1
|
Chatterjee S, Adhikary S, Bhattacharya S, Chakraborty A, Dutta S, Roy D, Ganguly A, Nanda S, Rajak P. Parabens as the double-edged sword: Understanding the benefits and potential health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176547. [PMID: 39357765 DOI: 10.1016/j.scitotenv.2024.176547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Parabens are globally employed as important preservatives in pharmaceutical, food, and personal care products. Nonetheless, improper disposal of commercial products comprising parabens can potentially contaminate various environmental components, including the soil and water. Residues of parabens have been detected in surface water, ground water, packaged food materials, and other consumer items. Long-term exposure to parabens through numerous consumer products and contaminated water can harm human health. Paraben can modulate the hormonal and immune orchestra of the body. Recent findings have correlated paraben use with hypersensitivity, obesity, and infertility. Notably, parabens have also been detected in the samples of breast cancer patients, suggesting a potential cross-talk between parabens and carcinogenesis. Therefore, the present article aims to dissect the significance of parabens as a preservative in several consumer products and their impact of chronic exposure to human health. This review encompasses various facets of paraben, including its sources, mechanism of action at the molecular level, and sheds light on its toxicological implications on human health.
Collapse
Affiliation(s)
- Sovona Chatterjee
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A. B. N. Seal College, Cooch Behar, West Bengal, India
| | | | - Aritra Chakraborty
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sohini Dutta
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Dipsikha Roy
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sayantani Nanda
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Prem Rajak
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
2
|
Rathee P, Sehrawat R, Rathee P, Khatkar A, Akkol EK, Khatkar S, Redhu N, Türkcanoğlu G, Sobarzo-Sánchez E. Polyphenols: Natural Preservatives with Promising Applications in Food, Cosmetics and Pharma Industries; Problems and Toxicity Associated with Synthetic Preservatives; Impact of Misleading Advertisements; Recent Trends in Preservation and Legislation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4793. [PMID: 37445107 PMCID: PMC10343617 DOI: 10.3390/ma16134793] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023]
Abstract
The global market of food, cosmetics, and pharmaceutical products requires continuous tracking of harmful ingredients and microbial contamination for the sake of the safety of both products and consumers as these products greatly dominate the consumer's health, directly or indirectly. The existence, survival, and growth of microorganisms in the product may lead to physicochemical degradation or spoilage and may infect the consumer at another end. It has become a challenge for industries to produce a product that is safe, self-stable, and has high nutritional value, as many factors such as physical, chemical, enzymatic, or microbial activities are responsible for causing spoilage to the product within the due course of time. Thus, preservatives are added to retain the virtue of the product to ensure its safety for the consumer. Nowadays, the use of synthetic/artificial preservatives has become common and has not been widely accepted by consumers as they are aware of the fact that exposure to preservatives can lead to adverse effects on health, which is a major area of concern for researchers. Naturally occurring phenolic compounds appear to be extensively used as bio-preservatives to prolong the shelf life of the finished product. Based on the convincing shreds of evidence reported in the literature, it is suggested that phenolic compounds and their derivatives have massive potential to be investigated for the development of new moieties and are proven to be promising drug molecules. The objective of this article is to provide an overview of the significant role of phenolic compounds and their derivatives in the preservation of perishable products from microbial attack due to their exclusive antioxidant and free radical scavenging properties and the problems associated with the use of synthetic preservatives in pharmaceutical products. This article also analyzes the recent trends in preservation along with technical norms that regulate the food, cosmetic, and pharmaceutical products in the developing countries.
Collapse
Affiliation(s)
- Priyanka Rathee
- Faculty of Pharmaceutical Sciences, Baba Mastnath University, Rohtak 124021, India;
| | - Renu Sehrawat
- School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India;
| | - Pooja Rathee
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India;
| | - Anurag Khatkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey;
| | - Sarita Khatkar
- Vaish Institute of Pharmaceutical Education and Research, Rohtak 124001, India;
| | - Neelam Redhu
- Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, India;
| | - Gizem Türkcanoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Xu X, Wu H, Terry PD, Zhao L, Chen J. Impact of Paraben Exposure on Adiposity-Related Measures: An Updated Literature Review of Population-Based Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192316268. [PMID: 36498342 PMCID: PMC9740922 DOI: 10.3390/ijerph192316268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 05/06/2023]
Abstract
Parabens are alkyl esters of p-hydroxybenzoic acid that are commonly used in pharmaceutical and cosmetic products. Humans are exposed to parabens when they use these products and through diet. There are growing concerns that paraben exposure can adversely impact human health. The endocrine-disrupting and obesogenic properties of parabens have been observed in animal studies and in vitro, prompting the increase in population-based studies of paraben exposure and adiposity-related endpoints. In this review, we summarize epidemiological studies published between 2017 and 2022 that examined paraben exposure in utero, between birth and adolescence, and in adulthood, in relation to adiposity-related measures. Overall, these studies provide some evidence that suggests that paraben exposure, especially during critical development windows, is associated with adiposity-related measures. However, we have noted several limitations in these studies, including the predominance of cross-sectional studies, inconsistent sample collection procedures, and small sample sizes, which should be addressed in future studies.
