1
|
Peng L, Liu X, Chen M, Liao W, Mao J, Zhou L. MGNDTI: A Drug-Target Interaction Prediction Framework Based on Multimodal Representation Learning and the Gating Mechanism. J Chem Inf Model 2024; 64:6684-6698. [PMID: 39137398 DOI: 10.1021/acs.jcim.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Drug-Target Interaction (DTI) prediction facilitates acceleration of drug discovery and promotes drug repositioning. Most existing deep learning-based DTI prediction methods can better extract discriminative features for drugs and proteins, but they rarely consider multimodal features of drugs. Moreover, learning the interaction representations between drugs and targets needs further exploration. Here, we proposed a simple M ulti-modal G ating N etwork for DTI prediction, MGNDTI, based on multimodal representation learning and the gating mechanism. MGNDTI first learns the sequence representations of drugs and targets using different retentive networks. Next, it extracts molecular graph features of drugs through a graph convolutional network. Subsequently, it devises a multimodal gating network to obtain the joint representations of drugs and targets. Finally, it builds a fully connected network for computing the interaction probability. MGNDTI was benchmarked against seven state-of-the-art DTI prediction models (CPI-GNN, TransformerCPI, MolTrans, BACPI, CPGL, GIFDTI, and FOTF-CPI) using four data sets (i.e., Human, C. elegans, BioSNAP, and BindingDB) under four different experimental settings. Through evaluation with AUROC, AUPRC, accuracy, F1 score, and MCC, MGNDTI significantly outperformed the above seven methods. MGNDTI is a powerful tool for DTI prediction, showcasing its superior robustness and generalization ability on diverse data sets and different experimental settings. It is freely available at https://github.com/plhhnu/MGNDTI.
Collapse
Affiliation(s)
- Lihong Peng
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Xin Liu
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Min Chen
- School of Computer Science and Engineering, Hunan Institute of Technology, Hengyang, Hunan 421002, China
| | - Wen Liao
- School of Computer Science, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Jiale Mao
- School of Computer Science, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Liqian Zhou
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| |
Collapse
|
2
|
Presto P, Sehar U, Kopel J, Reddy PH. Mechanisms of pain in aging and age-related conditions: Focus on caregivers. Ageing Res Rev 2024; 95:102249. [PMID: 38417712 DOI: 10.1016/j.arr.2024.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Pain is a complex, subjective experience that can significantly impact quality of life, particularly in aging individuals, by adversely affecting physical and emotional well-being. Whereas acute pain usually serves a protective function, chronic pain is a persistent pathological condition that contributes to functional deficits, cognitive decline, and emotional disturbances in the elderly. Despite substantial progress that has been made in characterizing age-related changes in pain, complete mechanistic details of pain processing mechanisms in the aging patient remain unknown. Pain is particularly under-recognized and under-managed in the elderly, especially among patients with Alzheimer's disease (AD), Alzheimer's disease-related dementias (ADRD), and other age-related conditions. Furthermore, difficulties in assessing pain in patients with AD/ADRD and other age-related conditions may contribute to the familial caregiver burden. The purpose of this article is to discuss the mechanisms and risk factors for chronic pain development and persistence, with a particular focus on age-related changes. Our article also highlights the importance of caregivers working with aging chronic pain patients, and emphasizes the urgent need for increased legislative awareness and improved pain management in these populations to substantially alleviate caregiver burden.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jonathan Kopel
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
3
|
Smith D, He B, Shi J, Zhu HJ, Wang X. Novel Independent Trans- and Cis-Genetic Variants Associated with CYP2D6 Expression and Activity in Human Livers. Drug Metab Dispos 2024; 52:143-152. [PMID: 38050015 PMCID: PMC10801631 DOI: 10.1124/dmd.123.001548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is a critical hepatic drug-metabolizing enzyme in humans, responsible for metabolizing approximately 20%-25% of commonly used medications such as codeine, desipramine, fluvoxamine, paroxetine, and tamoxifen. The CYP2D6 gene is highly polymorphic, resulting in substantial interindividual variability in its catalytic function and the pharmacokinetics and therapeutic outcomes of its substrate drugs. Although many functional CYP2D6 variants have been discovered and validated, a significant portion of the variability in the expression and activity of CYP2D6 remains unexplained. In this study, we performed a genome-wide association study (GWAS) to identify novel variants associated with CYP2D6 protein expression in individual human livers, followed by a conditional analysis to control for the effect of functional CYP2D6 star alleles. We also examined their impact on hepatic CYP2D6 activity. Genotyping on a genome-wide scale was achieved using the Illumina Multi-Ethnic Genotyping Array (MEGA). A data-independent acquisition (DIA)-based proteomics method was used to quantify CYP2D6 protein concentrations. CYP2D6 activity was determined by measuring the dextromethorphan O-demethylation in individual human liver s9 fractions. The GWAS identified 44 single nuclear polymorphisms (SNPs) that are significantly associated with CYP2D6 protein expressions with a P value threshold of 5.0 × 10-7 After the conditional analysis, five SNPs, including the cis-variants rs1807493 and rs1062753 and the trans-variants rs4073010, rs729559, and rs80274432, emerged as independent variants significantly correlated with hepatic CYP2D6 protein expressions. Notably, four of these SNPs, except for rs80274432, also exhibited a significant association with CYP2D6 activities in human livers, suggesting their potential as novel and independent cis- and trans-variants regulating CYP2D6. SIGNIFICANT STATEMENT: Using individual human livers, we identified four novel cis- and trans-pQTLs/aQTLs (protein quantitative trait loci/activity quantitative trait loci) of Cytochrome P450 2D6 (CYP2D6) that are independent from known functional CYP2D6 star alleles. This study connects the CYP2D6 gene expression and activity, enhancing our understanding of the genetic variants associated with CYP2D6 protein expression and activity, potentially advancing our insight into the interindividual variability in CYP2D6 substrate medication response.
Collapse
Affiliation(s)
- Dylan Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (D.S., X.W.); Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.); Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan (B.H.); and Bristol Myers Squibb, Lawrence Township, New Jersey (J.S.)
| | - Bing He
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (D.S., X.W.); Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.); Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan (B.H.); and Bristol Myers Squibb, Lawrence Township, New Jersey (J.S.)
| | - Jian Shi
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (D.S., X.W.); Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.); Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan (B.H.); and Bristol Myers Squibb, Lawrence Township, New Jersey (J.S.)
| | - Hao-Jie Zhu
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (D.S., X.W.); Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.); Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan (B.H.); and Bristol Myers Squibb, Lawrence Township, New Jersey (J.S.)
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (D.S., X.W.); Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.); Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan (B.H.); and Bristol Myers Squibb, Lawrence Township, New Jersey (J.S.)
| |
Collapse
|
4
|
Avsar O. Identification of the effects of pathogenic genetic variations of human CYP2C9 and CYP2D6: an in silico approach. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:356-376. [PMID: 37747773 DOI: 10.1080/15257770.2023.2262519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Genetic variations in the human cytochrome P450 family 2 subfamily C member 9 (CYP2C9) and cytochrome P450 family 2 subfamily D member 6 (CYP2D6) genes may affect drug metabolism and lead to alterations in phenotypes. Genetic variations are associated with toxicity, adverse drug reactions, inefficient treatment. Various in silico tools were combined to investigate the deleterious effects of missense non-synonymous single nucleotide polymorphisms (nsSNPs) of the human CYP2C9 and CYP2D6. The structural and functional effects of the high-risk non-synonymous SNPs in the human CYP2C9 and CYP2D6 were predicted by numerous computational mutation analysis methods. Out of 24 pathogenic missense SNPs in the CYP2C9, 22 nsSNPs had a decreasing effect on protein stability and 13 SNPs were showed to be located at conserved positions. Out of 27 high-risk deleterious non-synonymous SNPs in the human CYP2D6, 21 SNPs decreased protein stability and 16 nsSNPs were predicted to be positioned at conserved regions. Our present study suggests that the identified functional SNPs may affect drug metabolism associated with CYP2C9 and CYP2D6 enzymes.
Collapse
Affiliation(s)
- Orcun Avsar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Hitit University, Corum, Türkiye
| |
Collapse
|
5
|
Ding Y, Liu A, Wang Y, Zhao S, Huang S, Zhu H, Ma L, Han L, Shu S, Zheng L, Chen X. Genetic polymorphisms are associated with individual susceptibility to dexmedetomidine. Front Genet 2023; 14:1187415. [PMID: 37693312 PMCID: PMC10483403 DOI: 10.3389/fgene.2023.1187415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction: Dexmedetomidine (DXM) is widely used as an adjuvant to anesthesia or a sedative medicine, and differences in individual sensitivity to the drug exist. This study aimed to investigate the effect of genetic polymorphisms on these differences. Methods: A total of 112 patients undergoing hand surgery were recruited. DXM 0.5 μg/kg was administered within 10 min and then continuously injected (0.4 μg/kg/h). Narcotrend index, effective dose and onset time of sedation, MAP, and HR were measured. Forty-five single nucleotide polymorphisms (SNPs) were selected for genotype. Results: We observed individual differences in the sedation and hemodynamics induced by DXM. ABCG2 rs2231142, CYP2D6 rs16947, WBP2NL rs5758550, KATP rs141294036, KCNMB1 rs11739136, KCNMA1 rs16934182, ABCC9 rs11046209, ADRA2A rs1800544, and ADRB2 rs1042713 were shown to cause statistically significant (p < 0.05) influence on the individual variation of DXM on sedation and hemodynamics. Moreover, the multiple linear regression analysis indicated sex, BMI, and ADRA2A rs1800544 are statistically related to the effective dose of DXM sedation. Discussion: The evidence suggests that the nine SNPs involved in transport proteins, metabolic enzymes, and target proteins of DXM could explain the individual variability in the sedative and hemodynamic effects of DXM. Therefore, with SNP genotyping, these results could guide personalized medication and promote clinical and surgical management.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aiqing Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyu Zhu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaofang Shu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lidong Zheng
- Department of Anesthesiology, Lu’an Hospital Affiliated to Anhui Medical University, Lu’an, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Stelmach A, Guzek K, Rożnowska A, Najbar I, Sadakierska-Chudy A. Antipsychotic drug-aripiprazole against schizophrenia, its therapeutic and metabolic effects associated with gene polymorphisms. Pharmacol Rep 2023; 75:19-31. [PMID: 36526889 PMCID: PMC9889418 DOI: 10.1007/s43440-022-00440-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Second-generation antipsychotics are widely used for the treatment of schizophrenia. Aripiprazole (ARI) is classified as a third-generation antipsychotic drug with a high affinity for dopamine and serotonin receptors. It is considered a dopamine-system stabilizer without severe side effects. In some patients the response to ARI treatment is inadequate and they require an effective augmentation strategy. It has been found that the response to the drug and the risk of adverse metabolic effects can be related to gene polymorphisms. A reduced dose is recommended for CYP2D6 poor metabolizers; moreover, it is postulated that other polymorphisms including CYP3A4, CYP3A5, ABCB1, DRD2, and 5-HTRs genes influence the therapeutic effect of ARI. ARI can increase the levels of prolactin, C-peptide, insulin, and/or cholesterol possibly due to specific genetic variants. It seems that a pharmacogenetic approach can help predict drug response and improve the clinical management of patients with schizophrenia.
Collapse
Affiliation(s)
- Adriana Stelmach
- Department of Genetics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Gustawa Herlinga-Grudzinskiego 1, 30-705, Krakow, Poland
| | - Katarzyna Guzek
- Department of Genetics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Gustawa Herlinga-Grudzinskiego 1, 30-705, Krakow, Poland
| | - Alicja Rożnowska
- Department of Genetics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Gustawa Herlinga-Grudzinskiego 1, 30-705, Krakow, Poland
| | - Irena Najbar
- Centre of Education, Research and Development, Babinski University Hospital, Krakow, Poland
| | - Anna Sadakierska-Chudy
- Department of Genetics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Gustawa Herlinga-Grudzinskiego 1, 30-705, Krakow, Poland.
| |
Collapse
|
7
|
Identification of Escitalopram Metabolic Ratios as Potential Biomarkers for Predicting CYP2C19 Poor Metabolizers. Ther Drug Monit 2022; 44:720-728. [PMID: 36372933 DOI: 10.1097/ftd.0000000000000991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Escitalopram is metabolized by CYP2C19 to N-desmethyl escitalopram and escitalopram propionic acid. The primary aims of this study were to investigate the impact of the CYP2C19 phenotype on metabolic ratios of escitalopram in vivo and propose a biomarker for the CYP2C19 phenotype in patients treated with escitalopram. METHODS Median steady-state serum metabolite/parent drug ratio of N-desmethyl escitalopram and escitalopram propionic acid was investigated across CYP2C19 genotype-translated phenotype groups. The receiver operator characteristics method and the area-under-the-receiver-operator-characteristics curve was used to determine the best suited metabolic ratio for detecting CYP2C19 poor metabolizers (PMs). RESULTS A total of 441 patients were included in the study. The N-desmethyl escitalopram/escitalopram ratio was 67% and 44% lower in CYP2C19 PMs and intermediate metabolizers (IMs), respectively, than normal metabolizers. Furthermore, the ability of the ratio to predict CYP2C19 PMs was 92%. A metabolic ratio of <0.24 was detected in 8 of 8 PMs in the study, indicating that it is a promising biomarker of reduced CYP2C19 activity. The escitalopram propionic acid/escitalopram ratio was 77% and 48% lower in CYP2C19 PMs and IMs, respectively; however, the ability of the ratio to detect CYP2C19 PMs was only 87%. CONCLUSIONS These findings suggest that DECT/ECT reflects CYP2C19 activity, and a metabolic ratio of <0.24 strongly predicts CYP2C19 PM phenotype. The ratio could be a valuable alternative to genotyping in personalized dosing of escitalopram and possibly other CYP2C19 substrates. The escitalopram propionic acid/escitalopram ratio was also associated with CYP2C19 activity; however, the ratio was inferior to the DECT/ECT at predicting PMs.
