng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Qilian Qi
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yanling Hao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xuan Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ying Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jiangchao Xiang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- Changping Laboratory, Beijing, 102206, China.
| | - Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
| |
Collapse
|
26
|
Radford CE, Schommers P, Gieselmann L, Crawford KHD, Dadonaite B, Yu TC, Dingens AS, Overbaugh J, Klein F, Bloom JD. Mapping the neutralizing specificity of human anti-HIV serum by deep mutational scanning. Cell Host Microbe 2023; 31:1200-1215.e9. [PMID: 37327779 PMCID: PMC10351223 DOI: 10.1016/j.chom.2023.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/18/2023]
Abstract
Understanding the specificities of human serum antibodies that broadly neutralize HIV can inform prevention and treatment strategies. Here, we describe a deep mutational scanning system that can measure the effects of combinations of mutations to HIV envelope (Env) on neutralization by antibodies and polyclonal serum. We first show that this system can accurately map how all functionally tolerated mutations to Env affect neutralization by monoclonal antibodies. We then comprehensively map Env mutations that affect neutralization by a set of human polyclonal sera that neutralize diverse strains of HIV and target the site engaging the host receptor CD4. The neutralizing activities of these sera target different epitopes, with most sera having specificities reminiscent of individual characterized monoclonal antibodies, but one serum targeting two epitopes within the CD4-binding site. Mapping the specificity of the neutralizing activity in polyclonal human serum will aid in assessing anti-HIV immune responses to inform prevention strategies.
Collapse
Affiliation(s)
- Caelan E Radford
- Molecular and Cellular Biology Graduate Program, University of Washington and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98109, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timothy C Yu
- Molecular and Cellular Biology Graduate Program, University of Washington and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
27
|
Radford CE, Schommers P, Gieselmann L, Crawford KHD, Dadonaite B, Yu TC, Dingens AS, Overbaugh J, Klein F, Bloom JD. Mapping the neutralizing specificity of human anti-HIV serum by deep mutational scanning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533993. [PMID: 36993197 PMCID: PMC10055425 DOI: 10.1101/2023.03.23.533993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Understanding the specificities of human serum antibodies that broadly neutralize HIV can inform prevention and treatment strategies. Here we describe a deep mutational scanning system that can measure the effects of combinations of mutations to HIV envelope (Env) on neutralization by antibodies and polyclonal serum. We first show that this system can accurately map how all functionally tolerated mutations to Env affect neutralization by monoclonal antibodies. We then comprehensively map Env mutations that affect neutralization by a set of human polyclonal sera known to target the CD4-binding site that neutralize diverse strains of HIV. The neutralizing activities of these sera target different epitopes, with most sera having specificities reminiscent of individual characterized monoclonal antibodies, but one sera targeting two epitopes within the CD4 binding site. Mapping the specificity of the neutralizing activity in polyclonal human serum will aid in assessing anti-HIV immune responses to inform prevention strategies.
Collapse
Affiliation(s)
- Caelan E. Radford
- Molecular and Cellular Biology Graduate Program, University of
Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington,
98109, USA
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology,
Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931
Cologne, Germany
- German Center for Infection Research, partner site
Bonn–Cologne, 50931 Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and
University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology,
Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931
Cologne, Germany
- German Center for Infection Research, partner site
Bonn–Cologne, 50931 Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and
University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Katharine H. D. Crawford
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
- Department of Genome Sciences & Medical Scientist Training
Program, University of Washington, Seattle, Washington, 98109, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Timothy C. Yu
- Molecular and Cellular Biology Graduate Program, University of
Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington,
98109, USA
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Adam S. Dingens
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center,
Seattle, Washington, 98109, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology,
Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931
Cologne, Germany
- German Center for Infection Research, partner site
Bonn–Cologne, 50931 Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and
University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| |
Collapse
|
28
|
Hahn PA, Martins MA. Adeno-associated virus-vectored delivery of HIV biologics: the promise of a "single-shot" functional cure for HIV infection. J Virus Erad 2023; 9:100316. [PMID: 36915910 PMCID: PMC10005911 DOI: 10.1016/j.jve.2023.100316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The ability of immunoglobulin-based HIV biologics (Ig-HIV), including broadly neutralizing antibodies, to suppress viral replication in pre-clinical and clinical studies illustrates how these molecules can serve as alternatives or adjuncts to antiretroviral therapy for treating HIV infection. However, the current paradigm for delivering Ig-HIVs requires repeated passive infusions, which faces both logistical and economic challenges to broad-scale implementation. One promising way to overcome these obstacles and achieve sustained expression of Ig-HIVs in vivo involves the transfer of Ig-HIV genes to host cells utilizing adeno-associated virus (AAV) vectors. Because AAV vectors are non-pathogenic and their genomes persist in the cell nucleus as episomes, transgene expression can last for as long as the AAV-transduced cell lives. Given the long lifespan of myocytes, skeletal muscle is a preferred tissue for AAV-based immunotherapies aimed at achieving persistent delivery of Ig-HIVs. Consistent with this idea, recent studies suggest that lifelong immunity against HIV can be achieved from a one-time intramuscular dose of AAV/Ig-HIV vectors. However, realizing the promise of this approach faces significant hurdles, including the potential of AAV-delivered Ig-HIVs to induce anti-drug antibodies and the high AAV seroprevalence in the human population. Here we describe how these host immune responses can hinder AAV/Ig-HIV therapies and review current strategies for overcoming these barriers. Given the potential of AAV/Ig-HIV therapy to maintain ART-free virologic suppression and prevent HIV reinfection in people living with HIV, optimizing this strategy should become a greater priority in HIV/AIDS research.
