1
|
Wu L, Ssebuliba T, Muwonge TR, Bambia F, Stein G, Nampewo O, Sapiri O, Goetz BJ, Penrose KJ, Parikh UM, Mujugira A, Heffron R. Alignment of PrEP Use With Potential HIV Exposure in Young Women and Men in Uganda. J Acquir Immune Defic Syndr 2025; 98:326-333. [PMID: 39630076 DOI: 10.1097/qai.0000000000003573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/08/2024] [Indexed: 02/21/2025]
Abstract
BACKGROUND Despite high oral pre-exposure prophylaxis (PrEP) uptake among young heterosexual cisgender women, early discontinuation is frequent. It is unclear whether this aligns with potential HIV exposure. METHODS Young women aged 16-25 years and ≥1 of their male partners were enrolled in separate but linked longitudinal HIV PrEP studies in Kampala, Uganda, from 2018 to 2021. Data on sexual behavior, PrEP use, sexually transmitted disease positivity, and Y chromosome DNA (Yc DNA; a marker for condomless sex) were collected at enrollment and quarterly visits. Potential HIV exposure was defined as one of the following in the past 3 months: any sexually transmitted disease, detection of Yc DNA, condomless vaginal sex, or multiple sex partners. Alignment between potential HIV exposure and PrEP use by participants was examined using generalized estimating equation (GEE) regression. RESULTS Eighty-eight young women (median age = 20.6 years, interquartile range 19.5-22.0) and 124 male partners (median age = 23.5 years, interquartile range 21.0-26.0) were included. Women and men were dispensed PrEP in 66.9% and 60.5% of their first linked visits, respectively. PrEP dispensation was more common when women or men self-reported condomless vaginal sex and multiple sex partners or when women had Yc DNA detected in vaginal swabs. Men's self-report of multiple partners (adjusted prevalence ratio = 1.56, P = 0.012) and the detection of Yc DNA (adjusted prevalence ratio = 1.52, P = 0.040) were significantly associated with women's PrEP dispensation. CONCLUSIONS Women and their male partners may align their PrEP use with their HIV risk behaviors, providing some reassurance that PrEP discontinuation in young people often aligns with sexual behavior. Greater attention to measurement of and mismatches in PrEP discontinuation and potential HIV exposure is needed.
Collapse
Affiliation(s)
- Linxuan Wu
- Department of Epidemiology, University of Washington, Seattle, WA
- Department of Global Health, University of Washington, Seattle, WA
| | | | | | - Felix Bambia
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Gabrielle Stein
- Department of Global Health, University of Washington, Seattle, WA
| | - Olivia Nampewo
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Oliver Sapiri
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - B Jay Goetz
- School of Medicine, University of Pittsburgh, Pittsburgh, PA; and
| | - Kerri J Penrose
- School of Medicine, University of Pittsburgh, Pittsburgh, PA; and
| | - Urvi M Parikh
- School of Medicine, University of Pittsburgh, Pittsburgh, PA; and
| | - Andrew Mujugira
- Department of Global Health, University of Washington, Seattle, WA
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Renee Heffron
- Department of Global Health, University of Washington, Seattle, WA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
2
|
Rai MA, Blazkova J, Kardava L, Justement JS, Shi V, Manning MR, Shahid A, Dong W, Kennedy BD, Sewack AB, Higgins J, Buckner CM, Gittens K, West RE, Devanathan AS, Mangusan R, Lurain K, Ramaswami R, Yarchoan R, Sneller MC, Pau AK, Brumme ZL, Moir S, Chun TW. Sustained virologic suppression of multidrug-resistant HIV in an individual treated with anti-CD4 domain 1 antibody and lenacapavir. Nat Med 2025; 31:427-432. [PMID: 39753965 DOI: 10.1038/s41591-024-03357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/15/2024] [Indexed: 02/20/2025]
Abstract
The clinical management of people with multidrug-resistant (MDR) human immunodeficiency virus (HIV) remains challenging despite continued development of antiretroviral agents. A 58-year-old male individual with MDR HIV and Kaposi sarcoma (KS) was treated with a new antiretroviral regimen consisting of anti-CD4 domain 1 antibody UB-421 and capsid inhibitor lenacapavir. The individual experienced delayed but sustained suppression of plasma viremia and a substantial increase in the CD4+ T cell count. A longitudinal examination of plasma HIV and infectious isolates showed no evidence of viral evolution or the emergence of UB-421- or lenacapavir-resistant viruses. The individual received three cycles of liposomal doxorubicin and five doses of anti-programmed cell death protein 1 (PD-1) monoclonal antibody pembrolizumab that resulted in improvement in KS with flattening of lesions. Our data demonstrate that combination therapy with UB-421 could provide sustained virologic suppression in people harboring MDR HIV with limited therapeutic alternatives.
Collapse
Affiliation(s)
- M Ali Rai
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jana Blazkova
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jesse S Justement
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Victoria Shi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Maegan R Manning
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Winnie Dong
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Brooke D Kennedy
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Adeline B Sewack
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Clarisa M Buckner
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kathleen Gittens
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD, USA
| | - Raymond E West
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Aaron S Devanathan
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Ralph Mangusan
- HIV and AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael C Sneller
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alice K Pau
- Division of Clinical Research, NIAID, NIH, Bethesda, MD, USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
3
|
Singh R, Shelton M, Olson I, Ling J, West S, Levy JA, Rhee MS, Girish S, Palaparthy R. Effect of Food Intake or Coadministration With an Acid-Reducing Agent on Lenacapavir Pharmacokinetics Following Oral Administration. Clin Pharmacol Drug Dev 2025. [PMID: 39844693 DOI: 10.1002/cpdd.1513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/29/2024] [Indexed: 01/24/2025]
Abstract
Lenacapavir is a potent, long-acting HIV-1 capsid inhibitor used in combination with other antiretrovirals to treat HIV-1 infection. The pharmacokinetics of orally administered drugs may be affected by food intake or coadministration of acid-reducing agents (ARA). Two Phase 1 studies were conducted on healthy participants to evaluate the effect of food and the impact of the histamine H2-receptor antagonist famotidine in parallel cohorts. In Study 1, oral lenacapavir (300 mg) was administered under fasting conditions, after a standardized high-fat meal, and after a low-fat meal (n = 8/cohort). In Study 2, lenacapavir 300 mg was administered alone (n = 27) and 2 hours after famotidine (40 mg; n = 25), each under fasting conditions. For the high-fat meal versus fasted comparison, the percentage geometric least-squares mean (%GLSM) ratios for the lenacapavir area under the curve to infinity (AUCinf) and maximum concentration (Cmax) were 115.2 and 145.2, respectively. For the low-fat meal, the %GLSM ratios for lenacapavir AUCinf and Cmax were 98.6 and 115.8, respectively, versus the fasted state. In the famotidine study, the %GLSM ratio for lenacapavir AUC from time zero to the last quantifiable concentration was 137.4, and for Cmax was 100.6. Based on available clinical safety data, the exposure increases observed in these studies were not expected to be clinically relevant. Overall, these data support the dosing of oral lenacapavir without regard to food intake or coadministration with ARAs.
Collapse
Affiliation(s)
- Renu Singh
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | - John Ling
- Gilead Sciences, Inc., Foster City, CA, USA
| | - Steve West
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | | | | |
Collapse
|
4
|
Okoli A, Ogbuagu O. Drug interactions in people with HIV treated with antivirals for other viral illnesses. Expert Opin Drug Metab Toxicol 2025:1-15. [PMID: 39836520 DOI: 10.1080/17425255.2025.2455401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 12/13/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
INTRODUCTION Background: People with HIV (PWH) have benefited tremendously from effective antiretroviral(ARV) treatments. However, PWH are at increased risk for other viral infections transmitted in the same way as HIV (such as hepatitis C and MPox) or that are opportunistic (e.g. cytomegalovirus). These coinfections contribute significantly to morbidity and mortality among PWH and require effective treatments to optimize patient outcomes. However, their management is complicated by drug-drug interactions (DDIs) with ARVs. AREAS COVERED Metabolism pathways and DDIs between approved ARVs and selected antiviral agents used for the treatment of common and clinically relevant viral coinfections are discussed. Literature review included search of published papers, conference abstracts (IAS, CROI, IDWeek, EACS, Glasgow) as well as unpublished data from approved drug prescribing information and regulatory submissions sourced from PubMed, Google, and Google Scholar available between June 30 1981 through June 1, 2024. EXPERT OPINION Management of drug interactions is essential for maintaining efficacy and safety of ARV and other co-administered antiviral therapies. Longer acting agents are now available for treatment of HIV and this lengthens the period during which drug interactions may occur. Emerging novel nanoparticle-carrier targeted hepatitis C and HIV treatments may mitigate, if not eliminate, their propensity for drug-drug interactions.
Collapse
Affiliation(s)
- Adaora Okoli
- Department of Infectious Diseases, Marshfield Clinic Health System, Marshfield, Wisconsin, USA
| | - Onyema Ogbuagu
- Department of Infectious Diseases, Marshfield Clinic Health System, Marshfield, Wisconsin, USA
- Yale AIDS Program, New Haven, CT, USA
| |
Collapse
|
5
|
Shinde A, Sayini R, Singh P, Burns JM, Ahmad S, Laidlaw GM, Gupton BF, Klumpp DA, Jin L. A New Synthesis of Enantiopure Amine Fragment: An Important Intermediate to the Anti-HIV Drug Lenacapavir. J Org Chem 2025; 90:471-478. [PMID: 39680644 PMCID: PMC11731271 DOI: 10.1021/acs.joc.4c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Herein, we describe a new seven-step approach to prepare (S)-1-(3,6-dibromopyridin-2-yl)-2-(3,5-difluorophenyl)ethan-1-amine ((S)-4) from the inexpensive 2-(3,5-difluorophenyl)acetic acid. The key steps in the sequence include (1) the Weinreb amide-based ketone synthesis to provide an entry point to the core structure; (2) simple functional group transformations to afford the racemic amine 4-rac; and (3) dynamic kinetic resolution (DKR) to access the chiral amine (S)-4. This seven-step process delivered the enantiopure amine (S)-4 in an overall isolated yield of approximately 15%. The process was demonstrated on a decagram scale, and the process requires no chromatographic purifications. Single-crystal X-ray crystallography measurements verified the chiral amine structure and absolute configuration.
Collapse
Affiliation(s)
| | | | | | - Justina M. Burns
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - Saeed Ahmad
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - G. Michael Laidlaw
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - B. Frank Gupton
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - Douglas A. Klumpp
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| | - Limei Jin
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23284-3068, United
States
| |
Collapse
|
6
|
Selzer L, VanderVeen LA, Parvangada A, Martin R, Collins SE, Mehrotra M, Callebaut C. Susceptibility Screening of HIV-1 Viruses to Broadly Neutralizing Antibodies, Teropavimab and Zinlirvimab, in People With HIV-1 Suppressed by Antiretroviral Therapy. J Acquir Immune Defic Syndr 2025; 98:64-71. [PMID: 39298557 DOI: 10.1097/qai.0000000000003528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/01/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND HIV envelope (env) diversity may result in resistance to broadly neutralizing antibodies (bNAbs). Assessment of genotypic or phenotypic susceptibility to antiretroviral treatment is often performed in people with HIV-1 (PWH) and used for clinical trial screening for HIV-1 bNAb susceptibility. Optimal bNAb susceptibility screening methods are not yet clear. METHODS Phenotypic and genotypic analyses were conducted on 124 screening samples from a phase 1b study of bNAbs teropavimab (3BNC117-LS) and zinlirvimab (10-1074-LS) administered with lenacapavir in virally suppressed PWH. Phenotypic analysis was conducted on integrated HIV-1 provirus and stimulated outgrowth virus, with susceptibility to bNAbs defined as 90% inhibitory concentration ≤2 μg/mL. The proviral DNA HIV env gene was genotyped using deep sequencing, and bNAb susceptibility predicted using published env amino acid signatures. RESULTS Proviral phenotypic results were reported for 109 of 124 samples; 75% (82/109) were susceptible to teropavimab, 65% (71/109) to zinlirvimab, and 50% (55/109) to both bNAbs. Phenotypic susceptibility of outgrowth viruses was available for 39 samples; 56% (22/39) were susceptible to teropavimab, and 64% (25/39) to zinlirvimab. Phenotypic susceptibilities correlated between these methods: teropavimab r = 0.82 ( P < 0.0001); zinlirvimab r = 0.77 ( P < 0.0001). Sixty-seven samples had genotypic and phenotypic data. Proviral genotypic signatures predicted proviral phenotypic susceptibility with high positive predictive value (68%-86% teropavimab; 63%-90% zinlirvimab). CONCLUSIONS bNAb susceptibility was correlated among all 3 in vitro assays used to determine teropavimab and zinlirvimab susceptibility in virally suppressed PWH. These findings may help refine PWH selection criteria for eligibility for future studies.