Collapse
|
8
|
Chaichana J, Khamenkhetkarn M, Sastraruji T, Monum T, O’Brien TE, Amornlertwatana Y, Jaikang C. Categorization of Cytochrome P4502D6 Activity Score by Urinary Amphetamine/Methamphetamine Ratios. Metabolites 2022; 12:metabo12121174. [PMID: 36557212 PMCID: PMC9788588 DOI: 10.3390/metabo12121174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
Methamphetamine (MA) level in urine has been used for judgment in MA consumption. Metabolism and intoxication of MA are correlated with the activity of cytochrome P450 2D6 (CYP2D6). The activity score (AS) is a potential tool for predicting exposure and personalized dose of drugs metabolized by CYP2D6. Prediction of the CYP2D6 activity score might be described as MA intoxication. The objective of this study was to categorize the CYP2D6 activity score using the urinary amphetamine (AM)/MA ratio. Urine samples (n = 23,258) were collected. The levels of MA and AM were determined by a gas chromatography-nitrogen-phosphorus detector. The log AS was calculated by an AM/MA ratio and classified into four groups following the percentile position: lower than the 2.5th, the 2.5th-the 50th, the 50th-97.5th, and greater than the 97.5th percentile, respectively. The AS value for males presented was less than 0.024, 0.024-0.141, 0.141-0.836, and greater than 0.836. Meanwhile, the AS values were revealed to be lower than 0.023, 0.023-0.148, 0.148-0.850, and higher than 0.850 for females. The AS value of CYP2D6 can be applied to describe the toxicity of MA in forensic crime scenes and relapse behavior.
Collapse
Affiliation(s)
- Jatuporn Chaichana
- Toxicology Section, Regional Medical Science Center 1 Chiang Mai 191 Tumbon Don Keaw, Ampher Mae Rim, Chiang Mai 50180, Thailand
| | - Manee Khamenkhetkarn
- Toxicology Section, Regional Medical Science Center 1 Chiang Mai 191 Tumbon Don Keaw, Ampher Mae Rim, Chiang Mai 50180, Thailand
- Correspondence: (M.K.); (C.J.); Tel.:+66-53112188 (M.K.); +66-53935432 (C.J.)
| | | | - Tawachai Monum
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Timothy E. O’Brien
- Department of Mathematics and Statistics, Loyola University Chicago, 1032 W.Sheridan Road, Chicago, IL 60660-1537, USA
| | - Yutti Amornlertwatana
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Churdsak Jaikang
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (M.K.); (C.J.); Tel.:+66-53112188 (M.K.); +66-53935432 (C.J.)
| |
Collapse
|
9
|
New Onset of Seizures and Psychosis in a Patient Who Is Coprescribed Atomoxetine and Bupropion: A Case Report. J Clin Psychopharmacol 2022; 42:600-602. [PMID: 36193909 DOI: 10.1097/jcp.0000000000001614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
An Investigation of O-Demethyl Tramadol/Tramadol Ratio for Cytochrome P450 2D6 Phenotyping: The CYTRAM Study. Pharmaceutics 2022; 14:pharmaceutics14102177. [PMID: 36297612 PMCID: PMC9611900 DOI: 10.3390/pharmaceutics14102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) gene polymorphisms influence the exposure to tramadol (T) and its pharmacologically active metabolite, O-demethyl tramadol (O-dT). Tramadol has been considered as a candidate probe drug for CYP2D6 phenotyping. The objective of the CYTRAM study was to investigate the value of plasma O-dT/T ratio for CYP2D6 phenotyping. European adult patients who received IV tramadol after surgery were included. CYP2D6 genotyping was performed and subjects were classified as extensive (EM), intermediate (IM), poor (PM), or ultra-rapid (UM) CYP2D6 metabolizers. Plasma concentrations of tramadol and O-dT were determined at 24 h and 48 h. The relationship between O-dT/T ratio and CYP2D6 phenotype was examined in both a learning and a validation group. Genotype data were obtained in 301 patients, including 23 PM (8%), 117 IM (39%), 154 EM (51%), and 7 UM (2%). Tramadol trough concentrations at 24 h were available in 297 patients. Mean value of O-dT/T ratio was significantly lower in PM than in non-PM individuals (0.061 ± 0.031 versus 0.178 ± 0.09, p < 0.01). However, large overlap was observed in the distributions of O-dT/T ratio between groups. Statistical models based on O-dT/T ratio failed to identify CYP2D6 phenotype with acceptable sensitivity and specificity. Those results suggest that tramadol is not an adequate probe drug for CYP2D6 phenotyping.
Collapse
|
11
|
Stäuble CK, Jeiziner C, Bollinger A, Wiss FM, Hatzinger M, Hersberger KE, Ihde T, Lampert ML, Mikoteit T, Meyer zu Schwabedissen HE, Allemann SS. A Guide to a Pharmacist-Led Pharmacogenetic Testing and Counselling Service in an Interprofessional Healthcare Setting. PHARMACY 2022; 10:86. [PMID: 35893724 PMCID: PMC9326676 DOI: 10.3390/pharmacy10040086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023] Open
Abstract
Genetic predisposition is one factor influencing interindividual drug response. Pharmacogenetic information can be used to guide the selection and dosing of certain drugs. However, the implementation of pharmacogenetics (PGx) in clinical practice remains challenging. Defining a formal structure, as well as concrete procedures and clearly defined responsibilities, may facilitate and increase the use of PGx in clinical practice. Over 140 patient cases from an observational study in Switzerland formed the basis for the design and refinement of a pharmacist-led pharmacogenetics testing and counselling service (PGx service) in an interprofessional setting. Herein, we defined a six-step approach, including: (1) patient referral; (2) pre-test-counselling; (3) PGx testing; (4) medication review; (5) counselling; (6) follow-up. The six-step approach supports the importance of an interprofessional collaboration and the role of pharmacists in PGx testing and counselling across healthcare settings.
Collapse
Affiliation(s)
- Céline K. Stäuble
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (C.J.); (A.B.); (F.M.W.); (K.E.H.); (M.L.L.); (S.S.A.)
- Institute of Hospital Pharmacy, Solothurner Spitäler AG, 4600 Olten, Switzerland
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland;
| | - Chiara Jeiziner
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (C.J.); (A.B.); (F.M.W.); (K.E.H.); (M.L.L.); (S.S.A.)
| | - Anna Bollinger
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (C.J.); (A.B.); (F.M.W.); (K.E.H.); (M.L.L.); (S.S.A.)
| | - Florine M. Wiss
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (C.J.); (A.B.); (F.M.W.); (K.E.H.); (M.L.L.); (S.S.A.)
- Institute of Hospital Pharmacy, Solothurner Spitäler AG, 4600 Olten, Switzerland
| | - Martin Hatzinger
- Psychiatric Services Solothurn, Solothurner Spitäler AG, Faculty of Medicine, University of Basel, 4503 Solothurn, Switzerland; (M.H.); (T.M.)
| | - Kurt E. Hersberger
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (C.J.); (A.B.); (F.M.W.); (K.E.H.); (M.L.L.); (S.S.A.)
| | - Thomas Ihde
- Institute of Psychiatry, Spitäler Frutigen Meiringen Interlaken AG (fmiAG), 3800 Unterseen, Switzerland;
| | - Markus L. Lampert
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (C.J.); (A.B.); (F.M.W.); (K.E.H.); (M.L.L.); (S.S.A.)
- Institute of Hospital Pharmacy, Solothurner Spitäler AG, 4600 Olten, Switzerland
| | - Thorsten Mikoteit
- Psychiatric Services Solothurn, Solothurner Spitäler AG, Faculty of Medicine, University of Basel, 4503 Solothurn, Switzerland; (M.H.); (T.M.)
| | | | - Samuel S. Allemann
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (C.J.); (A.B.); (F.M.W.); (K.E.H.); (M.L.L.); (S.S.A.)
| |
Collapse
|
12
|
Scherf-Clavel M, Weber H, Wurst C, Stonawski S, Hommers L, Unterecker S, Wolf C, Domschke K, Rost N, Brückl T, Lucae S, Uhr M, Binder EB, Menke A, Deckert J. Effects of Pharmacokinetic Gene Variation on Therapeutic Drug Levels and Antidepressant Treatment Response. PHARMACOPSYCHIATRY 2022; 55:246-254. [PMID: 35839823 PMCID: PMC9458342 DOI: 10.1055/a-1872-0613] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Introduction
Pharmacogenetic testing is proposed to minimize adverse
effects when considered in combination with pharmacological knowledge of the
drug. As yet, limited studies in clinical settings have investigated the
predictive value of pharmacokinetic (pk) gene variation on therapeutic drug
levels as a probable mechanism of adverse effects, nor considered the combined
effect of pk gene variation and drug level on antidepressant treatment
response.
Methods
Two depression cohorts were investigated for the relationship
between pk gene variation and antidepressant serum concentrations of
amitriptyline, venlafaxine, mirtazapine and quetiapine, as well as treatment
response. For the analysis, 519 patients (49% females; 46.6±14.1
years) were included.
Results
Serum concentration of amitriptyline was associated with
CYP2D6
(higher concentrations in poor metabolizers compared to normal
metabolizers), of venlafaxine with
CYP2C19
(higher concentrations in
intermediate metabolizers compared to rapid/ultrarapid metabolizers) and
CYP2D6
(lower metabolite-to-parent ratio in poor compared to
intermediate and normal metabolizers, and intermediate compared to normal and
ultrarapid metabolizers). Pk gene variation did not affect treatment
response.
Discussion
The present data support previous recommendations to reduce
starting doses of amitriptyline and to guide dose-adjustments via therapeutic
drug monitoring in CYP2D6 poor metabolizers. In addition, we propose including
CYP2C19
in routine testing in venlafaxine-treated patients to improve
therapy by raising awareness of the risk of low serum concentrations in CYP2C19
rapid/ultrarapid metabolizers. In summary, pk gene variation can predict
serum concentrations, and thus the combination of pharmacogenetic testing and
therapeutic drug monitoring is a useful tool in a personalized therapy approach
for depression.
Collapse
Affiliation(s)
- Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Heike Weber
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Catherina Wurst
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center (CHFC), University Hospital of Würzburg, Würzburg, Germany
| | - Saskia Stonawski
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center (CHFC), University Hospital of Würzburg, Würzburg, Germany
| | - Leif Hommers
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center (CHFC), University Hospital of Würzburg, Würzburg, Germany
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Christiane Wolf
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicolas Rost
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Tanja Brückl
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Manfred Uhr
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Andreas Menke
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical Park Chiemseeblick, Bernau, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Tron C, Bouvet R, Verdier MC, Lamoureux F, Hennart B, Dubourg C, Bellissant E, Galibert MD. A Robust and Fast/Multiplex Pharmacogenetics Assay to Simultaneously Analyze 17 Clinically Relevant Genetic Polymorphisms in CYP3A4, CYP3A5, CYP1A2, CYP2C9, CYP2C19, CYP2D6, ABCB1, and VKORC1 Genes. Pharmaceuticals (Basel) 2022; 15:ph15050637. [PMID: 35631462 PMCID: PMC9145594 DOI: 10.3390/ph15050637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
In the field of pharmacogenetics, the trend is to analyze a panel of several actionable genetic polymorphisms. It may require the use of high-throughput sequencing which demands expensive reagents/instruments and specific skills to interpret results. As an alternative, the aim of this work was to validate an easy, fast, and inexpensive multiplex pharmacogenetics assay to simultaneously genotype a panel of 17 clinically actionable variants involved in drug pharmacokinetics/pharmacodynamics. We designed primers to perform a multiplex PCR assay using a single mix. Primers were labeled by two fluorescent dye markers to discriminate alleles, while the size of the PCR fragments analyzed by electrophoresis allowed identifying amplicon. Polymorphisms of interest were CYP3A4*22, CYP3A5*3, CYP1A2*1F, CYP2C9*2-*3, CYP2C19*2-*3-*17, VKORC1-1639G > A, ABCB1 rs1045642-rs1128503-rs2229109-rs2032582, and CYP2D6*3-*4-*6-*9. The assay was repeatable and a minimum quantity of 10 ng of DNA/ sample was needed to obtain accurate results. The method was applied to a validation cohort of 121 samples and genotyping results were consistent with those obtained with reference methods. The assay was fast and cost-effective with results being available within one working-day. This robust assay can easily be implemented in laboratories as an alternative to cumbersome simplex assays or expensive multiplex approaches. Together it should widespread access to pharmacogenetics in clinical routine practice.
Collapse
Affiliation(s)
- Camille Tron
- Pharmacology Department, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Univ Rennes, F-35000 Rennes, France; (M.-C.V.); (E.B.)