Collapse
Affiliation(s)
- Patricia A. Hahn
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458, USA
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Mauricio A. Martins
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458, USA
| |
Collapse
|
29
|
Towards a new combination therapy with vectored immunoprophylaxis for HIV: Modeling "shock and kill" strategy. Math Biosci 2023; 355:108954. [PMID: 36525996 DOI: 10.1016/j.mbs.2022.108954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/23/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
Latently infected cells are considered as a major barrier to curing Human Immunodeficiency Virus (HIV) infection. Reactivation of latently infected cells followed by killing the actively infected cells may be a potential strategy ("shock and kill") to purge the latent reservoir. Based on vectored immunoprophylaxis (VIP) experiment that can elicit bNAbs, in this paper a mathematical model is formulated to explore the efficacy of "shock and kill" strategy with VIP. We derive the basic reproduction number R0 of the model and show that R0 completely determines the dynamics of the model: if R0<1, the disease-free equilibrium is globally asymptotically stable; if R0>1, the system is uniformly persistent. Numerical simulations suggest that the "shock and kill" strategy with VIP can effectively control HIV infection while this strategy cannot eradicate the reservoir without VIP although it can alleviate the HIV infection. To model the administration of drugs and vaccine more realistically, pharmacokinetics and pulse vaccination are incorporated into the model of ordinary differential equations. The resultants are described by impulsive differential equations. The thresholds are obtained for the frequency and strength of the vaccination to eliminate the viruses. Furthermore, the most appropriate times are numerically investigated for starting a short-term latency-reversing agents (LRAs) treatment relative to ART considering the toxicity of LRAs. The results show that LRAs treatment at the beginning of ART might be a better option. These results have important implications for the design of HIV cure-related clinical trials.
Collapse
|
30
|
Zhong X, D’Antona AM. A potential antibody repertoire diversification mechanism through tyrosine sulfation for biotherapeutics engineering and production. Front Immunol 2022; 13:1072702. [PMID: 36569848 PMCID: PMC9774471 DOI: 10.3389/fimmu.2022.1072702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
The diversity of three hypervariable loops in antibody heavy chain and light chain, termed the complementarity-determining regions (CDRs), defines antibody's binding affinity and specificity owing to the direct contact between the CDRs and antigens. These CDR regions typically contain tyrosine (Tyr) residues that are known to engage in both nonpolar and pi stacking interaction with antigens through their complementary aromatic ring side chains. Nearly two decades ago, sulfotyrosine residue (sTyr), a negatively charged Tyr formed by Golgi-localized membrane-bound tyrosylprotein sulfotransferases during protein trafficking, were also found in the CDR regions and shown to play an important role in modulating antibody-antigen interaction. This breakthrough finding demonstrated that antibody repertoire could be further diversified through post-translational modifications, in addition to the conventional genetic recombination. This review article summarizes the current advances in the understanding of the Tyr-sulfation modification mechanism and its application in potentiating protein-protein interaction for antibody engineering and production. Challenges and opportunities are also discussed.
Collapse
|
31
|
Bailón L, Llano A, Cedeño S, Escribà T, Rosás-Umbert M, Parera M, Casadellà M, Lopez M, Pérez F, Oriol-Tordera B, Ruiz-Riol M, Coll J, Perez F, Rivero À, Leselbaum AR, McGowan I, Sengupta D, Wee EG, Hanke T, Paredes R, Alarcón-Soto Y, Clotet B, Noguera-Julian M, Brander C, Molto J, Mothe B, Benet S, Cobarsi P, Geleziunas R, Leselbaum AR, Loste C, Meulbroek M, Miranda C, Muñoz J, Naval J, Nieto A, Pujol F, Puig J. Safety, immunogenicity and effect on viral rebound of HTI vaccines in early treated HIV-1 infection: a randomized, placebo-controlled phase 1 trial. Nat Med 2022; 28:2611-2621. [PMID: 36302893 DOI: 10.1038/s41591-022-02060-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/28/2022] [Indexed: 01/15/2023]
Abstract
HIVACAT T-cell immunogen (HTI) is a novel human immunodeficiency virus (HIV) vaccine immunogen designed to elicit cellular immune responses to HIV targets associated with viral control in humans. The AELIX-002 trial was a randomized, placebo-controlled trial to evaluate as a primary objective the safety of a combination of DNA.HTI (D), MVA.HTI (M) and ChAdOx1.HTI (C) vaccines in 45 early-antiretroviral (ART)-treated individuals (44 men, 1 woman; NCT03204617). Secondary objectives included T-cell immunogenicity, the effect on viral rebound and the safety of an antiretroviral treatment interruption (ATI). Adverse events were mostly mild and transient. No related serious adverse events were observed. We show here that HTI vaccines were able to induce strong, polyfunctional and broad CD4 and CD8 T-cell responses. All participants experienced detectable viral rebound during ATI, and resumed ART when plasma HIV-1 viral load reached either >100,000 copies ml-1, >10,000 copies ml-1 for eight consecutive weeks, or after 24 weeks of ATI. In post-hoc analyses, HTI vaccines were associated with a prolonged time off ART in vaccinees without beneficial HLA (human leukocyte antigen) class I alleles. Plasma viral load at the end of ATI and time off ART positively correlated with vaccine-induced HTI-specific T-cell responses at ART cessation. Despite limited efficacy of the vaccines in preventing viral rebound, their ability to elicit robust T-cell responses towards HTI may be beneficial in combination cure strategies, which are currently being tested in clinical trials.
Collapse
Affiliation(s)
- Lucia Bailón
- Fundació Lluita Contra les Infeccions, Infectious Diseases Department, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain.,Department of Medicine, Autonomous University of Barcelona, Catalonia, Spain
| | - Anuska Llano
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain
| | - Samandhy Cedeño
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain
| | - Tuixent Escribà
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain
| | - Miriam Rosás-Umbert
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain.,Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mariona Parera
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain
| | - Maria Casadellà
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain
| | - Miriam Lopez
- Fundació Lluita Contra les Infeccions, Infectious Diseases Department, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain
| | - Francisco Pérez
- Fundació Lluita Contra les Infeccions, Infectious Diseases Department, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain
| | - Bruna Oriol-Tordera
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain.,CIBERINFEC, ISCIII, Madrid, Spain
| | - Josep Coll
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain.,CIBERINFEC, ISCIII, Madrid, Spain.,Projecte Dels Noms-Hispanosida, Bcn Checkpoint, Barcelona, Spain
| | - Felix Perez
- Projecte Dels Noms-Hispanosida, Bcn Checkpoint, Barcelona, Spain
| | - Àngel Rivero
- Projecte Dels Noms-Hispanosida, Bcn Checkpoint, Barcelona, Spain
| | - Anne R Leselbaum
- Projecte Dels Noms-Hispanosida, Bcn Checkpoint, Barcelona, Spain
| | - Ian McGowan
- AELIX Therapeutics S.L, Barcelona, Spain.,University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Edmund G Wee
- The Jenner Institute, The Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tomáš Hanke
- The Jenner Institute, The Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain.,CIBERINFEC, ISCIII, Madrid, Spain.,Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic - Central University of Catalonia (UVic - UCC), Vic, Barcelona, Spain.,Germans Trias I Pujol Research Institte, Badalona, Spain
| | - Yovaninna Alarcón-Soto
- Fundació Lluita Contra les Infeccions, Infectious Diseases Department, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain.,Departament d'Estadística I Investigació Operativa, Universitat Politècnica de Catalunya/BARCELONATECH, Barcelona, Spain
| | - Bonaventura Clotet
- Fundació Lluita Contra les Infeccions, Infectious Diseases Department, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain.,IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain.,CIBERINFEC, ISCIII, Madrid, Spain.,Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic - Central University of Catalonia (UVic - UCC), Vic, Barcelona, Spain
| | - Marc Noguera-Julian
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain.,CIBERINFEC, ISCIII, Madrid, Spain.,Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic - Central University of Catalonia (UVic - UCC), Vic, Barcelona, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain.,CIBERINFEC, ISCIII, Madrid, Spain.,AELIX Therapeutics S.L, Barcelona, Spain.,Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic - Central University of Catalonia (UVic - UCC), Vic, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Jose Molto
- Fundació Lluita Contra les Infeccions, Infectious Diseases Department, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain. .,CIBERINFEC, ISCIII, Madrid, Spain. .,Germans Trias I Pujol Research Institte, Badalona, Spain.
