1
|
Connelly F, Johnsson RD, Mulder RA, Hall ML, Lesku JA. Experimental playback of urban noise does not affect cognitive performance in captive Australian magpies. Biol Open 2024; 13:bio060535. [PMID: 39069816 PMCID: PMC11340814 DOI: 10.1242/bio.060535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Exposure of wildlife to anthropogenic noise is associated with disruptive effects. Research on this topic has focused on behavioural and physiological responses of animals to noise, with little work investigating links to cognitive function. Neurological processes that maintain cognitive performance can be impacted by stress and sleep disturbances. While sleep loss impairs cognitive performance in Australian magpies, it is unclear whether urban noise, which disrupts sleep, can impact cognition as well. To fill this gap, we explored how environmentally relevant urban noise affected the performance of wild-caught, city-living Australian magpies (Gymnorhina tibicen tyrannica) on a cognitive task battery including associative and reversal learning, inhibitory control, and spatial memory. Birds were housed and tested in a laboratory environment; sample sizes varied across tasks (n=7-9 birds). Tests were conducted over 4 weeks, during which all magpies were exposed to both an urban noise playback and a quiet control. Birds were presented with the entire test battery twice: following exposure to, and in the absence of, an anthropogenic noise playback; however, tests were always performed without noise (playback muted during testing). Magpies performed similarly in both treatments on all four tasks. We also found that prior experience with the associative learning task had a strong effect on performance, with birds performing better on their second round of trials. Like previous findings on Australian magpies tested on the same tasks in the wild under noisy conditions, we could not find any disruptive effects on cognitive performance in a controlled experimental laboratory setting.
Collapse
Affiliation(s)
- Farley Connelly
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
- Alameda County Resource Conservation District, Livermore, California 94550, USA
| | - Robin D. Johnsson
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Psychology, Franklin and Marshall College, Lancaster, Pennsylvania 17603, USA
| | - Raoul A. Mulder
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Michelle L. Hall
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Bush Heritage Australia, Melbourne, Victoria 3000, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - John A. Lesku
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
- Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
2
|
Guo X, Hällström T, Johansson L, Najar J, Wetterberg H, Sacuiu S, Kern S, Skoog I. Midlife stress-related exhaustion and dementia incidence: a longitudinal study over 50 years in women. BMC Psychiatry 2024; 24:500. [PMID: 38992650 PMCID: PMC11238401 DOI: 10.1186/s12888-024-05868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/27/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUNDS Cognitive problems are common symptoms among individuals with stress-related exhaustion. It is still unknown whether these individuals are at a higher risk of developing dementia later. This study aims to examine the relationship between midlife stress-related exhaustion and dementia incidence. METHODS A population sample of 777 women (aged 38, 46, 50 and 54 years) without dementia at baseline was followed over 50 years, from 1968 to 2019. Stress-related exhaustion was based on information from the psychiatric examination in 1968/69. Information on dementia incidence between 1968 and 2019 was obtained from neuropsychiatric examinations, key-informant interviews, and hospital registry. Dementia was diagnosed according to the DSM-III-R criteria. A subgroup of non-demented women (n = 284) was examined for cognitive functions by the Gottfries-Bråne-Steen scale 24 years after baseline. RESULTS Stress-related exhaustion in midlife was associated with higher risk for development of dementia before age 75 (Hazard ratio and 95% confidence interval: 2.95 and 1.35-6.44). The association remained after adjustment for age, major depression, and anxiety disorder. Mean age of dementia onset was younger for women with stress-related exhaustion than women without stress (mean ± SD, 76 ± 9 vs. 82 ± 8 . p = 0.009). Women with stress-related exhaustion in midlife still showed more cognitive impairments 24 years later compared with women without stress (Odds ratio and 95% confidence interval: 2.64 and 1.15-6.06). CONCLUSIONS We found that women with stress-related exhaustion in midlife were at a higher risk to develop dementia at relatively younger age. These women showed persistently lower cognitive functions over years even without dementia. Present study results need to be interpreted with caution due to small sample size and should be confirmed in future studies with larger sample size. Our study findings may imply the importance of long-term follow-up regarding cognitive function among individuals with stress-related exhaustion.
Collapse
Affiliation(s)
- Xinxin Guo
- Neuropsychiatric Epidemiology, Section of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of psychiatry, Affective Disorders, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Tore Hällström
- Neuropsychiatric Epidemiology, Section of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Johansson
- Neuropsychiatric Epidemiology, Section of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Addiction and Dependency, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jenna Najar
- Neuropsychiatric Epidemiology, Section of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of neuropsychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hanna Wetterberg
- Infection medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Simona Sacuiu
- Neuropsychiatric Epidemiology, Section of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Silke Kern
- Neuropsychiatric Epidemiology, Section of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of neuropsychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology, Section of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of neuropsychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
3
|
Park EH, Jo YS, Kim EJ, Park EH, Lee KJ, Rhyu IJ, Kim HT, Choi JS. Heterogenous effect of early adulthood stress on cognitive aging and synaptic function in the dentate gyrus. Front Mol Neurosci 2024; 17:1344141. [PMID: 38638601 PMCID: PMC11024304 DOI: 10.3389/fnmol.2024.1344141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/29/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive aging widely varies among individuals due to different stress experiences throughout the lifespan and vulnerability of neurocognitive mechanisms. To understand the heterogeneity of cognitive aging, we investigated the effect of early adulthood stress (EAS) on three different hippocampus-dependent memory tasks: the novel object recognition test (assessing recognition memory: RM), the paired association test (assessing episodic-like memory: EM), and trace fear conditioning (assessing trace memory: TM). Two-month-old rats were exposed to chronic mild stress for 6 weeks and underwent behavioral testing either 2 weeks or 20 months later. The results show that stress and aging impaired different types of memory tasks to varying degrees. RM is affected by combined effect of stress and aging. EM became less precise in EAS animals. TM, especially the contextual memory, showed impairment in aging although EAS attenuated the aging effect, perhaps due to its engagement in emotional memory systems. To further explore the neural underpinnings of these multi-faceted effects, we measured long-term potentiation (LTP), neural density, and synaptic density in the dentate gyrus (DG). Both stress and aging reduced LTP. Additionally, the synaptic density per neuron showed a further reduction in the stress aged group. In summary, EAS modulates different forms of memory functions perhaps due to their substantial or partial dependence on the functional integrity of the hippocampus. The current results suggest that lasting alterations in hippocampal circuits following EAS could potentially generate remote effects on individual variability in cognitive aging, as demonstrated by performance in multiple types of memory.
Collapse
Affiliation(s)
- Eun Hye Park
- School of Psychology, Korea University, Seoul, Republic of Korea
- Department of Psychology, New York University, New York, NY, United States
| | - Yong Sang Jo
- School of Psychology, Korea University, Seoul, Republic of Korea
| | - Eun Joo Kim
- School of Psychology, Korea University, Seoul, Republic of Korea
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Eui Ho Park
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kea Joo Lee
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Im Joo Rhyu
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun Taek Kim
- School of Psychology, Korea University, Seoul, Republic of Korea
| | - June-Seek Choi
- School of Psychology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Bhattacharya A, Chakraborty M, Chanda A, Alqahtani T, Kumer A, Dhara B, Chattopadhyay M. Neuroendocrine and cellular mechanisms in stress resilience: From hormonal influence in the CNS to mitochondrial dysfunction and oxidative stress. J Cell Mol Med 2024; 28:e18220. [PMID: 38509751 PMCID: PMC10955164 DOI: 10.1111/jcmm.18220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Recent advancements in neuroendocrinology challenge the long-held belief that hormonal effects are confined to perivascular tissues and do not extend to the central nervous system (CNS). This paradigm shift, propelled by groundbreaking research, reveals that synthetic hormones, notably in anti-inflammatory medications, significantly influence steroid psychosis, behavioural, and cognitive impairments, as well as neuropeptide functions. A seminal development in this field occurred in 1968 with McEven's proposal that rodent brains are responsive to glucocorticoids, fundamentally altering the understanding of how anxiety impacts CNS functionality and leading to the identification of glucocorticosteroids and mineralocorticoids as distinct corticotropic receptors. This paper focuses on the intricate roles of the neuroendocrine, immunological, and CNS in fostering stress resilience, underscored by recent animal model studies. These studies highlight active, compensatory, and passive strategies for resilience, supporting the concept that anxiety and depression are systemic disorders involving dysregulation across both peripheral and central systems. Resilience is conceptualized as a multifaceted process that enhances psychological adaptability to stress through adaptive mechanisms within the immunological system, brain, hypothalamo-pituitary-adrenal axis, and ANS Axis. Furthermore, the paper explores oxidative stress, particularly its origin from the production of reactive oxygen species (ROS) in mitochondria. The mitochondria's role extends beyond ATP production, encompassing lipid, heme, purine, and steroidogenesis synthesis. ROS-induced damage to biomolecules can lead to significant mitochondrial dysfunction and cell apoptosis, emphasizing the critical nature of mitochondrial health in overall cellular function and stress resilience. This comprehensive synthesis of neuroendocrinological and cellular biological research offers new insights into the systemic complexity of stress-related disorders and the imperative for multidisciplinary approaches in their study and treatment.