Collapse
|
7
|
Marzolini C, Gibbons S, Seddon D, Khoo S. Drug-drug interactions potential with the HIV-1 capsid inhibitor lenacapavir. Expert Opin Drug Metab Toxicol 2025; 21:161-172. [PMID: 39411777 DOI: 10.1080/17425255.2024.2415295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/08/2024] [Indexed: 02/02/2025]
Abstract
INTRODUCTION Lenacapavir is the first HIV-1 capsid inhibitor administered subcutaneously twice yearly. While lenacapavir is currently only indicated as salvage therapy, it has the potential to become a foundation of future treatments and to revolutionize HIV prevention. AREAS COVERED This review summarizes the pharmacology of lenacapavir with particular emphasis placed on its drug-drug interaction (DDI) potential as it is used in treatment-experienced individuals who often present multiple comorbidities and polypharmacy. The effect of lenacapavir on drug metabolizing enzymes and transporters as well as findings of DDI studies are summarized. These data were used to predict DDIs with 1073 comedications. Finally, the management of selected DDIs is discussed. Conferences/workshops abstracts (i.e. CROI, IAS, EACS, HIV Glasgow, PK workshop) were screened using the terms: 'lenacapavir,' 'capsid inhibitor,' 'GS-6207,' and a PubMed search was used to compile data until September 2024. EXPERT OPINION Lenacapavir has a favorable DDI profile with 80% of evaluated comedications estimated to have no clinically significant DDIs. More studies are needed to address pharmacological gaps including the pharmacokinetics of lenacapavir in special populations, its transfer across the blood-brain barrier or the placenta as well as the possibility to manage DDIs with moderate/strong inducers by reducing lenacapavir dosing interval.
Collapse
Affiliation(s)
- Catia Marzolini
- Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Sara Gibbons
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Daniel Seddon
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Saye Khoo
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
8
|
Alford K, Sidat S, Bristowe K, Cicconi P, Vera JH, Cresswell F. Lenacapavir: Patient and healthcare provider perceptions and the potential role for a twice-yearly injectable HIV treatment. HIV Med 2024. [PMID: 39658772 DOI: 10.1111/hiv.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/17/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND The twice-yearly, long-acting lenacapavir (LA LEN) antiretroviral therapy (ART), when combined with an optimised background regimen, provides a subcutaneous injectable treatment option for people with HIV. This study aimed to understand the preferences, barriers and facilitators for uptake and implementation of LA LEN, with a view to informing clinical implementation. METHODS In-depth qualitative interviews and focus groups with purposively sampled people with HIV and healthcare workers (HCWs) from UK HIV services were conducted. Transcripts were analysed using summative and conventional content analysis. RESULTS Thirty-four people with HIV with varied ART experience were recruited from two HIV services. Participants included 22 (65%) identifying as cisgender men and 12 (35%) identifying as cisgender women; median age was 55 years (range 26-76 years). Fourteen HIV HCWs took part in three focus groups. Four key themes and 12 subthemes were identified: LA LEN as a treatment option; LA LEN versus oral ART; switching considerations; and administration of LA LEN. The majority (88%) of people with HIV were interested in switching to LA LEN if offered. Preference was markedly reduced if an oral ART pairing was required. Convenience of the dosing schedule, reduced pill burden and issues around stigma were reasons for interest in LA LEN, but concerns regarding efficacy, dosing interval windows, monitoring and side effects were described. HCWs felt the benefit of LA LEN was as a treatment option for those with adherence issues, drug resistance and a high pill burden. Broader use of LA LEN raised concerns over drug resistance, delivery capacity and storage. CONCLUSIONS LA LEN was viewed as a preferable treatment choice for many people with HIV, provided an all-injectable regimen was available. Feasibility assessments for provision of injectable ART and research on its potential for self-administration are needed.
Collapse
Affiliation(s)
- Kate Alford
- Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, UK
| | - Shiraaz Sidat
- Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, UK
| | - Katherine Bristowe
- Florence Nightingale Faculty of Nursing Midwifery & Palliative Care, Cicely Saunders Institute, King's College London, London, UK
| | - Paola Cicconi
- University Hospitals Oxford NHS Foundation Trust, Oxford, UK
| | - Jamie H Vera
- Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, UK
- University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - Fiona Cresswell
- Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, UK
- University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| |
Collapse
|
9
|
Mounzer K, Slim J, Ramgopal M, Hedgcock M, Bloch M, Santana J, Mendes I, Guo Y, Arora P, Montezuma-Rusca JM, Sklar P, Baeten JM, Segal-Maurer S. Efficacy and Safety of Switching to Daily Bictegravir Plus Lenacapavir From a Complex Human Immunodeficiency Virus Treatment Regimen: A Randomized, Open-Label, Multicenter Phase 2 Study (ARTISTRY-1). Clin Infect Dis 2024:ciae522. [PMID: 39589133 DOI: 10.1093/cid/ciae522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Complex antiretroviral therapy (ART) regimens, such as those requiring multiple tablets, several doses per day, or both, can negatively affect quality of life and treatment adherence among people with human immunodeficiency virus (HIV). METHODS ARTISTRY-1 is a phase 2/3, operationally seamless, randomized, open-label, multicenter, active-controlled study (GS-US-621-6289; NCT05502341). Phase 2 of the study enrolled adults with plasma HIV-1 RNA <50 copies/mL receiving a complex ART regimen for ≥6 months. Efficacy and safety outcomes were evaluated after a switch to bictegravir (BIC) (75-mg) + lenacapavir (LEN) (25- or 50-mg) regimens, compared with continuing on a complex ART regimen through 24 weeks. RESULTS Overall, 128 participants were assigned randomly to begin BIC 75 mg + LEN 25 mg (n = 51) or BIC 75 mg + LEN 50 mg (n = 52) or continue on their complex ART regimen (n = 25). At week 24, HIV-1 RNA was ≥50 copies/mL in 0 of 51, 1 of 52 (1.9%), and 0 of 25 participants in the 3 groups, respectively. CD4 cell counts and percentages remained stable through week 24; the median change from baseline in CD4 cell count (interquartile range) was 18 (-39 to 70), -16 (-80 to 93), and 42 (-36 to 90) cells/µL, respectively. There were no study discontinuations due to a serious adverse event through week 24. Both BIC + LEN dosing regimens were well tolerated, with similar safety profiles observed between groups. CONCLUSIONS These data support the continued evaluation of the combination of BIC and LEN to optimize treatment in people with HIV and virologic suppression who are receiving complex ART regimens.
Collapse
Affiliation(s)
- Karam Mounzer
- The Jonathon Lax Immune Disorders Treatment Center, Philadelphia FIGHT, Philadelphia, Pennsylvania, USA
| | - Jihad Slim
- New York Medical College, Valhalla, New York, USA
| | - Moti Ramgopal
- Midway Immunology and Research Center, Fort Pierce, Florida, USA
| | | | - Mark Bloch
- Holdsworth House Medical Practice, Darlinghurst, New South Wales, Australia
| | - Jorge Santana
- School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Ines Mendes
- Patient Safety, Gilead Sciences, Inc., Foster City, California, USA
| | - Ying Guo
- Biostatistics, Gilead Sciences, Inc., Foster City, California, USA
| | - Priyanka Arora
- Clinical Pharmacology, Gilead Sciences, Inc., Foster City, California, USA
| | | | - Peter Sklar
- Clinical Development, Gilead Sciences, Inc., Foster City, California, USA
| | - Jared M Baeten
- Clinical Development, Gilead Sciences, Inc., Foster City, California, USA
| | | |
Collapse
|
10
|
Xu S, Wang S, Zhou Y, Foley N, Sun L, Walsham L, Tang K, Shi D, Shi X, Zhang Z, Jiang X, Gao S, Liu X, Pannecouque C, Goldstone DC, Dick A, Zhan P. "Pseudosubstrate Envelope"/Free Energy Perturbation-Guided Design and Mechanistic Investigations of Benzothiazole HIV Capsid Modulators with High Ligand Efficiency. J Med Chem 2024; 67:19057-19076. [PMID: 39418501 DOI: 10.1021/acs.jmedchem.4c01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Based on our proposed "pseudosubstrate envelope" concept, 25 benzothiazole-bearing HIV capsid protein (CA) modulators were designed and synthesized under the guidance of free energy perturbation technology. The most potent compound, IC-1k, exhibited an EC50 of 2.69 nM against HIV-1, being 393 times more potent than the positive control PF74. Notably, IC-1k emerged as the highest ligand efficiency (LE = 0.32) HIV CA modulator, surpassing that of the approved drug lenacapavir (LE = 0.21). Surface plasmon resonance assay and crystallographic analysis confirmed that IC-1k targeted HIV-1 CA within the chemical space of the "pseudosubstrate envelope". Further mechanistic studies revealed a dual-stage inhibition profile: IC-1k disrupted early-stage capsid-host-factor interactions and promoted late-stage capsid misassembly. Preliminary pharmacokinetic evaluations demonstrated significantly improved metabolic stability in human liver microsomes for IC-1k (T1/2 = 91.3 min) compared to PF74 (T1/2 = 0.7 min), alongside a favorable safety profile. Overall, IC-1k presents a promising lead compound for further optimization.
Collapse
Affiliation(s)
- Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Yang Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Nicholas Foley
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Laura Walsham
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Kai Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Dazhou Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Xiaoyu Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Zhijiao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), Leuven B-3000, Belgium
| | - David C Goldstone
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, PR China
| |
Collapse
|
11
|
Wu L, Kaftan D, Wittenauer R, Arrouzet C, Patel N, Saravis AL, Pfau B, Mudimu E, Bershteyn A, Sharma M. Health impact, budget impact, and price threshold for cost-effectiveness of lenacapavir for HIV pre-exposure prophylaxis in eastern and southern Africa: a modelling analysis. Lancet HIV 2024; 11:e765-e773. [PMID: 39312933 PMCID: PMC11519315 DOI: 10.1016/s2352-3018(24)00239-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Injectable lenacapavir administered every 6 months is a promising product for HIV pre-exposure prophylaxis (PrEP). We aimed to estimate the health and budget impacts and threshold price at which lenacapavir could be cost-effective in eastern and southern Africa. METHODS We adapted an agent-based network model, EMOD-HIV, to simulate lenacapavir scale-up in Zimbabwe, South Africa, and western Kenya from 2026 to 2035. Uptake assumptions were informed by a literature review of PrEP product preferences. In the main analysis, we varied lenacapavir coverage by subgroup: female sex workers (40% coverage); male clients of female sex workers (40%); adolescent girls and young women aged 15-24 years with more than one sexual partner (32%); women aged 25 years and older with more than one sexual partner (36%); and males with more than one sexual partner (32%). We also assessed a higher coverage scenario (64-76% across subgroups) and scenarios of expanding lenacapavir use, varying from concentrated among those at highest HIV risk to broader coverage including those at medium HIV risk. We estimated the maximum per-dose lenacapavir price that achieved cost-effectiveness ( FINDINGS In the main analysis, lenacapavir was projected to achieve from 1·6% (95% uncertainty interval [UI] 1·5-1·8) to 4·0% (3·4-5·1) population coverage across settings and to avert from 12·3% (5·4-19·5) to 18·0% (11·0-22·9) of infections over 10 years. The maximum price per dose was highest in South Africa ($106·28 [95% UI 95·72-115·87]), followed by Zimbabwe ($21·15 [17·70-24·89]), and lowest in western Kenya ($16·58 [15·44-17·70]). The 5-year budget impact was US$507·25 million (95% UI 436·14-585·42) in South Africa, $16·80 million (13·95-22·64) in Zimbabwe, and $4·09 million (3·86-4·30) in western Kenya. In the higher coverage scenario, lenacapavir distribution was projected to reach from 3·2% (95% UI 2·9-3·6) to 8·1% (6·8-10·5) population coverage and to avert from 21·2% (95% UI 14·7-18·5) to 33·3% (28·5-36·9) of HIV infections across settings over 10 years. Price thresholds were lower than in the main analysis: $88·34 (95% UI 83·02-94·19) in South Africa, $17·71 (15·61-20·05) in Zimbabwe, and $14·78 (14·33-15·30) in western Kenya. The 5-year budget impact was higher than the main analysis: $835·29 million (95% UI 736·98-962·98) in South Africa, $29·50 million (24·62-39·52) in Zimbabwe, and $7·45 million (7·11-7·85) in western Kenya. Expanding lenacapavir coverage resulted in higher HIV infections averted but lower price thresholds than scenarios of concentrated use among those with highest HIV risk. INTERPRETATION Our findings suggest that lenacapavir could avert substantial HIV incidence and that price thresholds and budget impacts vary by setting and coverage. These results could inform policy deliberations regarding lenacapavir pricing and resource planning. FUNDING The Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Linxuan Wu
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - David Kaftan
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Rachel Wittenauer
- CHOICE Institute, University of Washington School of Pharmacy, Seattle, WA, USA
| | - Cory Arrouzet
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Nishali Patel
- Department of Global Health, University of Washington, Seattle, WA, USA; Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
| | - Arden L Saravis
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Brian Pfau
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Edinah Mudimu
- Department of Decision Sciences, University of South Africa, Pretoria, South Africa
| | - Anna Bershteyn
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Monisha Sharma
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
Senkuttuvan N, Komarasamy B, Krishnamoorthy R, Sarkar S, Dhanasekaran S, Anaikutti P. The significance of chirality in contemporary drug discovery-a mini review. RSC Adv 2024; 14:33429-33448. [PMID: 39439836 PMCID: PMC11495282 DOI: 10.1039/d4ra05694a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
More than half of drugs are chiral compounds with their chirality determining their molecular interactions, ecofriendly environmental safety and efficacy. Overall nearly 90% of chiral compounds are marketed as racemates consisting of an equimolar mixture of two enantiomers. Despite having identical chemical structure and bonding, racemates function differently when exposed to chiral environments and demonstrate notable variances in biological properties such as pharmacology, toxicology, metabolism and pharmacokinetics, etc. Advancements in asymmetric synthesis in recent years have led to considerable interest in the development of single enantiomers of chiral drug molecules for medicinal chemistry settings. In this review, we want to compile examples of chiral medicines approved by the FDA in the years 2022 and 2023 with an emphasis on their synthesis along with information on chiral induction as well as enantiomeric excess.