Collapse
Affiliation(s)
- Xinyun Xu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Haoying Wu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Paul D. Terry
- Department of Medicine, Graduate School of Medicine, The University of Tennessee, Knoxville, TN 37920, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (L.Z.); (J.C.)
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (L.Z.); (J.C.)
| |
Collapse
|
4
|
Al-Halaseh LK, Al-Adaileh S, Mbaideen A, Abu Hajleh MN, Al-Samydai A, Zakaraya ZZ, Dayyih WA. The implication of parabens in cosmetics and cosmeceuticals: advantages and limitations. J Cosmet Dermatol 2022; 21:3265-3271. [PMID: 35032353 DOI: 10.1111/jocd.14775] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
Abstract
Cosmetics, cosmeceuticals, and variable healthcare products used parabens, among other excipients, for their preservative and antimicrobial activities. Paraben derivatives exhibit distinguished physiochemical properties that enable them to be compatible with the formulation of cosmetic agents in different dosage forms. In addition to their potency and efficacy, parabens are economically efficient as they have low manufacturing costs. Despite the desirable characteristics, the safety of parabens use is controversial after detecting these chemicals in various biological tissues after repetitive and long-term use of formulations containing them. The use of parabens drew public health attention after scientific reports linked skin exposure to parabens with health issues, in particular, breast cancer. In response, worldwide authorities set regulations for the allowance concentrations of paraben to be used in variable cosmetic products.
Collapse
Affiliation(s)
- Lidia K Al-Halaseh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Zipcode (61710), Al-Karak, Jordan
| | - Sujood Al-Adaileh
- Department of Pharmaceutical Science, Faculty of Pharmacy, Mutah University, Zipcode (61710), Al-Karak, Jordan
| | - Alsafa Mbaideen
- Department of Pharmaceutical Science, Faculty of Pharmacy, Mutah University, Zipcode (61710), Al-Karak, Jordan
| | - Maha N Abu Hajleh
- Department of Cosmetic Science, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Science, Al-Ahliyya Amman University, Zipcode (19328), Amman, Jordan
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Zipcode (19328), Amman, Jordan
| | - Zainab Zaki Zakaraya
- Biopharmaceutics and Clinical, Pharmacy department, Al-Ahliyya Amman University, Zipcode (19328), Amman, Jordan
| | - Wael Abu Dayyih
- Department of Pharmaceutical Science, Faculty of Pharmacy, Mutah University, Zipcode (61710), Al-Karak, Jordan
| |
Collapse
|
5
|
Analysis of the components and pH of a sample of wet wipers used for the hygiene of newborns and infants. An Bras Dermatol 2021; 96:774-776. [PMID: 34535340 PMCID: PMC8790219 DOI: 10.1016/j.abd.2020.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/29/2020] [Accepted: 09/05/2020] [Indexed: 11/21/2022] Open
|
6
|
Sukakul T, Pruksaeakanan C, Bunyavaree M, Boonchai W. Contact allergens in natural cosmetics-A market survey. J Cosmet Dermatol 2021; 21:2671-2673. [PMID: 34449966 DOI: 10.1111/jocd.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Thanisorn Sukakul
- Department of Dermatology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Occupational and Environmental Dermatology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Chutipon Pruksaeakanan
- Department of Dermatology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Monthathip Bunyavaree
- Department of Dermatology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Waranya Boonchai
- Department of Dermatology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Liszewski W, Zaidi AJ, Fournier E, Scheman A. Review of aluminum, paraben, and sulfate product disclaimers on personal care products. J Am Acad Dermatol 2021; 87:1081-1086. [PMID: 34144080 DOI: 10.1016/j.jaad.2021.06.840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Product disclaimers listed on personal care products face limited regulation. These disclaimers may be helpful or may mislead the public. OBJECTIVE Review the evidence supporting the potential harms of three compounds commonly addressed by product disclaimers: parabens, aluminum, and sulfates. METHODS Reported cases of adverse events to these compounds were identified. Trends in allergic contact dermatitis to chemicals used in place of these compounds were also identified. RESULTS There is limited evidence that parabens and aluminum pose a threat to human health; there is even less evidence that topical sulfate containing products pose a danger to consumers. In the setting of paraben avoidence, there has been a steady increase in cases of allergic contact dermatitis to preservatives which are more allergenic, specifically the isothiazolinones. LIMITATIONS Assessment of the toxicology of these compounds is ongoing and may change with new data. CONCLUSION There is limited evidence that parabens, aluminum, and sulfates used in personal care products pose a health risk. There is evidence that avoidance of parabens has resulted in an epidemic of allergic contact dermatitis to isothiazolonine preservatives.