Collapse
Affiliation(s)
- Arghya Bhattacharya
- Department of PharmacologyCalcutta Institute of Pharmaceutical Technology and AHSUluberiaWest BengalIndia
| | - Manas Chakraborty
- Department of Pharmaceutical BiotechnologyCalcutta institute of pharmaceutical technology and AHSUluberiaWest BengalIndia
| | - Ananya Chanda
- Department of Pharmaceutical ScienceAdamas UniversityBarasatWest BengalIndia
| | - Taha Alqahtani
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Ajoy Kumer
- Department of ChemistryCollege of Arts and Sciences, IUBAT‐International University of Business Agriculture and TechnologyDhakaBangladesh
| | - Bikram Dhara
- Center for Global Health ResearchSaveetha Medical College and Hospital, Saveetha Institute of Medical and Technical SciencesChennaiIndia
- Department of Health SciencesNovel Global Community and Educational FoundationHebershamNew South WalesAustralia
| | - Moitreyee Chattopadhyay
- Department of Pharmaceutical TechnologyMaulana Abul Kalam Azad University of TechnologyKolkataWest BengalIndia
| |
Collapse
|
5
|
Chamaa F, Magistretti PJ, Fiumelli H. Astrocyte-derived lactate in stress disorders. Neurobiol Dis 2024; 192:106417. [PMID: 38296112 DOI: 10.1016/j.nbd.2024.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Stress disorders are psychiatric disorders arising following stressful or traumatic events. They could deleteriously affect an individual's health because they often co-occur with mental illnesses. Considerable attention has been focused on neurons when considering the neurobiology of stress disorders. However, like other mental health conditions, recent studies have highlighted the importance of astrocytes in the pathophysiology of stress-related disorders. In addition to their structural and homeostatic support role, astrocytes actively serve several functions in regulating synaptic transmission and plasticity, protecting neurons from toxic compounds, and providing metabolic support for neurons. The astrocyte-neuron lactate shuttle model sets forth the importance of astrocytes in providing lactate for the metabolic supply of neurons under intense activity. Lactate also plays a role as a signaling molecule and has been recently studied regarding its antidepressant activity. This review discusses the involvement of astrocytes and brain energy metabolism in stress and further reflects on the importance of lactate as an energy supply in the brain and its emerging antidepressant role in stress-related disorders.
Collapse
Affiliation(s)
- Farah Chamaa
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Pierre J Magistretti
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Hubert Fiumelli
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| |
Collapse
|
6
|
Seemiller LR, Flores-Cuadra J, Griffith KR, Smith GC, Crowley NA. Alcohol and stress exposure across the lifespan are key risk factors for Alzheimer's Disease and cognitive decline. Neurobiol Stress 2024; 29:100605. [PMID: 38268931 PMCID: PMC10806346 DOI: 10.1016/j.ynstr.2024.100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Alzheimer's Disease and related dementias (ADRD) are an increasing threat to global health initiatives. Efforts to prevent the development of ADRD require understanding behaviors that increase and decrease risk of neurodegeneration and cognitive decline, in addition to uncovering the underlying biological mechanisms behind these effects. Stress exposure and alcohol consumption have both been associated with increased risk for ADRD in human populations. However, our ability to understand causal mechanisms of ADRD requires substantial preclinical research. In this review, we summarize existing human and animal research investigating the connections between lifetime stress and alcohol exposures and ADRD.
Collapse
Affiliation(s)
- Laurel R. Seemiller
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Julio Flores-Cuadra
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Neuroscience Graduate Program, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Keith R. Griffith
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Grace C. Smith
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nicole A. Crowley
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Neuroscience Graduate Program, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
7
|
Chronic Stress Indicators in Canines. FOLIA VETERINARIA 2022. [DOI: 10.2478/fv-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
With a growing number of dogs abandoned, living in shelters, and being rehomed, it is important to distinguish behavioural responses due to stress in our domestic companions. Cortisol is involved in the stress responses in animals which generally enters the individual’s body into a “state of emergency”. Prolonged stress can lead to exhaustion, disease, and death. Chronic stress can be detected by evaluating cortisol concentration in hair. Most domesticated dogs respond well to hair collection, thus avoiding further stressors. The method is simple, relatively inexpensive, and non-invasive. Our experiment focused on assessing multiple parameters using a modified Canine Behavioural Assessment and Research Questionnaire to evaluate their significance with cortisol in hair samples from a diverse range of dogs. Each stress parameter was tested against cortisol concentration using a t-Test, i. e., the Paired Two Sample for Means. The effect of weight on cortisol levels was statistically significant (P = 0.03). This fact revealed that an increase in body weight correlated with an increase in cortisol levels.
Collapse
|
8
|
Farzane A, Koushkie Jahromi M. The effect of pilates training on hormonal and psychophysical function in older women. J Sports Med Phys Fitness 2022; 62:110-121. [PMID: 33555671 DOI: 10.23736/s0022-4707.21.12089-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND DHEA-S and cortisol and their ratio are important determinants of some physiological and psychological function during aging. The present study aimed to determine the effect of eight weeks of pilates training on diurnal salivary cortisol, dehydroepiandrosterone sulfate (DHEA-S), and cortisol to DHEA-S ratio, cardiorespiratory fitness (CF), and psychological function in older women. METHODS Twenty-seven healthy older women (aged 60-65 years) participated in the study voluntarily and were divided into two groups of pilates training (N.=15) and control (N.=12), randomly. Before and after the experiment, salivary samples (at wake up and 30-min postawakening, midday, 5 p.m., and 9 p.m.) were taken and the participants completed the questionnaires. Cognitive function was assessed by the MMSE questionnaire. Pilates training was performed three times weekly, in non-consecutive days. RESULTS Pilates training increased V̇O2<inf>max</inf> (48%, P<0.001) and cognitive function (73%, P<0.001) and decreased BMI (16%, P=0.042), anxiety (53%, P<0.001) and depression (67%, P<0.001) compared to the control group. Also, in pilates training group, mean cortisol (16%, P=0.039), CAR (24%, P=0.010), fall after peak of cortisol (15%, P=0.50), morning DHEA-S (43%, P<0.001) and mean DHEA-S (34%, P=0.002) increased compared to the control group. CONCLUSIONS This study suggests that pilates training could improve mental and physical function which was accompanied by changes of diurnal cortisol and DHEA as one of the possible effective factors.
Collapse
Affiliation(s)
- Arezu Farzane
- School of Education and Psychology, Department of Sport Sciences, Shiraz University, Shiraz, Iran
| | - Maryam Koushkie Jahromi
- School of Education and Psychology, Department of Sport Sciences, Shiraz University, Shiraz, Iran -
| |
Collapse
|
9
|
Calleja-Felipe M, Wojtas MN, Diaz-González M, Ciceri D, Escribano R, Ouro A, Morales M, Knafo S. FORTIS: a live-cell assay to monitor AMPA receptors using pH-sensitive fluorescence tags. Transl Psychiatry 2021; 11:324. [PMID: 34045447 PMCID: PMC8160262 DOI: 10.1038/s41398-021-01457-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/09/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022] Open
Abstract
The real-time live fluorescent monitoring of surface AMPA receptors (AMPARs) could open new opportunities for drug discovery and phenotypic screening concerning neuropsychiatric disorders. We have developed FORTIS, a tool based on pH sensitivity capable of detecting subtle changes in surface AMPARs at a neuronal population level. The expression of SEP-GluA1 or pHuji-GluA1 recombinant AMPAR subunits in mammalian neurons cultured in 96-well plates enables surface AMPARs to be monitored with a microplate reader. Thus, FORTIS can register rapid changes in surface AMPARs induced by drugs or genetic modifications without having to rely on conventional electrophysiology or imaging. By combining FORTIS with pharmacological manipulations, basal surface AMPARs, and plasticity-like changes can be monitored. We expect that employing FORTIS to screen for changes in surface AMPARs will accelerate both neuroscience research and drug discovery.
Collapse
Affiliation(s)
- María Calleja-Felipe
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
| | - Magdalena Natalia Wojtas
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marta Diaz-González
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dalila Ciceri
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
| | - Raúl Escribano
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Barrio Sarriena s/n, Leioa, E-48940, Spain
| | - Alberto Ouro
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Miguel Morales
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
| | - Shira Knafo
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain.
| |
Collapse
|
10
|
Hay M, Barnes C, Huentelman M, Brinton R, Ryan L. Hypertension and Age-Related Cognitive Impairment: Common Risk Factors and a Role for Precision Aging. Curr Hypertens Rep 2020; 22:80. [PMID: 32880739 PMCID: PMC7467861 DOI: 10.1007/s11906-020-01090-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purpose of Review Precision Aging® is a novel concept that we have recently employed to describe how the model of precision medicine can be used to understand and define the multivariate risks that drive age-related cognitive impairment (ARCI). Hypertension and cardiovascular disease are key risk factors for both brain function and cognitive aging. In this review, we will discuss the common mechanisms underlying the risk factors for both hypertension and ARCI and how the convergence of these mechanisms may be amplified in an individual to drive changes in brain health and accelerate cognitive decline. Recent Findings Currently, our cognitive health span does not match our life span. Age-related cognitive impairment and preventing and treating ARCI will require an in-depth understanding of the interrelated risk factors, including individual genetic profiles, that affect brain health and brain aging. Hypertension and cardiovascular disease are important risk factors for ARCI. And, many of the risk factors for developing hypertension, such as diabetes, smoking, stress, viral infection, and age, are shared with the development of ARCI. We must first understand the mechanisms common to the converging risk factors in hypertension and ARCI and then design person-specific therapies to optimize individual brain health. Summary The understanding of the convergence of shared risk factors between hypertension and ARCI is required to develop individualized interventions to optimize brain health across the life span. We will conclude with a discussion of possible steps that may be taken to decrease ARCI and optimize an individual’s cognitive life span.
Collapse
Affiliation(s)
- Meredith Hay
- Department of Physiology, University of Arizona, 1501 N Campbell Rd, Room 4103, Tucson, AZ, 85724, USA.
- Psychology Department, University of Arizona, Tucson, AZ, USA.