Collapse
Affiliation(s)
| | | | | | - Shuvajyoti Sarkar
- Department of Chemistry, Rajabazar Science College, University of Calcutta College Street Kolkata-700009 India
| | - Sivasankaran Dhanasekaran
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science & Technology Chennai Tamilnadu 600 048 India
| | - Parthiban Anaikutti
- Medicinal Chemistry Laboratory, Department of General Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Chennai Tamil Nadu India
| |
Collapse
|
13
|
Kiarie IW, Hoffka G, Laporte M, Leyssen P, Neyts J, Tőzsér J, Mahdi M. Efficacy of Integrase Strand Transfer Inhibitors and the Capsid Inhibitor Lenacapavir against HIV-2, and Exploring the Effect of Raltegravir on the Activity of SARS-CoV-2. Viruses 2024; 16:1607. [PMID: 39459940 PMCID: PMC11512360 DOI: 10.3390/v16101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Retroviruses perpetuate their survival by incorporating a copy of their genome into the host cell, a critical step catalyzed by the virally encoded integrase. The viral capsid plays an important role during the viral life cycle, including nuclear importation in the case of lentiviruses and integration targeting events; hence, targeting the integrase and the viral capsid is a favorable therapeutic strategy. While integrase strand transfer inhibitors (INSTIs) are recommended as first-line regimens given their high efficacy and tolerability, lenacapavir is the first capsid inhibitor and the newest addition to the HIV treatment arsenal. These inhibitors are however designed for treatment of HIV-1 infection, and their efficacy against HIV-2 remains widely understudied and inconclusive, supported only by a few limited phenotypic susceptibility studies. We therefore carried out inhibition profiling of a panel of second-generation INSTIs and lenacapavir against HIV-2 in cell culture, utilizing pseudovirion inhibition profiling assays. Our results show that the tested INSTIs and lenacapavir exerted excellent efficacy against ROD-based HIV-2 integrase. We further evaluated the efficacy of raltegravir and other INSTIs against different variants of SARS-CoV-2; however, contrary to previous in silico findings, the inhibitors did not demonstrate significant antiviral activity.
Collapse
Affiliation(s)
- Irene Wanjiru Kiarie
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gyula Hoffka
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Manon Laporte
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.L.); (P.L.); (J.N.)
| | - Pieter Leyssen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.L.); (P.L.); (J.N.)
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Rue du Trône 98, 1050 Brussels, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.L.); (P.L.); (J.N.)
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Rue du Trône 98, 1050 Brussels, Belgium
| | - József Tőzsér
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (G.H.)
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.W.K.); (G.H.)
| |
Collapse
|
14
|
Herrmann D, Meng S, Yang H, Mansky LM, Saad JS. The Assembly of HTLV-1-How Does It Differ from HIV-1? Viruses 2024; 16:1528. [PMID: 39459862 PMCID: PMC11512237 DOI: 10.3390/v16101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Retroviral assembly is a highly coordinated step in the replication cycle. The process is initiated when the newly synthesized Gag and Gag-Pol polyproteins are directed to the inner leaflet of the plasma membrane (PM), where they facilitate the budding and release of immature viral particles. Extensive research over the years has provided crucial insights into the molecular determinants of this assembly step. It is established that Gag targeting and binding to the PM is mediated by interactions of the matrix (MA) domain and acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This binding event, along with binding to viral RNA, initiates oligomerization of Gag on the PM, a process mediated by the capsid (CA) domain. Much of the previous studies have focused on human immunodeficiency virus type 1 (HIV-1). Although the general steps of retroviral replication are consistent across different retroviruses, comparative studies revealed notable differences in the structure and function of viral components. In this review, we present recent findings on the assembly mechanisms of Human T-cell leukemia virus type 1 and highlight key differences from HIV-1, focusing particularly on the molecular determinants of Gag-PM interactions and CA assembly.
Collapse
Affiliation(s)
- Dominik Herrmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Shuyu Meng
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Department of Diagnostic and Biological Sciences, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - Jamil S. Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
15
|
Zheng J, Lu B, Carr G, Mwangi J, Wang K, Hao J, Staiger KM, Kozon N, Murray BP, Bashir M, Gohdes MA, Tse WC, Schroeder S, Graupe M, Link JO, Yoon J, Chiu A, Rowe W, Smith BJ, Subramanian R. Lenacapavir Exhibits Atropisomerism-Mechanistic Pharmacokinetics and Disposition Studies of Lenacapavir Reveal Intestinal Excretion as a Major Clearance Pathway. J Pharmacol Exp Ther 2024; 391:91-103. [PMID: 39117460 DOI: 10.1124/jpet.124.002302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Lenacapavir (LEN), a long-acting injectable, is the first approved human immunodeficiency virus type 1 capsid inhibitor and one of a few Food and Drug Administration-approved drugs that exhibit atropisomerism. LEN exists as a mixture of two class 2 atropisomers that interconvert at a fast rate (half-life < 2 hours) with a ratio that is stable over time and unaffected by enzymes or binding to proteins in plasma. LEN exhibits low systemic clearance (CL) in nonclinical species and humans; however, in all species, the observed CL was higher than the in vitro predicted CL. The volume of distribution was moderate in nonclinical species and consistent with the tissue distribution observed by whole-body autoradiography in rats. LEN does not distribute to brain, consistent with being a P-glycoprotein (P-gp) substrate. Mechanistic drug disposition studies with [14C]LEN in intravenously dosed bile duct-cannulated rats and dogs showed a substantial amount of unchanged LEN (31%-60% of dose) excreted in feces, indicating that intestinal excretion (IE) was a major clearance pathway for LEN in both species. Coadministration of oral elacridar, a P-gp inhibitor, in rats decreased CL and IE of LEN. Renal excretion was < 1% of dose in both species. In plasma, almost all radioactivity was unchanged LEN. Low levels of metabolites in excreta included LEN conjugates with glutathione, pentose, and glucuronic acid, which were consistent with metabolites formed in vitro in Hμrel hepatocyte cocultures and those observed in human. Our studies highlight the importance of IE for efflux substrates that are highly metabolically stable compounds with slow elimination rates. SIGNIFICANCE STATEMENT: LEN is a long-acting injectable that exists as conformationally stable atropisomers. Due to an atropisomeric interconversion rate that significantly exceeds the in vivo elimination rate, the atropisomer ratio of LEN remains constant in circulation. The disposition of LEN highlights that intestinal excretion has a substantial part in the elimination of compounds that are metabolically highly stable and efflux transporter substrates.
Collapse
Affiliation(s)
- Jim Zheng
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Bing Lu
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Gavin Carr
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Judy Mwangi
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Kelly Wang
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Jia Hao
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Kelly McLennan Staiger
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Nathan Kozon
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Bernard P Murray
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Mohammad Bashir
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Mark A Gohdes
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Winston C Tse
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Scott Schroeder
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Michael Graupe
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - John O Link
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Jungjoo Yoon
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Anna Chiu
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - William Rowe
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Bill J Smith
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| | - Raju Subramanian
- Gilead Sciences, Inc., Foster City, California (J.Z., B.L., G.C., J.M., K.W., J.H., K.M.S., N.K., B.P.M., W.C.T., S.S., M.G., J.O.L., J.Y., A.C., W.R., B.J.S., R.S.); and Labcorp Early Development Laboratories Inc., Madison, Wisconsin (M.B., M.A.G.)
| |
Collapse
|
16
|
McGraw A, Hillmer G, Medehincu SM, Hikichi Y, Gagliardi S, Narayan K, Tibebe H, Marquez D, Mei Bose L, Keating A, Izumi C, Peese K, Joshi S, Krystal M, DeCicco-Skinner KL, Freed EO, Sardo L, Izumi T. Exploring HIV-1 Maturation: A New Frontier in Antiviral Development. Viruses 2024; 16:1423. [PMID: 39339899 PMCID: PMC11437483 DOI: 10.3390/v16091423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
HIV-1 virion maturation is an essential step in the viral replication cycle to produce infectious virus particles. Gag and Gag-Pol polyproteins are assembled at the plasma membrane of the virus-producer cells and bud from it to the extracellular compartment. The newly released progeny virions are initially immature and noninfectious. However, once the Gag polyprotein is cleaved by the viral protease in progeny virions, the mature capsid proteins assemble to form the fullerene core. This core, harboring two copies of viral genomic RNA, transforms the virion morphology into infectious virus particles. This morphological transformation is referred to as maturation. Virion maturation influences the distribution of the Env glycoprotein on the virion surface and induces conformational changes necessary for the subsequent interaction with the CD4 receptor. Several host factors, including proteins like cyclophilin A, metabolites such as IP6, and lipid rafts containing sphingomyelins, have been demonstrated to have an influence on virion maturation. This review article delves into the processes of virus maturation and Env glycoprotein recruitment, with an emphasis on the role of host cell factors and environmental conditions. Additionally, we discuss microscopic technologies for assessing virion maturation and the development of current antivirals specifically targeting this critical step in viral replication, offering long-acting therapeutic options.
Collapse
Affiliation(s)
- Aidan McGraw
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Grace Hillmer
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Stefania M. Medehincu
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Sophia Gagliardi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kedhar Narayan
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Hasset Tibebe
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Dacia Marquez
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Lilia Mei Bose
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Adleigh Keating
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Coco Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kevin Peese
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Samit Joshi
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Mark Krystal
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Kathleen L. DeCicco-Skinner
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Luca Sardo
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Taisuke Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
- District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| |
Collapse
|
17
|
Alidori S, Subramanian R, Holm R. Patient-Centric Long-Acting Injectable and Implantable Platforms─An Industrial Perspective. Mol Pharm 2024; 21:4238-4258. [PMID: 39160132 PMCID: PMC11372838 DOI: 10.1021/acs.molpharmaceut.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The increasing focus on patient centricity in the pharmaceutical industry over the past decade and the changing healthcare landscape, driven by factors such as increased access to information, social media, and evolving patient demands, has necessitated a shift toward greater connectivity and understanding of patients' unique treatment needs. One pharmaceutical technology that has supported these efforts is long acting injectables (LAIs), which lower the administration frequency for the patient's provided convenience, better compliance, and hence better therapeutical treatment for the patients. Furthermore, patients with conditions like the human immunodeficiency virus and schizophrenia have positively expressed the desire for less frequent dosing, such as that obtained through LAI formulations. In this work, a comprehensive analysis of marketed LAIs across therapeutic classes and technologies is conducted. The analysis demonstrated an increasing number of new LAIs being brought to the market, recently most as aqueous suspensions and one as a solution, but many other technology platforms were applied as well, in particular, polymeric microspheres and in situ forming gels. The analysis across the technologies provided an insight into to the physicochemical properties the compounds had per technology class as well as knowledge of the excipients typically used within the individual formulation technology. The principle behind the formulation technologies was discussed with respect to the release mechanism, manufacturing approaches, and the possibility of defining predictive in vitro release methods to obtain in vitro in vivo correlations with an industrial angle. The gaps in the field are still numerous, including better systematic formulation and manufacturing investigations to get a better understanding of potential innovations, but also development of new polymers could facilitate the development of additional compounds. The biggest and most important gaps, however, seem to be the development of predictive in vitro dissolution methods utilizing pharmacopoeia described equipment to enable their use for product development and later in the product cycle for quality-based purposes.