| | - Beatriz Mothe
- Fundació Lluita Contra les Infeccions, Infectious Diseases Department, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain.,IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain.,CIBERINFEC, ISCIII, Madrid, Spain.,Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic - Central University of Catalonia (UVic - UCC), Vic, Barcelona, Spain.,Germans Trias I Pujol Research Institte, Badalona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Neary M, Owen A, Olagunju A. A Holistic Review of the Preclinical Landscape for Long-Acting Anti-infective Drugs Using HIV as a Paradigm. Clin Infect Dis 2022; 75:S490-S497. [PMID: 36410386 PMCID: PMC10200324 DOI: 10.1093/cid/ciac685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lack of predictive preclinical models is a key contributor to the steep attrition rate in drug development. Successful clinical translation may be higher for new chemical entities or existing approved drugs reformulated for long-acting (LA) administration if preclinical studies designed to identify any new uncertainties are predictive of human exposure and response. In this review, we present an overview of standard preclinical assessments deployed for LA formulations and delivery systems, using human immunodeficiency virus LA therapeutics preclinical development as a paradigm. Key progress in the preclinical development of novel LA antiretrovirals formulations and delivery systems are summarized, including bispecific broadly neutralizing monoclonal antibody and small molecule technologies for codelivery of multiple drugs with disparate solubility properties. There are new opportunities to take advantage of recent developments in tissue engineering and 3-dimensional in vitro modeling to advance preclinical modeling of anti-infective activity, developmental and reproductive toxicity assessment, and to apply quantitative modeling and simulation strategies. These developments are likely to drive the progression of more LA anti-infective drugs and multipurpose technologies into clinical development in the coming years.
Collapse
Affiliation(s)
- Megan Neary
- Department of Pharmacology and Therapeutics, Centre of Excellence for Long-acting Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Centre of Excellence for Long-acting Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Adeniyi Olagunju
- Department of Pharmacology and Therapeutics, Centre of Excellence for Long-acting Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
| |
Collapse
|
33
|
Zacharopoulou P, Ansari MA, Frater J. A calculated risk: Evaluating HIV resistance to the broadly neutralising antibodies10-1074 and 3BNC117. Curr Opin HIV AIDS 2022; 17:352-358. [PMID: 36178770 PMCID: PMC9594129 DOI: 10.1097/coh.0000000000000764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF THIS REVIEW Broadly neutralising antibodies (bNAbs) are a promising new therapy for the treatment of HIV infection. However, the effective use of bNAbs is impacted by the presence of preexisting virological resistance and the potential to develop new resistance during treatment. With several bNAb clinical trials underway, sensitive and scalable assays are needed to screen for resistance. This review summarises the data on resistance from published clinical trials using the bNAbs 10-1074 and 3BNC117 and evaluates current approaches for detecting bNAb sensitivity as well as their limitations. RECENT FINDINGS Analyses of samples from clinical trials of 10-1074 and 3BNC117 reveal viral mutations that emerge on therapy which may result in bNAb resistance. These mutations are also found in some potential study participants prior to bNAb exposure. These clinical data are further informed by ex-vivo neutralisation assays which offer an alternative measure of resistance and allow more detailed interrogation of specific viral mutations. However, the limited amount of publicly available data and the need for better understanding of other viral features that may affect bNAb binding mean there is no widely accepted approach to measuring bNAb resistance. SUMMARY Resistance to the bNAbs 10-1074 and 3BNC117 may significantly impact clinical outcome following their therapeutic administration. Predicting bNAb resistance may help to lower the risk of treatment failure and therefore a robust methodology to screen for bNAb sensitivity is needed.
Collapse
Affiliation(s)
- Panagiota Zacharopoulou
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford
| | - M. Azim Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
34
|
Stam JC, de Maat S, de Jong D, Arens M, van Lint F, Gharu L, van Roosmalen MH, Roovers RC, Strokappe NM, Wagner R, Kliche A, de Haard HJ, van Bergen En Henegouwen PM, Nijhuis M, Verrips CT. Directing HIV-1 for degradation by non-target cells, using bi-specific single-chain llama antibodies. Sci Rep 2022; 12:13413. [PMID: 35927444 PMCID: PMC9352707 DOI: 10.1038/s41598-022-15993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
While vaccination against HIV-1 has been so far unsuccessful, recently broadly neutralizing antibodies (bNAbs) against HIV-1 envelope glycoprotein were shown to induce long-term suppression in the absence of antiretroviral therapy in patients with antibody-sensitive viral reservoirs. The requirement of neutralizing antibodies indicates that the antibody mediated removal (clearance) of HIV-1 in itself is not efficient enough in these immune compromised patients. Here we present a novel, alternative approach that is independent of a functional immune system to clear HIV-1, by capturing the virus and redirecting it to non-target cells where it is internalized and degraded. We use bispecific antibodies with domains derived from small single chain Llama antibodies (VHHs). These bind with one domain to HIV-1 envelope proteins and with the other domain direct the virus to cells expressing epidermal growth factor receptor (EGFR), a receptor that is ubiquitously expressed in the body. We show that HIV envelope proteins, virus-like particles and HIV-1 viruses (representing HIV-1 subtypes A, B and C) are efficiently recruited to EGFR, internalized and degraded in the lysosomal pathway at low nM concentrations of bispecific VHHs. This directed degradation in non-target cells may provide a clearance platform for the removal of viruses and other unwanted agents from the circulation, including toxins, and may thus provide a novel method for curing.
