1
|
Salas SAS, Damba T, Buist‐Homan M, Moshage H. Protective Effect of Carvedilol Against Oxidative Stress Induced by Palmitic Acid in Primary Rat Hepatocytes. Cell Biochem Funct 2025; 43:e70057. [PMID: 39924769 PMCID: PMC11808198 DOI: 10.1002/cbf.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Hepatocyte lipotoxicity (HL) is an important factor in the pathogenesis of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). It is defined as the detrimental effects of exposure to (excessive) amounts of toxic lipid species, leading to increased mitochondrial β-oxidation, oxidative stress (OxS), and organellar dysfunction. Carvedilol (CV) is a β-adrenergic blocker with antioxidant properties. To elucidate whether CV protects hepatocytes against lipotoxicity induced by palmitic acid (PA) by reducing OxS and endoplasmic reticulum (ER) stress. Primary rat hepatocytes (rHep) were used. Lipotoxicity was induced by PA (1 mmol/L). Cell damage was evaluated by Sytox Green staining. Mitochondrial generation of reactive oxygen species (mROS) was assessed by MitoSox. mRNA and protein expression were measured by qPCR and Western blot, respectively. Lipid accumulation was measured by Oil Red O staining and triglyceride (TG) content. PA induced cell death in > 80% of cells and increased mROS generation. PA increased mRNA expression of ER stress markers CHOP and sXBP1 and slightly increased lipid accumulation. Expression of the β-oxidation-related gene Cpt1a was increased. CV (10 µmol/L) significantly reduced PA-induced cell death to control levels (< 8% of total cells), and mROS generation and expression of the mitochondrial antioxidant enzymes Sod2 and Cat were increased by 40% by CV in the presence of PA. CV did not change the expression of ER stress markers. CV, added before PA, protects rHep against PA-induced cytotoxicity by reducing OxS and increasing the expression of antioxidant enzymes without any additional protective effect on ER stress or lipid accumulation.
Collapse
Affiliation(s)
- Sandra A. Serna Salas
- Department of Gastroenterology and Hepatology, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Turtushikh Damba
- Department of Gastroenterology and Hepatology, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- School of PharmacyMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Manon Buist‐Homan
- Department of Gastroenterology and Hepatology, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- Department of Laboratory Medicine, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- Department of Laboratory Medicine, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
2
|
Zhu Y, Dutta S, Han Y, Choi D, Polverino F, Owen CA, Somanath PR, Wang X, Zhang D. Oxidative stress promotes lipid-laden macrophage formation via CYP1B1. Redox Biol 2025; 79:103481. [PMID: 39721495 PMCID: PMC11732233 DOI: 10.1016/j.redox.2024.103481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Emerging evidence suggests that lipid-laden macrophages (LLM) participate in lung damage in various clinical conditions. However, the mechanisms involved in LLM formation are not fully understood. In this study, we aimed to investigate the link between reactive oxygen species (ROS) and LLM formation. We found that ROS triggered by cigarette smoke extract (CSE) or H2O2 significantly promoted LLM formation. Given the key role of ROS in LLM formation, we further demonstrated that LLM formation is induced by various ROS-producing stimuli, including bacteria, oxidized low-density lipoprotein (OxLDL), hyperoxia, and E-cigarette vapor extract (EVE). Meanwhile, cytochrome P450 family-1 subfamily B member 1 (CYP1B1) was highly upregulated in lung macrophages from chronic obstructive pulmonary disease (COPD) patients and CSE-treated macrophages. Functionally, CYP1B1 contributes to the CSE-induced lipid accumulation and LLM formation. CYP1B1 expression and LLM formation were effectively suppressed by antioxidant N-acetylcysteine (NAC) and carvedilol. The formation of LLM was also associated with classically activated M1 but not the M2 state. CSE-induced LLM showed time-dependent alterations in inflammatory response and phagocytic ability. In summary, our study highlights the role of oxidative stress in LLM formation. CYP1B1 contributes to ROS-induced LLM formation and may serve as a therapeutic target for reducing LLM-induced lung damage.
Collapse
Affiliation(s)
- Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Saugata Dutta
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA; Department of Microbiology, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea
| | - Dooyoung Choi
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA
| | | | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
3
|
Li YC, Cheng ML. Carvedilol Confers Ferroptosis Resistance in HL-1 Cells by Upregulating GPX4, FTH1, and FTL1 and Inducing Metabolic Remodeling Under Hypoxia/Reoxygenation. Antioxidants (Basel) 2024; 14:7. [PMID: 39857341 PMCID: PMC11762394 DOI: 10.3390/antiox14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Hypoxia/reoxygenation (HR) often occurs under cardiac pathological conditions, and HR-induced oxidative stress usually leads to cardiomyocyte damage. Carvedilol, a non-selective β-blocker, is used clinically to treat cardiac ischemia diseases. Moreover, Carvedilol has also been reported to have an antioxidant ability by reducing lipid peroxidation. However, the mechanism of Carvedilol to inhibit lipid peroxidation is still elusive. To explore the protective mechanism of Carvedilol to resist lipid peroxidation on cardiomyocytes, HL-1 cells were cultured under normoxia, hypoxia, and HR and treated with Carvedilol to investigate the alteration on metabolism, protein expression, and mRNA level to explain its oxidative mechanism. The study found that Carvedilol upregulated glutathione peroxidase 4 (GPX4) protein expression to resist HR-induced lipid peroxidation by metabolic remodeling under HR. Also, Carvedilol promoted ferroptosis-related genes, ferritin heavy chain 1 (FTH1) and ferritin light chain 1 (FTL1) mRNA levels, to reduce lipid peroxidation under both hypoxia and HR. In conclusion, our study explores a mechanism by which Carvedilol inhibits ferroptosis by upregulating GPX4, FTH1, and FTL1 levels to downregulate lipid peroxidation under HR. The study provides a potential strategy for using Carvedilol in clinical applications, inspiring further research and development in the area of heart diseases.
