1
|
Huang M, Xie X, Yuan R, Xin Q, Ma S, Guo H, Miao Y, Hu C, Zhu Y, Cong W. The multifaceted anti-atherosclerotic properties of herbal flavonoids: A comprehensive review. Pharmacol Res 2024; 211:107551. [PMID: 39701504 DOI: 10.1016/j.phrs.2024.107551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Atherosclerosis (AS) is a major etiological factor underpinning a spectrum of cardiovascular diseases, leading to cerebral infarction, coronary artery disease, and peripheral vascular disease. The chronic progression of AS, spanning from initial plaque formation to the occurrence of acute cardiovascular events, underscores the complexity of AS and the challenges it presents in terms of treatment. Currently, the clinical management of AS relies predominantly on statins and proprotein convertase subtilisin/kexin type 9 inhibitors, which primarily aim to reduce low-density lipoprotein levels and have demonstrated some therapeutic efficacy. Nevertheless, due to their potential side effects, there is a pressing need to actively investigate alternative treatment approaches. Researches on natural compounds derived from herbal medicines, such as flavonoids, hold significant promise in combating AS by regulating lipid metabolism, reducing oxidative stress and inflammation, inhibiting the proliferation of vascular smooth muscle cells, modulating autophagy and additional pathways. Various targets participate in these physiological processes, encompassing acyl-CoA: cholesterol acyltransferase (ACAT), ATP citrate lyase (ACLY), nuclear factor erythroid 2-related factor 2 (Nrf2), krüppel-like factor 2 (KLF2), NOD-like receptor protein 3 (NLRP3), transcription factor EB (TFEB) and so on. This comprehensive review endeavors to synthesize and analyse the most recent findings on herbal flavonoids, shedding light on their anti-atherosclerotic potential and the underlying protective mechanisms and related-targets, which might pave the way for the development of novel drug candidates or the optimization of flavonoid-based therapies.
Collapse
Affiliation(s)
- Meiwen Huang
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xuena Xie
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shudong Ma
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Hongai Guo
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Chunyu Hu
- Department of Teaching Quality Construction, Graduate School, China Academy of Chinese Medical Sciences, 100700, China
| | - Yizhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Weihong Cong
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
2
|
Huang H, Shen Y. Bezafibrate mitigates oxidized-low density lipoprotein (ox-LDL)-induced the attachment of monocytes to endothelial cells: An implication in atherosclerosis. Fundam Clin Pharmacol 2024; 38:958-966. [PMID: 39009501 DOI: 10.1111/fcp.13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/18/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Oxidized forms of low-density lipoproteins (ox-LDL)-associated endothelial dysfunction and subsequent monocyte adhesion play an important role in the development of atherosclerosis (AS). Bezafibrate (BEZ) is a peroxisome proliferator-activated receptor (pan-PPAR) agonist licensed as a hypolipidemic drug. However, the effects of BEZ on endothelial dysfunction are less reported. OBJECTIVES In this study, we aim to investigate the protective effects of BEZ on ox-LDL-challenged vascular endothelial cells to evaluate its potential value in treating AS. METHODS Human aortic endothelial cells (HAECs) and THP-1 cells were used to establish an In Vitro AS model. Cell Counting Kit-8 (CCK-8) assay, Real-time PCR, Western blot analysis, and Enzyme-linked immunosorbent assay (ELISA) were used to test the data. RESULTS As expected, treatment with BEZ suppressed the expression of vascular endothelial growth factor A (VEGF-A), tissue factor (TF), Interleukin 12 (IL-12), tumor necrosis factor (TNF-α), and monocyte chemoattractant protein-1 (MCP-1). BEZ was also found to inhibit ox-LDL-induced expression of the endothelial adhesion molecules vascular cellular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in HAECs. Correspondingly, BEZ prevented attachment of THP-1 monocytes to ox-LDL-incubated HAECs. Mechanically, BEZ was found to prevent NF-κB activation by reducing the levels of nuclear NF-κB p65 and inhibiting luciferase activity of NF-κB. CONCLUSION Our study revealed the pharmacological function of BEZ in protecting endothelial dysfunction against ox-LDL, which may provide valuable insight for the clinical application of BEZ.
Collapse
Affiliation(s)
- Huijun Huang
- Department of Cardiology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Yan Shen
- Department of Cardiology, Shanghai Eighth People's Hospital, Shanghai, China
| |
Collapse
|
3
|
Sun X, Jia X, Tan Z, Fan D, Chen M, Cui N, Liu A, Liu D. Oral Nanoformulations in Cardiovascular Medicine: Advances in Atherosclerosis Treatment. Pharmaceuticals (Basel) 2024; 17:919. [PMID: 39065770 PMCID: PMC11279631 DOI: 10.3390/ph17070919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Atherosclerosis (AS) is the formation of atherosclerotic plaques on the walls of the arteries, causing them to narrow. If this occurs in the coronary arteries, the blood vessels may be completely blocked, resulting in myocardial infarction; if it occurs in the blood vessels of the brain, the blood vessels may be blocked, resulting in cerebral infarction, i.e., stroke. Studies have shown that the pathogenesis of atherosclerosis involves the processes of inflammation, lipid infiltration, oxidative stress, and endothelial damage, etc. SIRT, as a key factor regulating the molecular mechanisms of oxidative stress, inflammation, and aging, has an important impact on the pathogenesis of plaque formation, progression, and vulnerability. Statistics show that AS accounts for about 50 per cent of deaths in Western countries. Currently, oral medication is the mainstay of AS treatment, but its development is limited by side effects, low bioavailability and other unfavourable factors. In recent years, with the rapid development of nano-preparations, researchers have combined statins and natural product drugs within nanopreparations to improve their bioavailability. Based on this, this paper summarises the main pathogenesis of AS and also proposes new oral nanoformulations such as liposomes, nanoparticles, nanoemulsions, and nanocapsules to improve their application in the treatment of AS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aidong Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.S.); (X.J.); (Z.T.); (D.F.); (M.C.); (N.C.)
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.S.); (X.J.); (Z.T.); (D.F.); (M.C.); (N.C.)
| |
Collapse
|
4
|
Liu Y, Long Y, Fang J, Liu G. Advances in the Anti-Atherosclerotic Mechanisms of Epigallocatechin Gallate. Nutrients 2024; 16:2074. [PMID: 38999821 PMCID: PMC11243004 DOI: 10.3390/nu16132074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Atherosclerosis (AS) is a common clinical sickness and the major pathological basis of ischemic cardiocerebrovascular diseases (CCVDs). The pathogenesis of AS involves a variety of risk factors, and there is a lack of effective preventive and curative drugs that can completely treat AS. In recent years, with the improvement of people's living standards and changes in dietary habits, the morbidity and mortality rates of AS are on the rise, and the age of onset tends to be younger. The formation of AS is closely related to a variety of factors, and the main factors include lipid metabolism disorders, endothelial damage, inflammation, unstable plaques, etc. Epigallocatechin gallate (EGCG), as one of the main components of catechins, has a variety of pharmacological effects, and its role in the prevention of AS and the protection of cardiovascular and cerebral blood vessels has been highly valued. Recent epidemiological investigations and various in vivo and ex vivo experiments have shown that EGCG is capable of resisting atherosclerosis and reducing the morbidity and mortality of AS. In this paper, we reviewed the anti-AS effects of EGCG and its mechanisms in recent years, including the regulation of lipid metabolism, regulation of intestinal flora disorders, improvement of vascular endothelial cell functions, inhibition of inflammatory factors expression, regulation of inflammatory signaling pathways, inhibition of matrix metalloproteinase (MMP) expression, and inhibition of platelet aggregation, which are helpful for the prevention of cardiocerebrovascular diseases.
Collapse
Affiliation(s)
- Yihui Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yiling Long
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Li H, Zeng Y, Zi J, Hu Y, Ma G, Wang X, Shan S, Cheng G, Xiong J. Dietary Flavonoids Consumption and Health: An Umbrella Review. Mol Nutr Food Res 2024; 68:e2300727. [PMID: 38813726 DOI: 10.1002/mnfr.202300727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/07/2024] [Indexed: 05/31/2024]
Abstract
SCOPE The current evidence between dietary flavonoids consumption and multiple health outcomes is inadequate and inconclusive. To summarize and evaluate the evidence for dietary flavonoids consumption and multiple health outcomes, an umbrella review of meta-analyses and systematic reviews is conducted. METHODS AND RESULTS PubMed, Ovid-EMBASE, and the Cochrane Database of Systematic Reviews are searched up to January 2024. The study includes a total of 32 articles containing 24 unique health outcomes in this umbrella review. Meta-analyses are recalculated by using a random effects model. Separate analyses are performed based on the kind of different flavonoid subclasses. The study finds some unique associations such as flavonol and gastric cancer, isoflavone and uterine fibroids and endometrial cancer, total flavonoids consumption and lung cancer, ovarian cancer, and prostate cancer. Overall, the study confirms the negative associations between dietary flavonoids consumption and type 2 diabetes mellitus, cardiovascular diseases, breast cancer, colorectal cancer, lung cancer, and mortality, while positive associations are observed for prostate cancer and uterine fibroids. CONCLUSION Although dietary flavonoids are significantly associated with many outcomes, firm generalizable conclusions about their beneficial or harmful effects cannot be drawn because of the low certainty of evidence for most of outcomes. More well-designed primary studies are needed.