- Correspondence: ; Tel.: +33-2-99-28-42-80
| | - Régis Bouvet
- Department of Molecular Genetics and Genomics, Rennes Hospital University, F-35000 Rennes, France; (R.B.); (C.D.); (M.-D.G.)
| | - Marie-Clémence Verdier
- Pharmacology Department, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Univ Rennes, F-35000 Rennes, France; (M.-C.V.); (E.B.)
| | | | - Benjamin Hennart
- CHU Lille, Service de Toxicologie et Génopathies, F-59000 Lille, France;
| | - Christèle Dubourg
- Department of Molecular Genetics and Genomics, Rennes Hospital University, F-35000 Rennes, France; (R.B.); (C.D.); (M.-D.G.)
- CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Univ Rennes, F-35000 Rennes, France
| | - Eric Bellissant
- Pharmacology Department, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Univ Rennes, F-35000 Rennes, France; (M.-C.V.); (E.B.)
| | - Marie-Dominique Galibert
- Department of Molecular Genetics and Genomics, Rennes Hospital University, F-35000 Rennes, France; (R.B.); (C.D.); (M.-D.G.)
- CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Univ Rennes, F-35000 Rennes, France
| |
Collapse
|
14
|
Crutchley RD, Keuler N. Sub-Analysis of CYP-GUIDES Data: Assessing the Prevalence and Impact of Drug-Gene Interactions in an Ethnically Diverse Cohort of Depressed Individuals. Front Pharmacol 2022; 13:884213. [PMID: 35496293 PMCID: PMC9039251 DOI: 10.3389/fphar.2022.884213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction: Minority groups are underrepresented in pharmacogenomics (PGx) research. Recent sub-analysis of CYP-GUIDES showed reduced length of stay (LOS) in depressed patients with CYP2D6 sub-functional status. Our primary objective was to determine whether PGx guided (G) versus standard treatment (S) influenced LOS among different race/ethnic groups. Secondary objectives included prevalence of drug-gene interactions (DGIs) and readmission rates (RAR). Methods: Retrospective sub-analysis of CYP-GUIDES data comprising CYP2D6 phenotypes was reclassified using standardized CYP2D6 genotype to phenotype recommendations from the Clinical Pharmacogenetics Implementation Consortium (CPIC) and Dutch Pharmacogenetics Working Group (DPWG). The Mann-Whitney test was used to determine differences in LOS between groups G and S and Kruskal Wallis test to compare LOS among different race/ethnic groups. Logistic regression was used to determine covariates associated with RAR. Results: This study included 1,459 patients with 67.3% in G group (n = 982). The majority of patients were White (57.5%), followed by Latinos (25.6%) and Blacks (12.3%). Although there were no differences in LOS between G and S groups, Latinos had significant shorter LOS than Whites (p = 0.002). LOS was significantly reduced by 5.6 days in poor metabolizers in group G compared to S (p = 0.002). The proportion of supra functional and ultra-rapid metabolizers (UMs) were 6 and 20.3% using CYP-GUIDES and CPIC/DPWG definitions, respectively. Prevalence of DGIs was 40% with significantly fewer DGIs in Blacks (p < 0.001). Race/ethnicity was significantly associated with RAR (aOR 1.30; p = 0.003). Conclusion: A greater number of patients were classified as CYP2D6 UMs using CPIC/DPWG definitions as compared to CYP-GUIDES definitions. This finding may have clinical implications for using psychotropics metabolized by CYP2D6.
Collapse
Affiliation(s)
- Rustin D. Crutchley
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Yakima, WA, United States
- *Correspondence: Rustin D. Crutchley,
| | - Nicole Keuler
- School of Pharmacy, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
15
|
Jacobs SS, Dome JS, Gai J, Gross AM, Postell E, Hinds PS, Davenport L, van den Anker JN, Mowbray C. Pharmacogenetic and clinical predictors of ondansetron failure in a diverse pediatric oncology population. Support Care Cancer 2022; 30:3513-3520. [PMID: 35018520 DOI: 10.1007/s00520-022-06818-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE Chemotherapy-induced nausea and vomiting (CINV) is a frequently seen burdensome adverse event of cancer therapy. The 5-HT3 receptor antagonist ondansetron has improved the rates of CINV but, unfortunately, up to 30% of patients do not obtain satisfactory control. This study examined whether genetic variations in a relevant drug-metabolizing enzyme (CYP2D6), transporter (ABCB1), or receptor (5-HT3) were associated with ondansetron failure. METHODS DNA was extracted from blood and used to genotype: ABCB1 (3435C > T (rs1045642) and G2677A/T (rs2032582)), 5-HT3RB (rs3758987 T > C and rs45460698 (delAAG/dupAAG)), and CYP2D6 variants. Ondansetron failure was determined by review of the medical records and by patient-reported outcomes (PROs). RESULTS One hundred twenty-nine patients were approached; 103 consented. Participants were less than 1 to 33 years (mean 6.85). A total of 39.8% was female, 58.3% was White (22.3% Black, 19.4% other), and 24.3% was Hispanic. A majority had leukemia or lymphoma, and 41 (39.8%) met the definition of ondansetron failure. Of variants tested, rs45460698 independently showed a significant difference in risk of ondansetron failure between a mutant (any deletion) and normal allele (p = 0.0281, OR 2.67). Age and BMI were both predictive of ondansetron failure (age > 12 (OR 1.12, p = 0.0012) and higher BMI (OR 1.13, p = 0.0119)). In multivariate analysis, age > 12 was highly predictive of ondansetron failure (OR 7.108, p = 0.0008). rs45460698 was predictive when combined with an increased nausea phenotype variant of rs1045642 (OR 3.45, p = 0.0426). CONCLUSION Select phenotypes of 5-HT3RB and ABCB1, age, and potentially BMI can help predict increased risk for CINV in a diverse pediatric oncology population.
Collapse
Affiliation(s)
- Shana S Jacobs
- Division of Oncology, Children's National Hospital, Washington, DC, USA.
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - Jeffrey S Dome
- Division of Oncology, Children's National Hospital, Washington, DC, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jiaxiang Gai
- Biostatistics and Study Methodology Department, Children's National Hospital, Washington, DC, USA
| | - Andrea M Gross
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Elena Postell
- Division of Oncology, Children's National Hospital, Washington, DC, USA
| | - Pamela S Hinds
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Nursing Science, Professional Practice & Quality, Children's National Hospital, Washington, DC, USA
| | - Lionel Davenport
- Division of Pathology and Lab Medicine, Molecular Diagnostics, Children's National Hospital, Washington, DC, USA
| | - John N van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA
| | - Catriona Mowbray
- Division of Oncology, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
16
|
Ranadeva NDK, Sirisena ND, Wetthasinghe TK, Noordeen N, Dissanayake VHW. Design and implementation of a novel pharmacogenetic assay for the identification of the CYP2D6*10 genetic variant. BMC Res Notes 2022; 15:104. [PMID: 35296326 PMCID: PMC8925205 DOI: 10.1186/s13104-022-05993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Objectives Tamoxifen is considered to be the most widely used adjuvant therapy for hormone receptor positive breast cancer in premenopausal women. However, it is reported that nearly 30% of patients receiving tamoxifen therapy have shown reduced or no benefits. This may be due to the high inter-individual variations in the CYP2D6 gene that is involved in tamoxifen metabolism. The CYP2D6*10 gene variant (rs1065852C>T) is reported to be commonly found in Asian and South Asian populations. The present study was undertaken to design a novel pharmacogenetic assay (Single step-Tetra Arms Polymerase Chain Reaction) for the identification of the CYP2D6*10 variant and implement the designed assay by genotyping a cohort of breast cancer patients. Results The novel assay was successfully designed, optimized and validated using Sanger sequencing. Blood samples from 70 patients were genotyped. The following bands were observed in the gel image: Control band at 454 bp; band for C allele at 195 bp; band for T allele at 300 bp. The genotype frequencies for the CYP2D6*10 (rs1065852C>T) variant were: CC-24.28% (17/70), CT-75.71% (53/70), TT-0% (0/70). The allele frequencies were: T-allele-37.86% and C-allele-62.14%. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-05993-6.
Collapse
Affiliation(s)
- Nadeeka Dimuthu Kumari Ranadeva
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka.
| | - Nirmala Dushyanthi Sirisena
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
| | - Tithila Kalum Wetthasinghe
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
| | - Nafeesa Noordeen
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
| | | |
Collapse
|
17
|
Mwaiswelo RO, Ngasala B, Msolo D, Kweka E, Mmbando BP, Mårtensson A. A single low dose of primaquine is safe and sufficient to reduce transmission of Plasmodium falciparum gametocytes regardless of cytochrome P450 2D6 enzyme activity in Bagamoyo district, Tanzania. Malar J 2022; 21:84. [PMID: 35279143 PMCID: PMC8917764 DOI: 10.1186/s12936-022-04100-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Primaquine is a pro-drug and its active metabolite is potent against mature Plasmodium falciparum gametocytes. Primaquine is metabolized by a highly polymorphic cytochrome P450 2D6 (CYP2D6) enzyme. Mutations in the gene encoding this enzyme may lead to impaired primaquine activity. This study assessed if 0.25 mg/kg single-dose primaquine is safe and sufficient to reduce transmission of gametocytes in individuals with no, reduced, or increased CYP2D6 enzyme activity. METHODS Between June 2019 and January 2020 children aged 1-10 years, attending at Yombo dispensary, Bagamoyo district, with confirmed microcopy-determined uncomplicated P. falciparum malaria were enrolled in the study. The enrolled patients were treated with a standard artemether-lumefantrine regimen plus 0.25 mg/kg single-dose primaquine and followed up for 28 days for clinical and laboratory assessment. Primaquine was administered with the first dose of artemether-lumefantrine. Safety assessment involved direct questioning and recording of the nature and incidence of clinical signs and symptoms, and measurement of haemoglobin (Hb) concentration. Blood samples collected from 100 patients were used for assessment of post-treatment infectiousness on day 7 using mosquito membrane feeding assays. Molecular methods were used to determine CYP2D6 and glucose-6-phosphate dehydrogenase (G6PD) status. The primary outcome was the safety of 0.25 mg/kg single-dose primaquine based on CYP2D6 status. RESULTS In total, 157 children [median age 6.4 (Interquartile range 4.0-8.2) years] were recruited, of whom 21.0% (33/157) and 12.7% (20/157) had reduced CYP2D6 and deficient G6PD activity, respectively. Day 3 mean absolute Hb concentration reduction was 1.50 g/dL [95% confidence interval (CI) 1.10-1.90] and 1.51 g/dL (95% CI 1.31-1.71) in reduced and normal CYP2D6 patients, respectively (t = 0.012, p = 0.990). The day 3 mean absolute Hb concentration reduction in G6PD deficient, G6PD normal and heterozygous female was 1.82 g/dL (95% CI 1.32-2.32), 1.48 g/dL (95% CI 1.30-1.67) and 1.47 g/dL (95% CI 0.76-2.18), respectively (F = 0.838, p = 0.435). Sixteen percent (16/98) of the patients each infected at least one mosquito on day 7, and of these, 10.0% (2/20) and 17.9% (14/78) had reduced and normal CYP2D6 enzyme activity, respectively (x2 = 0.736, p = 0.513). CONCLUSION Single-dose 0.25 mg/kg primaquine was safe and sufficient for reducing transmission of P. falciparum gametocytes regardless of CYP2D6 or G6PD status. Trial registration Study registration number: NCT03352843.
Collapse
Affiliation(s)
- Richard Owden Mwaiswelo
- Department of Research and Training, Tropical Pesticides Research Institute, Arusha, Tanzania.
- Department of Microbiology, Immunology and Parasitology, Hubert Kairuki Memorial University, Dar es Salaam, Tanzania.
- Department of Medical Parasitology and Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - Billy Ngasala
- Department of Medical Parasitology and Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Dominick Msolo
- College of Natural and Applied Sciences, University of Dar Es Salaam, Dar es Salaam, Tanzania
| | - Eliningaya Kweka
- Department of Research and Training, Tropical Pesticides Research Institute, Arusha, Tanzania
| | - Bruno P Mmbando
- Tanga Research Centre, National Institute for Medical Research, Tanga, Tanzania
| | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Wannasuphoprasit Y, Andersen SE, Arranz MJ, Catalan R, Jurgens G, Kloosterboer SM, Rasmussen HB, Bhat A, Irizar H, Koller D, Polimanti R, Wang B, Zartaloudi E, Austin-Zimmerman I, Bramon E. CYP2D6 Genetic Variation and Antipsychotic-Induced Weight Gain: A Systematic Review and Meta-Analysis. Front Psychol 2022; 12:768748. [PMID: 35185676 PMCID: PMC8850377 DOI: 10.3389/fpsyg.2021.768748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Antipsychotic-induced weight gain is a contributing factor in the reduced life expectancy reported amongst people with psychotic disorders. CYP2D6 is a liver enzyme involved in the metabolism of many commonly used antipsychotic medications. We investigated if CYP2D6 genetic variation influenced weight or BMI among people taking antipsychotic treatment. METHODS We conducted a systematic review and a random effects meta-analysis of publications in Pubmed, Embase, PsychInfo, and CENTRAAL that had BMI and/or weight measurements of patients on long-term antipsychotics by their CYP2D6-defined metabolic groups (poor, intermediate, normal/extensive, and ultra-rapid metabolizers, UMs). RESULTS Twelve studies were included in the systematic review. All cohort studies suggested that the presence of reduced-function or non-functional alleles for CYP2D6 was associated with greater antipsychotic-induced weight gain, whereas most cross-sectional studies did not find any significant associations. Seventeen studies were included in the meta-analysis with clinical data of 2,041 patients, including 93 poor metabolizers (PMs), 633 intermediate metabolizers (IMs), 1,272 normal metabolizers (NMs), and 30 UMs. Overall, we did not find associations in any of the comparisons made. The estimated pooled standardized differences for the following comparisons were (i) PM versus NM; weight = -0.07 (95%CI: -0.49 to 0.35, p = 0.74), BMI = 0.40 (95%CI: -0.19 to 0.99, p = 0.19). (ii) IM versus NM; weight = 0.09 (95% CI: -0.04 to 0.22, p = 0.16) and BMI = 0.09 (95% CI: -0.24 to 0.41, p = 0.60). (iii) UM versus EM; weight = 0.01 (95% CI: -0.37 to 0.40, p = 0.94) and BMI = -0.08 (95%CI: -0.57 to 0.42, p = 0.77). CONCLUSION Our systematic review of cohort studies suggested that CYP2D6 poor metabolizers have higher BMI than normal metabolizers, but the data of cross-sectional studies and the meta-analysis did not show this association. Although our review and meta-analysis constitutes one of the largest studies with comprehensively genotyped samples, the literature is still limited by small numbers of participants with genetic variants resulting in poor or UMs status. We need further studies with larger numbers of extreme metabolizers to establish its clinical utility in antipsychotic treatment. CYP2D6 is a key gene for personalized prescribing in mental health.