Collapse
Affiliation(s)
- Jord C Stam
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands.
| | - Steven de Maat
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Dorien de Jong
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mathia Arens
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Fenna van Lint
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark H van Roosmalen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands.,Intervet, Wim de Körverstraat 35, 5831 AN, Boxmeer, The Netherlands
| | - Rob C Roovers
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands.,LAVA Therapeutics, Yalelaan 60, 3584CM, Utrecht, The Netherlands
| | - Nika M Strokappe
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Ralf Wagner
- Molecular Microbiology and Gene Therapy, Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Alexander Kliche
- Molecular Microbiology and Gene Therapy, Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Hans J de Haard
- Argenx, Industriepark Zwijnaarde 7, 9052, Zwijnaarde, Belgium
| | - Paul M van Bergen En Henegouwen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C Theo Verrips
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands.,QVQ Holding BV, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| |
Collapse
|
35
|
Targeted Nanocarrier Delivery of RNA Therapeutics to Control HIV Infection. Pharmaceutics 2022; 14:pharmaceutics14071352. [PMID: 35890248 PMCID: PMC9324444 DOI: 10.3390/pharmaceutics14071352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Our understanding of HIV infection has greatly advanced since the discovery of the virus in 1983. Treatment options have improved the quality of life of people living with HIV/AIDS, turning it from a fatal disease into a chronic, manageable infection. Despite all this progress, a cure remains elusive. A major barrier to attaining an HIV cure is the presence of the latent viral reservoir, which is established early in infection and persists for the lifetime of the host, even during prolonged anti-viral therapy. Different cure strategies are currently being explored to eliminate or suppress this reservoir. Several studies have shown that a functional cure may be achieved by preventing infection and also inhibiting reactivation of the virus from the latent reservoir. Here, we briefly describe the main HIV cure strategies, focussing on the use of RNA therapeutics, including small interfering RNA (siRNA) to maintain HIV permanently in a state of super latency, and CRISPR gRNA to excise the latent reservoir. A challenge with progressing RNA therapeutics to the clinic is achieving effective delivery into the host cell. This review covers recent nanotechnological strategies for siRNA delivery using liposomes, N-acetylgalactosamine conjugation, inorganic nanoparticles and polymer-based nanocapsules. We further discuss the opportunities and challenges of those strategies for HIV treatment.
Collapse
|
36
|
Gaebler C, Nogueira L, Stoffel E, Oliveira TY, Breton G, Millard KG, Turroja M, Butler A, Ramos V, Seaman MS, Reeves JD, Petroupoulos CJ, Shimeliovich I, Gazumyan A, Jiang CS, Jilg N, Scheid JF, Gandhi R, Walker BD, Sneller MC, Fauci A, Chun TW, Caskey M, Nussenzweig MC. Prolonged viral suppression with anti-HIV-1 antibody therapy. Nature 2022; 606:368-374. [PMID: 35418681 PMCID: PMC9177424 DOI: 10.1038/s41586-022-04597-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/28/2022] [Indexed: 01/26/2023]
Abstract
HIV-1 infection remains a public health problem with no cure. Anti-retroviral therapy (ART) is effective but requires lifelong drug administration owing to a stable reservoir of latent proviruses integrated into the genome of CD4+ T cells1. Immunotherapy with anti-HIV-1 antibodies has the potential to suppress infection and increase the rate of clearance of infected cells2,3. Here we report on a clinical study in which people living with HIV received seven doses of a combination of two broadly neutralizing antibodies over 20 weeks in the presence or absence of ART. Without pre-screening for antibody sensitivity, 76% (13 out of 17) of the volunteers maintained virologic suppression for at least 20 weeks off ART. Post hoc sensitivity analyses were not predictive of the time to viral rebound. Individuals in whom virus remained suppressed for more than 20 weeks showed rebound viraemia after one of the antibodies reached serum concentrations below 10 µg ml-1. Two of the individuals who received all seven antibody doses maintained suppression after one year. Reservoir analysis performed after six months of antibody therapy revealed changes in the size and composition of the intact proviral reservoir. By contrast, there was no measurable decrease in the defective reservoir in the same individuals. These data suggest that antibody administration affects the HIV-1 reservoir, but additional larger and longer studies will be required to define the precise effect of antibody immunotherapy on the reservoir.
Collapse
Affiliation(s)
- Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Elina Stoffel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Columbia University Irving Medical Center, New York, NY, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Gaëlle Breton
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Katrina G Millard
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Martina Turroja
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Allison Butler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | - Irina Shimeliovich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Caroline S Jiang
- Center for Clinical and Translational Science, The Rockefeller University, New York, NY, USA
| | - Nikolaus Jilg
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Johannes F Scheid
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Rajesh Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Michael C Sneller
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Anthony Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA.
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
37
|
Macatangay BJC, Landay AL, Garcia F, Rinaldo CR. Editorial: Advances in T Cell Therapeutic Vaccines for HIV. Front Immunol 2022; 13:905836. [PMID: 35572584 PMCID: PMC9094404 DOI: 10.3389/fimmu.2022.905836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Bernard J C Macatangay
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alan L Landay
- Department of Internal Medicine, Rush Medical College, Chicago, IL, United States
| | - Felipe Garcia
- Infectious Diseases Department, Hospital Clinic Barcelona, Barcelona, Spain
| | - Charles R Rinaldo
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
38
|
Navigating the complexity of chronic HIV-1 associated immune dysregulation. Curr Opin Immunol 2022; 76:102186. [PMID: 35567953 DOI: 10.1016/j.coi.2022.102186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
Abstract
Despite successful viral suppression with antiretroviral therapy, chronic HIV-1 infection is associated with ongoing immune dysfunction. Investigation of the complex immune response in treated and untreated individuals with chronic HIV-1 infection is warranted. Immune alterations such as monocyte phenotype and Th-17/Treg ratios often persist years after the reduction in viraemia and predispose many individuals to long-term comorbidities such as cardiovascular disease or cancer. Furthermore, while there has been extensive research on the latent reservoir of treated patients with chronic HIV-1, which prevents the discontinuation of treatment, the mechanism behind this remains elusive and needs further investigation. In this review, we assist in navigating the recent research on these groups of individuals and provide a basis for further investigation.