Collapse
Affiliation(s)
- Haoqi Li
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaxian Zeng
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zi
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yifan Hu
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Guochen Ma
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Shufang Shan
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Jingyuan Xiong
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China
| |
Collapse
|
6
|
Wang H, An Y, Rajput SA, Qi D. Resveratrol and (-)-Epigallocatechin-3-gallate Regulate Lipid Metabolism by Activating the AMPK Pathway in Hepatocytes. BIOLOGY 2024; 13:368. [PMID: 38927248 PMCID: PMC11201192 DOI: 10.3390/biology13060368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
The purpose of this study was to explore the effects of Res and EGCG on cell growth, cellular antioxidant levels, and cellular lipid metabolism in hepatocytes. In this experiment, leghorn male hepatoma (LMH) cells were used as hepatocytes. The results showed that 6.25-25 μM Res and EGCG had no adverse effects on cell viability and growth. Meanwhile, with the increasing dosage of Res and EGCG, the contents of total cholesterol (TC), total glyceride (TG), and malondialdehyde (MDA) in hepatocytes decreased significantly (p < 0.05), while the contents of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD), and catalase (CAT) increased significantly (p < 0.05). In addition, western blot results showed that Res and EGCG could significantly increase the expression of p-AMPK protein and reduce the expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) protein in hepatocytes (p < 0.05). Moreover, q-PCR results showed that with the increase in Res and EGCG, the expression of cholesterol- and fatty acid synthesis-related genes decreased significantly (p < 0.05). In conclusion, Res and EGCG can increase the antioxidant capacity of hepatocytes and reduce the synthesis of TC and TG in hepatocytes by activating AMPK, thereby regulating lipid metabolism in hepatocytes.
Collapse
Affiliation(s)
- Huanbin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (Y.A.)
| | - Yu An
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (Y.A.)
| | - Shahid Ali Rajput
- Department of Animal and Dairy Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan;
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (Y.A.)
| |
Collapse
|
7
|
Yin Y, Xu J, Ilyas I, Xu S. Bioactive Flavonoids in Protecting Against Endothelial Dysfunction and Atherosclerosis. Handb Exp Pharmacol 2024. [PMID: 38755351 DOI: 10.1007/164_2024_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Atherosclerosis is a common cardiovascular disease closely associated with factors such as hyperlipidaemia and chronic inflammation. Among them, endothelial dysfunction serves as a major predisposing factor. Vascular endothelial dysfunction is manifested by impaired endothelium-dependent vasodilation, enhanced oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, endothelial senescence, and endothelial-mesenchymal transition (EndoMT). Flavonoids are known for their antioxidant activity, eliminating oxidative stress induced by reactive oxygen species (ROS), thereby preventing the oxidation of low-density lipoprotein (LDL) cholesterol, reducing platelet aggregation, alleviating ischemic damage, and improving vascular function. Flavonoids have also been shown to possess anti-inflammatory activity and to protect the cardiovascular system. This review focuses on the protective effects of these naturally-occuring bioactive flavonoids against the initiation and progression of atherosclerosis through their effects on endothelial cells including, but not limited to, their antioxidant, anti-inflammatory, anti-thrombotic, and lipid-lowering properties. However, more clinical evidences are still needed to determine the exact role and optimal dosage of these compounds in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yanjun Yin
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Jingjing Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
8
|
Bertozzi-Matheus M, Bueno-Pereira TO, Nunes PR, Sandrim VC. EGCG, a Green Tea Compound, Increases NO Production and Has Antioxidant Action in a Static and Shear Stress In Vitro Model of Preeclampsia. Antioxidants (Basel) 2024; 13:158. [PMID: 38397756 PMCID: PMC10886151 DOI: 10.3390/antiox13020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Preeclampsia (PE) is a gestational hypertensive disease characterized by endothelial dysfunction. Epigallocatechin-3-gallate (EGCG), the main compound in green tea, is a promising therapeutic target for the disease. By activating eNOS, EGCG increased NO production and exerted an important antioxidant action, but its specific impact in the context of PE remains understudied. The aim of this study is to evaluate the effects of EGCG on endothelial function in static and shear stress in in vitro models of PE. Endothelial cells were incubated with healthy (HP) and preeclamptic (PE) pregnant women's plasma, and the latter group was treated with EGCG. Additionally, NOS (L-NAME) and PI3K protein (LY249002) inhibitors were also used. The levels of NO, ROS, and O2•- were evaluated, as well as the antioxidant potential. These investigations were also carried out in a shear stress model. We found that EGCG increases the NO levels, which were reduced in the PE group. This effect was attenuated with the use of L-NAME and LY249002. Furthermore, EGCG increased the antioxidant capacity of PE, but its action decreased with LY294002. In cells subjected to shear stress, EGCG increased nitrite levels in the PE group and maintained its action on the antioxidant capacity. This is the first study of the effects of EGCG in this experimental model, as well as the investigation of its effects along with shear stress. Our findings suggest that EGCG improves parameters of endothelial dysfunction in vitro, making it a promising target in the search for treatments for the disease.
Collapse
Affiliation(s)
| | | | | | - Valeria Cristina Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (M.B.-M.); (T.O.B.-P.); (P.R.N.)
| |
Collapse
|
9
|
Oberemok VV, Andreeva O, Laikova K, Alieva E, Temirova Z. Rheumatoid Arthritis Has Won the Battle but Not the War: How Many Joints Will We Save Tomorrow? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1853. [PMID: 37893571 PMCID: PMC10608469 DOI: 10.3390/medicina59101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Rheumatoid arthritis refers to joint diseases of unclear etiology whose final stages can lead to unbearable pain and complete immobility of the affected joints. As one of the most widely known diseases of the joints, it serves as a study target for a large number of research groups and pharmaceutical companies. Modern treatment with anti-inflammatory drugs, including janus kinase (JAK) inhibitors, monoclonal antibodies, and botanicals (polyphenols, glycosides, alkaloids, etc.) has achieved some success and hope for improving the course of the disease. However, existing drugs against RA have a number of side effects which push researchers to elaborate on more selective and effective drug candidates. The avant-garde of research, which aims to develop treatment of rheumatoid arthritis using antisense oligonucleotides along with nonsteroidal drugs and corticosteroids against inflammation, increases the chances of success and expands the arsenal of drugs. The primary goal in the treatment of this disease is to find therapies that allow patients with rheumatoid arthritis to move their joints without pain. The main purpose of this review is to show the victories and challenges for the treatment of rheumatoid arthritis and the tortuous but promising path of research that aims to help patients experience the joy of freely moving joints without pain.
Collapse
Grants
- No. FZEG-2021-0009 Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
- No. FZEG-2021-0009 Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
Collapse
Affiliation(s)
- Volodymyr V. Oberemok
- Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Crimea; (O.A.); (K.L.); (E.A.); (Z.T.)
| | | | | | | | | |
Collapse
|
10
|
Fan Q, Zhou XH, Wang TF, Zeng FJ, Liu X, Gu Y, Chen B, Yang J, Pang ZY, Liu JG, Bai GH. Effects of epigallocatechin-3-gallate on oxidative stress, inflammation, and bone loss in a rat periodontitis model. J Dent Sci 2023; 18:1567-1575. [PMID: 37799898 PMCID: PMC10548010 DOI: 10.1016/j.jds.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/16/2023] [Indexed: 03/13/2023] Open
Abstract
Background/purpose Epigallocatechin-3-gallate (EGCG) is playing an increasingly important role in the treatment of oral diseases. However, its mechanisms remain to be clarified. This study aimed to investigate the effect of EGCG on oxidative and inflammatory stress and bone loss in experimental periodontitis. Materials and methods Periodontitis was induced in rats, followed by gavage using different concentrations of EGCG for 5 weeks. The levels of interleukin-1β (IL-1β), interleukin-18 (IL-18), tumor necrosis factor-α (TNF-α), superoxide dismutase (SOD) and malondialdehyde (MDA) in rats were measured. The degree of alveolar bone loss and the number of inflammatory cells were detected. The integrated optical density of nuclear factor erythroid 2-related factor (Nrf2), heme oxygenase-1 (HO-1), NLR pyrin domain-containing 3 (NLRP3) and nuclear factor-kappaB p65 (NF-κB p65) was measured. Results EGCG (200 mg/kg) significantly reduced alveolar bone loss in the ligated maxillary molars and the number of inflammatory cells in the EGCG-200 group compared with the periodontitis, EGCG-100 and EGCG-400 groups. 200 mg/kg was the optimal dose of EGCG and was used in subsequent experiments. The expression levels of IL-1β, IL-18, TNF-α and MDA were significantly lower and the expression level of SOD was significantly higher in the EGCG-200 group compared with the periodontitis group. The expression of NLRP3 and NF-κB p65 was significantly decreased, while the expression of Nrf2 and HO-1 was significantly increased in the EGCG-200 group compared with the periodontitis group. Conclusion These results suggest that EGCG inhibits oxidative stress and inflammatory responses in the periodontitis model by modulating the Nrf2/HO-1/NLRP3/NF-κB p65 signaling pathway, thereby decreasing alveolar bone loss.