Collapse
Affiliation(s)
| | | | - Maria J Arranz
- Fundació Docència I Recerca, Mútua Terrassa, Barcelona, Spain
- Barcelona Clinic Schizophrenia Unit, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Rosa Catalan
- Barcelona Clinic Schizophrenia Unit, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
- CIBERSAM, Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Gesche Jurgens
- Clinical Pharmacological Unit, Zealand University Hospital, Roskilde, Denmark
| | - Sanne Maartje Kloosterboer
- Department of Hospital Pharmacy and Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Henrik Berg Rasmussen
- Institute of Biological Psychiatry, Mental Health Centre Sct Hans, Roskilde, Denmark
- Department of Science and Environment, Roskilde University Center, Roskilde, Denmark
| | - Anjali Bhat
- Division of Psychiatry, University College London, London, United Kingdom
| | - Haritz Irizar
- Division of Psychiatry, University College London, London, United Kingdom
| | - Dora Koller
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Renato Polimanti
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Baihan Wang
- Division of Psychiatry, University College London, London, United Kingdom
| | - Eirini Zartaloudi
- Division of Psychiatry, University College London, London, United Kingdom
| | - Isabelle Austin-Zimmerman
- Division of Psychiatry, University College London, London, United Kingdom
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, United Kingdom
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Camden and Islington NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
19
|
Hauser AS. Personalized Medicine Through GPCR Pharmacogenomics. COMPREHENSIVE PHARMACOLOGY 2022:191-219. [DOI: 10.1016/b978-0-12-820472-6.00100-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Pavez Loriè E, Baatout S, Choukér A, Buchheim JI, Baselet B, Dello Russo C, Wotring V, Monici M, Morbidelli L, Gagliardi D, Stingl JC, Surdo L, Yip VLM. The Future of Personalized Medicine in Space: From Observations to Countermeasures. Front Bioeng Biotechnol 2021; 9:739747. [PMID: 34966726 PMCID: PMC8710508 DOI: 10.3389/fbioe.2021.739747] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of personalized medicine is to detach from a “one-size fits all approach” and improve patient health by individualization to achieve the best outcomes in disease prevention, diagnosis and treatment. Technological advances in sequencing, improved knowledge of omics, integration with bioinformatics and new in vitro testing formats, have enabled personalized medicine to become a reality. Individual variation in response to environmental factors can affect susceptibility to disease and response to treatments. Space travel exposes humans to environmental stressors that lead to physiological adaptations, from altered cell behavior to abnormal tissue responses, including immune system impairment. In the context of human space flight research, human health studies have shown a significant inter-individual variability in response to space analogue conditions. A substantial degree of variability has been noticed in response to medications (from both an efficacy and toxicity perspective) as well as in susceptibility to damage from radiation exposure and in physiological changes such as loss of bone mineral density and muscle mass in response to deconditioning. At present, personalized medicine for astronauts is limited. With the advent of longer duration missions beyond low Earth orbit, it is imperative that space agencies adopt a personalized strategy for each astronaut, starting from pre-emptive personalized pre-clinical approaches through to individualized countermeasures to minimize harmful physiological changes and find targeted treatment for disease. Advances in space medicine can also be translated to terrestrial applications, and vice versa. This review places the astronaut at the center of personalized medicine, will appraise existing evidence and future preclinical tools as well as clinical, ethical and legal considerations for future space travel.
Collapse
Affiliation(s)
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.,Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Alexander Choukér
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Judith-Irina Buchheim
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Cinzia Dello Russo
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica Del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,MRC Centre for Drug Safety Science and Wolfson Centre for Personalized Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom
| | | | - Monica Monici
- ASA Campus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Dimitri Gagliardi
- Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Manchester, United Kingdom
| | - Julia Caroline Stingl
- Institute of Clinical Pharmacology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Leonardo Surdo
- Space Applications Services NV/SA for the European Space Agency, Noordwijk, Netherlands
| | - Vincent Lai Ming Yip
- MRC Centre for Drug Safety Science and Wolfson Centre for Personalized Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
21
|
Stäuble CK, Lampert ML, Allemann S, Hatzinger M, Hersberger KE, Meyer Zu Schwabedissen HE, Imboden C, Mikoteit T. Pharmacist-guided pre-emptive pharmacogenetic testing in antidepressant therapy (PrePGx): study protocol for an open-label, randomized controlled trial. Trials 2021; 22:919. [PMID: 34906208 PMCID: PMC8670138 DOI: 10.1186/s13063-021-05724-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background It is known that only 50% of patients diagnosed with major depressive disorders (MDD) respond to the first-line antidepressant treatment. Accordingly, there is a need to improve response rates to reduce healthcare costs and patient suffering. One approach to increase rates of treatment response might be the integration of pharmacogenetic (PGx) testing to stratify antidepressant drug selection. The goal of PGx assessments is to identify patients who have an increased risk to experience adverse drug reactions or non-response to specific drugs. Especially for antidepressants, there is compiling evidence on PGx influencing drug exposure as well as response. Methods This study is an open-label, randomized controlled trial conducted in two study centers in Switzerland: (1) the Psychiatric Clinic of Solothurn and (2) the Private Clinic Wyss in Münchenbuchsee. Adult inpatients diagnosed with a unipolar moderate or severe depressive episode are recruited at clinic admission and are included in the study. If the adjustment to a new antidepressant pharmacotherapy is necessary, the participants are randomized to either Arm A (intervention group) or Arm B (control group). If no new antidepressant pharmacotherapy is introduced the participants will be followed up in an observational arm. The intervention is the service of pharmacist-guided pre-emptive PGx testing to support clinical decision making on antidepressant selection and dosing. As a comparison, in the control group, the antidepressant pharmacotherapy is selected by the treating physician according to current treatment guidelines (standard of care) without the knowledge of PGx test results and support of clinical pharmacists. The primary outcome of this study compares the response rates under antidepressant treatment after 4 weeks between intervention and control arm. Discussion The findings from this clinical trial are expected to have a direct impact on inter-professional collaborations for the handling and use of PGx data in psychiatric practice. Trial registration ClinicalTrials.govNCT04507555. Registered on August 11, 2020. Swiss National Clinical Trials Portal SNCTP000004015. Registered August 18, 2020.
Collapse
Affiliation(s)
- Céline K Stäuble
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Institute of Hospital Pharmacy, Solothurner Spitäler AG, Olten, Switzerland
| | - Markus L Lampert
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Institute of Hospital Pharmacy, Solothurner Spitäler AG, Olten, Switzerland
| | - Samuel Allemann
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Martin Hatzinger
- Psychiatric Services Solothurn, Solothurner Spitäler AG and Faculty of Medicine, University of Basel, Solothurn, Switzerland
| | - Kurt E Hersberger
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | | | - Thorsten Mikoteit
- Psychiatric Services Solothurn, Solothurner Spitäler AG and Faculty of Medicine, University of Basel, Solothurn, Switzerland
| |
Collapse
|
22
|
Cicali EJ, Elchynski AL, Cook KJ, Houder JT, Thomas CD, Smith DM, Elsey A, Johnson JA, Cavallari LH, Wiisanen K. How to Integrate CYP2D6 Phenoconversion Into Clinical Pharmacogenetics: A Tutorial. Clin Pharmacol Ther 2021; 110:677-687. [PMID: 34231197 PMCID: PMC8404400 DOI: 10.1002/cpt.2354] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/15/2021] [Indexed: 01/26/2023]
Abstract
CYP2D6 genotype is increasingly being integrated into practice to guide prescribing of certain medications. The CYP2D6 drug metabolizing enzyme is susceptible to inhibition by concomitant drugs, which can lead to a clinical phenotype that is different from the genotype-based phenotype, a process referred to as phenoconversion. Phenoconversion is highly prevalent but not widely integrated into practice because of either limited experience on how to integrate or lack of knowledge that it has occurred. We built a calculator tool to help clinicians integrate a standardized method of assessing CYP2D6 phenoconversion into practice. During tool-building, we identified several clinical factors that need to be considered when implementing CYP2D6 phenoconversion into clinical practice. This tutorial shares the steps that the University of Florida Health Precision Medicine Program took to build the calculator tool and identified clinical factors to consider when implementing CYP2D6 phenoconversion in clinical practice.
Collapse
Affiliation(s)
- Emily J. Cicali
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| | - Amanda L. Elchynski
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| | - Kelsey J. Cook
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Jacksonville, Florida, USA
- Nemours Children’s Specialty Care, Jacksonville, FL, USA
| | - John T. Houder
- Dean’s Office, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Cameron D. Thomas
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| | - D. Max Smith
- MedStar Health, Columbia, Maryland
- Georgetown University Medical Center, Washington, DC
| | - Amanda Elsey
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| | - Larisa H. Cavallari
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| | - Kristin Wiisanen
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
23
|
Langman LJ, Gaskins J, Korte E, Maluf C, Wooderchak-Donahue WL, McMillin GA, Jannetto PJ, Hartley B, Malkani A, Yakkanti M, Jortani SA. Endogenous and iatrogenic sources of variability in response to opioid therapy in Post-Surgical and injured orthopedic patients. Clin Chim Acta 2021; 522:105-113. [PMID: 34384754 DOI: 10.1016/j.cca.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hydrocodone is the most prescribed opioid in the US. The objective was to evaluate associations between genetic, intrinsic, and extrinsic patient factors, plasma hydrocodone and metabolites, common side effects, and pain scores in a cohort of orthopedic surgery patients. METHODS Data for each patient was collected by review of the electronic hospital record (EHR), and patient interview. Patients were recruited from those with trauma or undergoing scheduled elective surgery for total knee replacement or total hip at the University of Louisville Hospital, Baptist East Hospital, and Jewish Hospital, Louisville, KY. Plasma opiate concentrations and a targeted genotyping panel was performed. RESULTS There were statistically significant correlations with daily (p < 0.001) and total dose (p = 0.002) of hydrocodone in hospital and duration of opioid therapy. The length of opioid administration was significantly shorter in CYP2D6 EM/UM versus CYP2D6 PM/IM patients (p = 0.018). Subjects with the OPRM1 c.118G variant were also on opioids longer (p = 0.022). The effect of co-administration of a CYP2D6 inhibitor had a significant effect on the length of opioid therapy (P < 0.001). And not surprisingly the effect of the inhibitor adjusted CYP2D6 phenotype was greater in both the hospital stay period and days of opioid use post hospital discharge (p < 0.001). CONCLUSIONS Based on this study, patients should be evaluated for the use of inhibitors of CYP2D6, during hydrocodone therapy can alter the phenotype of the patient (phenocopy) and increase the probability that the patient will be on opioids for longer periods of time.
Collapse
Affiliation(s)
- Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, United States of America.
| | - Jeremy Gaskins
- Departments of Bioinformatics and Biostatistics, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Erik Korte
- Departments of Pathology, and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Cynthia Maluf
- Departments of Pathology, and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, United States of America
| | | | - Gwendolyn A McMillin
- Department of Pathology, University of Utah, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States of America
| | - Paul J Jannetto
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, United States of America
| | - Brandi Hartley
- Departments of Orthopedic Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Arthur Malkani
- Departments of Orthopedic Surgery, University of Louisville School of Medicine, Louisville, KY, United States of America
| | | | - Saeed A Jortani
- Departments of Pathology, and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, United States of America
| |
Collapse
|
24
|
van der Lee M, Allard WG, Vossen RHAM, Baak-Pablo RF, Menafra R, Deiman BALM, Deenen MJ, Neven P, Johansson I, Gastaldello S, Ingelman-Sundberg M, Guchelaar HJ, Swen JJ, Anvar SY. Toward predicting CYP2D6-mediated variable drug response from CYP2D6 gene sequencing data. Sci Transl Med 2021; 13:13/603/eabf3637. [PMID: 34290055 DOI: 10.1126/scitranslmed.abf3637] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/11/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
Pharmacogenomics is a key component of personalized medicine that promises safer and more effective drug treatment by individualizing drug choice and dose based on genetic profiles. In clinical practice, genetic biomarkers are used to categorize patients into *-alleles to predict CYP450 enzyme activity and adjust drug dosages accordingly. However, this approach leaves a large part of variability in drug response unexplained. Here, we present a proof-of-concept approach that uses continuous-scale (instead of categorical) assignments to predict enzyme activity. We used full CYP2D6 gene sequences obtained with long-read amplicon-based sequencing and cytochrome P450 (CYP) 2D6-mediated tamoxifen metabolism data from a prospective study of 561 patients with breast cancer to train a neural network. The model explained 79% of interindividual variability in CYP2D6 activity compared to 54% with the conventional *-allele approach, assigned enzyme activities to known alleles with previously reported effects, and predicted the activity of previously uncharacterized combinations of variants. The results were replicated in an independent cohort of tamoxifen-treated patients (model R 2 adjusted = 0.66 versus *-allele R 2 adjusted = 0.35) and a cohort of patients treated with the CYP2D6 substrate venlafaxine (model R 2 adjusted = 0.64 versus *-allele R 2 adjusted = 0.55). Human embryonic kidney cells were used to confirm the effect of five genetic variants on metabolism of the CYP2D6 substrate bufuralol in vitro. These results demonstrate the advantage of a continuous scale and a completely phased genotype for prediction of CYP2D6 enzyme activity and could potentially enable more accurate prediction of individual drug response.