Collapse
|
39
|
York J, Gowrishankar K, Micklethwaite K, Palmer S, Cunningham AL, Nasr N. Evolving Strategies to Eliminate the CD4 T Cells HIV Viral Reservoir via CAR T Cell Immunotherapy. Front Immunol 2022; 13:873701. [PMID: 35572509 PMCID: PMC9098815 DOI: 10.3389/fimmu.2022.873701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Although the advent of ART has significantly reduced the morbidity and mortality associated with HIV infection, the stable pool of HIV in latently infected cells requires lifelong treatment adherence, with the cessation of ART resulting in rapid reactivation of the virus and productive HIV infection. Therefore, these few cells containing replication-competent HIV, known as the latent HIV reservoir, act as the main barrier to immune clearance and HIV cure. While several strategies involving HIV silencing or its reactivation in latently infected cells for elimination by immune responses have been explored, exciting cell based immune therapies involving genetically engineered T cells expressing synthetic chimeric receptors (CAR T cells) are highly appealing and promising. CAR T cells, in contrast to endogenous cytotoxic T cells, can function independently of MHC to target HIV-infected cells, are efficacious and have demonstrated acceptable safety profiles and long-term persistence in peripheral blood. In this review, we present a comprehensive picture of the current efforts to target the HIV latent reservoir, with a focus on CAR T cell therapies. We highlight the current challenges and advances in this field, while discussing the importance of novel CAR designs in the efforts to find a HIV cure.
Collapse
Affiliation(s)
- Jarrod York
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Kavitha Gowrishankar
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Children’s Cancer Research Unit, Kids Research, The Children’s Hospital at Westmead, Sydney Children’s Hospitals Network, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Kenneth Micklethwaite
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- NSW Health Pathology Blood Transplant and Cell Therapies Laboratory – Institute of Clinical Pathology and Medical Research (ICPMR) Westmead, Sydney, NSW, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
40
|
Chang XL, Reed JS, Webb GM, Wu HL, Le J, Bateman KB, Greene JM, Pessoa C, Waytashek C, Weber WC, Hwang J, Fischer M, Moats C, Shiel O, Bochart RM, Crank H, Siess D, Giobbi T, Torgerson J, Agnor R, Gao L, Dhody K, Lalezari JP, Bandar IS, Carnate AM, Pang AS, Corley MJ, Kelly S, Pourhassan N, Smedley J, Bimber BN, Hansen SG, Ndhlovu LC, Sacha JB. Suppression of human and simian immunodeficiency virus replication with the CCR5-specific antibody Leronlimab in two species. PLoS Pathog 2022; 18:e1010396. [PMID: 35358290 PMCID: PMC8970399 DOI: 10.1371/journal.ppat.1010396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/25/2022] [Indexed: 12/28/2022] Open
Abstract
The CCR5-specific antibody Leronlimab is being investigated as a novel immunotherapy that can suppress HIV replication with minimal side effects. Here we studied the virological and immunological consequences of Leronlimab in chronically CCR5-tropic HIV-1 infected humans (n = 5) on suppressive antiretroviral therapy (ART) and in ART-naïve acutely CCR5-tropic SHIV infected rhesus macaques (n = 4). All five human participants transitioned from daily combination ART to self-administered weekly subcutaneous (SC) injections of 350 mg or 700 mg Leronlimab and to date all participants have sustained virologic suppression for over seven years. In all participants, Leronlimab fully occupied CCR5 receptors on peripheral blood CD4+ T cells and monocytes. In ART-naïve rhesus macaques acutely infected with CCR5-tropic SHIV, weekly SC injections of 50 mg/kg Leronlimab fully suppressed plasma viremia in half of the macaques. CCR5 receptor occupancy by Leronlimab occurred concomitant with rebound of CD4+ CCR5+ T-cells in peripheral blood, and full CCR5 receptor occupancy was found in multiple anatomical compartments. Our results demonstrate that weekly, self-administered Leronlimab was safe, well-tolerated, and efficacious for long-term virologic suppression and should be included in the arsenal of safe, easily administered, longer-acting antiretroviral treatments for people living with HIV-1. Trial Registration: ClinicalTrials.gov Identifiers: NCT02175680 and NCT02355184.
Collapse
Affiliation(s)
- Xiao L. Chang
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jason S. Reed
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Gabriela M. Webb
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Helen L. Wu
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jimmy Le
- Quest Clinical Research, San Francisco, California, United States of America
| | - Katherine B. Bateman
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Justin M. Greene
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Cleiton Pessoa
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Courtney Waytashek
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Whitney C. Weber
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Joseph Hwang
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Miranda Fischer
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Cassandra Moats
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Oriene Shiel
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Rachele M. Bochart
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Hugh Crank
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Don Siess
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Travis Giobbi
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jeffrey Torgerson
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Rebecca Agnor
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Lina Gao
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Kush Dhody
- Amarex Clinical Research LLC, Germantown, Maryland, United States of America
| | - Jacob P. Lalezari
- Quest Clinical Research, San Francisco, California, United States of America
| | - Ivo Sah Bandar
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Alnor M. Carnate
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Alina S. Pang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Michael J. Corley
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Scott Kelly
- CytoDyn Inc., Vancouver, Washington, United States of America
| | | | - Jeremy Smedley
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Benjamin N. Bimber
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Scott G. Hansen
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Jonah B. Sacha
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
41
|
Mahomed S, Garrett N, Capparelli EV, Osman F, Harkoo I, Yende-Zuma N, Gengiah TN, Archary D, Samsunder N, Baxter C, Mkhize NN, Modise T, Carlton K, McDermott A, Moore PL, Karim QA, Barouch DH, Fast PE, Mascola JR, Ledgerwood JE, Morris L, Abdool Karim SS. OUP accepted manuscript. J Infect Dis 2022; 226:510-520. [PMID: 35134995 PMCID: PMC9417124 DOI: 10.1093/infdis/jiac041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background Effective, long-acting prevention approaches are needed to reduce human immunodeficiency virus (HIV) incidence. We evaluated the safety and pharmacokinetics of VRC07-523LS and PGT121 administered subcutaneously alone and in combination as passive immunization for young women in South Africa. Methods CAPRISA 012A was a randomized, double-blinded, placebo-controlled, dose-escalation phase 1 trial. We enrolled 45 HIV-negative women into 9 groups and assessed safety, tolerability, pharmacokinetics, neutralization activity, and antidrug antibody levels. Pharmacokinetic modeling was conducted to predict steady-state concentrations for 12- and 24-weekly dosing intervals. Results VRC07-523LS and PGT121, administered subcutaneously, were safe and well tolerated. Most common reactogenicity events were injection site tenderness and headaches. Nine product-related adverse events were mild and transient. Median VRC07-523LS concentrations after 20 mg/kg doses were 9.65 μg/mL and 3.86 μg/mL at 16 and 24 weeks. The median week 8 concentration after the 10 mg/kg PGT121 dose was 8.26 μg/mL. Modeling of PGT121 at 20 mg/kg showed median concentrations of 1.37 μg/mL and 0.22 μg/mL at 16 and 24 weeks. Half-lives of VRC07-523LS and PGT121 were 29 and 20 days. Both antibodies retained neutralizing activity postadministration and no antidrug antibodies were detected. Conclusions Subcutaneous administration of VRC07-523LS in combination with optimized versions of PGT121 or other antibodies should be further assessed for HIV prevention.