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA.
| | - Carol Barnes
- Psychology Department, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Matt Huentelman
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Neurogenomics Division, TGen, Phoenix, AZ, USA
| | - Roberta Brinton
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Center for Innovative Brain Sciences, University of Arizona, Tucson, AZ, USA
| | - Lee Ryan
- Psychology Department, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
11
|
Chronic Mild Stress Modified Epigenetic Mechanisms Leading to Accelerated Senescence and Impaired Cognitive Performance in Mice. Int J Mol Sci 2020; 21:ijms21031154. [PMID: 32050516 PMCID: PMC7037343 DOI: 10.3390/ijms21031154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cognitive and behavioural disturbances are a growing public healthcare issue for the modern society, as stressful lifestyle is becoming more and more common. Besides, several pieces of evidence state that environment is crucial in the development of several diseases as well as compromising healthy aging. Therefore, it is important to study the effects of stress on cognition and its relationship with aging. To address these queries, Chronic Mild Stress (CMS) paradigm was used in the senescence-accelerated mouse prone 8 (SAMP8) and resistant 1 (SAMR1). On one hand, we determined the changes produced in the three main epigenetic marks after 4 weeks of CMS treatment, such as a reduction in histone posttranslational modifications and DNA methylation, and up-regulation or down-regulation of several miRNA involved in different cellular processes in mice. In addition, CMS treatment induced reactive oxygen species (ROS) damage accumulation and loss of antioxidant defence mechanisms, as well as inflammatory signalling activation through NF-κB pathway and astrogliosis markers, like Gfap. Remarkably, CMS altered mTORC1 signalling in both strains, decreasing autophagy only in SAMR1 mice. We found a decrease in glycogen synthase kinase 3 β (GSK-3β) inactivation, hyperphosphorylation of Tau and an increase in sAPPβ protein levels in mice under CMS. Moreover, reduction in the non-amyloidogenic secretase ADAM10 protein levels was found in SAMR1 CMS group. Consequently, detrimental effects on behaviour and cognitive performance were detected in CMS treated mice, affecting mainly SAMR1 mice, promoting a turning to SAMP8 phenotype. In conclusion, CMS is a feasible intervention to understand the influence of stress on epigenetic mechanisms underlying cognition and accelerating senescence.
Collapse
|
12
|
Huzard D, Vouros A, Monari S, Astori S, Vasilaki E, Sandi C. Constitutive differences in glucocorticoid responsiveness are related to divergent spatial information processing abilities. Stress 2020; 23:37-49. [PMID: 31187686 DOI: 10.1080/10253890.2019.1625885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The stress response facilitates survival through adaptation and is intimately related to cognitive processes. The Morris water maze task probes spatial learning and memory in rodents and glucocorticoids (i.e. corticosterone (CORT) in rats) have been suggested to elicit a facilitating action on memory formation. Moreover, the early aging period (around 16-18 months of age) is susceptible to stress- and glucocorticoid-mediated acceleration of cognitive decline. In this study, we tested three lines of rats selectively bred according to their individual differences in CORT responsiveness to repeated stress exposure during juvenility. We investigated whether endogenous differences in glucocorticoid responses influenced spatial learning, long-term memory, and reversal learning abilities in a Morris water maze task at early aging. Additionally, we assessed the quality of the different swimming strategies of the rats. Our results indicate that rats with differential CORT responsiveness exhibit similar spatial learning abilities but different long-term memory retention and reversal learning. Specifically, the high CORT responding line had a better long-term spatial memory, while the low CORT responding line was impaired for both long-term retention and reversal learning. Our modeling analysis of performance strategies revealed further important line-related differences. Therefore, our findings support the view that individuals with high CORT responsiveness would form stronger long-term memories to navigate in stressful environments. Conversely, individuals with low CORT responsiveness would be impaired at different phases of spatial learning and memory.
Collapse
Affiliation(s)
- Damien Huzard
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Silvia Monari
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Simone Astori
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Eleni Vasilaki
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Pereda-Pérez I, Valencia A, Baliyan S, Núñez Á, Sanz-García A, Zamora B, Rodríguez-Fernández R, Esteban JA, Venero C. Systemic administration of a fibroblast growth factor receptor 1 agonist rescues the cognitive deficit in aged socially isolated rats. Neurobiol Aging 2019; 78:155-165. [PMID: 30928883 DOI: 10.1016/j.neurobiolaging.2019.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 01/22/2019] [Accepted: 02/09/2019] [Indexed: 11/20/2022]
Abstract
Social isolation predominantly occurs in elderly people and it is strongly associated with cognitive decline. However, the mechanisms that produce isolation-related cognitive dysfunction during aging remain unclear. Here, we evaluated the cognitive, electrophysiological, and morphological effects of short- (4 weeks) and long-term (12 weeks) social isolation in aged male Wistar rats. Long-term but not short-term social isolation increased the plasma corticosterone levels and impaired spatial memory in the Morris water maze. Moreover, isolated animals displayed dampened hippocampal long-term potentiation in vivo, both in the dentate gyrus (DG) and CA1, as well as a specific reduction in the volume of the stratum oriens and spine density in CA1. Interestingly, social isolation induced a transient increase in hippocampal basic fibroblast growth factor (FGF2), whereas fibroblast growth factor receptor 1 (FGFR1) levels only increased after long-term isolation. Importantly, subchronic systemic administration of FGL, a synthetic peptide that activates FGFR1, rescued spatial memory in long-term isolated rats. These findings provide new insights into the neurobiological mechanisms underlying the detrimental effects on memory of chronic social isolation in the aged.
Collapse
Affiliation(s)
- Inmaculada Pereda-Pérez
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Madrid, Spain
| | - Azucena Valencia
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Shishir Baliyan
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Ángel Núñez
- School of Medicine, Autonoma University of Madrid, Madrid, Spain
| | - Ancor Sanz-García
- Unidad de Análisis de datos, Instituto de Investigación Sanitaria Hospital de la Princesa, Madrid, Spain
| | - Berta Zamora
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; Fetal Medicine Unit-SAMID, Department of Obstetrics and Gynecology, Hospital Universitario, Madrid, Spain
| | - Raquel Rodríguez-Fernández
- Department of Behavioural Sciences Methodology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - José Antonio Esteban
- Department of Molecular Neurobiology, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC) / Universidad Autónoma de Madrid, Madrid, Spain
| | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.
| |
Collapse
|
14
|
Turner CA, Lyons DM, Buckmaster CL, Aurbach EL, Watson SJ, Schatzberg AF, Akil H. Neural cell adhesion molecule peptide mimetics modulate emotionality: pharmacokinetic and behavioral studies in rats and non-human primates. Neuropsychopharmacology 2019; 44:356-363. [PMID: 29703997 PMCID: PMC6300554 DOI: 10.1038/s41386-018-0052-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022]
Abstract
Recent evidence highlights the fibroblast growth factor (FGF) family in emotion modulation. Although ligands that activate FGF receptors have antidepressant and anxiolytic effects in animal models, FGF ligands have a broad range of actions both in the brain and the periphery. Therefore, identifying molecular partners that may function as allosteric modulators could offer new avenues for drug development. Since neural cell adhesion molecule (NCAM) activates FGF receptors, we asked whether peripherally administered NCAM peptide mimetics penetrate the brain and alter the behavior of standardized tests that have predictive validity for drug treatments of anxiety or depression. The NCAM peptide mimetic, plannexin, acutely increased and chronically decreased anxiety, but did not have antidepressant effects in rats. Another NCAM peptide mimetic, FGLL, had acute anxiogenic effects and chronic antidepressant effects in rats. A related NCAM peptide mimetic, FGLS, had antidepressant effects without modulating anxiety-like behavior, and these antidepressant effects were blocked by an AMPA receptor antagonist. Cisternal cerebrospinal fluid (CSF) levels of FGLs correlated with blood plasma levels in rats and non-human primates, and CSF-to-blood ratios of FGLS were comparable in both species. Results indicate that NCAM peptide mimetics penetrate the brain and support the suggestion that FGLS may be a candidate for further development as a novel treatment for major depressive disorder in humans.
Collapse
Affiliation(s)
- Cortney A. Turner
- 0000000086837370grid.214458.eMolecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - David M. Lyons
- 0000000419368956grid.168010.eDepartment of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94305 USA
| | - Christine L. Buckmaster
- 0000000419368956grid.168010.eDepartment of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94305 USA
| | - Elyse L. Aurbach
- 0000000086837370grid.214458.eMolecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Stanley J. Watson
- 0000000086837370grid.214458.eMolecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA ,0000000086837370grid.214458.eDepartment of Psychiatry, University of Michigan, Ann Arbor, MI 48109 USA
| | - Alan F. Schatzberg
- 0000000419368956grid.168010.eDepartment of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94305 USA
| | - Huda Akil
- 0000000086837370grid.214458.eMolecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA ,0000000086837370grid.214458.eDepartment of Psychiatry, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
15
|
GSK3β: a plausible mechanism of cognitive and hippocampal changes induced by erythropoietin treatment in mood disorders? Transl Psychiatry 2018; 8:216. [PMID: 30310078 PMCID: PMC6181907 DOI: 10.1038/s41398-018-0270-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/11/2018] [Accepted: 07/14/2018] [Indexed: 12/16/2022] Open
Abstract
Mood disorders are associated with significant psychosocial and occupational disability. It is estimated that major depressive disorder (MDD) will become the second leading cause of disability worldwide by 2020. Existing pharmacological and psychological treatments are limited for targeting cognitive dysfunctions in mood disorders. However, growing evidence from human and animal studies has shown that treatment with erythropoietin (EPO) can improve cognitive function. A recent study involving EPO-treated patients with mood disorders showed that the neural basis for their cognitive improvements appeared to involve an increase in hippocampal volume. Molecular mechanisms underlying hippocampal changes have been proposed, including the activation of anti-apoptotic, antioxidant, pro-survival and anti-inflammatory signalling pathways. The aim of this review is to describe the potential importance of glycogen synthase kinase 3-beta (GSK3β) as a multi-potent molecular mechanism of EPO-induced hippocampal volume change in mood disorder patients. We first examine published associations between EPO administration, mood disorders, cognition and hippocampal volume. We then highlight evidence suggesting that GSK3β influences hippocampal volume in MDD patients, and how this could assist with targeting more precise treatments particularly for cognitive deficits in patients with mood disorders. We conclude by suggesting how this developing area of research can be further advanced, such as using pharmacogenetic studies of EPO treatment in patients with mood disorders.