Collapse
Affiliation(s)
- Maaike van der Lee
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Network for Personalised Therapeutics, 2333 ZA Leiden, Netherlands
| | - William G Allard
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Rolf H A M Vossen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Renée F Baak-Pablo
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Roberta Menafra
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Birgit A L M Deiman
- Clinical Laboratory, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, Netherlands
| | - Maarten J Deenen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Department of Clinical Pharmacy, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, Netherlands
| | | | - Inger Johansson
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum 5B, 171 77 Solna, Sweden
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum 5B, 171 77 Solna, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum 5B, 171 77 Solna, Sweden
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Network for Personalised Therapeutics, 2333 ZA Leiden, Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands. .,Leiden Network for Personalised Therapeutics, 2333 ZA Leiden, Netherlands
| | - Seyed Yahya Anvar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands. .,Leiden Network for Personalised Therapeutics, 2333 ZA Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| |
Collapse
|
25
|
Marshall JC, Liang Y, Sahasrabudhe V, Tensfeldt T, Fediuk DJ, Zhou S, Krishna R, Dawra VK, Wood LS, Sweeney K. Meta-Analysis of Noncompartmental Pharmacokinetic Parameters of Ertugliflozin to Evaluate Dose Proportionality and UGT1A9 Polymorphism Effect on Exposure. J Clin Pharmacol 2021; 61:1220-1231. [PMID: 33813736 PMCID: PMC8453771 DOI: 10.1002/jcph.1866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/29/2021] [Indexed: 12/16/2022]
Abstract
Ertugliflozin, a sodium‐glucose cotransporter 2 inhibitor, is primarily metabolized via glucuronidation by the uridine 5′‐diphospho‐glucuronosyltransferase (UGT) isoform UGT1A9. This noncompartmental meta‐analysis of ertugliflozin pharmacokinetics evaluated the relationship between ertugliflozin exposure and dose, and the effect of UGT1A9 genotype on ertugliflozin exposure. Pharmacokinetic data from 25 phase 1 studies were pooled. Structural models for dose proportionality described the relationship between ertugliflozin area under the plasma concentration‐time curve (AUC) or maximum observed plasma concentration (Cmax) and dose. A structural model for the UGT1A9 genotype described the relationship between ertugliflozin AUC and dose, with genotype information on 3 UGT1A9 polymorphisms (UGT1A9‐2152, UGT1A9*3, UGT1A9*1b) evaluated as covariates from the full model. Ertugliflozin AUC and Cmax increased in a dose‐proportional manner over the dose range of 0.5‐300 mg, and population‐predicted AUC and Cmax values for the 5‐ and 15‐mg ertugliflozin tablets administered in the fasted state demonstrated good agreement with the observed data. The largest change in ertugliflozin AUC was in subjects carrying the UGT1A9*3 heterozygous variant, with population‐predicted AUC (90% confidence interval) values of 485 ng·h/mL (458 to 510 ng·h/mL) and 1560 ng·h/mL (1480 to 1630 ng·h/mL) for ertugliflozin 5 and 15 mg, respectively, compared with 436 ng·h/mL (418 to 455 ng·h/mL) and 1410 ng·h/mL (1350 to 1480 ng·h/mL), respectively, in wild‐type subjects. Overall, the mean effects of the selected UGT1A9 variants on ertugliflozin AUC were within ±10% of the wild type. UGT1A9 genotype did not have any clinically meaningful effects on ertugliflozin exposure in healthy subjects. No ertugliflozin dose adjustment would be required in patients with the UGT1A9 variants assessed in this study.
Collapse
Affiliation(s)
| | | | | | | | | | - Susan Zhou
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | | | | | | | |
Collapse
|
26
|
Pratt VM, Cavallari LH, Del Tredici AL, Gaedigk A, Hachad H, Ji Y, Kalman LV, Ly RC, Moyer AM, Scott SA, van Schaik RHN, Whirl-Carrillo M, Weck KE. Recommendations for Clinical CYP2D6 Genotyping Allele Selection: A Joint Consensus Recommendation of the Association for Molecular Pathology, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, and the European Society for Pharmacogenomics and Personalized Therapy. J Mol Diagn 2021; 23:1047-1064. [PMID: 34118403 DOI: 10.1016/j.jmoldx.2021.05.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 01/14/2023] Open
Abstract
The goals of the Association for Molecular Pathology Clinical Practice Committee's Pharmacogenomics (PGx) Working Group are to define the key attributes of pharmacogenetic alleles recommended for clinical testing, and to determine a minimal set of variants that should be included in clinical PGx genotyping assays. This document series provides recommendations on a minimal panel of variant alleles (Tier 1) and an extended panel of variant alleles (Tier 2) that will aid clinical laboratories in designing assays for PGx testing. When developing these recommendations, the Association for Molecular Pathology PGx Working Group considered the functional impact of the variant alleles, allele frequencies in multiethnic populations, the availability of reference materials, as well as other technical considerations with regard to PGx testing. The ultimate goal of this Working Group is to promote standardization of PGx gene/allele testing across clinical laboratories. This document is focused on clinical CYP2D6 PGx testing that may be applied to all cytochrome P450 2D6-metabolized medications. These recommendations are not meant to be interpreted as prescriptive but to provide a reference guide for clinical laboratories that may be either implementing PGx testing or reviewing and updating their existing platform.
Collapse
Affiliation(s)
- Victoria M Pratt
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Larisa H Cavallari
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida
| | - Andria L Del Tredici
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Millennium Health, LLC, San Diego, California
| | - Andrea Gaedigk
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, and School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| | - Houda Hachad
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; private precision medicine consultancy, Seattle, Washington
| | - Yuan Ji
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, Utah
| | - Lisa V Kalman
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Division of Laboratory Systems, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Reynold C Ly
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ann M Moyer
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Stuart A Scott
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Stanford University, Stanford, California; Clinical Genomics Program, Stanford Health Care, Palo Alto, California
| | - R H N van Schaik
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Clinical Chemistry/IFCC Expert center Pharmacogenetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; European Society of Pharmacogenomics and Personalized Therapy
| | - Michelle Whirl-Carrillo
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Biomedical Data Science, Stanford University, Stanford, California
| | - Karen E Weck
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine and Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
27
|
Evaluation of Cinnamon (Cinnamomum Verum) Effects on Liver CYP450 2D1 Activity and Hepatic Clearance in Diabetic Rats. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.101797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: The present study assessed the effects of cinnamon on the activity of the liver CYP2D1 enzyme and hepatic clearance in the rat model of type 1 and 2 diabetes mellitus. Methods: Male Wistar rats were randomly categorized into 8 groups. Fourteen days after induction of diabetes type 1 and 2, type 1 groups received cinnamon and insulin plus cinnamon and type 2 groups received cinnamon and metformin plus cinnamon daily for 14 days. On day 28, rats were subjected to liver perfusion by buffer containing dextromethorphan as the CYP2D1 enzyme activity probe. Perfused samples were analyzed by high-performance liquid chromatography (HPLC) with fluorescence (FL) detection to evaluate the CYP2D1 activity and hepatic clearance. Results: In the control group, enzyme activity and hepatic clearance changed from 0.0081 ± 0.00009 and 6.09 ± 0.2 mL/min to 0.0059 ± 0.0001 and 3.71 ± 0.07 mL/min in the untreated type 1 diabetic rats and to 0.0006 ± 0.0001 and 5.19 ± 0.02 mL/min in untreated type 2 ones. These pharmacokinetic (PK) parameters changed to 0.0069 ± 0.0005 and 6.27 ± 0.06 mL/min in treated type 1 and 0.0115 ± 0.0003 and 5.79 ± 0.11 mL/min in the treated type 2 rats with only cinnamon administration. Treatment with cinnamon plus insulin or metformin modulated these PK parameters to 0.0039 ± 0.00006 and 4.88 ± 0.13 mL/min in type 1 and 0.0092 ± 0.0005 and 6.13 ± 0.01 mL/min in type 2 diabetic rats. Conclusions: Cinnamon can act as an effective complementary medicine in order to normalize the metabolism and clearance processes in diabetes mellitus.
Collapse
|
28
|
Al-Mahayri ZN, Patrinos GP, Wattanapokayakit S, Iemwimangsa N, Fukunaga K, Mushiroda T, Chantratita W, Ali BR. Variation in 100 relevant pharmacogenes among emiratis with insights from understudied populations. Sci Rep 2020; 10:21310. [PMID: 33277594 PMCID: PMC7718919 DOI: 10.1038/s41598-020-78231-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023] Open
Abstract
Genetic variations have an established impact on the pharmacological response. Investigating this variation resulted in a compilation of variants in "pharmacogenes". The emergence of next-generation sequencing facilitated large-scale pharmacogenomic studies and exhibited the extensive variability of pharmacogenes. Some rare and population-specific variants proved to be actionable, suggesting the significance of population pharmacogenomic research. A profound gap exists in the knowledge of pharmacogenomic variants enriched in some populations, including the United Arab Emirates (UAE). The current study aims to explore the landscape of variations in relevant pharmacogenes among healthy Emiratis. Through the resequencing of 100 pharmacogenes for 100 healthy Emiratis, we identified 1243 variants, of which 63% are rare (minor allele frequency ≤ 0.01), and 30% were unique. Filtering the variants according to Pharmacogenomics Knowledge Base (PharmGKB) annotations identified 27 diplotypes and 26 variants with an evident clinical relevance. Comparison with global data illustrated a significant deviation of allele frequencies in the UAE population. Understudied populations display a distinct allelic architecture and various rare and unique variants. We underscored pharmacogenes with the highest variation frequencies and provided investigators with a list of candidate genes for future studies. Population pharmacogenomic studies are imperative during the pursuit of global pharmacogenomics implementation.
Collapse
Affiliation(s)
- Zeina N Al-Mahayri
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | - George P Patrinos
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates.,Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, Patras, Greece.,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sukanya Wattanapokayakit
- Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Nareenart Iemwimangsa
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Koya Fukunaga
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates. .,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates. .,Department of Genetics and Genomics, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
29
|
Packiasabapathy S, Rangasamy V, Horn N, Hendrickson M, Renschler J, Sadhasivam S. Personalized pediatric anesthesia and pain management: problem-based review. Pharmacogenomics 2020; 21:55-73. [PMID: 31849281 DOI: 10.2217/pgs-2019-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pharmacogenetics, the genetic influence on the interpersonal variability in drug response, has enabled tailored pharmacotherapy and emerging 'personalized medicine.' Although oncology spearheaded the clinical implementation of personalized medicine, other specialties are rapidly catching up. In anesthesia, classical examples of genetically mediated idiosyncratic reactions have been long known (e.g., malignant hyperthermia and prolonged apnea after succinylcholine). The last two decades have witnessed an expanding body of pharmacogenetic evidence in anesthesia. This review highlights some of the prominent pharmacogenetic associations studied in anesthesia and pain management, with special focus on pediatric anesthesia.
Collapse
Affiliation(s)
- Senthil Packiasabapathy
- Department of Anesthesia, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA
| | - Valluvan Rangasamy
- Department of Anesthesia, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA
| | - Nicole Horn
- Department of Anesthesia, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA
| | - Michele Hendrickson
- Department of Anesthesia, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA
| | - Janelle Renschler
- Department of Anesthesia, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA
| | - Senthilkumar Sadhasivam
- Department of Anesthesia, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN 46202, USA
| |
Collapse
|
30
|
Edris A, Vanoverschelde A, Bushaj P, Van Nieuwerburgh F, Lahousse L. Pharmacogenetics in clinical practice: current level of knowledge among Flemish physicians and pharmacists. THE PHARMACOGENOMICS JOURNAL 2020; 21:78-84. [PMID: 32848197 DOI: 10.1038/s41397-020-00180-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 06/17/2020] [Accepted: 08/12/2020] [Indexed: 12/27/2022]
Abstract
Over the past decade, pharmacogenetics (PGx) became an essential tool for personalized medicine although its clinical implementation is still limited. We aimed to assess the current level of knowledge, applications, and expectations of Flemish pharmacists and physicians towards PGx and determine the factors that influence healthcare professionals' knowledge of PGx, aiming to guide future implementation initiatives. A web-based cross-sectional survey was conducted from 8 March 2019 to 8 April 2019, targeting pharmacists, physicians, and trainees of both professions. Ten questions were used to assess the participants' knowledge about PGx. Multivariable linear regression was used to assess the association of profession, experience, practice setting, and prior education with the level of PGx knowledge. In total, 201 Flemish healthcare providers participated, including 100 pharmacists, 73 physicians, and 28 trainees. The majority (78%) of participants were unfamiliar with the basic principles of PGx and its application in clinical practice. The mean percentage of correct answers achieved for the knowledge assessment questions was 34%. Only 9% had counseled patients, while 8% assisted other healthcare professionals on PGx tests the past year. Participants' PGx knowledge was significantly affected by their profession, practice setting, and level of prior education independent of years of experience. These findings provide insight into factors affecting the knowledge of PGx and the current level of PGx implementation in Flemish clinical practice. This may form a basis for developing educational initiatives to enhance the clinical application of PGx in Flanders.