Collapse
Affiliation(s)
- Sharana Mahomed
- Correspondence: Sharana Mahomed, MBChB, FC Path, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Private Bag X7, Congella, 4013, South Africa ()
| | - Nigel Garrett
- CAPRISA, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | | | - Farzana Osman
- CAPRISA, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Ishana Harkoo
- CAPRISA, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Nonhlanhla Yende-Zuma
- CAPRISA, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Tanuja N Gengiah
- CAPRISA, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Derseree Archary
- CAPRISA, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Natasha Samsunder
- CAPRISA, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Cheryl Baxter
- CAPRISA, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Nonhlanhla N Mkhize
- National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tandile Modise
- National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Kevin Carlton
- Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrian McDermott
- Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Penny L Moore
- CAPRISA, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Quarraisha Abdool Karim
- CAPRISA, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, New York, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Patricia E Fast
- International AIDS Vaccine Initiative, New York, New York, USA
- Pediatric Infectious Diseases, Stanford University School of Medicine, Palo Alto, California, USA
| | - John R Mascola
- Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Julie E Ledgerwood
- Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lynn Morris
- CAPRISA, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Salim S Abdool Karim
- CAPRISA, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, New York, USA
| |
Collapse
|
42
|
Rossignol E, Alter G, Julg B. Antibodies for Human Immunodeficiency Virus-1 Cure Strategies. J Infect Dis 2021; 223:22-31. [PMID: 33586772 DOI: 10.1093/infdis/jiaa165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection leads to the establishment of a long-lived latent cellular reservoir. One strategy to eliminate quiescent reservoir cells is to reactivate virus replication to induce HIV envelope glycoprotein (Env) expression on the cell surface exposing them to subsequent antibody targeting. Via the interactions between the antibody Fc domain and Fc-γ receptors (FcγRs) that are expressed on innate effector cells, such as natural killer cells, monocytes, and neutrophils, antibodies can mediate the elimination of infected cells. Over the last decade, a multitude of human monoclonal antibodies that are broadly neutralizing across many HIV-1 subtypes have been identified and are currently being explored for HIV eradication strategies. Antibody development also includes novel Fc engineering approaches to increase engagement of effector cells and optimize antireservoir efficacy. In this review, we discuss the usefulness of antibodies for HIV eradication approaches specifically focusing on antibody-mediated strategies to target latently infected cells and options to increase antibody efficacy.
Collapse
Affiliation(s)
- Evan Rossignol
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Boris Julg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA.,Massachusetts General Hospital, Infectious Disease Unit, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW In this special issue on human immunodeficiency (HIV) cure, we review the role of therapeutic immunization in strategies aimed to eliminate HIV-infected cells and/or mediate sustained control of viral replication in the absence of antiretroviral treatment. RECENT FINDINGS Recent data emerging from studies in simian immunodeficiency virus macaque models using broadly neutralizing antibodies, given alone or in combination with other immunomodulatory agents, as well as data from human clinical studies with novel therapeutic vaccines are showing encouraging results indicating that achieving viral remission or at least partial viral control of HIV without antiretroviral therapy is feasible. SUMMARY Although it remains unclear whether current strategies will be able to awaken a sufficient large fraction of the viral reservoir and/or vaccine-boosted immunity will induce effective, long-lasting viral suppression in chronically infected HIV population, emerging results establish cure strategies that can be further improved upon.
Collapse
Affiliation(s)
- Beatriz Mothe
- Fundació Lluita Contra La Sida, Infectious Diseases Department
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol
- Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic - Central University of Catalonia (UVic - UCC)
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol
- Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic - Central University of Catalonia (UVic - UCC)
- ICREA
- AELIX Therapeutics, Barcelona, Spain
| |
Collapse
|
44
|
Evaluation of Broadly Neutralizing Antibody Sensitivity by Genotyping and Phenotyping for Qualifying Participants to HIV Clinical Trials. J Acquir Immune Defic Syndr 2021; 88:61-69. [PMID: 34397744 DOI: 10.1097/qai.0000000000002722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/19/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND HIV envelope (env) diversity represents a significant challenge for the use of broadly neutralizing antibodies (bNAbs) in HIV treatment and cure studies. Screening for viral sensitivity to bNAbs to select eligible trial participants will be important to improve clinical efficacy; however, no universal approach has been established. METHODS Pre-antiretroviral therapy plasma virus from participants in the Zurich Primary HIV Infection (ZPHI) study was genotyped and phenotyped for sensitivity to the bNAbs elipovimab (EVM, formerly GS-9722) and 3BNC117. The genotyping and phenotyping assessments were performed following the Clinical Laboratory Improvement Amendments of 1988 guidelines as required for entry into clinical trials. The genotypic-based prediction of bNAb sensitivity was based on HIV env amino acid signatures identified from a genotypic-phenotypic correlation algorithm using a subtype B database. RESULTS Genotyping the plasma virus and applying env sensitivity signatures, ZPHI study participants with viral sensitivity to EVM and 3BNC117 were identified. ZPHI study participants with virus sensitive to EVM and 3BNC117 were also identified by phenotyping the plasma virus. Comparison of the genotypic and phenotypic sensitivity assessments showed strong agreement between the 2 methodologies. CONCLUSIONS The genotypic assessment was found to be as predictive as the direct measurement of bNAb sensitivity by phenotyping and may, therefore, be preferred because of more rapid turnaround time and assay simplicity. A significant number of the participants were predicted to have virus sensitive to EVM and 3BNC117 and could, thus, be potential participants for clinical trials involving these bNAbs.