Collapse
Affiliation(s)
- Simone Alidori
- Independent Researcher, Havertown, Pennsylvania 19083, United States
| | - Raju Subramanian
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94403, United States
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
18
|
Deshpande A, Bryer AJ, Andino-Moncada JR, Shi J, Hong J, Torres C, Harel S, Francis AC, Perilla JR, Aiken C, Rousso I. Elasticity of the HIV-1 core facilitates nuclear entry and infection. PLoS Pathog 2024; 20:e1012537. [PMID: 39259747 PMCID: PMC11419384 DOI: 10.1371/journal.ppat.1012537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/23/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
HIV-1 infection requires passage of the viral core through the nuclear pore of the cell, a process that depends on functions of the viral capsid. Recent studies have shown that HIV-1 cores enter the nucleus prior to capsid disassembly. Interactions of the viral capsid with the nuclear pore complex are necessary but not sufficient for nuclear entry, and the mechanism by which the viral core traverses the comparably sized nuclear pore is unknown. Here we show that the HIV-1 core is highly elastic and that this property is linked to nuclear entry and infectivity. Using atomic force microscopy-based approaches, we found that purified wild type cores rapidly returned to their normal conical morphology following a severe compression. Results from independently performed molecular dynamic simulations of the mature HIV-1 capsid also revealed its elastic property. Analysis of four HIV-1 capsid mutants that exhibit impaired nuclear entry revealed that the mutant viral cores are brittle. Adaptation of two of the mutant viruses in cell culture resulted in additional substitutions that restored elasticity and rescued infectivity and nuclear entry. We also show that capsid-targeting compound PF74 and the antiviral drug Lenacapavir reduce core elasticity and block HIV-1 nuclear entry at concentrations that preserve interactions between the viral core and the nuclear envelope. Our results indicate that elasticity is a fundamental property of the HIV-1 core that enables nuclear entry, thereby facilitating infection. These results provide new insights into the role of the capsid in HIV-1 nuclear entry and the antiviral mechanisms of HIV-1 capsid inhibitors.
Collapse
Affiliation(s)
- Akshay Deshpande
- Ben-Gurion University of the Negev, Department of Physiology and Cell Biology, Beer Sheva, Israel
| | - Alexander J. Bryer
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware, United States of America
| | - Jonathan R. Andino-Moncada
- Florida State University, Institute of Molecular Biophysics, Tallahassee, Florida, United States of America
| | - Jiong Shi
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, Tennessee, United States of America
| | - Jun Hong
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, Tennessee, United States of America
| | - Cameron Torres
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, Tennessee, United States of America
| | - Shimon Harel
- Ben-Gurion University of the Negev, Department of Physiology and Cell Biology, Beer Sheva, Israel
| | - Ashwanth C. Francis
- Florida State University, Institute of Molecular Biophysics, Tallahassee, Florida, United States of America
- Florida State University, Department of Biological Sciences, Tallahassee, Florida, United States of America
| | - Juan R. Perilla
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware, United States of America
| | - Christopher Aiken
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, Tennessee, United States of America
| | - Itay Rousso
- Ben-Gurion University of the Negev, Department of Physiology and Cell Biology, Beer Sheva, Israel
| |
Collapse
|
19
|
Li Y, Choudhary M, Mellors JW. The Current Pipeline of Antiretroviral Therapy: Expanding Options and Filling Gaps. Infect Dis Clin North Am 2024; 38:395-408. [PMID: 38876905 DOI: 10.1016/j.idc.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Highly effective antiretroviral therapy (ART) has transformed human immunodeficiency virus (HIV) care in the past 3 decades. 30 years ago, how many would have imagined that a single-tablet daily ART regimen containing different drug classes could achieve sustained HIV-1 suppression and halt disease progression to acquired immunodeficiency syndrome (AIDS)? Despite this remarkable achievement, challenges in HIV care remain that require further innovation for ART. In this review, we focus on newly approved antiretroviral agents and those undergoing phase 2/3 clinical trials. These new antiretrovirals hold great promise to expand treatment options and fill gaps in HIV care.
Collapse
Affiliation(s)
- Yijia Li
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Madhu Choudhary
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John W Mellors
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Tarasova O, Petrou A, Ivanov SM, Geronikaki A, Poroikov V. Viral Factors in Modulation of Host Immune Response: A Route to Novel Antiviral Agents and New Therapeutic Approaches. Int J Mol Sci 2024; 25:9408. [PMID: 39273355 PMCID: PMC11395507 DOI: 10.3390/ijms25179408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Viruses utilize host cells at all stages of their life cycle, from the transcription of genes and translation of viral proteins to the release of viral copies. The human immune system counteracts viruses through a variety of complex mechanisms, including both innate and adaptive components. Viruses have an ability to evade different components of the immune system and affect them, leading to disruption. This review covers contemporary knowledge about the virus-induced complex interplay of molecular interactions, including regulation of transcription and translation in host cells resulting in the modulation of immune system functions. Thorough investigation of molecular mechanisms and signaling pathways that are involved in modulating of host immune response to viral infections can help to develop novel approaches for antiviral therapy. In this review, we consider new therapeutic approaches for antiviral treatment. Modern therapeutic strategies for the treatment and cure of human immunodeficiency virus (HIV) are considered in detail because HIV is a unique example of a virus that leads to host T lymphocyte deregulation and significant modulation of the host immune response. Furthermore, peculiarities of some promising novel agents for the treatment of various viral infections are described.
Collapse
Affiliation(s)
- Olga Tarasova
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Anthi Petrou
- School of Pharmacy, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | |
Collapse
|
21
|
Hangyu W, Panpan L, Jie S, Hongyan W, Linmiao W, Kangning H, Yichen S, Shuai W, Cheng W. Advancements in Antiviral Drug Development: Comprehensive Insights into Design Strategies and Mechanisms Targeting Key Viral Proteins. J Microbiol Biotechnol 2024; 34:1376-1384. [PMID: 38934770 PMCID: PMC11294656 DOI: 10.4014/jmb.2403.03008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 06/28/2024]
Abstract
Viral infectious diseases have always been a threat to human survival and quality of life, impeding the stability and progress of human society. As such, researchers have persistently focused on developing highly efficient, low-toxicity antiviral drugs, whether for acute or chronic infectious diseases. This article presents a comprehensive review of the design concepts behind virus-targeted drugs, examined through the lens of antiviral drug mechanisms. The intention is to provide a reference for the development of new, virus-targeted antiviral drugs and guide their clinical usage.
Collapse
Affiliation(s)
- Wang Hangyu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Li Panpan
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Shen Jie
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Wang Hongyan
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Wei Linmiao
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Han Kangning
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Shi Yichen
- School of Stomatology, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Wang Shuai
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia 010050, P.R. China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Inner Mongolia 010110, P.R. China
| | - Wang Cheng
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia 010050, P.R. China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Inner Mongolia 010110, P.R. China
| |
Collapse
|
22
|
Sherman EM, Agwu AL, Ambrosioni J, Behrens GMN, Chu C, Collins LF, Jimenez HR, Koren DE, McGorman L, Nguyen NN, Nicol MR, Pandit NS, Pierre N, Scarsi KK, Spinner GF, Tseng A, Young JD, Badowski ME. Consensus recommendations for use of long-acting antiretroviral medications in the treatment and prevention of HIV-1: Endorsed by the American Academy of HIV Medicine, American College of Clinical Pharmacy, Canadian HIV and Viral Hepatitis Pharmacists Network, European AIDS Clinical Society, and Society of Infectious Diseases Pharmacists. Pharmacotherapy 2024; 44:494-538. [PMID: 39005160 DOI: 10.1002/phar.2922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 07/16/2024]
Abstract
Five long-acting (LA) antiretrovirals (ARVs) are currently available in a limited number of countries worldwide for HIV-1 prevention or treatment-cabotegravir, rilpivirine, lenacapavir, ibalizumab, and dapivirine. Implementing use of LA ARVs into routine clinical practice requires significant changes to the current framework of HIV-1 prevention, treatment, and service provision. Given the novelty, complexity, and interdisciplinary requirements needed to safely and optimally utilize LA ARVs, consensus recommendations on the use of LA ARVs will assist clinicians in optimizing use of these agents. The purpose of these recommendations is to provide guidance for the clinical use of LA ARVs for HIV-1 treatment and prevention. In addition, future areas of research are also identified and discussed.
Collapse
Affiliation(s)
- Elizabeth M Sherman
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Division of Infectious Disease, Memorial Healthcare System, Hollywood, Florida, USA
| | - Allison L Agwu
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Juan Ambrosioni
- HIV Unit and Infectious Disease Service, Hospital Clinic and Fundació de Recerca Clínic Barcelona-IDIBAPS, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Georg M N Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- Centre for Individualized Infection Medicine (CiiM), Hannover Medical School, Hannover, Germany
| | - Carolyn Chu
- University of California San Francisco, San Francisco, California, USA
| | - Lauren F Collins
- Division of Infectious Diseases, Emory School of Medicine, Grady Ponce de Leon Center, Atlanta, Georgia, USA
| | - Humberto R Jimenez
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Comprehensive Care Center, St. Joseph's University Medical Center, Paterson, New Jersey, USA
| | - David E Koren
- Temple University Health System, Philadelphia, Pennsylvania, USA
| | - Leslie McGorman
- American Academy of HIV Medicine, Washington, District of Columbia, USA
| | - Nancy N Nguyen
- Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, California, USA
| | - Melanie R Nicol
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, USA
| | - Neha Sheth Pandit
- Department of Practice, Sciences, and Health Outcomes Research, University of Maryland Baltimore School of Pharmacy, Baltimore, Maryland, USA
| | - Natacha Pierre
- Department of Population Health Nursing Science, College of Nursing, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kimberly K Scarsi
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Gary F Spinner
- Southwest Community Health Center, Bridgeport, Connecticut, USA
| | - Alice Tseng
- Immunodeficiency Clinic, University Health Network, Toronto, Ontario, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jeremy D Young
- Division of Infectious Diseases, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Melissa E Badowski
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
23
|
Linfield RY, Nguyen NN, Laprade OH, Holodniy M, Chary A. An update on drug-drug interactions in older adults living with human immunodeficiency virus (HIV). Expert Rev Clin Pharmacol 2024; 17:589-614. [PMID: 38753455 PMCID: PMC11233252 DOI: 10.1080/17512433.2024.2350968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION People with HIV are living longer due to advances in antiretroviral therapy. With improved life expectancy comes an increased lifetime risk of comorbid conditions - such as cardiovascular disease and cancer - and polypharmacy. Older adults, particularly those living with HIV, are more vulnerable to drug interactions and adverse effects, resulting in negative health outcomes. AREA COVERED Antiretrovirals are involved in many potential drug interactions with medications used to treat common comorbidities and geriatric conditions in an aging population of people with HIV. We review the mechanisms and management of significant drug-drug interactions involving antiretroviral medications and non-antiretroviral medications commonly used among older people living with HIV. The management of these interactions may require dose adjustments, medication switches to alternatives, enhanced monitoring, and considerations of patient- and disease-specific factors. EXPERT OPINION Clinicians managing comorbid conditions among older people with HIV must be particularly vigilant to side effect profiles, drug-drug interactions, pill burden, and cost when optimizing treatment. To support healthier aging among people living with HIV, there is a growing need for antiretroviral stewardship, multidisciplinary care models, and advances that promote insight into the correlations between an individual, their conditions, and their medications.
Collapse
Affiliation(s)
| | - Nancy N. Nguyen
- Department of Pharmacy, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, USA
| | - Olivia H. Laprade
- Department of Pharmacy, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, USA
| | - Mark Holodniy
- Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- National Public Health Program Office, Veterans Health Administration, Palo Alto, CA, USA
| | - Aarthi Chary
- Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- National Public Health Program Office, Veterans Health Administration, Palo Alto, CA, USA
| |
Collapse
|
24
|
Mahomed S. Broadly neutralizing antibodies for HIV prevention: a comprehensive review and future perspectives. Clin Microbiol Rev 2024; 37:e0015222. [PMID: 38687039 PMCID: PMC11324036 DOI: 10.1128/cmr.00152-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
SUMMARYThe human immunodeficiency virus (HIV) epidemic remains a formidable global health concern, with 39 million people living with the virus and 1.3 million new infections reported in 2022. Despite anti-retroviral therapy's effectiveness in pre-exposure prophylaxis, its global adoption is limited. Broadly neutralizing antibodies (bNAbs) offer an alternative strategy for HIV prevention through passive immunization. Historically, passive immunization has been efficacious in the treatment of various diseases ranging from oncology to infectious diseases. Early clinical trials suggest bNAbs are safe, tolerable, and capable of reducing HIV RNA levels. Although challenges such as bNAb resistance have been noted in phase I trials, ongoing research aims to assess the additive or synergistic benefits of combining multiple bNAbs. Researchers are exploring bispecific and trispecific antibodies, and fragment crystallizable region modifications to augment antibody efficacy and half-life. Moreover, the potential of other antibody isotypes like IgG3 and IgA is under investigation. While promising, the application of bNAbs faces economic and logistical barriers. High manufacturing costs, particularly in resource-limited settings, and logistical challenges like cold-chain requirements pose obstacles. Preliminary studies suggest cost-effectiveness, although this is contingent on various factors like efficacy and distribution. Technological advancements and strategic partnerships may mitigate some challenges, but issues like molecular aggregation remain. The World Health Organization has provided preferred product characteristics for bNAbs, focusing on optimizing their efficacy, safety, and accessibility. The integration of bNAbs in HIV prophylaxis necessitates a multi-faceted approach, considering economic, logistical, and scientific variables. This review comprehensively covers the historical context, current advancements, and future avenues of bNAbs in HIV prevention.