Collapse
Affiliation(s)
- Ahmed Edris
- Department of Bioanalysis, Pharmaceutical Care Unit, Ghent University, Ghent, Belgium
| | - Anna Vanoverschelde
- Department of Bioanalysis, Pharmaceutical Care Unit, Ghent University, Ghent, Belgium
| | - Pranvera Bushaj
- Department of Bioanalysis, Pharmaceutical Care Unit, Ghent University, Ghent, Belgium
| | | | - Lies Lahousse
- Department of Bioanalysis, Pharmaceutical Care Unit, Ghent University, Ghent, Belgium.
| |
Collapse
|
31
|
DeFilippis EM, Bajaj NS, Singh A, Malloy R, Givertz MM, Blankstein R, Bhatt DL, Vaduganathan M. Marijuana Use in Patients With Cardiovascular Disease: JACC Review Topic of the Week. J Am Coll Cardiol 2020; 75:320-332. [PMID: 31976871 PMCID: PMC7977484 DOI: 10.1016/j.jacc.2019.11.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022]
Abstract
Marijuana use is increasing as more states are legalizing cannabis for both medicinal and recreational purposes. National survey data estimate that >2 million Americans with established cardiovascular diseases currently use or have used marijuana in its variety of forms, including inhalation and vaping. Cannabinoid receptors are distributed in multiple tissue beds and cells, including platelets, adipose tissue, and myocytes. Observational data suggest associations between marijuana and a broad range of adverse cardiovascular risks. Marijuana is becoming increasingly potent, and smoking marijuana carries many of the same cardiovascular health hazards as smoking tobacco. Synthetic cannabinoids have been linked to more sustained and deleterious pharmacodynamic effects. Marijuana is classified as a Schedule I substance, thus limiting its rigorous study for cardiovascular health effects. This review summarizes cardiovascular considerations related to marijuana use, pharmacological interactions, and future steps to provide clearer guidance regarding its cardiovascular safety. Screening for marijuana use is encouraged, especially in young patients presenting with cardiovascular disease.
Collapse
Affiliation(s)
- Ersilia M DeFilippis
- Columbia University Irving Medical Center, New York, New York. https://twitter.com/ersied727
| | - Navkaranbir S Bajaj
- University of Alabama at Birmingham, Birmingham, Alabama. https://twitter.com/bajaj_nav
| | - Amitoj Singh
- Sarver Heart Center, University of Arizona, Tucson, Arizona
| | - Rhynn Malloy
- Brigham and Women's Hospital Heart & Vascular Center and Harvard Medical School, Boston, Massachusetts
| | - Michael M Givertz
- Brigham and Women's Hospital Heart & Vascular Center and Harvard Medical School, Boston, Massachusetts
| | - Ron Blankstein
- Brigham and Women's Hospital Heart & Vascular Center and Harvard Medical School, Boston, Massachusetts. https://twitter.com/RonBlankstein
| | - Deepak L Bhatt
- Brigham and Women's Hospital Heart & Vascular Center and Harvard Medical School, Boston, Massachusetts. https://twitter.com/DLBHATTMD
| | - Muthiah Vaduganathan
- Brigham and Women's Hospital Heart & Vascular Center and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
32
|
Marin JJG, Serrano MA, Monte MJ, Sanchez-Martin A, Temprano AG, Briz O, Romero MR. Role of Genetic Variations in the Hepatic Handling of Drugs. Int J Mol Sci 2020; 21:E2884. [PMID: 32326111 PMCID: PMC7215464 DOI: 10.3390/ijms21082884] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
The liver plays a pivotal role in drug handling due to its contribution to the processes of detoxification (phases 0 to 3). In addition, the liver is also an essential organ for the mechanism of action of many families of drugs, such as cholesterol-lowering, antidiabetic, antiviral, anticoagulant, and anticancer agents. Accordingly, the presence of genetic variants affecting a high number of genes expressed in hepatocytes has a critical clinical impact. The present review is not an exhaustive list but a general overview of the most relevant variants of genes involved in detoxification phases. The available information highlights the importance of defining the genomic profile responsible for the hepatic handling of drugs in many ways, such as (i) impaired uptake, (ii) enhanced export, (iii) altered metabolism due to decreased activation of prodrugs or enhanced inactivation of active compounds, and (iv) altered molecular targets located in the liver due to genetic changes or activation/downregulation of alternative/compensatory pathways. In conclusion, the advance in this field of modern pharmacology, which allows one to predict the outcome of the treatments and to develop more effective and selective agents able to overcome the lack of effect associated with the existence of some genetic variants, is required to step forward toward a more personalized medicine.
Collapse
Affiliation(s)
- Jose J. G. Marin
- HEVEFARM Group, Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.A.S.); (M.J.M.); (A.S.-M.); (A.G.T.); (O.B.); (M.R.R.)
| | | | | | | | | | | | | |
Collapse
|
33
|
Kamenski G, Ayazseven S, Berndt A, Fink W, Kamenski L, Zehetmayer S, Pühringer H. Clinical Relevance of CYP2D6 Polymorphisms in Patients of an Austrian Medical Practice: A Family Practice-Based Observational Study. Drugs Real World Outcomes 2020; 7:63-73. [PMID: 31863305 PMCID: PMC7060981 DOI: 10.1007/s40801-019-00177-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Around 20-30% of all prescribed drugs are estimated to be metabolised by the cytochrome P450 (CYP) 2D6 enzyme. In a medical practice, it is usually not known whether a patient is a poor, intermediate, normal or ultra-rapid metaboliser for CYP2D6-metabolised drugs. OBJECTIVE This study aims to explore the clinical relevance and the extent of hazardous prescriptions by analysing the metaboliser status of patients already taking such drugs. METHODS This is a family practice-based observational study performed in a rural practice for general and family medicine in Lower Austria providing care for approximately 2100 patients annually. In 287 consecutive patients, who had taken or were taking a drug metabolised by CYP2D6 during the last 3 years, the metaboliser status was analysed. RESULTS The genetic analysis of 287 patients resulted in 51.22% normal metabolisers, 38.68% intermediate metabolisers, 6.27% poor metabolisers and 3.83% ultra-rapid metabolisers. In 50 cases (poor metaboliser, intermediate metaboliser and ultra-rapid metaboliser, i.e. 17.42% of all tested patients taking a CYP2D6-specific drug), an altered gene function was identified, for which clinical guideline annotations, drug label annotations, or clinical annotations are available. Allele and genotype frequencies were in accordance with data from other European studies. CONCLUSIONS In 17.42% of all patients already taking a drug metabolised by CYP2D6, knowledge of the genetically defined metaboliser status would have been of immediate clinical relevance before prescribing the drug. CLINICALTRIALS. GOV IDENTIFIER NCT03859622.
Collapse
Affiliation(s)
- Gustav Kamenski
- Karl Landsteiner Institute for Systematics in General Medicine, Angern, Austria.
- Department of General Practice, Centre for Public Health, Medical University Vienna, Vienna, Austria.
| | | | - Anne Berndt
- R&D Department, ViennaLab Diagnostic GmbH, Vienna, Austria
| | - Waltraud Fink
- Karl Landsteiner Institute for Systematics in General Medicine, Angern, Austria
| | | | - Sonja Zehetmayer
- Section for Medical Statistics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
34
|
Nofziger C, Turner AJ, Sangkuhl K, Whirl-Carrillo M, Agúndez JAG, Black JL, Dunnenberger HM, Ruano G, Kennedy MA, Phillips MS, Hachad H, Klein TE, Gaedigk A. PharmVar GeneFocus: CYP2D6. Clin Pharmacol Ther 2020; 107:154-170. [PMID: 31544239 PMCID: PMC6925641 DOI: 10.1002/cpt.1643] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/29/2019] [Indexed: 01/13/2023]
Abstract
The Pharmacogene Variation Consortium (PharmVar) provides nomenclature for the highly polymorphic human CYP2D6 gene locus. CYP2D6 genetic variation impacts the metabolism of numerous drugs and, thus, can impact drug efficacy and safety. This GeneFocus provides a comprehensive overview and summary of CYP2D6 genetic variation and describes how the information provided by PharmVar is utilized by the Pharmacogenomics Knowledgebase (PharmGKB) and the Clinical Pharmacogenetics Implementation Consortium (CPIC).
Collapse
Affiliation(s)
| | - Amy J. Turner
- Department of Pediatrics, Section of Genomic Pediatrics and Children’s Research Institute, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- RPRD Diagnostics LLC, Wauwatosa, Wisconsin, USA
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | | | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, UEx, Cáceres; ARADyAL Instituto de Salud Carlos III. Spain
| | - John L. Black
- Personalized Genomics Laboratory, Division of Laboratory Genetics and Genomics, Mayo Clinic laboratories, Mayo Clinic, Rochester MN (200 1st Street SW, Rochester MN 55902)
| | - Henry M. Dunnenberger
- Mark R. Neaman Center for Personalized Medicine, NorthShore University HealthSystem, Evanton, IL, USA
| | - Gualberto Ruano
- Institute of Living at Hartford Hospital, Genomas Laboratory of Personalized Health, Hartford, Connecticut (67 Jefferson Street, Hartford, Connecticut 06106)
| | - Martin A. Kennedy
- Department of Pathology and Biomedical Science, University Otago, Christchurch, New Zealand
| | - Michael S. Phillips
- Sequence Bioinformatics Inc., 139 Water Street, 2 Floor, St. John’s NL, A1C 1B2, Canada
| | | | - Teri E. Klein
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Kansas City, Kansas City and School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
35
|
Manoharan A, Shewade DG, Ravindranath PA, Rajkumar RP, Ramprasad VL, Adithan S, Damodaran SE. Resequencing CYP2D6 gene in Indian population: CYP2D6*41 identified as the major reduced function allele. Pharmacogenomics 2019; 20:719-729. [PMID: 31368850 DOI: 10.2217/pgs-2019-0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aim: The CYP2D6 gene is highly polymorphic and harbors population specific alleles that define its predominant metabolizer phenotype. This study aimed to identify polymorphisms in Indian population owing to scarcity of CYP2D6 data in this population. Materials & methods: The CYP2D6 gene was resequenced in 105 south Indians using next generation sequencing technology and haplotypes were reconstructed. Results & conclusion: Four novel missense variants have been designated as CYP2D6*110, *111, *112 and *113. The most common alleles were CYP2D6*1 (42%), *2 (32%), and *41 (12.3%) and diplotypes were CYP2D6*1/*2 (26%), *1/*1 (11%), *2/*41 (10%) and *1/*41 (7%) accounting for high incidence of extensive metabolizers in Indians.
Collapse
Affiliation(s)
- Aarthi Manoharan
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| | - Deepak Gopal Shewade
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| | | | - Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| | | | - Surendiran Adithan
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| | - Solai Elango Damodaran
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| |
Collapse
|
36
|
Ramírez B, Niño-Orrego MJ, Cárdenas D, Ariza KE, Quintero K, Contreras Bravo NC, Tamayo-Agudelo C, González MA, Laissue P, Fonseca Mendoza DJ. Copy number variation profiling in pharmacogenetics CYP-450 and GST genes in Colombian population. BMC Med Genomics 2019; 12:110. [PMID: 31324178 PMCID: PMC6642477 DOI: 10.1186/s12920-019-0556-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Copy Number variation (CNVs) in genes related to drug absorption, distribution, metabolism and excretion (ADME) are relevant in the interindividual variability of drug response. Studies of the CNVs in ADME genes in Latin America population are lacking. The objective of the study was to identify the genetic variability of CNVs in CYP-450 and GST genes in a subgroup of individuals of Colombian origin. METHODS Genomic DNA was isolated from 123 healthy individuals from a Colombian population. Multiplex Ligation-Dependent Probe Amplification (MLPA) was performed for the identification of CNVs in 40 genomic regions of 11 CYP-450 and 3 GST genes. The genetic variability, allelic and genotypic frequencies were analyzed. RESULTS We found that 13 out of 14 genes had CNVs: 5 (35.7%) exhibited deletions and duplications, while 8 (57.1%) presented either deletions or duplications.. 33.3% of individuals carried deletions and duplications while 49.6% had a unique type of CNV (deletion or duplication). The allelic frequencies of the CYP and GST genes were 0 to 47.6% (allele null), 0 to 17.5% (duplicated alleles) and 37 to 100% (normal alleles). CONCLUSIONS Our results describe, for the first time, the genomic profile of CNVs in a subgroup of Colombian population in GST and CYP-450 genes. GST genes indicated greater genetic variability than CYP-450 genes. The data obtained contributes to the knowledge of genetic profiles in Latin American subgroups. Although the clinical relevance of CNVs has not been fully established, it is a valuable source of pharmacogenetic variability data with potential involvement in the response to medications.