Collapse
|
16
|
NCAM Mimetic Peptides: Potential Therapeutic Target for Neurological Disorders. Neurochem Res 2018; 43:1714-1722. [DOI: 10.1007/s11064-018-2594-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/27/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
|
17
|
Lupien SJ, Juster RP, Raymond C, Marin MF. The effects of chronic stress on the human brain: From neurotoxicity, to vulnerability, to opportunity. Front Neuroendocrinol 2018; 49:91-105. [PMID: 29421159 DOI: 10.1016/j.yfrne.2018.02.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 01/12/2023]
Abstract
For the last five decades, science has managed to delineate the mechanisms by which stress hormones can impact on the human brain. Receptors for glucocorticoids are found in the hippocampus, amygdala and frontal cortex, three brain regions involved in memory processing and emotional regulation. Studies have shown that chronic exposure to stress is associated with reduced volume of the hippocampus and that chronic stress can modulate volumes of both the amygdala and frontal cortex, suggesting neurotoxic effects of stress hormones on the brain. Yet, other studies report that exposure to early adversity and/or familial/social stressors can increase vulnerability to stress in adulthood. Models have been recently developed to describe the roles that neurotoxic and vulnerability effects can have on the developing brain. These models suggest that developing early stress interventions could potentially counteract the effects of chronic stress on the brain and results going along with this hypothesis are summarized.
Collapse
Affiliation(s)
- Sonia J Lupien
- Centre for Studies on Human Stress, Montreal Mental Health University Institute, Canada; Department of Psychiatry, Faculty of Medicine, University of Montreal, Canada.
| | - Robert-Paul Juster
- Centre for Studies on Human Stress, Montreal Mental Health University Institute, Canada; Department of Psychiatry, Columbia University, New York, United States
| | - Catherine Raymond
- Centre for Studies on Human Stress, Montreal Mental Health University Institute, Canada; Department of Neurosciences, Université de Montreal, Canada
| | - Marie-France Marin
- Centre for Studies on Human Stress, Montreal Mental Health University Institute, Canada; Department of Psychiatry, Faculty of Medicine, University of Montreal, Canada
| |
Collapse
|
18
|
Predictable Chronic Mild Stress during Adolescence Promotes Fear Memory Extinction in Adulthood. Sci Rep 2017; 7:7857. [PMID: 28798340 PMCID: PMC5552791 DOI: 10.1038/s41598-017-08017-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/03/2017] [Indexed: 01/16/2023] Open
Abstract
Early-life stress in adolescence has a long-lasting influence on brain function in adulthood, and it is mostly recognized as a predisposing factor for mental illnesses, such as anxiety and posttraumatic stress disorder. Previous studies also indicated that adolescent predictable chronic mild stress (PCMS) in early life promotes resilience to depression- and anxiety-like behaviors in adulthood. However, the role of PCMS in associated memory process is still unclear. In the present study, we found that adolescent PCMS facilitated extinction and inhibited fear response in reinstatement and spontaneous recovery tests in adult rats, and this effect was still present 1 week later. PCMS in adolescence increased the activity of brain-derived neurotrophic factor (BDNF)-extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in infralimbic cortex (IL) but not prelimbic cortex in adulthood. Intra-IL infusion of BDNF antibody and the ERK1/2 inhibitor U0126 reversed PCMS-induced enhancement of fear extinction. Moreover, we found that PCMS decreased DNA methylation of the Bdnf gene at exons IV and VI and elevated the mRNA levels of Bdnf in the IL. Our findings indicate that adolescent PCMS exposure promotes fear memory extinction in adulthood, which reevaluates the traditional notion of adolescent stress.
Collapse
|
19
|
Yaribeygi H, Panahi Y, Sahraei H, Johnston TP, Sahebkar A. The impact of stress on body function: A review. EXCLI JOURNAL 2017; 16:1057-1072. [PMID: 28900385 PMCID: PMC5579396 DOI: 10.17179/excli2017-480] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022]
Abstract
Any intrinsic or extrinsic stimulus that evokes a biological response is known as stress. The compensatory responses to these stresses are known as stress responses. Based on the type, timing and severity of the applied stimulus, stress can exert various actions on the body ranging from alterations in homeostasis to life-threatening effects and death. In many cases, the pathophysiological complications of disease arise from stress and the subjects exposed to stress, e.g. those that work or live in stressful environments, have a higher likelihood of many disorders. Stress can be either a triggering or aggravating factor for many diseases and pathological conditions. In this study, we have reviewed some of the major effects of stress on the primary physiological systems of humans.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Neurosciences Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yunes Panahi
- Clinical Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hedayat Sahraei
- Neurosciences Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Abstract
AbstractThree areas in the brain continuously generate new neurons throughout life: the subventricular zone lining the lateral ventricles, the dentate gyrus in the hippocampus and the median eminence in the hypothalamus. These areas harbour neural stem cells, which contribute to neural repair by generating daughter cells that then become functional neurons or glia. Impaired neurogenesis leads to detrimental consequences, such as depression, decline of cognitive abilities and obesity. Adult neurogenesis is a versatile process that can be modulated either positively or negatively by many effectors, external or endogenous. Diet can modify neurogenesis both ways, either directly by ways of food-borne molecules, or possibly by the modifications induced on gut microbiota composition. It is therefore critical to define dietary strategies optimal for the maintenance of the stem cell pools.
Collapse
|
21
|
Şahin TD, Karson A, Balcı F, Yazır Y, Bayramgürler D, Utkan T. TNF-alpha inhibition prevents cognitive decline and maintains hippocampal BDNF levels in the unpredictable chronic mild stress rat model of depression. Behav Brain Res 2015; 292:233-40. [DOI: 10.1016/j.bbr.2015.05.062] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 01/08/2023]
|
22
|
Jauregui-Huerta F, Zhang L, Yañez-Delgadillo G, Hernandez-Carrillo P, García-Estrada J, Luquín S. Hippocampal cytogenesis and spatial learning in senile rats exposed to chronic variable stress: effects of previous early life exposure to mild stress. Front Aging Neurosci 2015; 7:159. [PMID: 26347648 PMCID: PMC4539520 DOI: 10.3389/fnagi.2015.00159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/31/2015] [Indexed: 12/01/2022] Open
Abstract
In this study, we exposed adult rats to chronic variable stress (CVS) and tested the hypothesis that previous early-life exposure to stress changes the manner in which older subjects respond to aversive conditions. To this end, we analyzed the cytogenic changes in the hippocampus and hippocampal-dependent spatial learning performance. The experiments were performed on 18-month-old male rats divided into four groups as follows: Control (old rats under standard laboratory conditions), Early-life stress (ELS; old rats who were exposed to environmental noise from postnatal days, PNDs 21–35), CVS + ELS (old rats exposed to a chronic stress protocol who were previously exposed to the early-life noise stress) and CVS (old rats who were exposed only to the chronic stress protocol). The Morris Water Maze (MWM) was employed to evaluate the spatial learning abilities of the rats at the end of the experiment. Immunohistochemistry against 5′Bromodeoxyuridine (BrdU) and glial fibrillar acidic protein (GFAP) was also conducted in the DG, CA1, CA2 and CA3 regions of the hippocampus. We confocally analyzed the cytogenic (BrdU-labeled cells) and astrogenic (BrdU + GFAP-labeled cells) changes produced by these conditions. Using this procedure, we found that stress diminished the total number of BrdU+ cells over the main proliferative area of the hippocampus (i.e., the dentate gyrus, DG) but increased the astrocyte phenotypes (GFAP + BrdU). The depleted BrdU+ cells were restored when the senile rats also experienced stress at the early stages of life. The MWM assessment demonstrated that stress also impairs the ability of the rats to learn the task. This impairment was not present when the stressful experience was preceded by the early-life exposure. Thus, our results support the idea that previous exposure to mild stressing agents may have beneficial effects on aged subjects.
Collapse
Affiliation(s)
- Fernando Jauregui-Huerta
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| | - Limei Zhang
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, Mexico
| | - Griselda Yañez-Delgadillo
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| | - Pamela Hernandez-Carrillo
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| | - Joaquín García-Estrada
- División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social Guadalajara, Mexico
| | - Sonia Luquín
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| |
Collapse
|
23
|
Song J, Mailick MR, Greenberg JS, Ryff CD, Lachman ME. Cognitive Aging in Parents of Children with Disabilities. J Gerontol B Psychol Sci Soc Sci 2015; 71:821-30. [PMID: 25804212 DOI: 10.1093/geronb/gbv015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/04/2015] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE This study examines the cognitive functioning of parents of children with disabilities, specifically, whether there is an evidence of accelerated cognitive aging among these parents. In addition, the study investigates the moderating influences of two variables: parents' gender and stress from negative parenting experience. METHOD The analyses utilize data from the National Survey of Midlife in the United States (2005). The analytic sample consisted of two groups of parents, who completed the cognitive battery, the interview, and the mail-back survey: 128 parents who had children with childhood-onset disabilities and 512 matched comparison parents who had only nondisabled children. RESULTS Age differences in episodic memory were more pronounced among mothers of children with disabilities than among mothers with nondisabled children, especially among mothers with higher levels of negative parenting experience. In contrast, there were no interaction effects of parenting status, age, and negative parenting experience among fathers. DISCUSSION The results show that parenting children with disabilities over a prolonged period of time jeopardizes cognitive function (especially memory) among older mothers, possibly via the mechanism of heightened parenting stress due to higher levels of negative parenting experience.