Collapse
Affiliation(s)
- Walter Liszewski
- Department of Dermatology, Northwestern University, Chicago, IL;; Department of Preventative Medicine, Division of Cancer Epidemiology and Prevention, Northwestern University, Chicago, IL.
| | - A Jaafar Zaidi
- Department of Dermatology, Northwestern University, Chicago, IL
| | - Elise Fournier
- North Shore Center for Medical Aesthetics, Northbrook, IL
| | - Andrew Scheman
- Department of Dermatology, Northwestern University, Chicago, IL;; North Shore Center for Medical Aesthetics, Northbrook, IL
| |
Collapse
|
8
|
Wang D, Li W, Yang C, Chen X, Liu X, He J, Tong C, Peng C, Ding Y, Geng Y, Cao X, Li F, Gao R, Wang Y. Exposure to ethylparaben and propylparaben interfere with embryo implantation by compromising endometrial decidualization in early pregnant mice. J Appl Toxicol 2021; 41:1732-1746. [PMID: 34101200 DOI: 10.1002/jat.4208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 11/10/2022]
Abstract
Ethylparaben (EtP) and propylparaben (PrP) are common preservatives and well-known endocrine-disrupting chemicals. Studies have demonstrated that they can reduce female fertility, but the underlying mechanism, especially that on embryo implantation, is still poorly understood. Endometrial decidualization is a critical event for embryo implantation. In this study, we aimed to explore the effects of EtP/PrP on endometrial decidualization. Pregnant mice were dosed daily by oral gavage with EtP at 0, 400, 800 and 1600 mg/kg or with PrP at 0, 625, 1250 and 2500 mg/kg from Day 1 of pregnancy until sacrifice. The results showed that the rate of pregnant mice with impaired embryo implantation, whose number of implantation sites was less than 7, was significantly increased after exposure to 1600 mg/kg EtP or 2500 mg/kg PrP. Further study found that the expression of endometrial decidualization markers HOXA10, MMP9 and PR was significantly downregulated in 1600 mg/kg EtP group and 2500 mg/kg PrP group. Notably, serum oestrogen and progesterone levels were significantly increased, whereas the expression of uterine oestrogen receptor and progesterone receptor was decreased following 1600 mg/kg EtP or 2500 mg/kg PrP exposure. In the breeding test, fewer offspring were found after females were exposed to 1600 mg/kg EtP or 2500 mg/kg PrP in early pregnancy. This demonstrated that exposure to EtP/PrP interfered with embryo implantation by compromising endometrial decidualization in early-stage pregnant mice. Disorders of reproductive hormones and hormone receptor signals could be responsible for impaired decidualization. This study broadened the understanding on the biological safety of EtP and PrP.
Collapse
Affiliation(s)
- Dan Wang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Weike Li
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Chengshun Yang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Chao Tong
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China.,Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Peng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xianqing Cao
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Fangfang Li
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Lee EB, Lobl M, Ford A, DeLeo V, Adler BL, Wysong A. What Is New in Occupational Allergic Contact Dermatitis in the Year of the COVID Pandemic? Curr Allergy Asthma Rep 2021; 21:26. [PMID: 33779825 PMCID: PMC8006117 DOI: 10.1007/s11882-021-01000-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW This article aims to summarize some recent trends in occupational allergic contact dermatitis (ACD), including dermatitis related to pandemic-level personal protective equipment in healthcare workers, hazards patients may experience when working from home, and occupational perspectives on the recent American Contact Dermatitis Society (ACDS) allergens of the year and ACDS Core Allergen Series updates. RECENT FINDINGS Recent ACDS Allergens of the Year may be particularly relevant to healthcare workers, including isobornyl acrylate, which is present in glucose sensors and propylene glycol present in hand cleansers and disinfectants. Lavender, limonene, and linalool, all of which are new additions to the ACDS Core Allergen Series, have been reported as causes for occupational ACD in massage therapists and aromatherapists. Isothiazolinone allergy continues to rise in both consumer and occupational settings. Finally, the COVID-19 pandemic has resulted in a wave of occupational ACD in healthcare workers to personal protective equipment, and revealed new potential allergens for individuals working from home. Occupational allergic contact dermatitis continues to exert a significant occupational disease burden. Remaining aware of the current trends in allergens may allow for earlier recognition, diagnosis, and treatment, subsequently helping our patients to work in healthier and safer environments.
Collapse
Affiliation(s)
- Erica B Lee
- Department of Dermatology, University of Nebraska Medical Center, 985645 Nebraska Medical Center, Omaha, NE, 68198-5645, USA
| | - Marissa Lobl
- Department of Dermatology, University of Nebraska Medical Center, 985645 Nebraska Medical Center, Omaha, NE, 68198-5645, USA
| | - Aubree Ford
- Department of Dermatology, University of Nebraska Medical Center, 985645 Nebraska Medical Center, Omaha, NE, 68198-5645, USA
| | - Vincent DeLeo
- Department of Dermatology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Brandon L Adler
- Department of Dermatology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Ashley Wysong
- Department of Dermatology, University of Nebraska Medical Center, 985645 Nebraska Medical Center, Omaha, NE, 68198-5645, USA.