Collapse
Affiliation(s)
- Brian Ramírez
- GENIUROS Research Group, Center For Research in Genetics and Genomics - CIGGUR, School of Medicine and Health Sciences, Universidad Del Rosario, Carrera 24 N° 63C-69, CP 112111, Bogotá DC, Colombia
| | - María José Niño-Orrego
- GENIUROS Research Group, Center For Research in Genetics and Genomics - CIGGUR, School of Medicine and Health Sciences, Universidad Del Rosario, Carrera 24 N° 63C-69, CP 112111, Bogotá DC, Colombia
| | - Daniel Cárdenas
- GENIUROS Research Group, Center For Research in Genetics and Genomics - CIGGUR, School of Medicine and Health Sciences, Universidad Del Rosario, Carrera 24 N° 63C-69, CP 112111, Bogotá DC, Colombia
| | - Kevin Enrique Ariza
- GENIUROS Research Group, Center For Research in Genetics and Genomics - CIGGUR, School of Medicine and Health Sciences, Universidad Del Rosario, Carrera 24 N° 63C-69, CP 112111, Bogotá DC, Colombia
| | - Karol Quintero
- GENIUROS Research Group, Center For Research in Genetics and Genomics - CIGGUR, School of Medicine and Health Sciences, Universidad Del Rosario, Carrera 24 N° 63C-69, CP 112111, Bogotá DC, Colombia
| | - Nora Constanza Contreras Bravo
- GENIUROS Research Group, Center For Research in Genetics and Genomics - CIGGUR, School of Medicine and Health Sciences, Universidad Del Rosario, Carrera 24 N° 63C-69, CP 112111, Bogotá DC, Colombia
| | - Caroll Tamayo-Agudelo
- GENIUROS Research Group, Center For Research in Genetics and Genomics - CIGGUR, School of Medicine and Health Sciences, Universidad Del Rosario, Carrera 24 N° 63C-69, CP 112111, Bogotá DC, Colombia
| | - María Alejandra González
- GENIUROS Research Group, Center For Research in Genetics and Genomics - CIGGUR, School of Medicine and Health Sciences, Universidad Del Rosario, Carrera 24 N° 63C-69, CP 112111, Bogotá DC, Colombia
| | - Paul Laissue
- GENIUROS Research Group, Center For Research in Genetics and Genomics - CIGGUR, School of Medicine and Health Sciences, Universidad Del Rosario, Carrera 24 N° 63C-69, CP 112111, Bogotá DC, Colombia
| | - Dora Janeth Fonseca Mendoza
- GENIUROS Research Group, Center For Research in Genetics and Genomics - CIGGUR, School of Medicine and Health Sciences, Universidad Del Rosario, Carrera 24 N° 63C-69, CP 112111, Bogotá DC, Colombia.
| |
Collapse
|
37
|
Mirzaev KB, Fedorinov DS, Ivashchenko DV, Sychev DA. Multi-Ethnic Analysis of Cardiac Pharmacogenetic Markers of Cytochrome P450 and Membrane Transporters Genes in the Russian Population. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2019. [DOI: 10.20996/1819-6446-2019-15-3-393-406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim. To summarize Russian studies using pharmacogenetic testing as applied to cardiology.Material and methods. The authors conducted an online search for articles in December 2018 using the following databases: PubMed, Google Scholar, eLIBRARY. The search was carried out by keywords: "Russia", "Russian", "cardiology" together with the terms associated with the polymorphic marker, including: «P450», «CYP2C19», «CYP2D6», «CYP2B1», «CYP2B6», «CYP2Е1», «CYP2C8», «CYP2C9», «CYP3A4», «CYP3A5», «CYP1A1», «CYP1A2», «CYP4F2», «CYP4F1», «ABCB1», «SLCO1B1», «VKORC1», «GGCX», «SULT1A1», «CULT1», «CES1», «gene», «genes», «pharmacogenetics», «pharmacogenomics», «ethnic group».Results. Generalization of information allowed to identify obscure genes that need to be investigated in pharmacogenetic studies. This information can be used for the development of dosing algorithms and the priority choice of drugs, considering the results of pharmacogenetic testing and planning future research.Conclusion. The results of the literature review indicate the importance of studying the most clinically valid and clinically useful pharmacogenetic markers (CYP2C19, CYP2C9, VKORC1, SLCO1B1) among various ethnic groups in the Russian Federation. With the accumulation of evidence of clinical validity and clinical utility of other pharmacogenetic markers (CES1, CYP2D6*4, etc.), the problem of interethnic differences in the carriage of clinically significant polymorphisms of these genes identified in previous studies in the Russian Federation increasingly requires attention. The most promising for the introduction into the clinical practice in the Russian Federation in the near future are polymorphic markers of the CYP2C19, CYP2C9, VKORC1 and SLCO1B1 genes.
Collapse
Affiliation(s)
- K. B. Mirzaev
- Russian Medical Academy of Continuing Professional Education
| | - D. S. Fedorinov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - D. A. Sychev
- Russian Medical Academy of Continuing Professional Education
| |
Collapse
|
38
|
Mirzaev KB, Fedorinov DS, Ivashchenko DV, Sychev DA. ADME pharmacogenetics: future outlook for Russia. Pharmacogenomics 2019; 20:847-865. [DOI: 10.2217/pgs-2019-0013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This systematic review reflects the results of pharmacogenetic studies in the Russian Federation aimed at studying the genes involved in the drug biotransformation system. The works of Russian researchers found by us are mostly devoted to microsomal liver oxidation enzymes (metabolism) and membrane transporter systems (absorption and excretion). This review presents population-ethnic and associative clinical studies on the genes of the CYP450 system, noncytochrome oxidation enzymes ( SULT1A1, CES1), membrane transporter system genes ( ABCB1, SLCO1B1) and warfarin biotransformation enzymes ( VKORC1, GGCX). The information is structured in the form of 11 tables, divided by regions of the Russian Federation.
Collapse
Affiliation(s)
- Karin B Mirzaev
- Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare, Moscow, Russian Federation
| | - Denis S Fedorinov
- Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare, Moscow, Russian Federation
| | - Dmitry V Ivashchenko
- Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare, Moscow, Russian Federation
| | - Dmitry A Sychev
- Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare, Moscow, Russian Federation
| |
Collapse
|
39
|
A Single Site Population Study to Investigate CYP2D6 Phenotype of Patients with Persistent Non-Malignant Pain. ACTA ACUST UNITED AC 2019; 55:medicina55060220. [PMID: 31141989 PMCID: PMC6631257 DOI: 10.3390/medicina55060220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023]
Abstract
Background and Objectives: Codeine requires biotransformation by the CYP2D6 enzyme, encoded by the polymorphic CYP2D6 gene, to morphine for therapeutic efficacy. CYP2D6 phenotypes of poor, intermediate, and ultra-rapid metabolisers are at risk of codeine non-response and adverse drug reactions due to altered CYP2D6 function. The aim of this study was to determine whether genotype, inferred phenotype, and urinary and oral fluid codeine O-demethylation metabolites could predict codeine non-response following a short course of codeine. Materials and Methods: There were 131 Caucasians with persistent pain enrolled. Baseline assessments were recorded, prohibited medications ceased, and DNA sampling completed before commencing codeine 30 mg QDS for 5 days. Day 4 urine samples were collected 1–2 h post morning dose for codeine O-demethylation metabolites analysis. Final pain assessments were conducted on day 5. Results: None of the poor, intermediate, ultra-rapid metabolisers and only 24.5% of normal metabolisers responded to codeine. A simple scoring system to predict analgesic response from day 4 urinary metabolites was devised with overall prediction success of 79% (sensitivity 0.8, specificity 0.78) for morphine and 79% (sensitivity 0.76, specificity 0.83) for morphine:creatinine ratio. Conclusions: In conclusion, this study provides tentative evidence that day 4 urinary codeine O-demethylation metabolites could predict non-response following a short course of codeine and could be utilised in the clinical assessment of codeine response at the point of care to improve analgesic efficacy and safety in codeine therapy. We offer a scoring system to predict codeine response from urinary morphine and urinary morphine:creatinine ratio collected on the morning of day 4 of codeine 30 mg QDS, but this requires validation before it could be considered for use to assess codeine response in clinical practice.
Collapse
|
40
|
Characterization and evolutionary dynamics of complex regions in eukaryotic genomes. SCIENCE CHINA-LIFE SCIENCES 2019; 62:467-488. [PMID: 30810961 DOI: 10.1007/s11427-018-9458-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/05/2018] [Indexed: 01/07/2023]
Abstract
Complex regions in eukaryotic genomes are typically characterized by duplications of chromosomal stretches that often include one or more genes repeated in a tandem array or in relatively close proximity. Nevertheless, the repetitive nature of these regions, together with the often high sequence identity among repeats, have made complex regions particularly recalcitrant to proper molecular characterization, often being misassembled or completely absent in genome assemblies. This limitation has prevented accurate functional and evolutionary analyses of these regions. This is becoming increasingly relevant as evidence continues to support a central role for complex genomic regions in explaining human disease, developmental innovations, and ecological adaptations across phyla. With the advent of long-read sequencing technologies and suitable assemblers, the development of algorithms that can accommodate sample heterozygosity, and the adoption of a pangenomic-like view of these regions, accurate reconstructions of complex regions are now within reach. These reconstructions will finally allow for accurate functional and evolutionary studies of complex genomic regions, underlying the generation of genotype-phenotype maps of unprecedented resolution.
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The current review will discuss the current literature on genetics of pain and analgesia, with special emphasis on perioperative setting. We will also discuss pharmacogenetics-based management guidelines, current clinical status and future perspectives. RECENT FINDINGS Recent literature suggests that the interindividual variability in pain and postoperative analgesic response is at least in part because of one's genetic make-up. Some of the well characterized polymorphisms that are associated with surgical pain and opioid-related postoperative adverse outcomes are described in catechol-O-methyl transferase, CYP2D6 and μ-opioid receptor (OPRM1), ATP-binding cassette subfamily B member 1, ABCC3, organic cation transporter 1 genes. Clinical Pharmacogenetics Implementation Consortium has put forth recommendations on CYP2D6 genotype-based opioid selection and dosing. The list of drug-gene pairs studied continue to expand. SUMMARY Pharmacogenetic approach marks the dawn of personalized pain medicine both in perioperative and chronic pain settings.
Collapse
|
42
|
Qiao W, Martis S, Mendiratta G, Shi L, Botton MR, Yang Y, Gaedigk A, Vijzelaar R, Edelmann L, Kornreich R, Desnick RJ, Scott SA. Integrated CYP2D6 interrogation for multiethnic copy number and tandem allele detection. Pharmacogenomics 2018; 20:9-20. [PMID: 30730286 DOI: 10.2217/pgs-2018-0135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIM To comprehensively interrogate CYP2D6 by integrating genotyping, copy number analysis and novel strategies to identify CYP2D6*36 and characterize CYP2D6 duplications. METHODS Genotyping of 16 CYP2D6 alleles, multiplex ligation-dependent probe amplification (MLPA) and CYP2D6*36 and duplication allele-specific genotyping were performed on 427 African-American, Asian, Caucasian, Hispanic, and Ashkenazi Jewish individuals. RESULTS A novel PCR strategy determined that almost half of all CYP2D6*10 (100C>T) alleles are actually *36 (isolated or in tandem with *10) and all identified duplication alleles were characterized. Integrated results from all testing platforms enabled the refinement of genotype frequencies across all studied populations. CONCLUSION The polymorphic CYP2D6 gene requires comprehensive interrogation to characterize allelic variation across ethnicities, which was enabled in this study by integrating multiplexed genotyping, MLPA copy number analysis, novel PCR strategies and duplication allele-specific genotyping.
Collapse
Affiliation(s)
- Wanqiong Qiao
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Suparna Martis
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Geetu Mendiratta
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Lisong Shi
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Mariana R Botton
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Yao Yang
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Raymon Vijzelaar
- MRC-Holland, Willem Schoutenstraat 6, Amsterdam, The Netherlands
| | - Lisa Edelmann
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Ruth Kornreich
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Robert J Desnick
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stuart A Scott
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| |
Collapse
|
43
|
Byeon JY, Kim YH, Lee CM, Kim SH, Chae WK, Jung EH, Choi CI, Jang CG, Lee SY, Bae JW, Lee YJ. CYP2D6 allele frequencies in Korean population, comparison with East Asian, Caucasian and African populations, and the comparison of metabolic activity of CYP2D6 genotypes. Arch Pharm Res 2018; 41:921-930. [PMID: 30191460 DOI: 10.1007/s12272-018-1075-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 01/09/2023]
Abstract
Cytochrome P450 (CYP) 2D6 is present in less than about 2% of all CYP enzymes in the liver, but it is involved in the metabolism of about 25% of currently used drugs. CYP2D6 is the most polymorphic among the CYP enzymes. We determined alleles and genotypes of CYP2D6 in 3417 Koreans, compared the frequencies of CYP2D6 alleles with other populations, and observed the differences in pharmacokinetics of metoprolol, a prototype CYP2D6 substrate, depending on CYP2D6 genotype. A total of 3417 unrelated healthy subjects were recruited for the genotyping of CYP2D6 gene. Among them, 42 subjects with different CYP2D6 genotypes were enrolled in the pharmacokinetic study of metoprolol. The functional allele *1 and *2 were present in frequencies of 34.6 and 11.8%, respectively. In decreased functional alleles, *10 was the most frequent with 46.2% and *41 allele was present in 1.4%. The nonfunctional alleles *5 and *14 were present at 4.5 and 0.5% frequency, respectively. The *X × N allele was present at a frequency of 1.0%. CYP2D6*1/*1, *1/*2 and *2/*2 genotypes with normal enzyme activity were present in 12.1%, 8.6% and 1.4% of the subjects, respectively. CYP2D6*5/*5, *5/*14, and *14/*14 genotypes classified as poor metabolizer were only present in 4, 2, and 1 subjects, respectively. Mutant genotypes with frequencies of more than 1% were CYP2D6*1/*10 (32.0%), *10/*10 (22.3%), *2/*10 (11.7%), *5/*10 (3.7%), *1/*5 (2.5%), and *10/*41 (1.2%). The relative clearance of metoprolol in CYP2D6*1/*10, *1/*5, *10/*10, *5/*10, and *5/*5 genotypes were 69%, 57%, 24%, 14% and 9% of CYP2D6*wt/*wt genotype, respectively. These results will be very useful in establishing a strategy for precision medicine related to the genetic polymorphism of CYP2D6.