Collapse
Affiliation(s)
- Qin Fan
- Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Xiao-Hong Zhou
- Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, China
| | - Teng-Fei Wang
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, Zunyi Medical University, Zunyi, China
- The Department of Stomatology, Chengdu Seventh People's Hospital, Chengdu, China
| | - Feng-Jiao Zeng
- Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, China
| | - Xia Liu
- Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, China
| | - Yu Gu
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, Zunyi Medical University, Zunyi, China
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Bin Chen
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Jie Yang
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, Zunyi Medical University, Zunyi, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, China
| | - Zi-Yi Pang
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, Zunyi Medical University, Zunyi, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, China
| | - Jian-Guo Liu
- Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Guo-Hui Bai
- Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
11
|
Zhang L, Wang M, Qiu H, Wei Y, Zhou L, Nian N, Shi Z, Hu D, Ma B. Epicatechin gallate promotes vascularization in co-culture of human osteoblasts and outgrowth endothelial cells. Exp Biol Med (Maywood) 2023; 248:732-745. [PMID: 37354086 PMCID: PMC10408553 DOI: 10.1177/15353702231171894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/27/2023] [Indexed: 06/26/2023] Open
Abstract
Prevascularization is crucial for the survival of tissue-engineered bone and further bone repair/regeneration. Since epicatechin gallate (ECG), the most abundant flavanol in green tea, shows potential beneficial effects on endothelial cells and bone cells, we decided to investigate whether it promotes vascularization/angiogenesis and osteogenesis using a co-culture system containing human primary osteoblasts (POBs) and outgrowth endothelial cells (OECs). We found that treatment with ECG (1) significantly enhanced microvessel formation in co-culture of POB and OECs, (2) improved cell viability/proliferation and the angiogenic/osteogenic capacities of OEC/POBs, (3) significantly increased the levels of E-selectin, IL-6, TNF-α, IFN-γ, VEGF, and PDGF-BB in co-cultures of POB and OEC, and (4) upregulated HIF-1α, HIF-2α, NF-κB, iNOS, GLUT1, VEGF, and Ang1/2 but downregulated PHD1 in monocultures of OEC or POB. Our findings demonstrate that ECG promotes angiogenesis and osteogenesis (probably via HIF signaling) in co-cultures of OECs and POBs. ECG thus has potential applications in the promotion of angiogenesis/vascularization in many tissue constructs including those of bone.
Collapse
Affiliation(s)
- Liyan Zhang
- Graduate School, Hebei Medical University, Shijiazhuang 050017, China
| | - Miaoran Wang
- Graduate School, Hebei Medical University, Shijiazhuang 050017, China
| | - Huiqing Qiu
- Graduate School, Hebei Medical University, Shijiazhuang 050017, China
- Department of Geriatrics, The First Hospital of Hebei Medical University, Shijiazhuang 050030, China
| | - Yusen Wei
- Graduate School, Hebei Medical University, Shijiazhuang 050017, China
| | - Lu Zhou
- Graduate School, Hebei Medical University, Shijiazhuang 050017, China
| | - Nannan Nian
- Graduate School, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhongli Shi
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, The First Hospital of Hebei Medical University, Shijiazhuang 050030, China
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050030, China
| | - Dailun Hu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
12
|
Wang ZM, Zhao D, Wang H, Wang QM, Zhou B, Wang LS. Green tea consumption and the risk of coronary heart disease: A systematic review and meta-analysis of cohort studies. Nutr Metab Cardiovasc Dis 2023; 33:715-723. [PMID: 36849317 DOI: 10.1016/j.numecd.2023.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS Conflicting evidence exists regarding the association between green tea consumption and the risk of coronary heart disease (CHD). We performed a meta-analysis to determine whether an association exists between them in cohort studies. METHODS AND RESULTS We searched the PubMed and EMBASE databases for studies conducted until September 2022. Prospective cohort studies that provided relative risk (RR) estimates with 95% confidence intervals (CIs) for the association were included. Study-specific risk estimates were combined using a random-effects model. A total of seven studies, with 9211 CHD cases among 772,922 participants, were included. We observed a nonlinear association between green tea consumption and the risk of CHD (P for nonlinearity = 0.0009). Compared with nonconsumers, the RRs (95% CI) of CHD across levels of green tea consumption were 0.89 (0.83, 0.96) for 1 cup/day (1 cup = 300 ml), 0.84 (0.77, 0.93) for 2 cups/day, 0.85 (0.77, 0.92) for 3 cups/day, 0.88 (0.81, 0.96) for 4 cups/day, and 0.92 (0.82, 1.04) for 5 cups/day. CONCLUSIONS This updated meta-analysis of studies from East Asia suggests that green tea consumption may be associated with a reduced risk of CHD, especially among those with low-to-moderate consumption. Additional cohorts are still needed before we could draw a definitive conclusion. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42022357687.
Collapse
Affiliation(s)
- Ze-Mu Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Di Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Qi-Ming Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Bo Zhou
- Jiangsu Center for Safety Evaluation of Drugs, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, Jiangsu Province, China
| | - Lian-Sheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
13
|
Zhi W, Liu Y, Wang X, Zhang H. Recent advances of traditional Chinese medicine for the prevention and treatment of atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115749. [PMID: 36181983 DOI: 10.1016/j.jep.2022.115749] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) is a common systemic disease with increasing morbidity and mortality worldwide. Traditional Chinese medicine (TCM) with characteristics of multiple pathways and targets, presents advantages in the diagnosis and treatment of atherosclerosis. AIM OF THE STUDY With the modernization of TCM, the active ingredients and molecular mechanisms of TCM for AS treatment have been gradually revealed. Therefore, it is necessary to examine the existing studies on TCM therapies aimed at regulating AS over the past two decades. MATERIALS AND METHODS Using "atherosclerosis" and "Traditional Chinese medicine" as keywords, all relevant TCM literature published in the last 10 years was collected from electronic databases (such as Elsevier, Springer, PubMed, CNKI, and Web of Science), books and papers until March 2022, and the critical information was statistically analyzed. RESULTS In this review, we highlighted extracts of 8 single herbs, a total of 41 single active ingredients, 20 TCM formulae, and 25 patented drugs, which were described with chemical structure, source, model, efficacy and potential mechanism. CONCLUSION We summarized the cytopathological basis for the development of atherosclerosis involving vascular endothelial cells, macrophages and vascular smooth muscle cells, and categorically elaborated the medicinal TCM used for AS, all of which provide the current evidence on the better management of atherosclerosis by TCM.
Collapse
Affiliation(s)
- Wenbing Zhi
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China
| | - Xiumei Wang
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China.
| | - Hong Zhang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| |
Collapse
|
14
|
Therapeutic Effects of Green Tea Polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. Int J Mol Sci 2022; 24:ijms24010340. [PMID: 36613784 PMCID: PMC9820274 DOI: 10.3390/ijms24010340] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
(‒)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea. Thanks to multiple interactions with cell surface receptors, intracellular signaling pathways, and nuclear transcription factors, EGCG possesses a wide variety of anti-inflammatory, antioxidant, antifibrotic, anti-remodelation, and tissue-protective properties which may be useful in the treatment of various diseases, particularly in cancer, and neurological, cardiovascular, respiratory, and metabolic disorders. This article reviews current information on the biological effects of EGCG in the above-mentioned disorders in relation to molecular pathways controlling inflammation, oxidative stress, and cell apoptosis.