| |
Collapse
|
10
|
Ethylzingerone, a Novel Compound with Antifungal Activity. Antimicrob Agents Chemother 2021; 65:AAC.02711-20. [PMID: 33468481 DOI: 10.1128/aac.02711-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 11/20/2022] Open
Abstract
Preservatives increase the shelf life of cosmetic products by preventing growth of contaminating microbes, including bacteria and fungi. In recent years, the Scientific Committee on Consumer Safety (SCCS) has recommended the ban or restricted use of a number of preservatives due to safety concerns. Here, we characterize the antifungal activity of ethylzingerone (hydroxyethoxyphenyl butanone [HEPB]), an SCCS-approved new preservative for use in rinse-off, oral care, and leave-on cosmetic products. We show that HEPB significantly inhibits growth of Candida albicans, Candida glabrata, and Saccharomyces cerevisiae, acting fungicidally against C. albicans Using transcript profiling experiments, we found that the C. albicans transcriptome responded to HEPB exposure by increasing the expression of genes involved in amino acid biosynthesis while activating pathways involved in chemical detoxification/oxidative stress response. Comparative analyses revealed that C. albicans phenotypic and transcriptomic responses to HEPB treatment were distinguishable from those of two widely used preservatives, triclosan and methylparaben. Chemogenomic analyses, using a barcoded S. cerevisiae nonessential mutant library, revealed that HEPB antifungal activity strongly interfered with the biosynthesis of aromatic amino acids. The trp1Δ mutants in S. cerevisiae and C. albicans were particularly sensitive to HEPB treatment, a phenotype rescued by exogenous addition of tryptophan to the growth medium, providing a direct link between HEPB mode of action and tryptophan availability. Collectively, our study sheds light on the antifungal activity of HEPB, a new molecule with safe properties for use as a preservative in the cosmetic industry, and exemplifies the powerful use of functional genomics to illuminate the mode of action of antimicrobial agents.
Collapse
|
11
|
Torfs E, Brackman G. A perspective on the safety of parabens as preservatives in wound care products. Int Wound J 2020; 18:221-232. [PMID: 33236854 PMCID: PMC8243994 DOI: 10.1111/iwj.13521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/19/2023] Open
Abstract
Antimicrobial and/or preservative ingredients incorporated in wound care products are subjected to certain safety restrictions. However, several of those agents, and paraben preservatives in particular, have been criticised. Conflicting reports on the potential of parabens to induce allergic contact dermatitis, and their assumed oestrogen‐like activity, raised public health concerns about their overall safety. Here, we seek to provide a balanced perspective on the most significant purported adverse health effects, and thereby allay the many misconceptions regarding the safety of parabens. Extensive and long‐term monitoring of paraben allergy frequencies illustrate that allergic reactions are quite uncommon, especially when compared with other antimicrobial and preservative agents. The estrogenic potential of parabens was illustrated to be far less potent than that of natural oestrogen receptor ligands, and the etiological significance of their presence in human tissue has not been established. The general consensus based on investigations by both the scientific community and regulatory agencies indicates that, with current safety regulations regarding their use in place, this effective and well‐documented group of preservatives should not warrant drastic measures to replace them. As such, despite the ongoing concern, it is indicated that, when used at typical concentrations, parabens are unlikely to affect human health.
Collapse
Affiliation(s)
- Eveline Torfs
- Research and Development department, Flen Health NV, Kontich, Belgium
| | - Gilles Brackman
- Research and Development department, Flen Health NV, Kontich, Belgium
| |
Collapse
|
12
|
Giácaman‐von der Weth MM, Ferrer‐Guillén B, María Ortiz‐Salvador J, Victoria‐Martínez A, Sanfeliu‐García J, Magadaleno‐Tapial J, Sierra‐Talamantes C, Zaragoza‐Ninet V. Is time to remove parabens from standard patch test batteries? Retrospective study of 10 461 patients. Allergy 2020; 75:2997-2999. [PMID: 32558943 DOI: 10.1111/all.14460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 12/23/2022]
|
13
|
Nowak K, Jabłońska E, Radziwon P, Ratajczak-Wrona W. Identification of a novel target for the action of endocrine disrupting chemicals: inhibitory effect of methylparaben on human neutrophil functions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6540-6548. [PMID: 31873886 DOI: 10.1007/s11356-019-07388-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
This study was conducted to verify a hypothesis that immune cells are a target for the action of endocrine disrupting chemicals (EDCs) by investigating whether methylparaben (MeP) modulates human neutrophil functions. Neutrophils isolated from 15 donor samples were studied. Cells were incubated in the presence of increasing MeP concentrations (0.06, 0.8, 10, and 20 μM). The cytotoxic effect of MeP on neutrophils was evaluated by the MTT test. The ability of the neutrophils for chemotaxis, phagocytosis, NADPH oxidase activity, and superoxide anion generation was assessed in Boyden's chamber, Park's method with latex, the NBT test, and the cytochrome C reduction test, respectively. The total nitric oxide (NO) concentration was measured by the Griess reaction. There was no observable cytotoxic effect of MeP on human neutrophils. MeP (10 and 20 μM) exposure decreased neutrophilic ability for the tested functions, except for NO production. In neutrophils incubated with MeP (0.8 μM as well as 0.06 and 0.8 μM, respectively), we observed a decreased activity of NADPH oxidase as well as decreased generation of superoxide anion. Our results suggest a suppressive effect of MeP on the tested functions of human neutrophils, which confirms that immune cells are vulnerable to EDC action. Therefore, the disturbance of neutrophils' oxygen-dependent phagocytic function as a result of exposure to environmental doses of MeP action could lead to impairment of innate immune responses in humans exposed to xenoestrogens.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, 15-269, Bialystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, 15-269, Bialystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland
| | - Wioletta Ratajczak-Wrona
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, 15-269, Bialystok, Poland
| |
Collapse
|
14
|
Rylander C, Veierød MB, Weiderpass E, Lund E, Sandanger TM. Use of skincare products and risk of cancer of the breast and endometrium: a prospective cohort study. Environ Health 2019; 18:105. [PMID: 31796030 PMCID: PMC6889352 DOI: 10.1186/s12940-019-0547-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Concerns have been raised that extensive use of personal care products that contain endocrine disrupting compounds increase the risk of hormone sensitive cancers. OBJECTIVE To assess the effect of skincare product use on the risk of pre- and postmenopausal breast cancer, estrogen receptor positive (ER+) and negative (ER-) breast cancer and cancer of the endometrium. METHODS We used data from 106,978 participants in the population-based Norwegian Women and Cancer cohort. Participants were categorized into non-, light, moderate, frequent and heavy users of skincare products based on self-reported use of hand and facial cream and body lotion. Cancer incidence information from the Cancer Registry of Norway was linked to individual data through the unique identity number of Norwegian citizens. Multivariable Cox proportional hazard regression was used to assess the effect of skincare product use on the risk of cancer of the breast and endometrium. We used multiple imputation by chained equations to evaluate the effect of missing data on observed associations. RESULTS We found no associations between use of skincare products and incidence of premenopausal breast cancer (frequent/heavy versus non-/light use: hazard ratio [HR] =1.10, 95% confidence interval [CI]: 0.92-1.32), postmenopausal breast cancer (heavy versus light use: HR = 0.87, 95% CI: 0.65-1.18, frequent versus light use: HR = 0.97, 95% CI: 0.88, 1.07) or endometrial cancer (frequent/heavy versus non-/light use: HR = 0.97, 95% CI: 0.79-1.20). Use of skincare products did not increase the risk of ER+ or ER- breast cancer and there was no difference in effect across ER status (0.58 ≤ pheterogeneity ≤ 0.99). The magnitude and direction of the effect estimates based on complete case analyses and multiple imputation were similar. CONCLUSION Heavy use of skincare products, i.e. creaming the body up to two times per day during mid-life, did not increase the risk of cancer of the breast or endometrium.
Collapse
Affiliation(s)
- Charlotta Rylander
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Marit B Veierød
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Eiliv Lund
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- NILU, FRAM-High North Research Centre for Climate and Environment, Tromsø, Norway
| |
Collapse
|
15
|
Schnuch A, Schubert S, Lessmann H, Geier J, Beiteke U, Dissemond J, Buhl T, Schäkel K, Pföhler C, Dietrich C, Worm M, Bauer A, Kreft B, Schliemann S, Brockow K, Becker D, Forchhammer S, Recke A, Witte J, Pfützner W, Coras‐Stepanek B, Skudlik C, Wagner N, Aberer W, Emmert S, Baron JM, Siedlecki K, Baur V, Schmieder A, Weisshaar E, Grunwald‐Delitz H, Trautmann A, Hofmeier KS, Szliska C, Weiß J, Effendy I, Jünger M, Brehler R, Rueff F, Werfel T, Dickel H, Rieker‐Schwienbacher J, Vieluf D, Stadler R, Simon D, Fartasch M, Micaletto S, Treudler R, Nestoris S, Mechtel D, Schröder‐Kraft C, Löffler H, Gina M, Koch A, Raap U, Grabbe J, Spring P, Prager W, Wilfinger D. The methylisothiazolinone epidemic goes along with changing patients' characteristics – After cosmetics, industrial applications are the focus. Contact Dermatitis 2019; 82:87-93. [DOI: 10.1111/cod.13414] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Axel Schnuch
- Information Network of Department of Dermatology (IVDK)Institute at the University Medical Center Göttingen Göttingen Germany
| | - Steffen Schubert
- Information Network of Department of Dermatology (IVDK)Institute at the University Medical Center Göttingen Göttingen Germany
| | - Holger Lessmann
- Information Network of Department of Dermatology (IVDK)Institute at the University Medical Center Göttingen Göttingen Germany
| | - Johannes Geier
- Information Network of Department of Dermatology (IVDK)Institute at the University Medical Center Göttingen Göttingen Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Oxidative stress in testes of rats exposed to n-butylparaben. Food Chem Toxicol 2019; 131:110573. [DOI: 10.1016/j.fct.2019.110573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 01/06/2023]
|
17
|
Wan Khalid WEF, Mat Arip MN, Jasmani L, Lee YH. A New Sensor for Methyl Paraben Using an Electrode Made of a Cellulose Nanocrystal-Reduced Graphene Oxide Nanocomposite. SENSORS 2019; 19:s19122726. [PMID: 31216625 PMCID: PMC6630541 DOI: 10.3390/s19122726] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
A new cellulose nanocrystal-reduced graphene oxide (CNC-rGO) nanocomposite was successfully used for mediatorless electrochemical sensing of methyl paraben (MP). Fourier-transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM) studies confirmed the formation of the CNC-rGO nanocomposite. Cyclic voltammetry (CV) studies of the nanocomposite showed quasi-reversible redox behavior. Differential pulse voltammetry (DPV) was employed for the sensor optimization. Under optimized conditions, the sensor demonstrated a linear calibration curve in the range of 2 × 10-4-9 × 10-4 M with a limit of detection (LOD) of 1 × 10-4 M. The MP sensor showed good reproducibility with a relative standard deviation (RSD) of about 8.20%. The sensor also exhibited good stability and repeatability toward MP determinations. Analysis of MP in cream samples showed recovery percentages between 83% and 106%. Advantages of this sensor are the possibility for the determination of higher concentrations of MP when compared with most other reported sensors for MP. The CNC-rGO nanocomposite-based sensor also depicted good reproducibility and reusability compared to the rGO-based sensor. Furthermore, the CNC-rGO nanocomposite sensor showed good selectivity toward MP with little interference from easily oxidizable species such as ascorbic acid.