Collapse
Affiliation(s)
- Sharana Mahomed
- Centre for the AIDS
Programme of Research in South Africa (CAPRISA), Doris Duke Medical
Research Institute, Nelson R Mandela School of Medicine, University of
KwaZulu-Natal, Durban,
South Africa
| |
Collapse
|
25
|
Lo Caputo S, Poliseno M, Tavelli A, Gagliardini R, Rusconi S, Lapadula G, Antinori A, Francisci D, Sarmati L, Gori A, Spagnuolo V, Ceccherini-Silberstein F, d'Arminio Monforte A, Cozzi-Lepri A. Heavily treatment-experienced persons living with HIV currently in care in Italy: characteristics, risk factors, and therapeutic options-the ICONA Foundation cohort study. Int J Infect Dis 2024; 143:106956. [PMID: 38447754 DOI: 10.1016/j.ijid.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
OBJECTIVES Heavily treatment-experienced (HTE) people living with HIV (PLWH) pose unique challenges due to limited antiretroviral treatment (ART) options. Our study aimed to investigate the prevalence and features of HTE individuals followed up in the Italian Cohort Naïve Antiretrovirals (ICONA) cohort as of December 31, 2021. METHODS HTE were defined based on meeting specific conditions concerning their current ART and their ART history up to December 31, 2021. Descriptive statistics were performed by HTE status. Regression analyses explored factors associated with becoming HTE based on pre-ART patients' characteristics. Cluster dendrogram analysis provided insights into subgroups with inadequate responses based on clusters of differentiation (CD4) counts and viral load (VL) trajectories. RESULTS Among the 8758 PLWH actively followed in our cohort, 163 individuals (1.9%), mainly female, younger, Italian, and infected through heterosexual contact, met the HTE criteria. A lower CD4 count at ART initiation (odds ratio [OR] 1.60 per 100 cells/mmc lower CD4, 95% confidence interval [CI] 1.06-2.41, P = 0.03) and hepatitis C virus antibody positivity (OR 1.90, 95% CI 1.16-3.11, P = 0.01) were associated with higher HTE risk. Thirty PLWH exhibited ongoing immune-virological failure (18% of the HTE subgroup and 0.003% of the total population). Thirty PLWH exhibited ongoing immune-virological failure (i.e., with a current CD4 count <200 cells/mmc or VL>200 copies/mL). A cluster analysis identified 13 (43%) with a current CD4 count <200 cells/mmc. Also, notably, 19/30 (63%) had major acquired resistance-associated mutations to at least one antiretroviral drug class. CONCLUSIONS HTE is rare in our cohort and tends to co-exist with major resistance mutations. A focused investigation into treatment history and immuno-virological response is warranted, particularly given the availability of new antiretroviral drugs.
Collapse
Affiliation(s)
- Sergio Lo Caputo
- Department of Medical and Surgical Sciences, Infectious Diseases Unit, University of Foggia, Foggia, Italy
| | - Mariacristina Poliseno
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Jonian Area (DiMePreJ), A.O.U.C. Policlinic di Bari, Bari, Italy.
| | | | | | - Stefano Rusconi
- Infectious Diseases Unit, ASST Ovest Milanese Ospedaledi Legnano, and DIBIC, University Milan, Legnano, Italy
| | - Giuseppe Lapadula
- IRCCS Fondazione San Gerardo dei Tintori, University of Milano Bicocca, Milan, Italy
| | | | - Daniela Francisci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, University of Perugia, Perugia, Italy
| | - Loredana Sarmati
- Department of System Medicine, Infectious Disease Clinic, Policlinic Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Gori
- Department of Pathophysiology and Transplantation, Infectious Diseases Unit, Foundation IRCCS Ca' GrandaOspedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Vincenzo Spagnuolo
- Unit of Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | | | - Antonella d'Arminio Monforte
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milan, Italy
| | - Alessandro Cozzi-Lepri
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation, Institute for Global Health, UCL London, United Kingdom
| |
Collapse
|
26
|
Li S, Li H, Lian R, Xie J, Feng R. New perspective of small-molecule antiviral drugs development for RNA viruses. Virology 2024; 594:110042. [PMID: 38492519 DOI: 10.1016/j.virol.2024.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
High variability and adaptability of RNA viruses allows them to spread between humans and animals, causing large-scale infectious diseases which seriously threat human and animal health and social development. At present, AIDS, viral hepatitis and other viral diseases with high incidence and low cure rate are still spreading around the world. The outbreaks of Ebola, Zika, dengue and in particular of the global pandemic of COVID-19 have presented serious challenges to the global public health system. The development of highly effective and broad-spectrum antiviral drugs is a substantial and urgent research subject to deal with the current RNA virus infection and the possible new viral infections in the future. In recent years, with the rapid development of modern disciplines such as artificial intelligence technology, bioinformatics, molecular biology, and structural biology, some new strategies and targets for antivirals development have emerged. Here we review the main strategies and new targets for developing small-molecule antiviral drugs against RNA viruses through the analysis of the new drug development progress against several highly pathogenic RNA viruses, to provide clues for development of future antivirals.
Collapse
Affiliation(s)
- Shasha Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Huixia Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Ruiya Lian
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Jingying Xie
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
27
|
Lebedev A, Kim K, Ozhmegova E, Antonova A, Kazennova E, Tumanov A, Kuznetsova A. Rev Protein Diversity in HIV-1 Group M Clades. Viruses 2024; 16:759. [PMID: 38793640 PMCID: PMC11125641 DOI: 10.3390/v16050759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The HIV-1 Rev protein expressed in the early stage of virus replication is involved in the nuclear export of some forms of virus RNA. Naturally occurring polymorphisms in the Rev protein could influence its activity. The association between the genetic features of different virus variants and HIV infection pathogenesis has been discussed for many years. In this study, Rev diversity among HIV-1 group M clades was analyzed to note the signatures that could influence Rev activity and, subsequently, clinical characteristics. From the Los Alamos HIV Sequence Database, 4962 Rev sequences were downloaded and 26 clades in HIV-1 group M were analyzed for amino acid changes, conservation in consensus sequences, and the presence of clade-specific amino acid substitutions (CSSs) and the Wu-Kabat protein variability coefficient (WK). Subtypes G, CRF 02_AG, B, and A1 showed the largest amino acid changes and diversity. The mean conservation of the Rev protein was 80.8%. In consensus sequences, signatures that could influence Rev activity were detected. In 15 out of 26 consensus sequences, an insertion associated with the reduced export activity of the Rev protein, 95QSQGTET96, was identified. A total of 32 CSSs were found in 16 clades, wherein A6 had the 41Q substitution in the functionally significant region of Rev. The high values of WK coefficient in sites 51 and 82, located on the Rev interaction surface, indicate the susceptibility of these positions to evolutionary replacements. Thus, the noted signatures require further investigation.
Collapse
Affiliation(s)
- Aleksey Lebedev
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
- Mechnikov Scientific Research Institute of Vaccines and Serums, 105064 Moscow, Russia
| | - Kristina Kim
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Ekaterina Ozhmegova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Anastasiia Antonova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Elena Kazennova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Aleksandr Tumanov
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Anna Kuznetsova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| |
Collapse
|
28
|
Jogiraju V, Weber E, Hindman J, West S, Ling J, Rhee M, Girish S, Palaparthy R, Singh R. Pharmacokinetics of long-acting lenacapavir in participants with hepatic or renal impairment. Antimicrob Agents Chemother 2024; 68:e0134423. [PMID: 38456707 PMCID: PMC10994821 DOI: 10.1128/aac.01344-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Lenacapavir is a novel, first-in-class, multistage inhibitor of HIV-1 capsid function approved for the treatment of multidrug-resistant HIV-1 infection in combination with other antiretrovirals for heavily treatment-experienced people with HIV. Two Phase 1, open-label, parallel-group, single-dose studies assessed the pharmacokinetics (PK) of lenacapavir in participants with moderate hepatic impairment [Child-Pugh-Turcotte (CPT) Class B: score 7-9] or severe renal impairment [15 ≤ creatinine clearance (CLcr) ≤29 mL/min] to inform lenacapavir dosing in HIV-1-infected individuals with organ impairment. In both studies, a single oral dose of 300 mg lenacapavir was administered to participants with normal (n = 10) or impaired (n = 10) hepatic/renal function who were matched for age (±10 years), sex, and body mass index (±20%). Lenacapavir exposures [area under the plasma concentration-time curve from time 0 to infinity (AUCinf) and maximum concentration (Cmax)] were approximately 1.47- and 2.61-fold higher, respectively, in participants with moderate hepatic impairment compared to those with normal hepatic function, whereas lenacapavir AUCinf and Cmax were approximately 1.84- and 2.62-fold higher, respectively, in participants with severe renal impairment compared to those with normal renal function. Increased lenacapavir exposures with moderate hepatic or severe renal impairment were not considered clinically meaningful. Lenacapavir was considered generally safe and well tolerated in both studies. These results support the use of approved lenacapavir dosing regimen in patients with mild (CPT Class A: score 5-6) or moderate hepatic impairment as well as in patients with mild (60 ≤ CLcr ≤ 89 mL/min), moderate (30 ≤ CLcr ≤ 59 mL/min), and severe renal impairment.
Collapse
Affiliation(s)
| | - Elijah Weber
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Steve West
- Gilead Sciences, Inc., Foster City, California, USA
| | - John Ling
- Gilead Sciences, Inc., Foster City, California, USA
| | - Martin Rhee
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | - Renu Singh
- Gilead Sciences, Inc., Foster City, California, USA
| |
Collapse
|
29
|
Jiang X, Gao Z, Sharma PP, Kumar S, Rathi B, Ji X, Dai J, Xie M, Dong G, Xu S, De Clercq E, Pannecouque C, Dick A, Zhan P, Liu X. Discovery of low-molecular-weight phenylalanine derivatives as novel HIV capsid modulators with improved antiretroviral activity and metabolic stability. J Med Virol 2024; 96:e29594. [PMID: 38576317 DOI: 10.1002/jmv.29594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/26/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The HIV capsid (CA) protein is a promising target for anti-AIDS treatment due to its critical involvement in viral replication. Herein, we utilized the well-documented CA inhibitor PF74 as our lead compound and designed a series of low-molecular-weight phenylalanine derivatives. Among them, compound 7t exhibited remarkable antiviral activity with a high selection index (EC50 = 0.040 µM, SI = 2815), surpassing that of PF74 (EC50 = 0.50 µM, SI = 258). Furthermore, when evaluated against the HIV-2 strain, 7t (EC50 = 0.13 µM) demonstrated approximately 14-fold higher potency than that of PF74 (EC50 = 1.76 µM). Insights obtained from surface plasmon resonance (SPR) revealed that 7t exhibited stronger target affinity to the CA hexamer and monomer in comparison to PF74. The potential interactions between 7t and the HIV-1 CA were further elucidated using molecular docking and molecular dynamics simulations, providing a plausible explanation for the enhanced target affinity with 7t over PF74. Moreover, the metabolic stability assay demonstrated that 7t (T1/2 = 77.0 min) significantly outperforms PF74 (T1/2 = 0.7 min) in human liver microsome, exhibiting an improvement factor of 110-fold. In conclusion, 7t emerges as a promising drug candidate warranting further investigation.
Collapse
Grants
- National Natural Science Foundation of China (NSFC No. 82173677), Key Research and Development Program, Ministry of Science and Technology of the People's Republic of China (Grant No. 2023YFC2606500; 2023YFE0206500), Science Foundation for Outstanding Young Scholars of Shandong Province (ZR2020JQ31), Shandong Laboratory Program (SYS202205), and NIH/NIAID grant R01AI150491 (Loll, PI, Salvino, Co-I)
- 82173677 National Natural Science Foundation of China
- 2023YFC2606500 Key Research and Development Program, Ministry of Science and Technology of the People's Republic of China
- 2023YFE0206500 Key Research and Development Program, Ministry of Science and Technology of the People's Republic of China
- ZR2020JQ31 Science Foundation for Outstanding Young Scholars of Shandong Province
- SYS202205 Shandong Laboratory Program
- R01AI150491 National Institutes of Health/National Institute of Allergy and Infectious Diseases (NIH/NIAID)
Collapse
Affiliation(s)
- Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhen Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Prem Prakash Sharma
- HeteroChem InnoTech, Hansraj College Campus (University of Delhi), Delhi, India
| | - Sumit Kumar
- HeteroChem InnoTech, Hansraj College Campus (University of Delhi), Delhi, India
| | - Brijesh Rathi
- H.G. Khorana Centre For Chemical Biology, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Xiangkai Ji
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Jiaojiao Dai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Guanyu Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Alexej Dick
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, People's Republic of China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, People's Republic of China
| |
Collapse
|
30
|
France SP, Lindsey EA, McInturff EL, Berritt S, Carney DW, DeForest JC, Fink SJ, Flick AC, Gibson TS, Gray K, Johnson AM, Leverett CA, Liu Y, Mahapatra S, Watson RB. Synthetic Approaches to the New Drugs Approved During 2022. J Med Chem 2024; 67:4376-4418. [PMID: 38488755 DOI: 10.1021/acs.jmedchem.3c02374] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
In 2022, 23 new small molecule chemical entities were approved as drugs by the United States FDA, European Union EMA, Japan PMDA, and China NMPA. This review describes the synthetic approach demonstrated on largest scale for each new drug based on patent or primary literature. The synthetic routes highlight practical methods to construct molecules, sometimes on the manufacturing scale, to access the new drugs. Ten additional drugs approved in 2021 and one approved in 2020 are included that were not covered in the previous year's review.