Collapse
|
45
|
Gobran ST, Ancuta P, Shoukry NH. A Tale of Two Viruses: Immunological Insights Into HCV/HIV Coinfection. Front Immunol 2021; 12:726419. [PMID: 34456931 PMCID: PMC8387722 DOI: 10.3389/fimmu.2021.726419] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Nearly 2.3 million individuals worldwide are coinfected with human immunodeficiency virus (HIV) and hepatitis C virus (HCV). Odds of HCV infection are six times higher in people living with HIV (PLWH) compared to their HIV-negative counterparts, with the highest prevalence among people who inject drugs (PWID) and men who have sex with men (MSM). HIV coinfection has a detrimental impact on the natural history of HCV, including higher rates of HCV persistence following acute infection, higher viral loads, and accelerated progression of liver fibrosis and development of end-stage liver disease compared to HCV monoinfection. Similarly, it has been reported that HCV coinfection impacts HIV disease progression in PLWH receiving anti-retroviral therapies (ART) where HCV coinfection negatively affects the homeostasis of CD4+ T cell counts and facilitates HIV replication and viral reservoir persistence. While ART does not cure HIV, direct acting antivirals (DAA) can now achieve HCV cure in nearly 95% of coinfected individuals. However, little is known about how HCV cure and the subsequent resolution of liver inflammation influence systemic immune activation, immune reconstitution and the latent HIV reservoir. In this review, we will summarize the current knowledge regarding the pathogenesis of HIV/HCV coinfection, the effects of HCV coinfection on HIV disease progression in the context of ART, the impact of HIV on HCV-associated liver morbidity, and the consequences of DAA-mediated HCV cure on immune reconstitution and HIV reservoir persistence in coinfected patients.
Collapse
Affiliation(s)
- Samaa T Gobran
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Petronela Ancuta
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H Shoukry
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
46
|
Lee TJ, Vazquez JA, Rao ASRS. Mathematical modeling of impact of eCD4-Ig molecule in control and management of HIV within a host. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:6887-6906. [PMID: 34517562 DOI: 10.3934/mbe.2021342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Eradication and eventually cure of the HIV virus from the infected individual should be the primary goal in all HIV therapy. This has yet to be achieved, however development of broadly neutralizing antibodies (bNabs) and eCD4-Ig and its related particles are promising therapeutic alternatives to eliminate the HIV virus from the host. Past studies have found superior protectivity and efficacy eradicating the HIV virus with the use of eCD4-Igs over bNabs, which has proposed the antibody-dependent cell-mediated cytotoxicity (ADCC) effect as one of the key-factors for antibody design. In this study, we evaluated the dynamics of the HIV virus, CD4 T-cells, and eCD4-Ig in humans using a gene-therapy approach which has been evaluated in primates previously. We utilized a mathematical model to investigate the relationship between eCD4-Ig levels, ADCC effects, and the neutralization effect on HIV elimination. In addition, a balance between ADCC and viral neutralization effect of eCD4-Ig has been investigated in order to understand the condition of which HIV eliminating antibodies needs to satisfy. Our analysis indicated some level of ADCC effect, which was missing from ART, was required for viral elimination. The results will be helpful in designing future drugs or therapeutic strategies.
Collapse
Affiliation(s)
- Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Jose A Vazquez
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Arni S R Srinivasa Rao
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
- Laboratory for Theory and Mathematical Modeling, Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
- Department of Mathematics, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| |
Collapse
|
47
|
Garber DA, Guenthner P, Mitchell J, Ellis S, Gazumyan A, Nason M, Seaman MS, McNicholl JM, Nussenzweig MC, Heneine W. Broadly neutralizing antibody-mediated protection of macaques against repeated intravenous exposures to simian-human immunodeficiency virus. AIDS 2021; 35:1567-1574. [PMID: 33966028 DOI: 10.1097/qad.0000000000002934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The opioid epidemic has increased parentally acquired HIV infection. To inform the development of a long-acting prevention strategy, we evaluated the protective efficacy of broadly neutralizing antibodies (bNAbs) against intravenous simian-human immunodeficiency virus (SHIV) infection in macaques. DESIGN Five cynomolgus macaques were injected once subcutaneously with 10-1074 and 3BNC117 (10 mg each kg-1) and were repeatedly challenged intravenously once weekly with SHIVAD8-EO (130 TCID50), until infection was confirmed via plasma viral load assay. Two control macaques, which received no antibody, were challenged identically. METHODS Plasma viremia was monitored via RT-qPCR assay. bNAb concentrations were determined longitudinally in plasma samples via TZM-bl neutralization assays using virions pseudotyped with 10-1074-sensitive (X2088_c9) or 3BNC117-sensitive (Q769.d22) HIV envelope proteins. RESULTS Passively immunized macaques were protected against a median of five weekly intravenous SHIV challenges, as compared to untreated controls, which were infected following a single challenge. Of the two bNAbs, 10-1074 exhibited relatively longer persistence in vivo. The median plasma level of 10-1074 at SHIV breakthrough was 1.1 μg ml-1 (range: 0.6-1.6 μg ml-1), whereas 3BNC117 was undetectable. Probit modeling estimated that 6.6 μg ml-1 of 10-1074 in plasma corresponded to a 99% reduction in per-challenge infection probability, as compared to controls. CONCLUSIONS Significant protection against repeated intravenous SHIV challenges was observed following administration of 10-1074 and 3BNC117 and was due primarily to 10-1074. Our findings extend preclinical studies of bNAb-mediated protection against mucosal SHIV acquisition and support the possibility that intermittent subcutaneous injections of 10-1074 could serve as long-acting preexposure prophylaxis for persons who inject drugs.