Collapse
Affiliation(s)
- Wan Elina Faradilla Wan Khalid
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.
- Faculty of Applied Sciences, Universiti Teknologi MARA Negeri Sembilan, Kuala Pilah Campus, Pekan Parit Tinggi, Kuala Pilah 72000, Negeri Sembilan, Malaysia.
| | | | - Latifah Jasmani
- Forest Products Division, Forest Research Institute Malaysia, Selangor 52109, Malaysia.
| | - Yook Heng Lee
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.
| |
Collapse
|
18
|
Gonzalez TL, Moos RK, Gersch CL, Johnson MD, Richardson RJ, Koch HM, Rae JM. Metabolites of n-Butylparaben and iso-Butylparaben Exhibit Estrogenic Properties in MCF-7 and T47D Human Breast Cancer Cell Lines. Toxicol Sci 2019; 164:50-59. [PMID: 29945225 DOI: 10.1093/toxsci/kfy063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Two oxidized metabolites of n-butylparaben (BuP) and iso-butylparaben (IsoBuP) discovered in human urine samples exhibit structural similarity to endogenous estrogens. We hypothesized that these metabolites bind to the human estrogen receptor (ER) and promote estrogen signaling. We tested this using models of ER-mediated cellular proliferation. The estrogenic properties of 3-hydroxy n-butyl 4-hydroxybenzoate (3OH) and 2-hydroxy iso-butyl 4-hydroxybenzoate (2OH) were determined using the ER-positive, estrogen-dependent human breast cancer cell lines MCF-7, and T47D. The 3OH metabolite induced cellular proliferation with EC50 of 8.2 µM in MCF-7 cells. The EC50 for 3OH in T47D cells could not be reached. The 2OH metabolite induced proliferation with EC50 of 2.2 µM and 43.0 µM in MCF-7 and T47D cells, respectively. The EC50 for the parental IsoBuP and BuP was 0.30 and 1.2 µM in MCF-7 cells, respectively. The expression of a pro-proliferative, estrogen-inducible gene (GREB1) was induced by these compounds and blocked by co-administration of an ER antagonist (ICI 182, 780), confirming the ER-dependence of these effects. The metabolites promoted significant ER-dependent transcriptional activity of an ERE-luciferase reporter construct at 10 and 20 µM for 2OH and 10 µM for 3OH. Computational docking studies showed that the paraben compounds exhibited the potential for favorable ligand-binding domain interactions with human ERα in a manner similar to known x-ray crystal structures of 17ß-estradiol in complex with ERα. We conclude that the hydroxylated metabolites of BuP and IsoBuP are weak estrogens and should be considered as additional components of potential endocrine disrupting effects upon paraben exposure.
Collapse
Affiliation(s)
- Thomas L Gonzalez
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109
| | - Rebecca K Moos
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr Universität Bochum (IPA), Bochum 44789, Germany
| | - Christina L Gersch
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Michael D Johnson
- Department of Oncology, Georgetown University School of Medicine, Washington, District of Columbia 20057
| | - Rudy J Richardson
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109.,Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr Universität Bochum (IPA), Bochum 44789, Germany
| | - James M Rae
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
19
|
Gonzalez TL, Rae JM, Colacino JA, Richardson RJ. Homology models of mouse and rat estrogen receptor- α ligand-binding domain created by in silico mutagenesis of a human template: molecular docking with 17ß-estradiol, diethylstilbestrol, and paraben analogs. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 10:1-16. [PMID: 30740556 PMCID: PMC6363358 DOI: 10.1016/j.comtox.2018.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Crystal structures exist for human, but not rodent, estrogen receptor-α ligand-binding domain (ERα-LBD). Consequently, rodent studies involving binding of compounds to ERα-LBD are limited in their molecular-level interpretation and extrapolation to humans. Because the sequences of rodent and human ERα-LBDs are > 95% identical, we expected their 3D structures and ligand binding to be highly similar. To test this hypothesis, we used the human ERα-LBD structure (PDB 3UUD) as a template to produce rat and mouse homology models. Employing the rodent models and human structure, we generated docking poses of 23 Group A ligands (17ß-estradiol, diethylstilbestrol, and 21 paraben analogs) in AutoDock Vina for interspecies comparisons. Ligand RMSDs (Å) (median, 95% CI) were 0.49 (0.21-1.82) (human-mouse) and 1.19 (0.22-1.82) (human-rat), well below the 2.0-2.5 Å range for equivalent docking poses. Numbers of interspecies ligand-receptor residue contacts were highly similar, with Sorensen Sc (%) = 96.8 (90.0-100) (human-mouse) and 97.7 (89.5-100) (human-rat). Likewise, numbers of interspecies ligand-receptor residue contacts were highly correlated: Pearson r = 0.913 (human-mouse) and 0.925 (human-rat). Numbers of interspecies ligand-receptor atom contacts were even more tightly correlated: r = 0.979 (human-mouse) and 0.986 (human-rat). Pyramid plots of numbers of ligand-receptor atom contacts by residue exhibited high interspecies symmetry and had Spearman r s = 0.977 (human-mouse) and 0.966 (human-rat). Group B ligands included 15 ring-substituted parabens recently shown experimentally to exhibit decreased binding to human ERα and to exert increased antimicrobial activity. Ligand efficiencies calculated from docking ligands into human ERα-LBD were well correlated with those derived from published experimental data (Pearson partial r p = 0.894 and 0.918; Groups A and B, respectively). Overall, the results indicate that our constructed rodent ERα-LBDs interact with ligands in like manner to the human receptor, thus providing a high level of confidence in extrapolations of rodent to human ligand-receptor interactions.