Collapse
Affiliation(s)
- Scott P France
- Process Research and Development, Merck & Co., Rahway, NJ 07065, United States
| | - Erick A Lindsey
- Takeda San Diego, 9265 Towne Center Drive, San Diego, CA 92121, United States
| | - Emma L McInturff
- Pfizer, Inc., 445 Eastern Point Road, Groton, CT 06340, United States
| | - Simon Berritt
- Pfizer, Inc., 445 Eastern Point Road, Groton, CT 06340, United States
| | - Daniel W Carney
- Takeda San Diego, 9265 Towne Center Drive, San Diego, CA 92121, United States
| | - Jacob C DeForest
- Pfizer, Inc., 10770 Science Center Drive, San Diego, CA 92130, United States
| | - Sarah J Fink
- Crosswalk Therapeutics, 790 Memorial Drive, Cambridge, MA 02139, United States
| | - Andrew C Flick
- Takeda San Diego, 9265 Towne Center Drive, San Diego, CA 92121, United States
| | - Tony S Gibson
- Takeda San Diego, 9265 Towne Center Drive, San Diego, CA 92121, United States
| | - Kaitlyn Gray
- Pfizer, Inc., 445 Eastern Point Road, Groton, CT 06340, United States
| | - Amber M Johnson
- Pfizer, Inc., 445 Eastern Point Road, Groton, CT 06340, United States
| | | | - Yiyang Liu
- Pfizer, Inc., 445 Eastern Point Road, Groton, CT 06340, United States
| | - Subham Mahapatra
- Pfizer, Inc., 445 Eastern Point Road, Groton, CT 06340, United States
| | - Rebecca B Watson
- Pfizer, Inc., 10770 Science Center Drive, San Diego, CA 92130, United States
| |
Collapse
|
31
|
Sever B, Otsuka M, Fujita M, Ciftci H. A Review of FDA-Approved Anti-HIV-1 Drugs, Anti-Gag Compounds, and Potential Strategies for HIV-1 Eradication. Int J Mol Sci 2024; 25:3659. [PMID: 38612471 PMCID: PMC11012182 DOI: 10.3390/ijms25073659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) is an enormous global health threat stemming from human immunodeficiency virus (HIV-1) infection. Up to now, the tremendous advances in combination antiretroviral therapy (cART) have shifted HIV-1 infection from a fatal illness into a manageable chronic disorder. However, the presence of latent reservoirs, the multifaceted nature of HIV-1, drug resistance, severe off-target effects, poor adherence, and high cost restrict the efficacy of current cART targeting the distinct stages of the virus life cycle. Therefore, there is an unmet need for the discovery of new therapeutics that not only bypass the limitations of the current therapy but also protect the body's health at the same time. The main goal for complete HIV-1 eradication is purging latently infected cells from patients' bodies. A potential strategy called "lock-in and apoptosis" targets the budding phase of the life cycle of the virus and leads to susceptibility to apoptosis of HIV-1 infected cells for the elimination of HIV-1 reservoirs and, ultimately, for complete eradication. The current work intends to present the main advantages and disadvantages of United States Food and Drug Administration (FDA)-approved anti-HIV-1 drugs as well as plausible strategies for the design and development of more anti-HIV-1 compounds with better potency, favorable pharmacokinetic profiles, and improved safety issues.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Türkiye;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
- Department of Bioengineering Sciences, Izmir Katip Celebi University, Izmir 35620, Türkiye
| |
Collapse
|
32
|
Payra S, Manjhi PK, Singh S, Kumar R, Singh SK, Kumar A, Maharshi V. HIV cure: Are we going to make history? HIV Med 2024; 25:322-331. [PMID: 37821095 DOI: 10.1111/hiv.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND At present, combination antiretroviral therapy (cART) is the mainstay for the treatment of people living with HIV/AIDS. cART can suppress the viral load to a minimal level; however, the possibility of the emergence of full-blown AIDS is always there. In the latter part of the first decade of the 21st century, an HIV-positive person received stem cell transplantation (SCT) for treatment of his haematological malignancy. The patient was able to achieve remission of the haematological condition as well as of HIV following SCT. Thorough investigations of various samples including blood and biopsy could not detect the virus in the person's body. The person was declared to be the first cured case of HIV. LITERATURE SEARCH Over the next decade, a few more similar cases were observed and have recently been declared cured of the infection. A comprehensive search was performed in PubMed, Cochrane library and Google Scholar. Four such additional cases were found in literature. DESCRIPTION & DISCUSSION These cases all share a common proposed mechanism for the HIV cure, that is, transplantation of stem cells from donors carrying a homozygous mutation in a gene encoding for CCR5 (receptor utilized by HIV for entry into the host cell), denoted as CCR5△32. This mutation makes the host immune cells devoid of CCR5, causing the host to acquire resistance against HIV. To the best of our knowledge, this is the first review to look at relevant and updated information of all cured cases of HIV as well as the related landmarks in history and discusses the underlying mechanism(s).
Collapse
Affiliation(s)
- Shuvasree Payra
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, India
| | - Pramod Kumar Manjhi
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, India
| | - Shruti Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, India
| | - Rajesh Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, India
| | - Sunil Kumar Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, India
| | - Alok Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, India
| | - Vikas Maharshi
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, India
| |
Collapse
|
33
|
Eron JJ, Little SJ, Crofoot G, Cook P, Ruane PJ, Jayaweera D, VanderVeen LA, DeJesus E, Zheng Y, Mills A, Huang H, Waldman SE, Ramgopal M, Gorgos L, Collins SE, Baeten JM, Caskey M. Safety of teropavimab and zinlirvimab with lenacapavir once every 6 months for HIV treatment: a phase 1b, randomised, proof-of-concept study. Lancet HIV 2024; 11:e146-e155. [PMID: 38307098 DOI: 10.1016/s2352-3018(23)00293-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 02/04/2024]
Abstract
BACKGROUND Long-acting treatment for HIV has potential to improve adherence, provide durable viral suppression, and have long-term individual and public health benefits. We evaluated treatment with two antibodies that broadly and potently neutralise HIV (broadly neutralising antibodies; bNAbs), combined with lenacapavir, a long-acting capsid inhibitor, as a long-acting regimen. METHODS This ongoing, randomised, blind, phase 1b proof-of-concept study conducted at 11 HIV treatment centres in the USA included adults with a plasma HIV-1 RNA concentration below 50 copies per mL who had at least 18 months on oral antiretroviral therapy (ART), CD4 counts of at least 500 cells per μL, and protocol-defined susceptibility to bNAbs teropavimab (3BNC117-LS) and zinlirvimab (10-1074-LS). Participants stopped oral ART and were randomly assigned (1:1) to one dose of 927 mg subcutaneous lenacapavir plus an oral loading dose, 30 mg/kg intravenous teropavimab, and 10 mg/kg or 30 mg/kg intravenous zinlirvimab on day 1. Investigational site personnel and participants were masked to treatment assignment throughout the randomised period. The primary endpoint was incidence of serious adverse events until week 26 in all randomly assigned participants who received one dose or more of any study drug. This study is registered with ClinicalTrials.gov, NCT04811040. FINDINGS Between June 29 and Dec 8, 2021, 21 participants were randomly assigned, ten in each group received the complete study regimen and one withdrew before completing the regimen on day 1. 18 (86%) of 21 participants were male; participants ranged in age from 25 years to 61 years and had a median CD4 cell count of 909 (IQR 687-1270) cells per μL at study entry. No serious adverse events occurred. Two grade 3 adverse events occurred (lenacapavir injection-site erythaema and injection-site cellulitis), which had both resolved. The most common adverse events were symptoms of injection-site reactions, reported in 17 (85%) of 20 participants who received subcutaneous lenacapavir; 12 (60%) of 20 were grade 1. One (10%; 95% CI 0-45) participant had viral rebound (confirmed HIV-1 RNA concentration of ≥50 copies per mL) in the zinlirvimab 10 mg/kg group, which was resuppressed on ART, and one participant in the zinlirvimab 30 mg/kg group withdrew at week 12 with HIV RNA <50 copies per mL. INTERPRETATION Lenacapavir with teropavimab and zinlirvimab 10 mg/kg or 30 mg/kg was generally well tolerated with no serious adverse events. HIV-1 suppression for at least 26 weeks is feasible with this regimen at either zinlirvimab dose in selected people with HIV-1. FUNDING Gilead Sciences.
Collapse
Affiliation(s)
- Joseph J Eron
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Susan J Little
- Division of Infectious Diseases, University of California, San Diego, CA, USA
| | | | - Paul Cook
- Division of Infectious Diseases, East Carolina University, Greenville, NC, USA
| | | | - Dushyantha Jayaweera
- Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | - Yanan Zheng
- Clinical Pharmacology, Gilead Sciences, Foster City, CA, USA
| | | | - Hailin Huang
- Biostatistics, Gilead Sciences, Foster City, CA, USA
| | - Sarah E Waldman
- Division of Infectious Diseases, University of California, Davis, Sacramento, CA, USA
| | - Moti Ramgopal
- Midway Immunology and Research Center, Fort Pierce, FL, USA
| | | | - Sean E Collins
- Clinical Development, Gilead Sciences, Foster City, CA, USA.
| | - Jared M Baeten
- Clinical Development, Gilead Sciences, Foster City, CA, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY, USA
| |
Collapse
|
34
|
Azzman N, Gill MSA, Hassan SS, Christ F, Debyser Z, Mohamed WAS, Ahemad N. Pharmacological advances in anti-retroviral therapy for human immunodeficiency virus-1 infection: A comprehensive review. Rev Med Virol 2024; 34:e2529. [PMID: 38520650 DOI: 10.1002/rmv.2529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/23/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
The discovery of anti-retroviral (ARV) drugs over the past 36 years has introduced various classes, including nucleoside/nucleotide reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitor, fusion, and integrase strand transfer inhibitors inhibitors. The introduction of combined highly active anti-retroviral therapies in 1996 was later proven to combat further ARV drug resistance along with enhancing human immunodeficiency virus (HIV) suppression. As though the development of ARV therapies was continuously expanding, the variation of action caused by ARV drugs, along with its current updates, was not comprehensively discussed, particularly for HIV-1 infection. Thus, a range of HIV-1 ARV medications is covered in this review, including new developments in ARV therapy based on the drug's mechanism of action, the challenges related to HIV-1, and the need for combination therapy. Optimistically, this article will consolidate the overall updates of HIV-1 ARV treatments and conclude the significance of HIV-1-related pharmacotherapy research to combat the global threat of HIV infection.
Collapse
Affiliation(s)
- Nursyuhada Azzman
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Pulau Pinang Kampus Bertam, Permatang Pauh, Pulau Pinang, Malaysia
| | - Muhammad Shoaib Ali Gill
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Wan Ahmad Syazani Mohamed
- Nutrition Unit, Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Level 3, Block C, Institute for Medical Research (IMR), National Institutes of Health (NIH) Complex, Ministry of Health Malaysia (MOH), Shah Alam, Selangor, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
35
|
Tillmanns J, Kicuntod J, Lösing J, Marschall M. 'Getting Better'-Is It a Feasible Strategy of Broad Pan-Antiherpesviral Drug Targeting by Using the Nuclear Egress-Directed Mechanism? Int J Mol Sci 2024; 25:2823. [PMID: 38474070 DOI: 10.3390/ijms25052823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The herpesviral nuclear egress represents an essential step of viral replication efficiency in host cells, as it defines the nucleocytoplasmic release of viral capsids. Due to the size limitation of the nuclear pores, viral nuclear capsids are unable to traverse the nuclear envelope without a destabilization of this natural host-specific barrier. To this end, herpesviruses evolved the regulatory nuclear egress complex (NEC), composed of a heterodimer unit of two conserved viral NEC proteins (core NEC) and a large-size extension of this complex including various viral and cellular NEC-associated proteins (multicomponent NEC). Notably, the NEC harbors the pronounced ability to oligomerize (core NEC hexamers and lattices), to multimerize into higher-order complexes, and, ultimately, to closely interact with the migrating nuclear capsids. Moreover, most, if not all, of these NEC proteins comprise regulatory modifications by phosphorylation, so that the responsible kinases, and additional enzymatic activities, are part of the multicomponent NEC. This sophisticated basis of NEC-specific structural and functional interactions offers a variety of different modes of antiviral interference by pharmacological or nonconventional inhibitors. Since the multifaceted combination of NEC activities represents a highly conserved key regulatory stage of herpesviral replication, it may provide a unique opportunity towards a broad, pan-antiherpesviral mechanism of drug targeting. This review presents an update on chances, challenges, and current achievements in the development of NEC-directed antiherpesviral strategies.