Collapse
Affiliation(s)
- David A Garber
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Patricia Guenthner
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - James Mitchell
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Shanon Ellis
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Martha Nason
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Janet M McNicholl
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Walid Heneine
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
48
|
Smith T, Masciotra S, Luo W, Sullivan V, Switzer WM, Johnson JA, Heneine W. Broadly neutralizing HIV-1 antibody reactivity in HIV tests: implications for diagnostics. AIDS 2021; 35:1561-1565. [PMID: 33756512 DOI: 10.1097/qad.0000000000002898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Passive immunization with broadly neutralizing antibodies (bNAbs) is under evaluation for HIV prevention. BNAbs target gp120 or gp41, two HIV envelope antigens commonly present in diagnostic tests. Depending on bNAb type and dose administered to humans, serum levels can reach nearly 1 mg/ml and wane over several weeks to months. We investigated the reactivity of bNAbs in HIV serological tests to inform diagnostic testing practices for persons treated with these products. DESIGN AND METHODS The antigp120 bNAbs VRCO1, PGT121, PGT145, 3BNC117, 10-1074 and N6 and antigp41 bNAbs 10E8 and 10E8v4 were tested with the laboratory-based Bio-Rad Ag/Ab Combo assay, the point-of-care single-use Determine Combo, OraQuick, Reveal G4, SureCheck, Uni-Gold, INSTI and DPP HIV-1/2 assays, and the supplemental Geenius and HIV-1 Western Blot assays. RESULTS At 1 mg/ml, all bNAbs were nonreactive in four screening tests. OraQuick, SureCheck, Reveal G4 and INSTI detected at least two bNAbs each; SureCheck exhibited reactivity to six bNAbs. Geenius was HIV-1 indeterminate (gp160+) with all bNAbs except PGT121, which was HIV antibody-negative. HIV-1 Western Blot was indeterminate (gp41+/gp160+) with 10E8 and 10E8v4 and negative with the remaining bNAbs. There was no correlation between the test antigen construct(s) and bNAb reactivity. CONCLUSION We identified a laboratory-based Ag/Ab EIA and three single-use rapid HIV tests that are nonreactive against a panel of bNAbs supporting some diagnostic tests can distinguish HIV-1 infection events among persons receiving bNAb immunoprophylaxis. Evaluation of HIV diagnostic tests prior to clinical use may identify suitable serologic assays for persons administered bNAbs.
Collapse
Affiliation(s)
- Tara Smith
- Oak Ridge Institute for Science and Research, Oak Ridge, TN
- ICF
| | - Silvina Masciotra
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Wei Luo
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Vickie Sullivan
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - William M Switzer
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jeffrey A Johnson
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Walid Heneine
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
49
|
Wang X, Xu H. Residual Proviral Reservoirs: A High Risk for HIV Persistence and Driving Forces for Viral Rebound after Analytical Treatment Interruption. Viruses 2021; 13:335. [PMID: 33670027 PMCID: PMC7926539 DOI: 10.3390/v13020335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Antiretroviral therapy (ART) has dramatically suppressed human immunodeficiency virus (HIV) replication and become undetectable viremia. However, a small number of residual replication-competent HIV proviruses can still persist in a latent state even with lifelong ART, fueling viral rebound in HIV-infected patient subjects after treatment interruption. Therefore, the proviral reservoirs distributed in tissues in the body represent a major obstacle to a cure for HIV infection. Given unavailable HIV vaccine and a failure to eradicate HIV proviral reservoirs by current treatment, it is crucial to develop new therapeutic strategies to eliminate proviral reservoirs for ART-free HIV remission (functional cure), including a sterilizing cure (eradication of HIV reservoirs). This review highlights recent advances in the establishment and persistence of HIV proviral reservoirs, their detection, and potential eradication strategies.
Collapse
Affiliation(s)
| | - Huanbin Xu
- Tulane National Primate Research Center, Division of Comparative Pathology, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA 70433, USA;
| |
Collapse
|
50
|
Systematic Assessment of Antiviral Potency, Breadth, and Synergy of Triple Broadly Neutralizing Antibody Combinations against Simian-Human Immunodeficiency Viruses. J Virol 2021; 95:JVI.01667-20. [PMID: 33177194 DOI: 10.1128/jvi.01667-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/23/2020] [Indexed: 01/29/2023] Open
Abstract
Daily burden and clinical toxicities associated with antiretroviral therapy (ART) emphasize the need for alternative strategies to induce long-term human immunodeficiency virus (HIV) remission upon ART cessation. Broadly neutralizing antibodies (bNAbs) can both neutralize free virions and mediate effector functions against infected cells and therefore represent a leading immunotherapeutic approach. To increase potency and breadth, as well as to limit the development of resistant virus strains, it is likely that bNAbs will need to be administered in combination. It is therefore critical to identify bNAb combinations that can achieve robust polyfunctional antiviral activity against a high number of HIV strains. In this study, we systematically assessed the abilities of single bNAbs and triple bNAb combinations to mediate robust polyfunctional antiviral activity against a large panel of cross-clade simian-human immunodeficiency viruses (SHIVs), which are commonly used as tools for validation of therapeutic strategies targeting the HIV envelope in nonhuman primate models. We demonstrate that most bNAbs are capable of mediating both neutralizing and nonneutralizing effector functions against cross-clade SHIVs, although the susceptibility to V3 glycan-specific bNAbs is highly strain dependent. Moreover, we observe a strong correlation between the neutralization potencies and nonneutralizing effector functions of bNAbs against the transmitted/founder SHIV CH505. Finally, we identify several triple bNAb combinations comprising of CD4 binding site-, V2-glycan-, and gp120-gp41 interface-targeting bNAbs that are capable of mediating synergistic polyfunctional antiviral activities against multiple clade A, B, C, and D SHIVs.IMPORTANCE Optimal bNAb immunotherapeutics will need to mediate multiple antiviral functions against a broad range of HIV strains. Our systematic assessment of triple bNAb combinations against SHIVs will identify bNAbs with synergistic, polyfunctional antiviral activity that will inform the selection of candidate bNAbs for optimal combination designs. The identified combinations can be validated in vivo in future passive immunization studies using the SHIV challenge model.
Collapse
|