Collapse
|
15
|
Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG): A Time for a New Player in the Treatment of Respiratory Diseases? Antioxidants (Basel) 2022; 11:antiox11081566. [PMID: 36009285 PMCID: PMC9405266 DOI: 10.3390/antiox11081566] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol of green tea that possesses a wide variety of actions. EGCG acts as a strong antioxidant which effectively scavenges reactive oxygen species (ROS), inhibits pro-oxidant enzymes including NADPH oxidase, activates antioxidant systems including superoxide dismutase, catalase, or glutathione, and reduces abundant production of nitric oxide metabolites by inducible nitric oxide synthase. ECGC also exerts potent anti-inflammatory, anti-fibrotic, pro-apoptotic, anti-tumorous, and metabolic effects via modulation of a variety of intracellular signaling cascades. Based on this knowledge, the use of EGCG could be of benefit in respiratory diseases with acute or chronic inflammatory, oxidative, and fibrotizing processes in their pathogenesis. This article reviews current information on the biological effects of EGCG in those respiratory diseases or animal models in which EGCG has been administered, i.e., acute respiratory distress syndrome, respiratory infections, COVID-19, bronchial asthma, chronic obstructive pulmonary disease, lung fibrosis, silicosis, lung cancer, pulmonary hypertension, and lung embolism, and critically discusses effectiveness of EGCG administration in these respiratory disorders. For this review, articles in English language from the PubMed database were used.
Collapse
|
16
|
Liu X, Wang Z, Qian H, Tao W, Zhang Y, Hu C, Mao W, Guo Q. Natural medicines of targeted rheumatoid arthritis and its action mechanism. Front Immunol 2022; 13:945129. [PMID: 35979373 PMCID: PMC9376257 DOI: 10.3389/fimmu.2022.945129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease involving joints, with clinical manifestations of joint inflammation, bone damage and cartilage destruction, joint dysfunction and deformity, and extra-articular organ damage. As an important source of new drug molecules, natural medicines have many advantages, such as a wide range of biological effects and small toxic and side effects. They have become a hot spot for the vast number of researchers to study various diseases and develop therapeutic drugs. In recent years, the research of natural medicines in the treatment of RA has made remarkable achievements. These natural medicines mainly include flavonoids, polyphenols, alkaloids, glycosides and terpenes. Among them, resveratrol, icariin, epigallocatechin-3-gallate, ginsenoside, sinomenine, paeoniflorin, triptolide and paeoniflorin are star natural medicines for the treatment of RA. Its mechanism of treating RA mainly involves these aspects: anti-inflammation, anti-oxidation, immune regulation, pro-apoptosis, inhibition of angiogenesis, inhibition of osteoclastogenesis, inhibition of fibroblast-like synovial cell proliferation, migration and invasion. This review summarizes natural medicines with potential therapeutic effects on RA and briefly discusses their mechanisms of action against RA.
Collapse
Affiliation(s)
- Xueling Liu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhiguo Wang
- Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Qian
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang City, China
| | - Wenhua Tao
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang City, China
| | - Ying Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chunyan Hu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Weiwei Mao
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qi Guo
- School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Qi Guo,
| |
Collapse
|
17
|
Bertoldi G, Carraro G, Ravarotto V, Di Vico V, Baldini Anastasio P, Vitturi N, Francini F, Stefanelli LF, Calò LA. The Effect of Green Tea as an Adjuvant to Enzyme Replacement Therapy on Oxidative Stress in Fabry Disease: A Pilot Study. Front Nutr 2022; 9:924710. [PMID: 35873439 PMCID: PMC9304972 DOI: 10.3389/fnut.2022.924710] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Enzymatic replacement therapy (ERT) is not very effective in halting the progression of Fabry disease (FD) toward cardiovascular (CV)-renal remodeling, particularly in case of late diagnosis. FD patients have increased oxidative stress (OS), critical for the induction of CV-renal remodeling. We investigated the effects of an adjuvant antioxidant treatment to ERT on OS and the possible advantages for related complications. OS was evaluated in 10 patients with FD before ERT, after 12 months of ERT, and after 6 months of adjuvant green tea (GT) to ERT by the following experiments: expression of p22phox; phosphorylation state of MYPT-1 and ERK 1/2 (by western blotting); and quantification of malondialdehyde (MDA) and heme oxygenase (HO)-1 levels (by ELISA). p22phox and MYPT-1 phosphorylation decreased after ERT and significantly further decreased after GT. ERK 1/2 phosphorylation and MDA levels remained unchanged after ERT, but significantly decreased after GT. HO-1 significantly increased after ERT and further increased after GT. This study provides preliminary data highlighting the antioxidant effect exerted by ERT itself, further amplified by the adjuvant antioxidant treatment with GT. The results of this study provide evidence of the positive effect of early additive antioxidant treatment to reduce OS and prevent/alleviate cardio and cerebrovascular-renal complications related to OS.
Collapse
Affiliation(s)
- Giovanni Bertoldi
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Gianni Carraro
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Verdiana Ravarotto
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Valentina Di Vico
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Paola Baldini Anastasio
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Nicola Vitturi
- Metabolic Diseases Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Francesco Francini
- Clinical Nutrition Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Lucia Federica Stefanelli
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Lorenzo A. Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Padua, Italy
- *Correspondence: Lorenzo A. Calò,
| |
Collapse
|
18
|
Wu D, Chen R, Li Q, Lai X, Sun L, Zhang Z, Wen S, Sun S, Cao F. Tea ( Camellia sinensis) Ameliorates Hyperuricemia via Uric Acid Metabolic Pathways and Gut Microbiota. Nutrients 2022; 14:2666. [PMID: 35807846 PMCID: PMC9268162 DOI: 10.3390/nu14132666] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 01/27/2023] Open
Abstract
Hyperuricemia (HUA) is a metabolic disease that threatens human health. Tea is a healthy beverage with an abundance of benefits. This study revealed the uric acid-lowering efficacy of six types of tea water extracts (TWEs) on HUA in mice. The results revealed that under the intervention of TWEs, the expression of XDH, a key enzyme that produces uric acid, was significantly downregulated in the liver. TWE treatment significantly upregulated the expression of uric acid secretion transporters ABCG2, OAT1, and OAT3, and downregulated the expression of uric acid reabsorption transporter URAT1 in the kidney. Furthermore, HUA-induced oxidative stress could be alleviated by upregulating the Nrf2/HO-1 pathway. The intervention of TWEs also significantly upregulated the expression of the intestinal ABCG2 protein. On the other hand, TWE intervention could significantly upregulate the expression of intestinal ABCG2 and alleviate HUA by modulating the gut microbiota. Taken together, tea can comprehensively regulate uric acid metabolism in HUA mice. Interestingly, we found that the degree of fermentation of tea was negatively correlated with the uric acid-lowering effect. The current study indicated that tea consumption may have a mitigating effect on the HUA population and provided a basis for further research on the efficacy of tea on the dosage and mechanism of uric acid-lowering effects in humans.
Collapse
Affiliation(s)
- Dan Wu
- College of Horticulture, South China Agricultural University, Guangzhou 510640, China;
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (X.L.); (L.S.); (Z.Z.); (S.W.)
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (X.L.); (L.S.); (Z.Z.); (S.W.)
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (X.L.); (L.S.); (Z.Z.); (S.W.)
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (X.L.); (L.S.); (Z.Z.); (S.W.)
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (X.L.); (L.S.); (Z.Z.); (S.W.)
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (X.L.); (L.S.); (Z.Z.); (S.W.)
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (X.L.); (L.S.); (Z.Z.); (S.W.)
| | - Fanrong Cao
- College of Horticulture, South China Agricultural University, Guangzhou 510640, China;
| |
Collapse
|
19
|
Awad EM, Ahmed ASF, El-Daly M, Amin AH, El-Tahawy NFG, Wagdy A, Hollenberg MD, Taye A. Dihydromyricetin protects against high glucose-induced endothelial dysfunction: Role of HIF-1α/ROR2/NF-κB. Biomed Pharmacother 2022; 153:113308. [PMID: 35752009 DOI: 10.1016/j.biopha.2022.113308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022] Open
Abstract
OBJECTIVES Dihydromyricetin (DHM), a natural flavonoid isolated from vine tea with anti-inflammatory activity was evaluated for its ability to prevent vascular endothelial dysfunction caused by hyperglycaemia. METHODS Vasoconstrictor (phenylephrine-PE) and vasodilator (acetylcholine-ACh) responses were monitored for female rat aorta rings maintained in a bioassay organ bath for 3 h at 37 °C in either low (LG: 10 mM) or high (HG: 40 mM, to mimic hyperglycaemia) glucose-Krebs buffer in the absence or presence of 50 µM DHM. Tissues recovered from the organ bath at 3 h were fixed and analyzed for morphological changes and their expression of eNOS, iNOS, HIF-1α, GLUT1, ROR2 tyrosine kinase, NF-κB, TNF-α, Bax, Bcl2, caspase-3, and forindices of increased oxidative stress. KEY FINDINGS HG-incubated tissues showed increased PE-stimulated contractile response and decreased ACh-mediated endothelial vasodilation. DHM prevented both of these changes. Besides, HG incubation increased the immunoreactivity to iNOS, HIF-1α, GLUT1, ROR2, NF-κB, TNF-α, Bax, and active caspase-3, and decreased the expression of eNOS and Bcl2. Hyperglycaemia-like conditions also increased the indices of oxidative/nitrosative stress. These HG-induced changes, which were accompanied by an increase in tissue adventitial thickness and inflammatory cell infiltration, were all prevented by DHM. CONCLUSION Our data demonstrate an anti-inflammatory protective action of DHM to preserve vascular function in the setting of hyperglycaemia.