Collapse
Affiliation(s)
- Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Josephine Lösing
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
36
|
Faysal KMR, Walsh JC, Renner N, Márquez CL, Shah VB, Tuckwell AJ, Christie MP, Parker MW, Turville SG, Towers GJ, James LC, Jacques DA, Böcking T. Pharmacologic hyperstabilisation of the HIV-1 capsid lattice induces capsid failure. eLife 2024; 13:e83605. [PMID: 38347802 PMCID: PMC10863983 DOI: 10.7554/elife.83605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
The HIV-1 capsid has emerged as a tractable target for antiretroviral therapy. Lenacapavir, developed by Gilead Sciences, is the first capsid-targeting drug approved for medical use. Here, we investigate the effect of lenacapavir on HIV capsid stability and uncoating. We employ a single particle approach that simultaneously measures capsid content release and lattice persistence. We demonstrate that lenacapavir's potent antiviral activity is predominantly due to lethal hyperstabilisation of the capsid lattice and resultant loss of compartmentalisation. This study highlights that disrupting capsid metastability is a powerful strategy for the development of novel antivirals.
Collapse
Affiliation(s)
- KM Rifat Faysal
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Nadine Renner
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Chantal L Márquez
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Vaibhav B Shah
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Andrew J Tuckwell
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Michelle P Christie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourneAustralia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourneAustralia
- Structural Biology Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | | | - Greg J Towers
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Leo C James
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - David A Jacques
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| |
Collapse
|
37
|
Pons-Faudoa FP, Di Trani N, Capuani S, Facchi I, Wood AM, Nehete B, DeLise A, Sharma S, Shelton KA, Bushman LR, Chua CYX, Ittmann MM, Kimata JT, Anderson PL, Nehete PN, Arduino RC, Grattoni A. Antiviral potency of long-acting islatravir subdermal implant in SHIV-infected macaques. J Control Release 2024; 366:18-27. [PMID: 38142963 PMCID: PMC10922355 DOI: 10.1016/j.jconrel.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Treatment nonadherence is a pressing issue in people living with HIV (PLWH), as they require lifelong therapy to maintain viral suppression. Poor adherence leads to antiretroviral (ARV) resistance, transmission to others, AIDS progression, and increased morbidity and mortality. Long-acting (LA) ARV therapy is a promising strategy to combat the clinical drawback of user-dependent dosing. Islatravir (ISL) is a promising candidate for HIV treatment given its long half-life and high potency. Here we show constant ISL release from a subdermal LA nanofluidic implant achieves viral load reduction in SHIV-infected macaques. Specifically, a mean delivery dosage of 0.21 ± 0.07 mg/kg/day yielded a mean viral load reduction of -2.30 ± 0.53 log10 copies/mL at week 2, compared to baseline. The antiviral potency of the ISL delivered from the nanofluidic implant was higher than oral ISL dosed either daily or weekly. At week 3, viral resistance to ISL emerged in 2 out of 8 macaques, attributable to M184V mutation, supporting the need of combining ISL with other ARV for HIV treatment. The ISL implant produced moderate reactivity in the surrounding tissue, indicating tolerability. Overall, we present the ISL subdermal implant as a promising approach for LA ARV treatment in PLWH.
Collapse
Affiliation(s)
- Fernanda P Pons-Faudoa
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Nicola Di Trani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Simone Capuani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Ilaria Facchi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Anthony M Wood
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Bharti Nehete
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Ashley DeLise
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Suman Sharma
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kathryn A Shelton
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Lane R Bushman
- Deparment of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado- Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter L Anderson
- Deparment of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado- Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Pramod N Nehete
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Roberto C Arduino
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Dwivedi R, Prakash P, Kumbhar BV, Balasubramaniam M, Dash C. HIV-1 capsid and viral DNA integration. mBio 2024; 15:e0021222. [PMID: 38085100 PMCID: PMC10790781 DOI: 10.1128/mbio.00212-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE HIV-1 capsid protein (CA)-independently or by recruiting host factors-mediates several key steps of virus replication in the cytoplasm and nucleus of the target cell. Research in the recent years have established that CA is multifunctional and genetically fragile of all the HIV-1 proteins. Accordingly, CA has emerged as a validated and high priority therapeutic target, and the first CA-targeting antiviral drug was recently approved for treating multi-drug resistant HIV-1 infection. However, development of next generation CA inhibitors depends on a better understanding of CA's known roles, as well as probing of CA's novel roles, in HIV-1 replication. In this timely review, we present an updated overview of the current state of our understanding of CA's multifunctional role in HIV-1 replication-with a special emphasis on CA's newfound post-nuclear roles, highlight the pressing knowledge gaps, and discuss directions for future research.
Collapse
Affiliation(s)
- Richa Dwivedi
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Prem Prakash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed to be) University, Mumbai, Maharashtra, India
| | - Muthukumar Balasubramaniam
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
39
|
Menéndez-Arias L, Gago F. Antiviral Agents: Structural Basis of Action and Rational Design. Subcell Biochem 2024; 105:745-784. [PMID: 39738962 DOI: 10.1007/978-3-031-65187-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
During the last forty years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs eradicating hepatitis C virus infection. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry, or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by means of computer-based approaches. We provide examples illustrating structure-based antiviral drug development, specifically neuraminidase inhibitors against influenza virus (e.g., oseltamivir and zanamivir) and human immunodeficiency virus type 1 protease inhibitors (i.e., the development of darunavir from early peptidomimetic compounds such as saquinavir). A number of drugs acting against hepatitis B virus and human immunodeficiency virus and their mechanism of action are presented to show how viral capsids can be exploited as targets of antiviral therapy. The recent approval of the antiretroviral drug lenacapavir illustrates the successful application of this knowledge.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain.
| | - Federico Gago
- Department of Biomedical Sciences, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
40
|
Biały M, Czarnecki M, Inglot M. Impact of Combination Antiretroviral Treatment on Liver Metabolic Health in HIV-Infected Persons. Viruses 2023; 15:2432. [PMID: 38140673 PMCID: PMC10747352 DOI: 10.3390/v15122432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
In the last three decades, there has been a considerable improvement in human immunodeficiency virus (HIV) therapy. Acquired immunodeficiency syndrome (AIDS) is no longer a common cause of death for people living with HIV (PLWH) in developed countries, and co-infections with hepatitis viruses can be effectively managed. However, metabolic syndrome and metabolic dysfunction-associated steatotic liver disease (MASLD) are emerging threats these days, especially as the HIV-positive population gets older. The factors for MASLD development in PLWH are numerous, including non-specific (common for both HIV-positive and negative) and virus-specific. We focus on what is known for both, and in particular, on the burden of antiretroviral therapy (ART) for metabolic health and liver damage. We review data on contemporary drugs, including different groups and some particular agents in those groups. Among current ART regimens, the switch from tenofovir disoproxil fumarate (TDF) to tenofovir alafenamide fumarate (TAF) and particularly its combination with integrase inhibitors (INSTIs) appear to have the most significant impact on metabolic disturbances by increasing insulin resistance, which over the years promotes the evolution of the cascade leading to metabolic syndrome (MetS), MASLD, and eventually metabolic dysfunction-associated steatohepatitis (MASH).
Collapse
Affiliation(s)
- Michał Biały
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wrocław Medical University, 51-149 Wrocław, Poland; (M.C.); (M.I.)
| | | | | |
Collapse
|
41
|
Xu S, Sun L, Barnett M, Zhang X, Ding D, Gattu A, Shi D, Taka JRH, Shen W, Jiang X, Cocklin S, De Clercq E, Pannecouque C, Goldstone DC, Liu X, Dick A, Zhan P. Discovery, Crystallographic Studies, and Mechanistic Investigations of Novel Phenylalanine Derivatives Bearing a Quinazolin-4-one Scaffold as Potent HIV Capsid Modulators. J Med Chem 2023; 66:16303-16329. [PMID: 38054267 PMCID: PMC10790229 DOI: 10.1021/acs.jmedchem.3c01647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Optimization of compound 11L led to the identification of novel HIV capsid modulators, quinazolin-4-one-bearing phenylalanine derivatives, displaying potent antiviral activities against both HIV-1 and HIV-2. Notably, derivatives 12a2 and 21a2 showed significant improvements, with 2.5-fold over 11L and 7.3-fold over PF74 for HIV-1, and approximately 40-fold over PF74 for HIV-2. The X-ray co-crystal structures confirmed the multiple pocket occupation of 12a2 and 21a2 in the binding site. Mechanistic studies revealed a dual-stage inhibition profile, where the compounds disrupted capsid-host factor interactions at the early stage and promoted capsid misassembly at the late stage. Remarkably, 12a2 and 21a2 significantly promoted capsid misassembly, outperforming 11L, PF74, and LEN. The substitution of easily metabolized amide bond with quinolin-4-one marginally enhanced the stability of 12a2 in human liver microsomes compared to controls. Overall, 12a2 and 21a2 highlight their potential as potent HIV capsid modulators, paving the way for future advancements in anti-HIV drug design.
Collapse
Affiliation(s)
- Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Michael Barnett
- School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Dang Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Anushka Gattu
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Dazhou Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Jamie R H Taka
- School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand
| | - Wenli Shen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Simon Cocklin
- Specifica Inc., The Santa Fe Railyard, 1607 Alcaldesa Street, Santa Fe, New Mexico 87501, United States
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - David C Goldstone
- School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| |
Collapse
|
42
|
Anisenko A, Galkin S, Mikhaylov AA, Khrenova MG, Agapkina Y, Korolev S, Garkul L, Shirokova V, Ikonnikova VA, Korlyukov A, Dorovatovskii P, Baranov M, Gottikh M. KuINins as a New Class of HIV-1 Inhibitors That Block Post-Integration DNA Repair. Int J Mol Sci 2023; 24:17354. [PMID: 38139188 PMCID: PMC10744174 DOI: 10.3390/ijms242417354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Integration of HIV-1 genomic cDNA results in the formation of single-strand breaks in cellular DNA, which must be repaired for efficient viral replication. Post-integration DNA repair mainly depends on the formation of the HIV-1 integrase complex with the Ku70 protein, which promotes DNA-PK assembly at sites of integration and its activation. Here, we have developed a first-class inhibitor of the integrase-Ku70 complex formation that inhibits HIV-1 replication in cell culture by acting at the stage of post-integration DNA repair. This inhibitor, named s17, does not affect the main cellular function of Ku70, namely its participation in the repair of double-strand DNA breaks through the non-homologous end-joining pathway. Using a molecular dynamics approach, we have constructed a model for the interaction of s17 with Ku70. According to this model, the interaction of two phenyl radicals of s17 with the L76 residue of Ku70 is important for this interaction. The requirement of two phenyl radicals in the structure of s17 for its inhibitory properties was confirmed using a set of s17 derivatives. We propose to stimulate compounds that inhibit post-integration repair by disrupting the integrase binding to Ku70 KuINins.
Collapse
Affiliation(s)
- Andrey Anisenko
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (M.G.K.); (Y.A.); (S.K.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia; (S.G.); (L.G.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Simon Galkin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia; (S.G.); (L.G.)
| | - Andrey A. Mikhaylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia (V.S.); (V.A.I.); (M.B.)
| | - Maria G. Khrenova
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (M.G.K.); (Y.A.); (S.K.)
- Federal Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Yulia Agapkina
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (M.G.K.); (Y.A.); (S.K.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Sergey Korolev
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (M.G.K.); (Y.A.); (S.K.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Lidia Garkul
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia; (S.G.); (L.G.)
| | - Vasilissa Shirokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia (V.S.); (V.A.I.); (M.B.)
- Higher Chemical College, D.I. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Viktoria A. Ikonnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia (V.S.); (V.A.I.); (M.B.)
- Higher Chemical College, D.I. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Alexander Korlyukov
- Nesmeyanov Institute of Organoelement Compounds, 119334 Moscow, Russia;
- Institute of Translational Medicine and Institute of Pharmacy and Medicinal Chemistry, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | | | - Mikhail Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia (V.S.); (V.A.I.); (M.B.)