Collapse
Affiliation(s)
- Ji-Young Byeon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Young-Hoon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choong-Min Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Se-Hyung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Won-Ki Chae
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eui-Hyun Jung
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
44
|
Del Tredici AL, Malhotra A, Dedek M, Espin F, Roach D, Zhu GD, Voland J, Moreno TA. Frequency of CYP2D6 Alleles Including Structural Variants in the United States. Front Pharmacol 2018; 9:305. [PMID: 29674966 PMCID: PMC5895772 DOI: 10.3389/fphar.2018.00305] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/15/2018] [Indexed: 01/01/2023] Open
Abstract
The CYP2D6 gene encodes an enzyme important in the metabolism of many commonly used medications. Variation in CYP2D6 is associated with inter-individual differences in medication response, and genetic testing is used to optimize medication therapy. This report describes a retrospective study of CYP2D6 allele frequencies in a large population of 104,509 de-identified patient samples across all regions of the United States (US). Thirty-seven unique CYP2D6 alleles including structural variants were identified. A majority of these alleles had frequencies which matched published frequency data from smaller studies, while eight had no previously published frequencies. Importantly, CYP2D6 structural variants were observed in 13.1% of individuals and accounted for 7% of the total variants observed. The majority of structural variants detected (73%) were decreased-function or no-function alleles. As such, structural variants were found in approximately one-third (30%) of CYP2D6 poor metabolizers in this study. This is the first CYP2D6 study to evaluate, with a consistent methodology, both structural variants and single copy alleles in a large US population, and the results suggest that structural variants have a substantial impact on CYP2D6 function.
Collapse
Affiliation(s)
| | - Alka Malhotra
- Millennium Health, LLC, San Diego, CA, United States
| | - Matthew Dedek
- Millennium Health, LLC, San Diego, CA, United States
| | - Frank Espin
- Millennium Health, LLC, San Diego, CA, United States
| | - Dan Roach
- Millennium Health, LLC, San Diego, CA, United States
| | - Guang-Dan Zhu
- Millennium Health, LLC, San Diego, CA, United States
| | - Joseph Voland
- Millennium Health, LLC, San Diego, CA, United States
| | | |
Collapse
|
45
|
Hoefer CC, Brick EJ, Savariar A, Kisor DF, Dawson A, Khatri A, Henriksen B. Allelic frequencies of 60 pharmacogene variants assessed within a Burmese population residing in northeast Indiana, USA. Pharmacogenomics 2018. [PMID: 29517466 DOI: 10.2217/pgs-2017-0204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM The aim of this study was to investigate 60 SNPs pertaining to drug metabolism and pharmacodynamics in the Burmese refugee population in the Fort Wayne, Indiana area to better inform patient care. MATERIALS & METHODS Sixty-two self-identified Burmese refugees were genotyped for 60 common SNPs pertaining to pharmacokinetic and pharmacodynamic pharmacogenes. The resulting allelic frequencies were compared with Ensembl's database for surrounding populations to Myanmar and America. RESULTS The frequency of OPRM1, CYP2D6, SLCO1B1, MTHFR and VKORC1 were approximately 20% different in the Burmese refugee population as compared with the Ensembl populations. CONCLUSION Our study demonstrates that genetic differences are expected to affect drug efficacy in patients with a Burmese background.
Collapse
Affiliation(s)
- Carrie C Hoefer
- Manchester University, College of Pharmacy, Fort Wayne, IN 46845, USA
| | - Emily J Brick
- Manchester University, College of Pharmacy, Fort Wayne, IN 46845, USA
| | - Ann Savariar
- Manchester University, College of Pharmacy, Fort Wayne, IN 46845, USA
| | - David F Kisor
- Manchester University, College of Pharmacy, Fort Wayne, IN 46845, USA
| | - Amy Dawson
- Fort Wayne Medical Education Program, Fort Wayne, IN 46802, USA
| | - Ahmad Khatri
- Fort Wayne Medical Education Program, Fort Wayne, IN 46802, USA
| | - Brian Henriksen
- Fort Wayne Medical Education Program, Fort Wayne, IN 46802, USA
| |
Collapse
|
46
|
Bank PCD, Swen JJ, Guchelaar HJ. Implementation of Pharmacogenomics in Everyday Clinical Settings. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 83:219-246. [PMID: 29801576 DOI: 10.1016/bs.apha.2018.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Currently, germline pharmacogenomics (PGx) is successfully implemented within certain specialties in clinical care. With the integration of PGx in pharmacotherapy multiple stakeholders are involved, which are identified in this chapter. Clinically relevant pharmacogenes with their related PGx test are discussed, along with diagnostic test criteria to guide clinicians and policy makers in PGx test selection. The chapter further reviews the similarities and the differences between the guidelines of the Dutch Pharmacogenetics Working Group and the Clinical Pharmacogenetics Implementation Consortium which both support healthcare professionals in understanding PGx test results and help guiding pharmacotherapy by providing evidence-based dosing recommendations. Finally, clinical studies which provide scientific evidence and information on cost-effectiveness supporting clinical implementation of PGx in clinical care are discussed along with the remaining barriers for adoption of PGx testing by healthcare professionals.
Collapse
Affiliation(s)
- Paul C D Bank
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
47
|
Abstract
Pharmacogenetics is the study of how genetics influences drug treatment outcomes. Much research has been conducted to identify and characterize gene variants that impact the pharmacokinetic and pharmacodynamic aspects of medications used to treat neurologic and psychiatric disorders. This chapter reviews the current state of pharmacogenetic aspects of these treatments. Medications with supporting pharmacogenetic information in product labeling, clinical guidelines, or important mechanistic implications are discussed. At this time, clinically relevant genetic variation in drug metabolizing enzymes may inform drug dosing for a number of medications metabolized in the liver. Additionally, genetic variation in immunological genes may be tested to assess risk for severe hypersensitivity reactions to some anticonvulsant drugs. Finally, a growing body of research highlights that genetic polymorphisms in drug targets may influence symptom response or tolerability to some treatments.
Collapse
Affiliation(s)
- Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
48
|
Hu X, Zhang M, Bai H, Wu L, Chen Y, Ding L, Zhao Z, Peng W, Liu T, Song J, Li Y, Lu X, Chen X, Zhou Y, Ying B. Antituberculosis Drug-Induced Adverse Events in the Liver, Kidneys, and Blood: Clinical Profiles and Pharmacogenetic Predictors. Clin Pharmacol Ther 2017; 104:326-334. [PMID: 29071720 PMCID: PMC6099196 DOI: 10.1002/cpt.924] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 02/05/2023]
Abstract
Antituberculosis drug‐induced adverse drug reactions (ATD‐ADRs) are increasing globally, and it is key to identify candidate ATD‐ADRs loci for clinical management. We prospectively enrolled 1,235 highly suspicious tuberculosis (TB) inpatients to investigate the profiles and genetic risk factors of ATD‐ADRs in the liver, kidneys, and blood. Overall, 644 subjects were eligible and genotyped for seven polymorphisms in drug‐metabolizing enzymes and transporter genes. Clinical follow‐up and blood analysis were performed regularly. We found that a notable rate of ATD‐ADRs (incidence: 16.5%, drug intervention rate: 10.4%), mainly involving hepatotoxicity (10.6%) and leukopenia (3.3%) in western China. CYP2D6 rs1135840 and NUDT15 rs116855232 increased the risks of hepatotoxicity and leukopenia with an odds ratio of 2.52 and 4.97, respectively. Both variants showed excellent negative predictive values (93.7% and 98.1%, respectively) but moderate sensitivities (72.7% and 52.4%, respectively). These data provide new insight into ATD‐ADRs in the Chinese population and may offer future leads for diagnosis and treatment.
Collapse
Affiliation(s)
- Xuejiao Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Mei Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hao Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Lijuan Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yanqing Chen
- Department of Emergency and Critical Care Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Liu Ding
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Wu Peng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Tangyuheng Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jiajia Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yinyu Li
- Department of Laboratory Medicine, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, P.R. China
| | - Xiaojun Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xuerong Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yanhong Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
49
|
Eum S, Lee AM, Bishop JR. Pharmacogenetic tests for antipsychotic medications: clinical implications and considerations. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 27757066 PMCID: PMC5067149 DOI: 10.31887/dcns.2016.18.3/jbishop] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Optimizing antipsychotic pharmacotherapy is often challenging due to significant variability in effectiveness and tolerability. Genetic factors influencing pharmacokinetics and pharmacodynamics may contribute to some of this variability. Research studies have characterized these pharmacogenetic relationships, and some genetic markers are now available as clinical tests. These advances in pharmacogenetics research and test availability have great potential to improve clinical outcomes and quality of life in psychiatric patients. For clinicians considering using pharmacogenetics, it is important to understand the clinical implications and also the limitations of markers included in currently available tests. This review focuses on pharmacokinetic and pharmacodynamic gene variants that are currently available in commercial genetic testing panels. Associations of these variants with clinical efficacy and adverse effects, as well as other clinical implications, in antipsychotic pharmacotherapy are discussed.
Collapse
Affiliation(s)
- Seenae Eum
- College of Pharmacy, Department of Experimental and Clinical Pharmacology; University of Minnesota, Minneapolis, Minnesota, USA
| | - Adam M Lee
- College of Pharmacy, Department of Experimental and Clinical Pharmacology; University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey R Bishop
- College of Pharmacy, Department of Experimental and Clinical Pharmacology; College of Medicine, Department of Psychiatry; University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
50
|
Ham AC, van Dijk SC, Swart KMA, Enneman AW, van der Zwaluw NL, Brouwer-Brolsma EM, van Schoor NM, Zillikens MC, Lips P, de Groot LCPGM, Hofman A, Witkamp RF, Uitterlinden AG, Stricker BH, van der Velde N. Beta-blocker use and fall risk in older individuals: Original results from two studies with meta-analysis. Br J Clin Pharmacol 2017; 83:2292-2302. [PMID: 28589543 DOI: 10.1111/bcp.13328] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 02/04/2023] Open
Abstract
AIMS To investigate the association between use of β-blockers and β-blocker characteristics - selectivity, lipid solubility, intrinsic sympathetic activity (ISA) and CYP2D6 enzyme metabolism - and fall risk. METHODS Data from two prospective studies were used, including community-dwelling individuals, n = 7662 (the Rotterdam Study) and 2407 (B-PROOF), all aged ≥55 years. Fall incidents were recorded prospectively. Time-varying β-blocker use was determined using pharmacy dispensing records. Cox proportional hazard models adjusted for age and sex were applied to determine the association between β-blocker use, their characteristics - selectivity, lipid solubility, ISA and CYP2D6 enzyme metabolism - and fall risk. The results of the studies were combined using meta-analyses. RESULTS In total 2917 participants encountered a fall during a total follow-up time of 89 529 years. Meta-analysis indicated no association between use of any β-blocker, compared to nonuse, and fall risk, hazard ratio (HR) = 0.97 [95% confidence interval (CI) 0.88-1.06]. Use of a selective β-blocker was also not associated with fall risk, HR = 0.92 (95%CI 0.83-1.01). Use of a nonselective β-blocker was associated with an increased fall risk, HR = 1.22 (95%CI 1.01-1.48). Other β-blocker characteristics including lipid solubility and CYP2D6 enzyme metabolism were not associated with fall risk. CONCLUSION Our study suggests that use of a nonselective β-blocker, contrary to selective β-blockers, is associated with an increased fall risk in an older population. In clinical practice, β-blockers have been shown effective for a variety of cardiovascular indications. However, fall risk should be considered when prescribing a β-blocker in this age group, and the pros and cons for β-blocker classes should be taken into consideration.
Collapse
Affiliation(s)
- Annelies C Ham
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Suzanne C van Dijk
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Karin M A Swart
- Department of Epidemiology and Biostatistics and the EMGO Institute for Health and Care Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Anke W Enneman
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | | | - Natasja M van Schoor
- Department of Epidemiology and Biostatistics and the EMGO Institute for Health and Care Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Paul Lips
- Department of Epidemiology and Biostatistics and the EMGO Institute for Health and Care Research, VU University Medical Centre, Amsterdam, The Netherlands.,Department of Endocrinology, VU University Medical Centre, Amsterdam, The Netherlands
| | | | - Albert Hofman
- Department of Epidemiology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Department of Epidemiology, Harvard H.T. Chan School of Public Health, Boston, MA, USA
| | - Renger F Witkamp
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Bruno H Stricker
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Inspectorate of Health Care, Utrecht, The Netherlands
| | - Nathalie van der Velde
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, Section of Geriatric Medicine, Academic Medical Centre, P.O. Box 22700, 1100 DD, Amsterdam, The Netherlands
| |
Collapse
|