Collapse
Affiliation(s)
- Eman M Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Nashwa F G El-Tahawy
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt
| | - AlShimaa Wagdy
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Morley D Hollenberg
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Ashraf Taye
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena, Egypt
| |
Collapse
|
20
|
Mao X, Wang L, Chen C, Tao L, Ren S, Zhang L. Circ_0124644 enhances ox-LDL-induced cell damages in human umbilical vein endothelial cells through upregulating FOXO4 by sponging miR-370-3p. Clin Hemorheol Microcirc 2022; 81:135-147. [PMID: 35570481 DOI: 10.3233/ch-211375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND: Circular RNA circ_0124644 has crucial regulation in the progression of coronary artery diseases, including atherosclerosis (AS). The aim of this study was to explore the regulatory mechanism of circ_0124644 in oxidized low-density lipoprotein (ox-LDL)-induced endothelial injury in human umbilical vein endothelial cells (HUVECs). METHODS: Cell viability and proliferation were assessed using cell counting kit-8 (CCK-8) assay and EdU assay. The apoptosis detection was performed by flow cytometry. Angiogenesis was evaluated through tube formation assay. The protein analysis was conducted via western blot. Inflammatory cytokines were examined by enzyme-linked immunosorbent assay (ELISA). The expression determination of circ_0124644, microRNA-370-3p (miR-370-3p) and forkhead box protein O4 (FOXO4) was performed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were used to analyze the interaction between targets. RESULTS: Treatment of ox-LDL resulted in the inhibition of cell viability, proliferation and angiogenesis but the promotion of apoptosis and inflammation in HUVECs. These ox-LDL-induced cell damages were alleviated after the downregulation of circ_0124644. Circ_0124644 interacted with miR-370-3p, and the regulatory role of circ_0124644 was associated with the sponge function of miR-370-3p. Additionally, miR-370-3p targeted FOXO4 and circ_0124644 increased the expression of FOXO4 through acting as a sponge of miR-370-3p. Overexpression of miR-370-3p protected from ox-LDL-induced injury via the downregulation of FOXO4. CONCLUSION: All results revealed that circ_0124644 accelerated endothelial injury in ox-LDL-treated HUVECs by mediating miR-370-3p-related FOXO4 expression.
Collapse
Affiliation(s)
- Xiang Mao
- Department of Cardiology, the First People’s Hospital of Taizhou City, Taizhou, Zhejiang, China
| | - Lingqing Wang
- Department of Cardiology, the First People’s Hospital of Taizhou City, Taizhou, Zhejiang, China
| | - Changgong Chen
- Department of Cardiology, the First People’s Hospital of Taizhou City, Taizhou, Zhejiang, China
| | - Luyuan Tao
- Department of Cardiology, the First People’s Hospital of Taizhou City, Taizhou, Zhejiang, China
| | - Shijia Ren
- Department of Cardiology, the First People’s Hospital of Taizhou City, Taizhou, Zhejiang, China
| | - Li Zhang
- Department of Cardiology, the First People’s Hospital of Taizhou City, Taizhou, Zhejiang, China
| |
Collapse
|
21
|
Wu J, Wang Z, Xu S, Fu Y, Gao Y, Wu Z, Yu Y, Yuan Y, Zhou L, Li P. Analysis of the role and mechanism of EGCG in septic cardiomyopathy based on network pharmacology. PeerJ 2022; 10:e12994. [PMID: 35287352 PMCID: PMC8917800 DOI: 10.7717/peerj.12994] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/02/2022] [Indexed: 01/11/2023] Open
Abstract
Background Septic cardiomyopathy (SC) is a common complication of sepsis that leads to an increase in mortality. The pathogenesis of septic cardiomyopathy is unclear, and there is currently no effective treatment. EGCG (epigallocatechin gallate) is a polyphenol that has anti-inflammatory, antiapoptotic, and antioxidative stress effects. However, the role of EGCG in septic cardiomyopathy is unknown. Methods Network pharmacology was used to predict the potential targets and molecular mechanisms of EGCG in the treatment of septic cardiomyopathy, including the construction and analysis of protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and molecular docking. The mouse model of septic cardiomyopathy was established after intraperitoneal injection of LPS (lipopolysaccharide). The myocardial protective effect of EGCG on septic mice is observed by cardiac ultrasound and HE staining. RT-PCR is used to verify the expression level of the EGCG target in the septic cardiomyopathy mouse model. Results A total of 128 anti-SC potential targets of EGCGareselected for analysis. The GO enrichment analysis and KEGG pathway analysis results indicated that the anti-SC targets of EGCG mainly participate in inflammatory and apoptosis processes. Molecular docking results suggest that EGCG has a high affinity for the crystal structure of six targets (IL-6 (interleukin-6), TNF (tumor necrosis factor), Caspase3, MAPK3 (Mitogen-activated protein kinase 3), AKT1, and VEGFA (vascular endothelial growth factor)), and the experimental verification result showed levated expression of these 6 hub targets in the LPS group, but there is an obvious decrease in expression in the LPS + EGCG group. The functional and morphological changes found by echocardiography and HE staining show that EGCG can effectively improve the cardiac function that is reduced by LPS. Conclusion Our results reveal that EGCG may be a potentially effective drug to improve septic cardiomyopathy. The potential mechanism by which EGCG improves myocardial injury in septic cardiomyopathy is through anti-inflammatory and anti-apoptotic effects. The anti-inflammatory and anti-apoptotic effects of EGCG occur not only through direct binding to six target proteins (IL-6,TNF-α, Caspase3, MAPK3, AKT1, and VEGFA) but also by reducing their expression.
Collapse
Affiliation(s)
- Ji Wu
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Zhenhua Wang
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Shanling Xu
- Department of Cardiovascular, Medicine, Fuzhou First People’s Hospital, Fu Zhou, China
| | - Yang Fu
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Yi Gao
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Zuxiang Wu
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Yun Yu
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Yougen Yuan
- Department of Cardiovascular, The Three Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Lin Zhou
- Department of Cardiovascular, The Three Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Ping Li
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| |
Collapse
|
22
|
Fan XD, Yao MJ, Yang B, Han X, Zhang YH, Wang GR, Li P, Xu L, Liu JX. Chinese Herbal Preparation SaiLuoTong Alleviates Brain Ischemia via Nrf2 Antioxidation Pathway-Dependent Cerebral Microvascular Protection. Front Pharmacol 2021; 12:748568. [PMID: 34795584 PMCID: PMC8593255 DOI: 10.3389/fphar.2021.748568] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Stroke is one of the most devastating diseases worldwide. The Chinese herbal preparation SaiLuoTong (SLT) capsule showed outstanding therapeutic effects on stroke and its sequelae. The aim of this study was to further elucidate its therapeutic mechanism. We duplicated a permanent cerebral ischemia model in rats by MCAO and used SLT (33 and 16.5 mg/kg) to intervene. The results showed SLT dose dependently decreased infarction volumes, relieved neuron degeneration and loss, and ameliorated neurological functions, and the dose of 33 mg/kg had statistical significance (compared with the model group, p < 0.05); SLT of 33 mg/kg also significantly inhibited the elevation in brain water content and the loss in claudin-1 and occludin expressions; additionally, it significantly increased nucleus translocation of Nrf2, elevated the expression of HO-1, and raised the activity of SOD and content of GSH (compared with the model group, p < 0.05 or 0.01). These results testified SLT’s anti-brain ischemia effect and hint this effect may be related to the protection of brain microvascular endothelial cells (BMECs) that is dependent on the Nrf2 pathway. To further testify, we cultured hCMEC/D3 cells, duplicated OGD/R model to simulate ischemia, and used SLT (3.125, 6.25, and 12.5 mg/L) to treat. SLT dose dependently and significantly inhibited the drop in cell viabilities, and activated the Nrf2 pathway by facilitating Nrf2 nucleus translocation, and increasing HO-1 expression, SOD activity, and GSH content (compared with the model group, p < 0.05 or 0.01); last, the anti-OGD/R effects of SLT, including raising cell viabilities, inhibiting the elevation in dextran permeability, and preserving expressions of claudin-1 and occludin, were all abolished by Nrf2 siRNA interference. The in vitro experiment undoubtedly confirmed the direct protective effect of SLT on BMECs and the obligatory role of the Nrf2 pathway in it. Collectively, data of this study suggest that SLT’s therapeutic effect on brain ischemia is related to its Nrf2-dependent BMECs protection.