- Institute of Translational Medicine and Institute of Pharmacy and Medicinal Chemistry, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Marina Gottikh
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia; (S.G.); (L.G.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
43
|
Subramanian R, Tang J, Zheng J, Lu B, Wang K, Yant SR, Stepan GJ, Mulato A, Yu H, Schroeder S, Shaik N, Singh R, Wolckenhauer S, Chester A, Tse WC, Chiu A, Rhee M, Cihlar T, Rowe W, Smith BJ. Lenacapavir: A Novel, Potent, and Selective First-in-Class Inhibitor of HIV-1 Capsid Function Exhibits Optimal Pharmacokinetic Properties for a Long-Acting Injectable Antiretroviral Agent. Mol Pharm 2023; 20:6213-6225. [PMID: 37917742 PMCID: PMC10698746 DOI: 10.1021/acs.molpharmaceut.3c00626] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
Lenacapavir (LEN) is a picomolar first-in-class capsid inhibitor of human immunodeficiency virus type 1 (HIV-1) with a multistage mechanism of action and no known cross resistance to other existing antiretroviral (ARV) drug classes. LEN exhibits a low aqueous solubility and exceptionally low systemic clearance following intravenous (IV) administration in nonclinical species and humans. LEN formulated in an aqueous suspension or a PEG/water solution formulation showed sustained plasma exposure levels with no unintended rapid drug release following subcutaneous (SC) administration to rats and dogs. A high total fraction dose release was observed with both formulations. The long-acting pharmacokinetics (PK) were recapitulated in humans following SC administration of both formulations. The SC PK profiles displayed two-phase absorption kinetics in both animals and humans with an initial fast-release absorption phase, followed by a slow-release absorption phase. Noncompartmental and compartmental analyses informed the LEN systemic input rate from the SC depot and exit rate from the body. Modeling-enabled deconvolution of the input rates from two processes: absorption of the soluble fraction (minor) from a direct fast-release process leading to the early PK phase and absorption of the precipitated fraction (major) from an indirect slow-release process leading to the later PK phase. LEN SC PK showed flip-flop kinetics due to the input rate being substantially slower than the systemic exit rate. LEN input rates via the slow-release process in humans were slower than those in both rats and dogs. Overall, the combination of high potency, exceptional stability, and optimal release rate from the injection depot make LEN well suited for a parenteral long-acting formulation that can be administered once up to every 6 months in humans for the prevention and treatment of HIV-1.
Collapse
Affiliation(s)
- Raju Subramanian
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Jennifer Tang
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | | | - Bing Lu
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Kelly Wang
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Stephen R. Yant
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - George J. Stepan
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Andrew Mulato
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Helen Yu
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Scott Schroeder
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Naveed Shaik
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Renu Singh
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | | | - Anne Chester
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | | | - Anna Chiu
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Martin Rhee
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Tomas Cihlar
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - William Rowe
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Bill J. Smith
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| |
Collapse
|
44
|
Gao X, McFadden WM, Wen X, Emanuelli A, Lorson ZC, Zheng H, Kirby KA, Sarafianos SG. Use of TSAR, Thermal Shift Analysis in R, to identify Folic Acid as a Molecule that Interacts with HIV-1 Capsid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569293. [PMID: 38076946 PMCID: PMC10705415 DOI: 10.1101/2023.11.29.569293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Thermal shift assay (TSA) is a versatile biophysical technique for studying protein interactions. Here, we report a free, open-source software tool TSAR (Thermal Shift Analysis in R) to expedite and automate the analysis of thermal shift data derived either from individual experiments or large screens of chemical libraries. The TSAR package incorporates multiple, dynamic workflows to facilitate the analysis of TSA data and returns publication-ready graphics or processed results. Further, the package includes a graphic user interface (GUI) that enables easy use by non-programmers, aiming to simplify TSA analysis while diversifying visualization. To exemplify the utility of TSAR we screened a chemical library of vitamins to identify molecules that interact with the capsid protein (CA) of human immunodeficiency virus type 1 (HIV-1). Our data show that hexameric CA interacts with folic acid in vitro.
Collapse
Affiliation(s)
- X. Gao
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - W. M. McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - X. Wen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - A. Emanuelli
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - Z. C. Lorson
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - H. Zheng
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - K. A. Kirby
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - S. G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| |
Collapse
|
45
|
Sheikhi N, Bahraminejad M, Saeedi M, Mirfazli SS. A review: FDA-approved fluorine-containing small molecules from 2015 to 2022. Eur J Med Chem 2023; 260:115758. [PMID: 37657268 DOI: 10.1016/j.ejmech.2023.115758] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Fluorine-containing small molecules have occupied a special position in drug discovery research. The successful clinical use of fluorinated corticosteroids in the 1950s and fluoroquinolones in the 1980s led to an ever-increasing number of approved fluorinated compounds over the last 50 years. They have shown various biological properties such as antitumor, antimicrobial, and anti-inflammatory activities. Fluoro-pharmaceuticals have been considered a strong and practical tool in the rational drug design approach due to their benefits from potency and ADME (absorption, distribution, metabolism, and excretion) points of view. Herein, approved fluorinated drugs from 2015 to 2022 were reviewed.
Collapse
Affiliation(s)
- Negar Sheikhi
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Bahraminejad
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
West RE, Oberly PJ, Riddler SA, Nolin TD, Devanathan AS. Development and validation of an ultra-high performance liquid chromatography-tandem mass spectrometry method for quantifying lenacapavir plasma concentrations: Application to therapeutic monitoring. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1230:123905. [PMID: 37866010 PMCID: PMC10842204 DOI: 10.1016/j.jchromb.2023.123905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Although current antiretroviral therapy (ART) effectively suppresses HIV in the blood, regimens may fail due to suboptimal treatment history and non-adherence to ART. In these scenarios, accumulation of viral resistance mutations to ART drug classes may occur. For these treatment-experienced people living with HIV (PLWH), activity against resistant viral strains is required; lack of therapeutic efficacy will result in continued viral replication and progression to acquired immunodeficiency syndrome. New treatment options have emerged. Lenacapavir is a first-in-class long-acting HIV-1 capsid inhibitor approved for the treatment of HIV in treatment-experienced patients. Lenacapavir is approved with an initiation regimen of oral and subcutaneous injection dosing followed by subcutaneous self-injection every 6 months. With infrequent dosing, therapeutic drug monitoring may be necessary to ensure adequate concentrations are consistently achieved in the plasma to assure treatment adherence and prevent further HIV resistance formation. To this end, we developed and validated a highly selective ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method to quantify lenacapavir concentrations in human plasma. A simple protein precipitation with acetonitrile followed by supernatant dilution was performed. Lenacapavir and its stable labeled internal standard were separated at 1.90 min using a multi-step UPLC gradient. The assay for lenacapavir quantification was extensively validated according to the United States Food and Drug Administration Bioanalytical Guidelines over a clinically relevant range of 0.1 to 500 ng/mL with excellent linearity (R2 ≥ 0.9960). This analytical method achieves acceptable performance of trueness (89.7-104.1 %), repeatability, and precision (CV < 15 %). We applied this method to quantify a clinical sample and to determine the percent protein-unbound. This method can be utilized for the therapeutic monitoring of lenacapavir in human plasma for monitoring HIV treatment efficacy.
Collapse
Affiliation(s)
- Raymond E West
- Center for Clinical Pharmaceutical Sciences, Department of Pharmacy & Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick J Oberly
- Center for Clinical Pharmaceutical Sciences, Department of Pharmacy & Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sharon A Riddler
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas D Nolin
- Center for Clinical Pharmaceutical Sciences, Department of Pharmacy & Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron S Devanathan
- Center for Clinical Pharmaceutical Sciences, Department of Pharmacy & Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
47
|
Yuan S, Shen DD, Jia R, Sun JS, Song J, Liu HM. New drug approvals for 2022: Synthesis and clinical applications. Med Res Rev 2023; 43:2352-2391. [PMID: 37211904 DOI: 10.1002/med.21976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
The U.S. Food and Drug Administration has approved a total of 37 new drugs in 2022, which are composed of 20 chemical entities and 17 biologics. In particular, 20 chemical entities, including 17 small molecule drugs, 1 radiotherapy, and 2 diagnostic agents, provide privileged scaffolds, breakthrough clinical benefits, and a new mechanism of action for the discovery of more potent clinical candidates. The structure-based drug development with clear targets and fragment-based drug development with privileged scaffolds have always been the important modules in the field of drug discovery, which could easily bypass the patent protection and bring about improved biological activity. Therefore, we summarized the relevant valuable information about clinical application, mechanism of action, and chemical synthesis of 17 newly approved small molecule drugs in 2022. We hope this timely and comprehensive review could bring about creative and elegant inspiration on the synthetic methodologies and mechanism of action for the discovery of new drugs with novel chemical scaffolds and extended clinical indications.
Collapse
Affiliation(s)
- Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, China
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dan-Dan Shen
- Department of Obstetrics and Gynecology, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Jia
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ju-Shan Sun
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Jian Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, China
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, China
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
48
|
Peng Y, Zong Y, Wang D, Chen J, Chen ZS, Peng F, Liu Z. Current drugs for HIV-1: from challenges to potential in HIV/AIDS. Front Pharmacol 2023; 14:1294966. [PMID: 37954841 PMCID: PMC10637376 DOI: 10.3389/fphar.2023.1294966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
The human immunodeficiency virus (HIV) persists in latently infected CD4+T cells and integrates with the host genome until cell death. Acquired immunodeficiency syndrome (AIDS) is associated with HIV-1. Possibly, treating HIV/AIDS is an essential but challenging clinical goal. This review provides a detailed account of the types and mechanisms of monotherapy and combination therapy against HIV-1 and describes nanoparticle and hydrogel delivery systems. In particular, the recently developed capsid inhibitor (Lenacapavir) and the Ainuovirine/tenofovir disoproxil fumarate/lamivudine combination (ACC008) are described. It is interestingly to note that the lack of the multipass transmembrane proteins serine incorporator 3 (SERINC3) and the multipass transmembrane proteins serine incorporator 5 (SERINC5) may be one of the reasons for the enhanced infectivity of HIV-1. This discovery of SERINC3 and SERINC5 provides new ideas for HIV-1 medication development. Therefore, we believe that in treating AIDS, antiviral medications should be rationally selected for pre-exposure and post-exposure prophylaxis to avoid the emergence of drug resistance. Attention should be paid to the research and development of new drugs to predict HIV mutations as accurately as possible and to develop immune antibodies to provide multiple guarantees for the cure of AIDS.
Collapse
Affiliation(s)
- Yuan Peng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yanjun Zong
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Dongfeng Wang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Junbing Chen
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Fujun Peng
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Zhijun Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| |
Collapse
|
49
|
Zgarbová M, Otava T, Silhan J, Nencka R, Weber J, Boura E. Inhibitors of mpox VP39 2'-O methyltransferase efficiently inhibit the monkeypox virus. Antiviral Res 2023; 218:105714. [PMID: 37689311 DOI: 10.1016/j.antiviral.2023.105714] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
The RNA 2'-O methyltransferase (MTase) VP39 of the monkeypox virus (MpxV) participates in RNA capping within poxviruses. Sub-micromolar inhibitors targeting this enzyme were already reported. However, these 7-deaza analogs of S-adenosyl methionine (SAH) had not been tested in cellular assays until now. In this study, we employed plaque assays and cytopathic effect-based assays to evaluate the effectiveness of these compounds. All tested compounds demonstrated antiviral activity against MpxV, with EC50 values ranging from 0.06 to 2.7 μM. Nevertheless, some of these compounds also exhibited cytotoxicity in HeLa cells, while others showed no toxicity. Notably, the non-toxic compounds featured a large aromatic substituent at the 7-deaza position, whereas the toxic compounds had a small substituent at the same position. These findings suggest that VP39 represents a bona fide target for the development of antiviral drugs against MpxV.
Collapse
Affiliation(s)
- Michala Zgarbová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Tomas Otava
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Jan Silhan
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic.
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic.
| |
Collapse
|
50
|
Deshpande A, Bryer AJ, Andino J, Shi J, Hong J, Torres C, Harel S, Francis AC, Perilla JR, Aiken C, Rousso I. Elasticity of the HIV-1 Core Facilitates Nuclear Entry and Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560083. [PMID: 37808653 PMCID: PMC10557754 DOI: 10.1101/2023.09.29.560083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
HIV-1 infection requires passage of the viral core through the nuclear pore of the cell, a process that depends on functions of the viral capsid 1,2 . Recent studies have shown that HIV- 1 cores enter the nucleus prior to capsid disassembly 3-5 . Interactions with the nuclear pore complex are necessary but not sufficient for nuclear entry, and the mechanism by which the viral core traverses the comparably sized nuclear pore is unknown. Here we show that the HIV-1 core is highly elastic and that this property is linked to nuclear entry and infectivity. Using atomic force microscopy-based approaches, we found that purified wild type cores rapidly returned to their normal conical morphology following a severe compression. Results from independently performed molecular dynamic simulations of the mature HIV-1 capsid also revealed its elastic property. Analysis of four HIV-1 capsid mutants that exhibit impaired nuclear entry revealed that the mutant viral cores are brittle. Suppressors of the mutants restored elasticity and rescued infectivity and nuclear entry. Elasticity was also reduced by treatment of cores with the capsid-targeting compound PF74 and the antiviral drug lenacapavir. Our results indicate that capsid elasticity is a fundamental property of the HIV-1 core that enables its passage through the nuclear pore complex, thereby facilitating infection. These results provide new insights into the mechanisms of HIV-1 nuclear entry and the antiviral mechanisms of HIV-1 capsid inhibitors.
Collapse
|