Collapse
Affiliation(s)
- Thomas L. Gonzalez
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - James M. Rae
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Justin A. Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109 USA
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109 USA
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
|
21
|
|
22
|
Ultrasound-assisted dispersive liquid-liquid microextraction followed by gas chromatography–mass spectrometry for determination of parabens in human breast tumor and peripheral adipose tissue. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1096:48-55. [DOI: 10.1016/j.jchromb.2018.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/08/2023]
|
23
|
Lazzarini R, Hafner MDFS, Rangel MG. Evaluation of the presence of allergens in children's products available for sale in a big city. An Bras Dermatol 2018; 93:457-459. [PMID: 29924241 PMCID: PMC6001089 DOI: 10.1590/abd1806-4841.20187111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/30/2017] [Indexed: 01/03/2023] Open
Abstract
Children's products are considered safe by the general population and doctors. Labels with terms such as "hypoallergenic" or "dermatologically recommended and tested" denote trust and credibility with the idea that they can be used by any individual. Patients with allergic contact dermatitis may be sensitive to allergens present in any product, including children's. There is insufficient knowledge about allergens in these products in our country. We evaluated 254 children's products, and at least one allergen was present in 236 (93%) of them. The indication of a topical product should be careful and based on contact tests.
Collapse
Affiliation(s)
- Rosana Lazzarini
- Dermatology Clinic. Santa Casa de São Paulo, São
Paulo (SP), Brazil
| | | | - Mayara Gomes Rangel
- Medical School Student, Faculdade de Ciências Médicas
da Santa Casa de São Paulo (FCMSCSP), São Paulo (SP), Brazil
| |
Collapse
|
24
|
Spindola DG, Hinsberger A, Antunes VMDS, Michelin LFG, Bincoletto C, Oliveira CR. In vitro cytotoxicity of chemical preservatives on human fibroblast cells. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000100031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | | | | | | | | | - Carlos Rocha Oliveira
- Universidade Anhembi Morumbi, Brazil; Instituto de Osmologia e Óleos Essenciais, Brasil; Universidade Federal de São Paulo, Brazil
| |
Collapse
|
25
|
Shen X, Liang J, Zheng L, Lv Q, Wang H. Application of dispersive liquid-liquid microextraction for the preconcentration of eight parabens in real samples and their determination by high-performance liquid chromatography. J Sep Sci 2017; 40:4385-4393. [PMID: 28877408 DOI: 10.1002/jssc.201700722] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Xiong Shen
- Department of Pharmacy; Zhongshan Hospital, Fudan University; Shanghai P.R. China
| | - Jian Liang
- Department of Pharmacy; Zhongshan Hospital, Fudan University; Shanghai P.R. China
| | - Luxia Zheng
- Shanghai Institute for Food and Drug Control; Shanghai P.R. China
| | - Qianzhou Lv
- Department of Pharmacy; Zhongshan Hospital, Fudan University; Shanghai P.R. China
| | - Hong Wang
- Department of General Surgery; Zhongshan Hospital, Fudan University; Shanghai P.R. China
| |
Collapse
|
26
|
Engeli RT, Rohrer SR, Vuorinen A, Herdlinger S, Kaserer T, Leugger S, Schuster D, Odermatt A. Interference of Paraben Compounds with Estrogen Metabolism by Inhibition of 17β-Hydroxysteroid Dehydrogenases. Int J Mol Sci 2017; 18:ijms18092007. [PMID: 28925944 PMCID: PMC5618656 DOI: 10.3390/ijms18092007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/06/2017] [Accepted: 09/14/2017] [Indexed: 12/04/2022] Open
Abstract
Parabens are effective preservatives widely used in cosmetic products and processed food, with high human exposure. Recent evidence suggests that parabens exert estrogenic effects. This work investigated the potential interference of parabens with the estrogen-activating enzyme 17β-hydroxysteroid dehydrogenase (17β-HSD) 1 and the estrogen-inactivating 17β-HSD2. A ligand-based 17β-HSD2 pharmacophore model was applied to screen a cosmetic chemicals database, followed by in vitro testing of selected paraben compounds for inhibition of 17β-HSD1 and 17β-HSD2 activities. All tested parabens and paraben-like compounds, except their common metabolite p-hydroxybenzoic acid, inhibited 17β-HSD2. Ethylparaben and ethyl vanillate inhibited 17β-HSD2 with IC50 values of 4.6 ± 0.8 and 1.3 ± 0.3 µM, respectively. Additionally, parabens size-dependently inhibited 17β-HSD1, whereby hexyl- and heptylparaben were most active with IC50 values of 2.6 ± 0.6 and 1.8 ± 0.3 µM. Low micromolar concentrations of hexyl- and heptylparaben decreased 17β-HSD1 activity, and ethylparaben and ethyl vanillate decreased 17β-HSD2 activity. However, regarding the very rapid metabolism of these compounds to the inactive p-hydroxybenzoic acid by esterases, it needs to be determined under which conditions low micromolar concentrations of these parabens or their mixtures can occur in target cells to effectively disturb estrogen effects in vivo.