Collapse
Affiliation(s)
- Xiao-Di Fan
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| | - Ming-Jiang Yao
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| | - Bin Yang
- The Department of Pathology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Han
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| | - Ye-Hao Zhang
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| | - Guang-Rui Wang
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| | - Peng Li
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| | - Li Xu
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| | - Jian-Xun Liu
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| |
Collapse
|
23
|
Oxidative Stress and Cardiometabolic Disorders. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9872109. [PMID: 34790826 PMCID: PMC8592710 DOI: 10.1155/2021/9872109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
|
24
|
Li J, Wang L, Hu J, Chen X, Zhou W, Li S, Guo H, Wang Y, Chen B, Zhang J, Cao J. Polymorphonuclear neutrophils promote endothelial apoptosis by enhancing adhesion upon stimulation by intermittent hypoxia. Sleep Breath 2021; 26:1173-1180. [PMID: 34635991 DOI: 10.1007/s11325-021-02503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/21/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE This study explored the interactive effects between polymorphonuclear neutrophils (PMNs) and vascular endothelial cells under intermittent hypoxia (IH) and investigated the mechanisms underlying these effects. METHODS Endothelial cells were co-cultured with PMNs isolated from rats exposed to normoxia or IH. The PMN apoptotic rate was determined using flow cytometry. Expression of apoptosis-related proteins in the endothelial cells were evaluated using Western blotting, and the levels of intercellular adhesion molecules in the co-culture supernatants were measured using enzyme-linked immunosorbent assay. RESULTS The PMN apoptotic rate in the IH-exposed rat group was significantly lower than that of the normoxia control group. There was a positive relationship between the PMN apoptotic rate and IH exposure time. In endothelial cells co-cultured with PMNs isolated from IH-exposed rats, a significant increase in the protein expression levels of Bax, Bcl-2, and caspase-3 and a significant decrease in the Bcl-2/Bax ratio were observed. Furthermore, the intercellular cell adhesion molecule-1(ICAM-1) and E-select element (E-S) levels were elevated significantly in the co-cultured supernatants of endothelial cells and PMNs from IH-exposed rats compared to that from controls. The above IH-induced alterations were partially restored by tempol pretreatment. CONCLUSIONS The apoptotic rate was low in PMNs from IH-exposed rats, which consequently increased the apoptotic signals in endothelial cells in vitro. This may be associated with the increased levels of intercellular adhesion molecules. Further, tempol partially attenuates the PMN-mediated pro-apoptotic effects on endothelial cells under IH.
Collapse
Affiliation(s)
- Jinna Li
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Le Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jie Hu
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xing Chen
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Wei Zhou
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Shuo Li
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Hengjuan Guo
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Baoyuan Chen
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jing Zhang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Jie Cao
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
25
|
Bai Y, Liu X, Chen Q, Chen T, Jiang N, Guo Z. Myricetin ameliorates ox-LDL-induced HUVECs apoptosis and inflammation via lncRNA GAS5 upregulating the expression of miR-29a-3p. Sci Rep 2021; 11:19637. [PMID: 34608195 PMCID: PMC8490408 DOI: 10.1038/s41598-021-98916-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell dysfunction is a significant event in the progression of atherosclerosis. Even Myricetin (Myr) has been exhibited strong antioxidant potency, the effect on atherosclerosis is still elusive. HUVECs were subjected to ox-LDL, before which cells were preconditioned with Myr. Cell Counting Kit-8 assay, flow cytometry, quantitative real-time polymerase chain reaction and Western blot were carried out to assess the impacts of ox-LDL and Myr on HUVECs. The expression of EndMT markers was determined by Western blot analysis and immunocytochemistry. In addition, the relationship of GAS5 and miR-29a-3p was evaluated by RNA Fluorescent in Situ Hybridization and RNA immunoprecipitation assay. Myr preconditioning prevented ox-LDL-induced apoptosis, inflammatory response, and EndMT. GAS5 was upregulated in response to ox-LDL while it was down-regulated by Myr preconditioning. GAS5 over-expression attenuates Myr protective effects against ox-LDL–mediated HUVEC injury. Besides, miR-29a-3p is a target of GAS5 and down-regulated miR-29a-3p could further reduce the effects of GAS5 in ox-LDL–mediated HUVEC. Furthermore, Myr inactivated the TLR4/NF-κB signalling pathway in ox-LDL-treated HUVEC by down-regulating GAS5 or upregulating miR-26a-5p. Myr possessed an anti-inflammatory and anti-EndMT function against ox-LDL-induced HUVEC injury by regulating the GAS5/miR-29a-3p, indicating that Myr may have an important therapeutic function for atherosclerosis.
Collapse
Affiliation(s)
- Yunpeng Bai
- Chest hospital, Tianjin university, Tianjin, 300222, China.,Tianjin chest hospital, Tianjin medical university, Tianjin, 300222, China
| | - Xiankun Liu
- Tianjin chest hospital, Tianjin medical university, Tianjin, 300222, China.,Graduate School, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Qingliang Chen
- Tianjin chest hospital, Tianjin medical university, Tianjin, 300222, China
| | - Tongyun Chen
- Tianjin chest hospital, Tianjin medical university, Tianjin, 300222, China
| | - Nan Jiang
- Tianjin chest hospital, Tianjin medical university, Tianjin, 300222, China.
| | - Zhigang Guo
- Tianjin chest hospital, Tianjin medical university, Tianjin, 300222, China.
| |
Collapse
|
26
|
Alonso-Piñeiro JA, Gonzalez-Rovira A, Sánchez-Gomar I, Moreno JA, Durán-Ruiz MC. Nrf2 and Heme Oxygenase-1 Involvement in Atherosclerosis Related Oxidative Stress. Antioxidants (Basel) 2021; 10:1463. [PMID: 34573095 PMCID: PMC8466960 DOI: 10.3390/antiox10091463] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis remains the underlying process responsible for cardiovascular diseases and the high mortality rates associated. This chronic inflammatory disease progresses with the formation of occlusive atherosclerotic plaques over the inner walls of vascular vessels, with oxidative stress being an important element of this pathology. Oxidation of low-density lipoproteins (ox-LDL) induces endothelial dysfunction, foam cell activation, and inflammatory response, resulting in the formation of fatty streaks in the atherosclerotic wall. With this in mind, different approaches aim to reduce oxidative damage as a strategy to tackle the progression of atherosclerosis. Special attention has been paid in recent years to the transcription factor Nrf2 and its downstream-regulated protein heme oxygenase-1 (HO-1), both known to provide protection against atherosclerotic injury. In the current review, we summarize the involvement of oxidative stress in atherosclerosis, focusing on the role that these antioxidant molecules exert, as well as the potential therapeutic strategies applied to enhance their antioxidant and antiatherogenic properties.