Collapse
Affiliation(s)
| | | | | | - Carol D Ryff
- Institute on Aging and Department of Psychology, University of Wisconsin-Madison
| | - Margie E Lachman
- Department of Psychology, Brandeis University, Waltham, Massachusetts
| |
Collapse
|
24
|
Puzzo D, Bizzoca A, Loreto C, Guida CA, Gulisano W, Frasca G, Bellomo M, Castorina S, Gennarini G, Palmeri A. Role of F3/contactin expression profile in synaptic plasticity and memory in aged mice. Neurobiol Aging 2015; 36:1702-1715. [PMID: 25659859 DOI: 10.1016/j.neurobiolaging.2015.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 12/30/2014] [Accepted: 01/03/2015] [Indexed: 12/14/2022]
Abstract
We have recently shown that overexpression of the F3/contactin adhesive glycoprotein (also known as Contactin-1) promotes neurogenesis in adult hippocampus, which correlates with improved synaptic plasticity and memory. Because F3/contactin levels physiologically decrease with age, here, we aim at investigating whether its overexpression might counteract the cognitive decline in aged animals. For this we use 20- to 24-month-old TAG/F3 transgenic mice in which F3/contactin overexpression is driven by regulatory sequences from the gene encoding the transient axonal glycoprotein TAG-1 throughout development. We show that aged TAG/F3 mice display improved hippocampal long-term potentiation and memory compared with wild-type littermates. The same mice undergo a decrease of neuronal apoptosis at the hippocampal level, which correlated to a decrease of active caspase-3; by contrast, procaspase-3 and Bax as well as the anti-apoptotic and plasticity-related pathway BDNF/CREB/Bcl-2 were rather increased. Interestingly, amyloid-precursor protein processing was shifted toward sAPPα generation, with a decrease of sAPPβ and amyloid-beta levels. Our data confirm that F3/contactin plays a role in hippocampal synaptic plasticity and memory also in aged mice, suggesting that it acts on molecular pathways related to apoptosis and amyloid-beta production.
Collapse
Affiliation(s)
- Daniela Puzzo
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonella Bizzoca
- Section of Physiology, Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy
| | - Carla Loreto
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Chiara A Guida
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Walter Gulisano
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppina Frasca
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maria Bellomo
- Faculty of Psychology and Educational Sciences, University "Kore", Enna, Italy
| | - Sergio Castorina
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gianfranco Gennarini
- Section of Physiology, Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy.
| | - Agostino Palmeri
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
25
|
Seigers R, Loos M, Van Tellingen O, Boogerd W, Smit AB, Schagen SB. Cognitive impact of cytotoxic agents in mice. Psychopharmacology (Berl) 2015; 232:17-37. [PMID: 24894481 DOI: 10.1007/s00213-014-3636-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/05/2014] [Indexed: 01/12/2023]
Abstract
RATIONALE AND OBJECTIVES Adjuvant chemotherapy is associated with changes in cognition in a subgroup of cancer patients. Chemotherapy is generally given as a combination of cytotoxic agents, which makes it hard to define the agent responsible for these observed changes. Literature on animal experiments has been difficult to interpret due to variance in experimental setup. METHODS We examined the effects of cytotoxic agents administered separately on various cognitive measures in a standardized animal model. Male C57Bl/6 mice received cyclophosphamide, docetaxel, doxorubicin, 5-fluorouracil, methotrexate, or topotecan. These agents represent different compound classes based on their working mechanism and are frequently prescribed in the clinic. A control group received saline. Behavioral testing started 2 or 15 weeks after treatment and included testing general measures of behavior and cognitive task performance: spontaneous behavior in an automated home cage, open field, novel location recognition (NLR), novel object recognition (NOR), Barnes maze, contextual fear conditioning, and a simple choice reaction time task (SCRTT). RESULTS Cyclophosphamide, docetaxel, and doxorubicin administration affected spontaneous activity in the automated home cage. All cytotoxic agents affected memory (NLR and/or NOR). Spatial memory measured in the Barnes maze was affected after administration with doxorubicin, 5-fluorouracil, and topotecan. Decreased inhibition in the SCRTT was observed after treatment with cyclophosphamide, docetaxel, and topotecan. CONCLUSIONS Our data show that, in mice, a single treatment with a cytotoxic agent causes cognitive impairment. Not all cytotoxic agents affected the same cognitive domains, which might be explained by differences in working mechanisms of the various agents.
Collapse
Affiliation(s)
- R Seigers
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
Zellinger C, Salvamoser JD, Seeger N, Russmann V, Potschka H. Impact of the neural cell adhesion molecule-derived peptide FGL on seizure progression and cellular alterations in the mouse kindling model. ACS Chem Neurosci 2014; 5:185-93. [PMID: 24456603 DOI: 10.1021/cn400153g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The neural cell adhesion molecule peptide mimetic fibroblast growth loop (FGL) proved to exert neuroprotective, neurotrophic, and anti-inflammatory effects in different in vitro and in vivo experiments. Based on this beneficial efficacy profile, it is currently in clinical development for neurodegenerative diseases and brain insults. Here, we addressed the hypothesis that the peptide might affect development of seizures in a kindling paradigm, as well as associated behavioral and cellular alterations. Both doses tested, 2 and 10 mg/kg FGL, significantly reduced the number of stimulations necessary to induce a generalized seizure. FGL did not exert relevant effects on the behavioral patterns of kindled animals. As expected, kindling increased the hippocampal cell proliferation rate. Whereas the low dose of FGL did not affect this kindling-associated alteration, 10 mg/kg FGL proved to attenuate the expansion of the doublecortin-positive cell population. These data suggest that FGL administration might have an impact on disease-associated alterations in the hippocampal neuronal progenitor cell population. In conclusion, the effects of the peptide mimetic FGL in the kindling model do not confirm a disease-modifying effect with a beneficial impact on the development or course of epilepsy. The results obtained with FGL rather raise some concern regarding a putative effect, which might promote the formation of a hyperexcitable network. Future studies are required to further assess the risks in models with development of spontaneous seizures.
Collapse
Affiliation(s)
- Christina Zellinger
- Institute
of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstrasse 16, D-80539 Munich, Germany
| | - Josephine D. Salvamoser
- Institute
of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstrasse 16, D-80539 Munich, Germany
| | - Natalie Seeger
- Institute
of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstrasse 16, D-80539 Munich, Germany
| | - Vera Russmann
- Institute
of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstrasse 16, D-80539 Munich, Germany
| | - Heidrun Potschka
- Institute
of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstrasse 16, D-80539 Munich, Germany
| |
Collapse
|
27
|
Solas M, Aisa B, Tordera RM, Mugueta MC, Ramírez MJ. Stress contributes to the development of central insulin resistance during aging: Implications for Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2332-9. [DOI: 10.1016/j.bbadis.2013.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 02/08/2023]
|
28
|
Corbett NJ, Gabbott PL, Klementiev B, Davies HA, Colyer FM, Novikova T, Stewart MG. Amyloid-beta induced CA1 pyramidal cell loss in young adult rats is alleviated by systemic treatment with FGL, a neural cell adhesion molecule-derived mimetic peptide. PLoS One 2013; 8:e71479. [PMID: 23951173 PMCID: PMC3739720 DOI: 10.1371/journal.pone.0071479] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/29/2013] [Indexed: 12/24/2022] Open
Abstract
Increased levels of neurotoxic amyloid-beta in the brain are a prominent feature of Alzheimer's disease. FG-Loop (FGL), a neural cell adhesion molecule-derived peptide that corresponds to its second fibronectin type III module, has been shown to provide neuroprotection against a range of cellular insults. In the present study impairments in social recognition memory were seen 24 days after a 5 mg/15 µl amyloid-beta(25-35) injection into the right lateral ventricle of the young adult rat brain. This impairment was prevented if the animal was given a systemic treatment of FGL. Unbiased stereology was used to investigate the ability of FGL to alleviate the deleterious effects on CA1 pyramidal cells of the amyloid-beta(25-35) injection. NeuN, a neuronal marker (for nuclear staining) was used to identify pyramidal cells, and immunocytochemistry was also used to identify inactive glycogen synthase kinase 3beta (GSK3β) and to determine the effects of amyloid-beta(25-35) and FGL on the activation state of GSK3β, since active GSK3β has been shown to cause a range of AD pathologies. The cognitive deficits were not due to hippocampal atrophy as volume estimations of the entire hippocampus and its regions showed no significant loss, but amyloid-beta caused a 40% loss of pyramidal cells in the dorsal CA1 which was alleviated partially by FGL. However, FGL treatment without amyloid-beta was also found to cause a 40% decrease in CA1 pyramidal cells. The action of FGL may be due to inactivation of GSK3β, as an increased proportion of CA1 pyramidal neurons contained inactive GSK3β after FGL treatment. These data suggest that FGL, although potentially disruptive in non-pathological conditions, can be neuroprotective in disease-like conditions.
Collapse
Affiliation(s)
- Nicola J Corbett
- Open University, Department of Life, Health and Chemical Sciences, Milton Keynes, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
29
|
Chambers RA. Adult hippocampal neurogenesis in the pathogenesis of addiction and dual diagnosis disorders. Drug Alcohol Depend 2013; 130:1-12. [PMID: 23279925 PMCID: PMC3640791 DOI: 10.1016/j.drugalcdep.2012.12.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/19/2012] [Accepted: 12/06/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND As knowledge deepens about how new neurons are born, differentiate, and wire into the adult mammalian brain, growing evidence depicts hippocampal neurogenesis as a special form of neuroplasticity that may be impaired across psychiatric disorders. This review provides an integrated-evidence based framework describing a neurogenic basis for addictions and addiction vulnerability in mental illness. METHODS Basic studies conducted over the last decade examining the effects of addictive drugs on adult neurogenesis and the impact of neurogenic activity on addictive behavior were compiled and integrated with relevant neurocomputational and human studies. RESULTS While suppression of hippocampal neurogenic proliferation appears to be a universal property of addictive drugs, the pathophysiology of addictions involves neuroadaptative processes within frontal-cortical-striatal motivation circuits that the neurogenic hippocampus regulates via direct projections. States of suppressed neurogenic activity may simultaneously underlie psychiatric and cognitive symptoms, but also confer or signify hippocampal dysfunction that heightens addiction vulnerability in mental illness as a basis for dual diagnosis disorders. CONCLUSIONS Research on pharmacological, behavioral and experiential strategies that enhance adaptive regulation of hippocampal neurogenesis holds potential in advancing preventative and integrative treatment strategies for addictions and dual diagnosis disorders.