Collapse
Affiliation(s)
- Roger T Engeli
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Simona R Rohrer
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Anna Vuorinen
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Sonja Herdlinger
- Computer-Aided Molecular Design Group, Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Teresa Kaserer
- Computer-Aided Molecular Design Group, Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Susanne Leugger
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Daniela Schuster
- Computer-Aided Molecular Design Group, Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
27
|
Allergic contact dermatitis in preservatives: current standing and future options. Curr Opin Allergy Clin Immunol 2017; 17:263-268. [DOI: 10.1097/aci.0000000000000373] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Lillo MA, Nichols C, Perry C, Runke S, Krutilina R, Seagroves TN, Miranda-Carboni GA, Krum SA. Methylparaben stimulates tumor initiating cells in ER+ breast cancer models. J Appl Toxicol 2016; 37:417-425. [PMID: 27581495 DOI: 10.1002/jat.3374] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
Abstract
A body of epidemiological evidence implicates exposure to endocrine disrupting chemicals (EDCs) with increased susceptibility to breast cancer. To evaluate the physiological effects of a suspected EDC in vivo, we exposed MCF-7 breast cancer cells and a patient-derived xenograft (PDX, estrogen receptor positive) to physiological levels of methylparaben (mePB), which is commonly used in personal care products as a preservative. mePB pellets (4.4 μg per day) led to increased tumor size of MCF-7 xenografts and ER+ PDX tumors. mePB has been thought to be a xenoestrogen; however, in vitro exposure of 10 nM mePB failed to increase MCF-7 cell proliferation or induction of canonical estrogen-responsive genes (pS2 and progesterone receptor), in contrast to 17β-estradiol (E2) treatment. MCF-7 and PDX-derived mammospheres exhibited increased size and up-regulation of canonical stem cell markers ALDH1, NANOG, OCT4 and SOX2 when exposed to mePB; these effects were not observed for MDA-MB-231 (ER- ) mammospheres. As tumor-initiating cells (TICs) are also believed to be responsible for chemoresistance, mammospheres were treated with either tamoxifen or the pure anti-estrogen fulvestrant in the presence of mePB. Blocking the estrogenic response was not sufficient to block NANOG expression in mammospheres, pointing to a non-classic estrogen response or an ER-independent mechanism of mePB promotion of mammosphere activity. Overall, these results suggest that mePB increases breast cancer tumor proliferation through enhanced TIC activity, in part via regulation of NANOG, and that mePB may play a direct role in chemoresistance by modulating stem cell activity. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M Angeles Lillo
- Department of Orthopedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Cydney Nichols
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Chanel Perry
- Department of Orthopedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stephanie Runke
- Department of Obstetrics and Gynecology, UCLA, Los Angeles, CA, USA
| | - Raisa Krutilina
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tiffany N Seagroves
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Gustavo A Miranda-Carboni
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Susan A Krum
- Department of Orthopedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
29
|
Potential Allergens in Disposable Diaper Wipes, Topical Diaper Preparations, and Disposable Diapers. Dermatitis 2016; 27:110-8. [DOI: 10.1097/der.0000000000000177] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Abstract
A critical evaluation of several recent regulatory risk assessments has been undertaken. These relate to propyl paraben (as a food additive, cosmetic ingredient or pharmaceutical excipient), cobalt (in terms of a safety-based limit for pharmaceuticals) and the cancer Threshold of Toxicological Concern as applied to food contaminants and pharmaceutical impurities. In all cases, a number of concerns can be raised regarding the reliability of the current assessments, some examples being absence of data audits, use of single-dose and/or non-good laboratory practice studies to determine safety metrics, use of a biased data set and questionable methodology and lack of consistency with precedents and regulatory guidance. Drawing on these findings, a set of recommendations is provided to reduce uncertainty and improve the quality and robustness of future regulatory risk assessments.
Collapse
Affiliation(s)
- DJ Snodin
- Xiphora Biopharma Consulting, Bristol, UK
| |
Collapse
|