Collapse
Affiliation(s)
- Jose Angel Alonso-Piñeiro
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| | - Almudena Gonzalez-Rovira
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| | - Ismael Sánchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nephrology, Hospital Universitario Reina Sofia, 14004 Cordoba, Spain;
- Department of Cell Biology, Physiology, and Immunology, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Cordoba, Spain
| | - Ma Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| |
Collapse
|
27
|
Cicero AF, Bove M, Cincione RI, Fogacci F, Veronesi M. Effect of combined lipid-lowering and antioxidant nutraceutical on plasma lipids, endothelial function, and estimated cardiovascular disease risk in moderately hypercholesterolemic patients: a double-blind, placebo-controlled randomized clinical trial. Arch Med Sci Atheroscler Dis 2021; 6:e145-e151. [PMID: 34381916 PMCID: PMC8336438 DOI: 10.5114/amsad.2021.107843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Nutraceuticals are a good means to lower cardiovascular risk. Having established a reasonable pharmacological background, a new nutraceutical combination should be tested in clinical trials. MATERIAL AND METHODS This double-blind, placebo-controlled randomized clinical trial aims to evaluate the modulating effect, in a setting of controlled nutritional habits, of a combined food supplement with DIF1STAT (based on red yeast rice with a very low content of monacolins, linear aliphatic alcohols and niacin) and Olea europaea on plasma lipids and endothelial function, in a group of 40 healthy, moderately hypercholesterolemic patients in primary cardiovascular prevention. RESULTS After 8 weeks of treatment, when compared to the placebo group, the active treated patients experienced significant improvements of different metabolic parameters and endothelial reactivity compared to placebo. The treated patients showed a statistically significant percentage change in total cholesterol (-12.25 delta% vs. -1.8%, p < 0.01), low-density lipoprotein (LDL) cholesterol (-28.7 delta% vs. -1.1%, p < 0.01), high-density lipoprotein (HDL) cholesterol (+4.99% vs. +0.9%, p < 0.05), non-HDL cholesterol (-16.02 delta% vs. -1.5%, p < 0.01), SUA (-12.96 delta%, p < 0.05) and endothelial reactivity (+6.73% vs. -1.4%, p < 0.01). In both groups, there was no case of intolerance and the safety parameters were unchanged. CONCLUSIONS The tested nutraceutical association is able to significantly improve different lipid parameters compared to placebo, and endothelial reactivity compared to baseline. Even if the study power appears to be adequate for the primary endpoints, the effect on endothelial function needs confirmation in a longer clinical trial.
Collapse
Affiliation(s)
- Arrigo F.G. Cicero
- Center for the Study of Hypertension and Related Cardiovascular Risk Factors, Medical and Surgery Sciences Department (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Marilisa Bove
- IRCCS Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Raffaele I. Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Federica Fogacci
- Center for the Study of Hypertension and Related Cardiovascular Risk Factors, Medical and Surgery Sciences Department (DIMEC), University of Bologna, Bologna, Italy
| | - Maddalena Veronesi
- Center for the Study of Hypertension and Related Cardiovascular Risk Factors, Medical and Surgery Sciences Department (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
28
|
Li HB, Feng QM, Zhang LX, Wang J, Chi J, Chen SQ, Wang ZM, Dai LP, Xu EP. Four New Gallate Derivatives from Wine-Processed Corni Fructus and Their Anti-Inflammatory Activities. Molecules 2021; 26:molecules26071851. [PMID: 33805990 PMCID: PMC8037767 DOI: 10.3390/molecules26071851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022] Open
Abstract
Four new gallate derivatives—ornusgallate A, ent-cornusgallate A, cornusgallate B and C (1a, 1b, 2, 3)—were isolated from the wine-processed fruit of Cornus officinalis. Among them, 1a and 1b are new natural compounds with novel skeletons. Their chemical structures were elucidated by comprehensive spectroscopy methods including NMR, IR, HRESIMS, UV, ECD spectra and single-crystal X-ray diffraction analysis. The in vitro anti-inflammatory activities of all compounds were assayed in RAW 264.7 cells by assessing LPS-induced NO production. As the result, all compounds exhibited anti-inflammatory activities at attested concentrations. Among the tested compounds, compound 2 exhibited the strongest anti- inflammatory activity.
Collapse
Affiliation(s)
- Hong-Bin Li
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China; (H.-B.L.); (Q.-M.F.); (L.-X.Z.); (J.W.); (J.C.); (S.-Q.C.)
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Qing-Mei Feng
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China; (H.-B.L.); (Q.-M.F.); (L.-X.Z.); (J.W.); (J.C.); (S.-Q.C.)
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Ling-Xia Zhang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China; (H.-B.L.); (Q.-M.F.); (L.-X.Z.); (J.W.); (J.C.); (S.-Q.C.)
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Jing Wang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China; (H.-B.L.); (Q.-M.F.); (L.-X.Z.); (J.W.); (J.C.); (S.-Q.C.)
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Jun Chi
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China; (H.-B.L.); (Q.-M.F.); (L.-X.Z.); (J.W.); (J.C.); (S.-Q.C.)
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Sui-Qing Chen
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China; (H.-B.L.); (Q.-M.F.); (L.-X.Z.); (J.W.); (J.C.); (S.-Q.C.)
| | - Zhi-Min Wang
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China;
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li-Ping Dai
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China; (H.-B.L.); (Q.-M.F.); (L.-X.Z.); (J.W.); (J.C.); (S.-Q.C.)
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China;
- Correspondence: (L.-P.D.); (E.-P.X.); Tel.: +86-18703651652 (L.-P.D.)
| | - Er-Ping Xu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China; (H.-B.L.); (Q.-M.F.); (L.-X.Z.); (J.W.); (J.C.); (S.-Q.C.)
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China;
- Correspondence: (L.-P.D.); (E.-P.X.); Tel.: +86-18703651652 (L.-P.D.)
| |
Collapse
|
29
|
Lee SE, Park YS. The Emerging Roles of Antioxidant Enzymes by Dietary Phytochemicals in Vascular Diseases. Life (Basel) 2021; 11:life11030199. [PMID: 33806594 PMCID: PMC8001043 DOI: 10.3390/life11030199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular diseases are major causes of death worldwide, causing pathologies including diabetes, atherosclerosis, and chronic obstructive pulmonary disease (COPD). Exposure of the vascular system to a variety of stressors and inducers has been implicated in the development of various human diseases, including chronic inflammatory diseases. In the vascular wall, antioxidant enzymes form the first line of defense against oxidative stress. Recently, extensive research into the beneficial effects of phytochemicals has been conducted; phytochemicals are found in commonly used spices, fruits, and herbs, and are used to prevent various pathologic conditions, including vascular diseases. The present review aims to highlight the effects of dietary phytochemicals role on antioxidant enzymes in vascular diseases.
Collapse
|
30
|
Talebi M, Talebi M, Farkhondeh T, Mishra G, İlgün S, Samarghandian S. New insights into the role of the Nrf2 signaling pathway in green tea catechin applications. Phytother Res 2021; 35:3078-3112. [PMID: 33569875 DOI: 10.1002/ptr.7033] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/13/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a transcriptional signaling pathway that plays a crucial role in numerous clinical complications. Pivotal roles of Nrf2 have been proved in cancer, autoimmune diseases, neurodegeneration, cardiovascular diseases, diabetes mellitus, renal injuries, respiratory conditions, gastrointestinal disturbances, and general disorders related to oxidative stress, inflammation, apoptosis, gelatinolysis, autophagy, and fibrogenesis processes. Green tea catechins as a rich source of phenolic compounds can deal with various clinical problems and manifestations. In this review, we attempted to focus on intervention between green tea catechins and Nrf2. Green tea catechins especially epigallocatechin gallate (EGCG) elucidated the protective role of Nrf2 and its downstream molecules in various disorders through Keap-1, HO-1, NQO-1, GPx, GCLc, GCLm, NF-kB cross-link, kinases, and apoptotic proteins. Subsequently, we compiled an updated expansions of the Nrf2 role as a gate to manage and protect different disorders and feasible indications of green tea catechins through this signaling pathway. The present review highlighted recent evidence-based data in silico, in vitro, and in vivo studies on an outline for future clinical trials.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA.,Department of Research & Development, Viatris Pharmaceuticals Inc., San Antonio, Texas, USA
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.,Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Gaurav Mishra
- Institute of Medical Sciences, Faculty of Ayurveda, Department of Medicinal Chemistry, Banaras Hindu University, Varanasi, India
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
31
|
Pai PY, Chou WC, Chan SH, Wu SY, Chen HI, Li CW, Hsieh PL, Chu PM, Chen YA, Ou HC, Tsai KL. Epigallocatechin Gallate Reduces Homocysteine-Caused Oxidative Damages through Modulation SIRT1/AMPK Pathway in Endothelial Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 49:113-129. [PMID: 33371812 DOI: 10.1142/s0192415x21500063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Elevated plasma concentration of total homocysteine is a pathological condition that causes vascular endothelial injury and subsequently leads to the progression of endothelial apoptosis in atherosclerosis. Epigallocatechin gallate (EGCG), a well-known anti-oxidant in green tea, has been reported with benefits on metabolic and cardiovascular diseases. This study aimed to explore that EGCG ameliorates homocysteine-induced endothelial cell apoptosis through enhancing the sirtuin 1 (SIRT1)/AMP-activated protein kinase (AMPK) survival signaling pathway. Human umbilical endothelial cells were treated with homocysteine in the presence or absence of EGCG. We found that EGCG significantly increased the activities of SIRT1 and AMPK. EGCG diminished homocysteine-mediated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation by inhibiting protein kinase C activation as well as reactive oxygen species (ROS) generation and recovered the activity of the endogenous antioxidant enzyme, superoxidase dismutase (SOD). Besides, EGCG also restores homocysteine-mediated dephosphorylation of Akt and decreases endothelial NO synthase (eNOS) expression. Furthermore, EGCG ameliorates homocysteine-activated pro-apoptotic events. The present study shows that EGCG prevents homocysteine-induced endothelial cell apoptosis via enhancing SIRT1/AMPK as well as Akt/eNOS signaling pathways. Results from this study indicated that EGCG might have some benefits for hyperhomocysteinemia.