Collapse
Affiliation(s)
- R Andrew Chambers
- Laboratory for Translational Neuroscience of Dual Diagnosis & Development, Department of Psychiatry, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, United States.
| |
Collapse
|
30
|
Abstract
In recent years, the glutamatergic system has been implicated in the development and treatment of psychiatric disorders. Glutamate signaling is processed by different receptors, including metabotropic glutamate receptors (mGluRs), which in turn interact with the scaffolding protein Homer1 to modulate downstream Ca(2+) signaling. Stress is a major risk factor for the incidence of psychiatric diseases, yet acute stress episodes may have diverging effects on individuals. Cognitive impairments have often been shown to occur after episodes of stress, however the specific role of mGluR5/Homer1 signaling in the interaction of stress and cognition has not yet been elucidated. In this study we show that a single episode of social defeat stress is sufficient to specifically induce cognitive impairments in mice 8 h after the stressor without affecting the animals' locomotion or anxiety levels. We also demonstrate that Homer1b/c levels as well as mGluR5/Homer1b/c interactions in the dorsal hippocampus are reduced up to 8 h after stress. Blockade of mGluR5 during the occurrence of social stress was able to rescue the cognitive impairments. In addition, a specific overexpression of Homer1b/c in the dorsal hippocampus also reversed the behavioral phenotype, indicating that both mGluR5 and Homer1b/c play a crucial role in the mediation of the stress effects. In summary, we could demonstrate that stress induces a cognitive deficit that is likely mediated by mGluR5/Homer1 signaling in the hippocampus. These findings help to reveal the underlying effects of cognitive impairments in patients suffering from stress-related psychiatric disorders.
Collapse
|
31
|
Everds NE, Snyder PW, Bailey KL, Bolon B, Creasy DM, Foley GL, Rosol TJ, Sellers T. Interpreting Stress Responses during Routine Toxicity Studies. Toxicol Pathol 2013; 41:560-614. [DOI: 10.1177/0192623312466452] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stress often occurs during toxicity studies. The perception of sensory stimuli as stressful primarily results in catecholamine release and activation of the hypothalamic–pituitary–adrenal (HPA) axis to increase serum glucocorticoid concentrations. Downstream effects of these neuroendocrine signals may include decreased total body weights or body weight gain; food consumption and activity; altered organ weights (e.g., thymus, spleen, adrenal); lymphocyte depletion in thymus and spleen; altered circulating leukocyte counts (e.g., increased neutrophils with decreased lymphocytes and eosinophils); and altered reproductive functions. Typically, only some of these findings occur in a given study. Stress responses should be interpreted as secondary (indirect) rather than primary (direct) test article–related findings. Determining whether effects are the result of stress requires a weight-of-evidence approach. The evaluation and interpretation of routinely collected data (standard in-life, clinical pathology, and anatomic pathology endpoints) are appropriate and generally sufficient to assess whether or not changes are secondary to stress. The impact of possible stress-induced effects on data interpretation can partially be mitigated by toxicity study designs that use appropriate control groups (e.g., cohorts treated with vehicle and subjected to the same procedures as those dosed with test article), housing that minimizes isolation and offers environmental enrichment, and experimental procedures that minimize stress and sampling and analytical bias. This article is a comprehensive overview of the biological aspects of the stress response, beginning with a Summary (Section 1) and an Introduction (Section 2) that describes the historical and conventional methods used to characterize acute and chronic stress responses. These sections are followed by reviews of the primary systems and parameters that regulate and/or are influenced by stress, with an emphasis on parameters evaluated in toxicity studies: In-life Procedures (Section 3), Nervous System (Section 4), Endocrine System (Section 5), Reproductive System (Section 6), Clinical Pathology (Section 7), and Immune System (Section 8). The paper concludes (Section 9) with a brief discussion on Minimizing Stress-Related Effects (9.1.), and a final section explaining why Parameters routinely measured are appropriate for assessing the role of stress in toxicology studies (9.2.).
Collapse
Affiliation(s)
| | | | - Keith L. Bailey
- Oklahoma Animal Disease Diagnostic Laboratory, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Brad Bolon
- Department of Veterinary Biosciences and the Comparative Pathology and Mouse Phenotyping Shared Resource, The Ohio State University, Columbus, Ohio, USA
| | | | | | - Thomas J. Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
32
|
Omega-3 fatty acids and brain resistance to ageing and stress: body of evidence and possible mechanisms. Ageing Res Rev 2013; 12:579-94. [PMID: 23395782 DOI: 10.1016/j.arr.2013.01.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/11/2022]
Abstract
The increasing life expectancy in the populations of rich countries raises the pressing question of how the elderly can maintain their cognitive function. Cognitive decline is characterised by the loss of short-term memory due to a progressive impairment of the underlying brain cell processes. Age-related brain damage has many causes, some of which may be influenced by diet. An optimal diet may therefore be a practical way of delaying the onset of age-related cognitive decline. Nutritional investigations indicate that the ω-3 poyunsaturated fatty acid (PUFA) content of western diets is too low to provide the brain with an optimal supply of docosahexaenoic acid (DHA), the main ω-3 PUFA in cell membranes. Insufficient brain DHA has been associated with memory impairment, emotional disturbances and altered brain processes in rodents. Human studies suggest that an adequate dietary intake of ω-3 PUFA can slow the age-related cognitive decline and may also protect against the risk of senile dementia. However, despite the many studies in this domain, the beneficial impact of ω-3 PUFA on brain function has only recently been linked to specific mechanisms. This review examines the hypothesis that an optimal brain DHA status, conferred by an adequate ω-3 PUFA intake, limits age-related brain damage by optimizing endogenous brain repair mechanisms. Our analysis of the abundant literature indicates that an adequate amount of DHA in the brain may limit the impact of stress, an important age-aggravating factor, and influences the neuronal and astroglial functions that govern and protect synaptic transmission. This transmission, particularly glutamatergic neurotransmission in the hippocampus, underlies memory formation. The brain DHA status also influences neurogenesis, nested in the hippocampus, which helps maintain cognitive function throughout life. Although there are still gaps in our knowledge of the way ω-3 PUFA act, the mechanistic studies reviewed here indicate that ω-3 PUFA may be a promising tool for preventing age-related brain deterioration.
Collapse
|
33
|
Turner CA, Watson SJ, Akil H. The fibroblast growth factor family: neuromodulation of affective behavior. Neuron 2012; 76:160-74. [PMID: 23040813 DOI: 10.1016/j.neuron.2012.08.037] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2012] [Indexed: 12/20/2022]
Abstract
In this review, we propose a broader view of the role of the fibroblast growth factor (FGF) family in modulating brain function. We suggest that some of the FGF ligands together with the FGF receptors are altered in individuals with affective disorder and modulate emotionality in animal models. Thus, we propose that members of the FGF family may be genetic predisposing factors for anxiety, depression, or substance abuse; that they play a key organizing role during early development but continue to play a central role in neuroplasticity in adulthood; and that they work not only over extended time frames, but also via rapid signaling mechanisms, allowing them to exert an "on-line" influence on behavior. Therefore, the FGF family appears to be a prototype of "switch genes" that are endowed with organizational and modulatory properties across the lifespan, and that may represent molecular candidates as biomarkers and treatment targets for affective and addictive disorders.
Collapse
Affiliation(s)
- Cortney A Turner
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
34
|
Ojo B, Gabbott PL, Rezaie P, Corbett N, Medvedev NI, Cowley TR, Lynch MA, Stewart MG. An NCAM mimetic, FGL, alters hippocampal cellular morphometry in young adult (4 month-old) rats. Neurochem Res 2012; 38:1208-18. [PMID: 23076631 DOI: 10.1007/s11064-012-0908-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/16/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
The neural cell adhesion molecule, NCAM, is ubiquitously expressed within the CNS and has roles in development, cognition, neural plasticity and regulation of the immune system. NCAM is thus potentially an important pharmacological target for treatment of brain diseases. A cell adhesion mimetic FGL, a 15 amino-acid peptide derived from the second fibronectin type-III module of NCAM, has been shown to act as a neuroprotective agent in experimental disease and ageing models, restoring hippocampal/cognitive function and markedly alleviating deleterious changes in the CNS. However, the effects of FGL on the hippocampus of young healthy rats are unknown. The present study has examined the cellular neurobiological consequences of subcutaneous injections of FGL, on hippocampal cell morphometry in young (4 month-old) rats. We determined the effects of FGL on hippocampal volume, pyramidal neuron number/density (using unbiased quantitative stereology), and examined aspects of neurogenesis (using 2D morphometric analyses). FGL treatment reduced total volume of the dorsal hippocampus (associated with a decrease in total pyramidal neuron numbers in CA1 and CA3), and elevated the number of doublecortin immunolabeled neurons in the dentate gyrus, indicating a likely influence on neurogenesis in young healthy rats. These data indicate that FGL has a specific age dependent effect on the hippocampus, differing according to the development and maturity of the CNS.
Collapse
Affiliation(s)
- Bunmi Ojo
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hennebelle M, Balasse L, Latour A, Champeil-Potokar G, Denis S, Lavialle M, Gisquet-Verrier P, Denis I, Vancassel S. Influence of omega-3 fatty acid status on the way rats adapt to chronic restraint stress. PLoS One 2012; 7:e42142. [PMID: 22860066 PMCID: PMC3408452 DOI: 10.1371/journal.pone.0042142] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/02/2012] [Indexed: 01/08/2023] Open
Abstract
Omega-3 fatty acids are important for several neuronal and cognitive functions. Altered omega-3 fatty acid status has been implicated in reduced resistance to stress and mood disorders. We therefore evaluated the effects of repeated restraint stress (6 h/day for 21 days) on adult rats fed omega-3 deficient, control or omega-3 enriched diets from conception. We measured body weight, plasma corticosterone and hippocampus glucocorticoid receptors and correlated these data with emotional and depression-like behaviour assessed by their open-field (OF) activity, anxiety in the elevated-plus maze (EPM), the sucrose preference test and the startle response. We also determined their plasma and brain membrane lipid profiles by gas chromatography. Repeated restraint stress caused rats fed a control diet to lose weight. Their plasma corticosterone increased and they showed moderate behavioural changes, with increases only in grooming (OF test) and entries into the open arms (EPM). Rats fed the omega-3 enriched diet had a lower stress-induced weight loss and plasma corticosterone peak, and reduced grooming. Rats chronically lacking omega-3 fatty acid exhibited an increased startle response, a stress-induced decrease in locomotor activity and exaggerated grooming. The brain omega-3 fatty acids increased as the dietary omega-3 fatty acids increased; diets containing preformed long-chain omega-3 fatty acid were better than diets containing the precursor alpha-linolenic acid. However, the restraint stress reduced the amounts of omega-3 incorporated. These data showed that the response to chronic restraint stress was modulated by the omega-3 fatty acid supply, a dietary deficiency was deleterious while enrichment protecting against stress.
Collapse
Affiliation(s)
- Marie Hennebelle
- INRA, Unité de Nutrition et Régulation Lipidiques des Fonctions Cérébrales, NuRéLiCe, UR909, Domaine de Vilvert, Jouy en Josas, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Neuroprotective and memory enhancing properties of a dual agonist of the FGF receptor and NCAM. Neurobiol Dis 2012; 48:533-45. [PMID: 22842016 DOI: 10.1016/j.nbd.2012.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 05/31/2012] [Accepted: 07/17/2012] [Indexed: 12/20/2022] Open
Abstract
The fibroblast growth factor receptor (FGFR) plays a vital role in the development of the nervous system regulating a multitude of cellular processes. One of the interaction partners of the FGFR is the neural cell adhesion molecule (NCAM), which is known to play an important role in neuronal development, regeneration and synaptic plasticity. Thus, simultaneous activation of FGFR- and NCAM-mediated signaling pathways may be expected to affect processes underlying neurodegenerative diseases. We here report the identification of a peptide compound, Enreptin, capable of interacting with both FGFR and NCAM. We demonstrate that this dual specificity agonist induces phosphorylation of FGFR and differentiation and survival of primary neurons in vitro, and that these effects are inhibited by abrogation of both NCAM and FGFR signaling pathways. Furthermore, Enreptin crosses the blood-brain barrier after subcutaneous administration, enhances long-term memory in normal mice and ameliorates memory deficit in mice with induced brain inflammation. Moreover, Enreptin reduces cognitive impairment and neuronal death induced by Aβ25-35 in a rat model of Alzheimer's disease, and reduces the mortality rate and clinical signs of experimental autoimmune encephalomyelitis in rats. Thus, Enreptin is an attractive candidate for the treatment of neurological diseases.
Collapse
|
37
|
Knafo S, Esteban JA. Common pathways for growth and for plasticity. Curr Opin Neurobiol 2012; 22:405-11. [DOI: 10.1016/j.conb.2012.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 11/24/2022]
|
38
|
Knafo S, Venero C, Sánchez-Puelles C, Pereda-Peréz I, Franco A, Sandi C, Suárez LM, Solís JM, Alonso-Nanclares L, Martín ED, Merino-Serrais P, Borcel E, Li S, Chen Y, Gonzalez-Soriano J, Berezin V, Bock E, DeFelipe J, Esteban JA. Facilitation of AMPA receptor synaptic delivery as a molecular mechanism for cognitive enhancement. PLoS Biol 2012; 10:e1001262. [PMID: 22363206 PMCID: PMC3283560 DOI: 10.1371/journal.pbio.1001262] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 01/05/2012] [Indexed: 11/19/2022] Open
Abstract
Cell adhesion molecules and downstream growth factor-dependent signaling are critical for brain development and synaptic plasticity, and they have been linked to cognitive function in adult animals. We have previously developed a mimetic peptide (FGL) from the neural cell adhesion molecule (NCAM) that enhances spatial learning and memory in rats. We have now investigated the cellular and molecular basis of this cognitive enhancement, using biochemical, morphological, electrophysiological, and behavioral analyses. We have found that FGL triggers a long-lasting enhancement of synaptic transmission in hippocampal CA1 neurons. This effect is mediated by a facilitated synaptic delivery of AMPA receptors, which is accompanied by enhanced NMDA receptor-dependent long-term potentiation (LTP). Both LTP and cognitive enhancement are mediated by an initial PKC activation, which is followed by persistent CaMKII activation. These results provide a mechanistic link between facilitation of AMPA receptor synaptic delivery and improved hippocampal-dependent learning, induced by a pharmacological cognitive enhancer.
Collapse
Affiliation(s)
- Shira Knafo
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Cajal (CSIC), Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Cristina Sánchez-Puelles
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Ana Franco
- Centro Nacional Biotecnología (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland
| | - Luz M. Suárez
- Instituto Cajal (CSIC), Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain
| | - José M. Solís
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Lidia Alonso-Nanclares
- Instituto Cajal (CSIC), Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Eduardo D. Martín
- Departamento de Ciencias Médicas, Universidad de Castilla-la Mancha, Albacete, Spain
| | - Paula Merino-Serrais
- Instituto Cajal (CSIC), Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Erika Borcel
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Shizhong Li
- Protein Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yongshuo Chen
- Protein Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juncal Gonzalez-Soriano
- Department of Anatomy, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain
| | - Vladimir Berezin
- Protein Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth Bock
- Protein Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Javier DeFelipe
- Instituto Cajal (CSIC), Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José A. Esteban
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
39
|
Erythropoietin: a candidate treatment for mood symptoms and memory dysfunction in depression. Psychopharmacology (Berl) 2012; 219:687-98. [PMID: 21947319 DOI: 10.1007/s00213-011-2511-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/12/2011] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Current pharmacological treatments for depression have a significant treatment-onset-response delay, an insufficient efficacy for many patients and fail to reverse cognitive dysfunction. Erythropoietin (EPO) has neuroprotective and neurotrophic actions and improves cognitive function in animal models of acute and chronic neurodegenerative conditions and in patients with cognitive decline. METHODS We systematically reviewed the published findings from animal and human studies exploring the potential of EPO to treat depression-related cognitive dysfunction and depression. RESULTS We identified five animal studies (two in male rats, two in male mice and one in male rats and mice) and seven human proof-of-concept studies (five in healthy volunteers and two in depressed patients) that investigated the above. All of the reviewed animal studies but one and all human studies demonstrated beneficial effects of EPO on hippocampus-dependent memory and antidepressant-like effects. These effects appear to be mediated through direct neurobiological actions of EPO rather than upregulation of red cell mass. CONCLUSIONS The reviewed studies demonstrate beneficial effects of EPO on hippocampus-dependent memory function and on depression-relevant behavior, thus highlighting EPO as a candidate agent for future management of cognitive dysfunction and mood symptoms in depression. Larger-scale clinical trials of EPO as a treatment for mood and neurocognitive symptoms in patients with mood disorder are therefore warranted.
Collapse
|
40
|
Llorente R, Miguel-Blanco C, Aisa B, Lachize S, Borcel E, Meijer OC, Ramirez MJ, De Kloet ER, Viveros MP. Long term sex-dependent psychoneuroendocrine effects of maternal deprivation and juvenile unpredictable stress in rats. J Neuroendocrinol 2011; 23:329-44. [PMID: 21219484 DOI: 10.1111/j.1365-2826.2011.02109.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have analysed the long-term psychoneuroendocrine effects of maternal deprivation (MD) [24 h at postnatal day (PND) 9] and/or exposure to chronic unpredictable stress (CUS) during the periadolescent period (PND 28 to PND 43) in male and female Wistar rats. Animals were tested in the elevated plus maze (EPM, anxiety) at PND 44 and in two memory tests, spontaneous alternation and novel object recognition (NOT) in adulthood. The expression of hippocampal glucocorticoid (GR) and mineralocorticoid (MR) receptors, as well as of synaptophysin, neural cell adhesion molecule and brain-derived neurotrophic factor, was analysed by in situ hybridisation in selected hippocampal regions. Endocrine determinations of leptin, testosterone and oestradiol plasma levels were carried out by radioimmunoassay. Young CUS animals showed decreased anxiety behaviour in the EPM (increased percentage of time and entries in the open arms) irrespective of neonatal treatment. Memory impairments were induced by the two stressful treatments as was revealed by the NOT, with males being most clearly affected. Although each stressful procedure, when considered separately, induced different (always decrements) effects on the three synaptic molecules analysed and affected males and females differently, the combination of MD and CUS induced an unique disruptive effect on the three synaptic plasticity players. MD induced a long-term significant decrease in hippocampal GR only in males, whereas CUS tended to increase MR in males and decrease MR in females. Both neonatal MD and periadolescent CUS induced marked reductions in testosterone and oestradiol in males, whereas MD male animals also showed significantly decreased leptin levels. By contrast, in females, none of the hormones analysed was altered by any of the stressful procedures. Taking our data together in support of the 'two-hit' hypothesis, MD during neonatal life and/or exposure to CUS during the periadolescent period induced a permanent deficit in memory, which was accompanied by a decrement in markers for hippocampal plasticity. The long-term effects on body weight and hormone levels, particularly among males, might reflect sex-dependent lasting metabolic alterations as well as an impaired reproductive function.