Collapse
Affiliation(s)
- Pei-Ying Pai
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan, ROC.,Division of Cardiology, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Wan-Ching Chou
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Shih-Hung Chan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Shu-Yih Wu
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan, ROC.,Department of Physical and Rehabilitation Medicine, Asia University Hospital, Taichung, Taiwan, ROC.,Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan, ROC
| | - Hsiu-I Chen
- Department of Physical Therapy, Hungkuang University, Taichung, Taiwan, ROC
| | - Chi-Wen Li
- Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Taichung, Taiwan, ROC
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan, ROC
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan, ROC
| | - Yu-An Chen
- Department of Health and Leisure Management, Yuanpei University of Medical Technology, Hsinchu, Taiwan, ROC
| | - Hsiu-Chung Ou
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan, ROC
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
32
|
Liu W, Wan C, Huang Y, Li M. Effects of tea consumption on metabolic syndrome: A systematic review and meta-analysis of randomized clinical trials. Phytother Res 2020; 34:2857-2866. [PMID: 32578328 DOI: 10.1002/ptr.6731] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/02/2020] [Accepted: 03/28/2020] [Indexed: 02/05/2023]
Abstract
The metabolic syndrome (MetS) is one of the major health hazards and an epidemic worldwide. There is no known best remedy has been defined yet. In the current investigation, we designed a meta-analysis of randomized clinical trials (RCTs) to evaluate the beneficial effects of tea consumption in alleviating metabolic syndromes. Herein, we accumulated the relevant literature available on PubMed and EMBASE databases from January, 2000 to August, 2019. RCTs bearing impact factor of at least 1 or more were studied for the effect of tea consumption on MetS. This meta-analysis suggested that tea consumption has beneficial effects on diastolic blood pressure (DBP), and this finding was characterized of all types of tea in the current study and also for body mass index (BMI) value. Furthermore, this analysis also found that black tea consumption has protective effects on systolic SBP, green tea reduces the incidence of diabetes and lower the level of low-density lipoprotein (LDL) cholesterol. These functions required BMI value at least 28 or higher. The meta data led us to conclude that tea consumption have protective effects on MetS, however, different types of tea might have different protective mechanisms on MetS, but, exact mechanisms are not yet clear and needs to be explored.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, Yili Normal University, Xinjiang, China
| | - Chunpeng Wan
- College of Agronomy, Research Center of Tea and Tea Culture, Jiangxi Agricultural University, Nanchang, China
| | - Yingjie Huang
- College of Agronomy, Research Center of Tea and Tea Culture, Jiangxi Agricultural University, Nanchang, China
| | - Mingxi Li
- College of Agronomy, Research Center of Tea and Tea Culture, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
33
|
The Free Radical Scavenging and Anti-Isolated Human LDL Oxidation Activities of Pluchea indica (L.) Less. Tea Compared to Green Tea ( Camellia sinensis). BIOMED RESEARCH INTERNATIONAL 2020; 2020:4183643. [PMID: 33029506 PMCID: PMC7533030 DOI: 10.1155/2020/4183643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022]
Abstract
Tea is one of the most popular beverages in the world. Camellia sinensis tea (CST) or green tea is widely regarded as a potent antioxidant. In Thailand, Pluchea indica (L.) Less. tea (PIT) has been commercially available as a health-promoting drink. This study focused on free radical scavenging activities of PIT, and its ability to protect isolated human low-density lipoproteins (LDL) from oxidation by chemical agents. A preliminary study to investigate the antioxidant nature of PIT was undertaken. These included common antioxidant assays involving 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), hypochlorous acid (HOCl), and its potential to scavenge peroxynitrite. In separated experiments, isolated human LDL was challenged with either 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH), copper (Cu2+), or 3-Morpholinosydnonimine hydrochloride (SIN-1) to induce LDL oxidation. PIT exhibited antioxidant activity in all test systems and performed significantly better than CST in both DPPH (P < 0.05; IC50PIT = 245.85 ± 15.83 and CST = 315.41 ± 24.18 μg/ml) and peroxynitrite scavenging assays. PIT at 75 μg/ml almost fully prevented the peroxynitrite over a 5 h period. Moreover, it displayed similar properties to CST during the antioxidation of isolated human LDL using AAPH, Cu2+, SIN-1, and hypochlorous acid scavenging assays. However, it revealed a significantly lower ABTS scavenging activity than CST (P < 0.05; IC50PIT = 30.47 ± 2.20 and CST = 21.59 ± 0.67 μg/ml). The main constituents of the PIT were identified using LC-MS/MS. It contained 4-O-caffeoylquinic acid (4-CQ), 5-O-caffeoylquinic acid (5-CQ), 3,4-O-dicaffeoylquinic acid (3,4-CQ), 3,5-O-dicaffeoylquinic acid (3,5-CQ), and 4,5-O-dicaffeoylquinic acid (4,5-CQ). In conclusion, caffeoyl derivatives in PIT could play an important role in potent antioxidant properties. So, it may be further developed to be antioxidant beverages for preventing atherosclerosis and cardiovascular diseases associated with oxidative stress.
Collapse
|
34
|
Role of Nrf2 and Its Activators in Cardiocerebral Vascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4683943. [PMID: 32831999 PMCID: PMC7428967 DOI: 10.1155/2020/4683943] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Cardiocerebral vascular disease (CCVD) is a common disease with high morbidity, disability, and mortality. Oxidative stress (OS) is closely related to the progression of CCVD. Abnormal redox regulation leads to OS and overproduction of reactive oxygen species (ROS), which can cause biomolecular and cellular damage. The Nrf2/antioxidant response element (ARE) signaling pathway is one of the most important defense systems against exogenous and endogenous OS injury, and Nrf2 is regarded as a vital pharmacological target. The complexity of the CCVD pathological process and the current difficulties in conducting clinical trials have hindered the development of therapeutic drugs. Furthermore, little is known about the role of the Nrf2/ARE signaling pathway in CCVD. Clarifying the role of the Nrf2/ARE signaling pathway in CCVD can provide new ideas for drug design. This review details the recent advancements in the regulation of the Nrf2/ARE system and its role and activators in common CCVD development.
Collapse
|
35
|
Menegazzi M, Campagnari R, Bertoldi M, Crupi R, Di Paola R, Cuzzocrea S. Protective Effect of Epigallocatechin-3-Gallate (EGCG) in Diseases with Uncontrolled Immune Activation: Could Such a Scenario Be Helpful to Counteract COVID-19? Int J Mol Sci 2020; 21:ijms21145171. [PMID: 32708322 PMCID: PMC7404268 DOI: 10.3390/ijms21145171] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 01/22/2023] Open
Abstract
Some coronavirus disease 2019 (COVID-19) patients develop acute pneumonia which can result in a cytokine storm syndrome in response to Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection. The most effective anti-inflammatory drugs employed so far in severe COVID-19 belong to the cytokine-directed biological agents, widely used in the management of many autoimmune diseases. In this paper we analyze the efficacy of epigallocatechin 3-gallate (EGCG), the most abundant ingredient in green tea leaves and a well-known antioxidant, in counteracting autoimmune diseases, which are dominated by a massive cytokines production. Indeed, many studies registered that EGCG inhibits signal transducer and activator of transcription (STAT)1/3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factors, whose activities are crucial in a multiplicity of downstream pro-inflammatory signaling pathways. Importantly, the safety of EGCG/green tea extract supplementation is well documented in many clinical trials, as discussed in this review. Since EGCG can restore the natural immunological homeostasis in many different autoimmune diseases, we propose here a supplementation therapy with EGCG in COVID-19 patients. Besides some antiviral and anti-sepsis actions, the major EGCG benefits lie in its anti-fibrotic effect and in the ability to simultaneously downregulate expression and signaling of many inflammatory mediators. In conclusion, EGCG can be considered a potential safe natural supplement to counteract hyper-inflammation growing in COVID-19.
Collapse
Affiliation(s)
- Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (R.C.); (M.B.)
- Correspondence:
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (R.C.); (M.B.)
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (R.C.); (M.B.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Polo Universitario dell’Annunziata, I-98168 Messina, Italy;
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (R.D.P.); (S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (R.D.P.); (S.C.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|