Collapse
Affiliation(s)
- R Llorente
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bennett M. The prefrontal–limbic network in depression: A core pathology of synapse regression. Prog Neurobiol 2011; 93:457-67. [DOI: 10.1016/j.pneurobio.2011.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 12/10/2010] [Accepted: 01/03/2011] [Indexed: 01/06/2023]
|
42
|
Marin MF, Lord C, Andrews J, Juster RP, Sindi S, Arsenault-Lapierre G, Fiocco AJ, Lupien SJ. Chronic stress, cognitive functioning and mental health. Neurobiol Learn Mem 2011; 96:583-95. [PMID: 21376129 DOI: 10.1016/j.nlm.2011.02.016] [Citation(s) in RCA: 324] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 02/05/2011] [Accepted: 02/22/2011] [Indexed: 01/18/2023]
Abstract
This review aims to discuss the evidence supporting the link between chronic stress, cognitive function and mental health. Over the years, the associations between these concepts have been investigated in different populations. This review summarizes the findings that have emerged from older populations as well as from populations suffering from pathological aging, namely Mild Cognitive Impairment and Alzheimer's Disease. Although older adults are an interesting population to study in terms of chronic stress, other stress-related diseases can occur throughout the lifespan. The second section covers some of these stress-related diseases that have recently received a great deal of attention, namely burnout, depression, and post-traumatic stress disorder. Given that chronic stress contributes to the development of certain pathologies by accelerating and/or exacerbating pre-existing vulnerabilities that vary from one individual to the other, the final section summarizes data obtained on potential variables contributing to the association between chronic stress and cognition.
Collapse
Affiliation(s)
- Marie-France Marin
- Center for Studies on Human Stress, Fernand-Seguin Research Center, Louis-H. Lafontaine Hospital, Canada
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Parihar VK, Hattiangady B, Kuruba R, Shuai B, Shetty AK. Predictable chronic mild stress improves mood, hippocampal neurogenesis and memory. Mol Psychiatry 2011; 16:171-83. [PMID: 20010892 PMCID: PMC2891880 DOI: 10.1038/mp.2009.130] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Maintenance of neurogenesis in adult hippocampus is important for functions such as mood and memory. As exposure to unpredictable chronic stress (UCS) results in decreased hippocampal neurogenesis, enhanced depressive- and anxiety-like behaviors, and memory dysfunction, it is believed that declined hippocampal neurogenesis mainly underlies the behavioral and cognitive abnormalities after UCS. However, the effects of predictable chronic mild stress (PCMS) such as the routine stress experienced in day-to-day life on functions such as mood, memory and hippocampal neurogenesis are unknown. Using FST and EPM tests on a prototype of adult rats, we demonstrate that PCMS (comprising 5 min of daily restraint stress for 28 days) decreases depressive- and anxiety-like behaviors for prolonged periods. Moreover, we illustrate that decreased depression and anxiety scores after PCMS are associated with ~1.8-fold increase in the production and growth of new neurons in the hippocampus. Additionally, we found that PCMS leads to enhanced memory function in WMT as well as NORT. Collectively, these findings reveal that PCMS is beneficial to adult brain function, which is exemplified by increased hippocampal neurogenesis and improved mood and cognitive function.
Collapse
Affiliation(s)
- Vipan K. Parihar
- Medical Research & Surgery Services, Veterans Affairs Medical Center, Durham, North Carolina 27705.,Department of Surgery (Division of Neurosurgery), Duke University Medical Center, Durham NC 27710
| | - Bharathi Hattiangady
- Medical Research & Surgery Services, Veterans Affairs Medical Center, Durham, North Carolina 27705.,Department of Surgery (Division of Neurosurgery), Duke University Medical Center, Durham NC 27710
| | - Ramkumar Kuruba
- Medical Research & Surgery Services, Veterans Affairs Medical Center, Durham, North Carolina 27705.,Department of Surgery (Division of Neurosurgery), Duke University Medical Center, Durham NC 27710
| | - Bing Shuai
- Medical Research & Surgery Services, Veterans Affairs Medical Center, Durham, North Carolina 27705.,Department of Surgery (Division of Neurosurgery), Duke University Medical Center, Durham NC 27710
| | - Ashok. K. Shetty
- Medical Research & Surgery Services, Veterans Affairs Medical Center, Durham, North Carolina 27705.,Department of Surgery (Division of Neurosurgery), Duke University Medical Center, Durham NC 27710.,Correspondence should be addressed to: Ashok K. Shetty, M.Sc., Ph.D. Professor, Division of Neurosurgery Department of Surgery Box 3807, Duke University Medical Center Durham, NC 27710. Phone: (919) – 286-0411, Ext. 7096
| |
Collapse
|
44
|
de Souza-Talarico JN, Marin MF, Sindi S, Lupien SJ. Effects of stress hormones on the brain and cognition: Evidence from normal to pathological aging. Dement Neuropsychol 2011; 5:8-16. [PMID: 29213714 PMCID: PMC5619133 DOI: 10.1590/s1980-57642011dn05010003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 02/14/2011] [Indexed: 12/04/2022] Open
Abstract
Several studies have demonstrated a wide cognitive variability among aged individuals. One factor thought to be associated with this heterogeneity is exposure to chronic stress throughout life. Animal and human evidence demonstrates that glucocorticoids (GCs), the main class of stress hormones, are strongly linked to memory performance whereby elevated GC levels are associated with memory performance decline in both normal and pathological cognitive aging. Accordingly, it is believed that GCs may increase the brain's vulnerability to the effects of internal and external insults, and thus may play a role in the development of age-related cognitive disorders such as Alzheimer's disease (AD). The aim of this review article was to investigate the effects of GCs on normal and pathological cognitive aging by showing how these hormones interact with different brain structures involved in cognitive abilities, subsequently worsen memory performance, and increase the risk for developing dementia.
Collapse
Affiliation(s)
- Juliana Nery de Souza-Talarico
- PhD, Department of Medical-Surgical Nursing, School of
Nursing, University of São Paulo, São Paulo SP, Brazil and Behavioral
and Cognitive Neurology Unit, Department of Neurology, Faculty of Medicine,
University of São Paulo, São Paulo SP, Brazil
| | - Marie-France Marin
- MSc, Center for Studies on Human Stress, Mental Health
Research Center Fernand-Seguin, Louis-H. Lafontaine Hospital, Université de
Montreal, Canada
| | - Shireen Sindi
- MSc, Department of Neurology and Neurosurgery, McGill
University, Montreal, Canada
| | - Sonia J. Lupien
- PhD, Center for Studies on Human Stress, Mental Health
Research Center Fernand-Seguin, Louis-H. Lafontaine Hospital, Université de
Montreal, Canada
| |
Collapse
|
45
|
Bisaz R, Schachner M, Sandi C. Causal evidence for the involvement of the neural cell adhesion molecule, NCAM, in chronic stress-induced cognitive impairments. Hippocampus 2010; 21:56-71. [DOI: 10.1002/hipo.20723] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Neuritogenic and neuroprotective properties of peptide agonists of the fibroblast growth factor receptor. Int J Mol Sci 2010; 11:2291-305. [PMID: 20640153 PMCID: PMC2904917 DOI: 10.3390/ijms11062291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 05/21/2010] [Indexed: 11/17/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) interact with their cognate ligands, FGFs, and with a number of cell adhesion molecules (CAMs), such as the neural cell adhesion molecule (NCAM), mediating a wide range of events during the development and maintenance of the nervous system. Determination of protein structure, in silico modeling and biological studies have recently resulted in the identification of FGFR binding peptides derived from various FGFs and NCAM mimicking the effects of these molecules with regard to their neuritogenic and neuroprotective properties. This review focuses on recently developed functional peptide agonists of FGFR with possible therapeutic potential.
Collapse
|
47
|
Impact of the Hypothalamic–pituitary–adrenal/gonadal Axes on Trajectory of Age-Related Cognitive Decline. PROGRESS IN BRAIN RESEARCH 2010; 182:31-76. [DOI: 10.1016/s0079-6123(10)82002-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
|
49
|
Li H, Zhang L, Huang Q. Differential expression of mitogen-activated protein kinase signaling pathway in the hippocampus of rats exposed to chronic unpredictable stress. Behav Brain Res 2009; 205:32-7. [PMID: 19576250 DOI: 10.1016/j.bbr.2009.06.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 06/22/2009] [Accepted: 06/24/2009] [Indexed: 02/05/2023]
Abstract
Much research has indicated that the mitogen-activated protein kinase (MAPK)-cAMP response element-binding protein (CREB) signal transduction pathway is involved in the pathophysiological mechanism of depression. But as to the question of which MAPKs are more relevant to stress effects, there is no definite answer. In the present study, 32 male Sprague-Dawley rats were divided into chronic unpredictable stress (CUS) and control groups, with 16 rats in each group. The CUS rats were exposed to 21-day chronic unpredictable stressors, and the controls were stress-free. After stress, 16 rats (8 in each group) were tested for spatial memory using Morris Water Maze, and 16 rats (8 from each group) were decapitated for detection of the three most extensively studied subgroups of MAPKs, ERK1/2, JNK and P38, and CREB in the hippocampus. The results showed that there was no statistical difference in the body weight between the two groups. The CUS rats showed impaired spatial memory in MWM. Western blot of hippocampus showed that CUS significantly decreased pCREB and pJNK levels, but there was no statistical difference between two groups in CREB, ERK1/2, pERK1/2, P38, pP38 and JNK levels. Immunohistochemistry showed that the reduced pCREB occurred in the dentate gyrus, not in the hippocampus proper. In conclusion, this study highlights that the JNK-CREB pathway, not the P38-CREB or ERK1/2-CREB pathway, in the hippocampus played an important role in the 21-day-CUS, and that the impaired spatial memory acquisition in the CUS rats can be restored to the level comparable to the pre-stressed state.
Collapse
Affiliation(s)
- Haihong Li
- Mental Health Center, Shantou University Medical College, 243 Da Xue Road, Shantou, Guangdong Province, 515063, PR China.
| | | | | |
Collapse
|
50
|
Aisa BÃ, Elizalde N, Tordera R, Lasheras B, Del RÃo J, RamÃrez MJ. Effects of neonatal stress on markers of synaptic plasticity in the hippocampus: Implications for spatial memory. Hippocampus 2009; 19:1222-31. [DOI: 10.1002/hipo.20586] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|