Collapse
Affiliation(s)
- Yi-Chin Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Mei-Ling Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan;
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| |
Collapse
|
4
|
Li Z, Wei H, Li R, Wu B, Xu M, Yang X, Zhang Y, Liu Y. The effects of antihypertensive drugs on glucose metabolism. Diabetes Obes Metab 2024; 26:4820-4829. [PMID: 39140233 DOI: 10.1111/dom.15821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024]
Abstract
Abnormal glucose metabolism is a common disease of the endocrine system. The effects of drugs on glucose metabolism have been reported frequently in recent years, and since abnormal glucose metabolism increases the risk of microvascular and macrovascular complications, metabolic disorders, and infection, clinicians need to pay close attention to these effects. A variety of common drugs can affect glucose metabolism and have different mechanisms of action. Hypertension is a common chronic cardiovascular disease that requires long-term medication. Studies have shown that various antihypertensive drugs also have an impact on glucose metabolism. Among them, α-receptor blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and calcium channel blockers can improve insulin resistance, while β-receptor blockers, thiazides and loop diuretics can impair glucose metabolism. The aim of this review was to discuss the mechanisms underlying the effects of various antihypertensive drugs on glucose metabolism in order to provide reference information for rational clinical drug use.
Collapse
Affiliation(s)
- Zhe Li
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Hongxia Wei
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ru Li
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Baofeng Wu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ming Xu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xifeng Yang
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Clinical Research Center For Metabolic Diseases Of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Attia Y, Hakeem A, Samir R, Mohammed A, Elsayed A, Khallaf A, Essam E, Amin H, Abdullah S, Hikmat S, Hossam T, Mohamed Z, Aboelmagd Z, Hammam O. Harnessing adrenergic blockade in stress-promoted TNBC in vitro and solid tumor in vivo: disrupting HIF-1α and GSK-3β/β-catenin driven resistance to doxorubicin. Front Pharmacol 2024; 15:1362675. [PMID: 38962320 PMCID: PMC11220203 DOI: 10.3389/fphar.2024.1362675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/30/2024] [Indexed: 07/05/2024] Open
Abstract
Sympathetic activation triggered by chronic stress afflicting cancer survivors is an emerging modulator of tumorigenesis. Adrenergic blockade was previously associated with improving response to doxorubicin (DOX) in triple-negative breast cancer (TNBC), yet the precise underlying mechanisms remain obscure. The resilience of cancer stem cells (CSCs) during chemotherapy fosters resistance and relapse. Hypoxia-inducible factor-1α (HIF-1α) and β-catenin are intertwined transcriptional factors that enrich CSCs and evidence suggests that their expression could be modulated by systemic adrenergic signals. Herein, we aimed to explore the impact of adrenoreceptor blockade using carvedilol (CAR) on DOX and its potential to modulate CSCs overcoming chemoresistance. To achieve this aim, in vitro studies were conducted using adrenaline-preincubated MDA-MB-231 cells and in vivo studies using a chronic restraint stress-promoted solid tumor mouse model. Results revealed that adrenaline increased TNBC proliferation and induced a phenotypic switch reminiscent of CSCs, as evidenced by enhanced mammosphere formation. These results paralleled an increase in aldehyde dehydrogenase-1 (ALDH-1) and Nanog expression levels as well as HIF-1α and β-catenin upsurge. In vivo, larger tumor volumes were observed in mice under chronic stress compared to their unstressed counterparts. Adrenergic blockade using CAR, however, enhanced the impact DOX had on halting TNBC cell proliferation and tumor growth via enhanced apoptosis. CAR also curbed HIF-1α and β-catenin tumor levels subsequently suppressing ALDH-1 and SOX2. Our study unveils a central role for HIF-1α linking stress-induced sympathetic activation fueling CSC enrichment via the β-catenin pathway. It also highlights novel insights into CAR's capacity in reversing DOX chemoresistance in TNBC.
Collapse
Affiliation(s)
- Yasmeen Attia
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
- Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Andrew Hakeem
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
- Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Rawda Samir
- Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Aya Mohammed
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | | | - Alaa Khallaf
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Eman Essam
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Hossameldeen Amin
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Sarah Abdullah
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Salwan Hikmat
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Tarek Hossam
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Ziad Mohamed
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Ziad Aboelmagd
- Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Egypt
| | - Olfat Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
6
|
Brand T, Lukannek AK, Jahns V, Jahns R, Lorenz K. From "contraindicated" to "first line" - Current mechanistic insights beyond canonical β-receptor signaling. Curr Opin Pharmacol 2024; 76:102458. [PMID: 38636195 DOI: 10.1016/j.coph.2024.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
β-blockers are a solid pillar in the treatment of cardiovascular diseases. However, they are highly discussed regarding effectiveness for certain indications and side-effects. Even though there are up to 20 licensed compounds, only four are used for heart failure (HF) therapy. On the receptor level several key characteristics seem to influence the clinical outcome: subtype selectivity, antagonistic vs (inverse/biased) agonistic properties and -in particular- ancillary capacities. On a molecular level, divergent and novel signaling patterns are being identified and extra-cardiac effects on e.g. inflammation, metabolism and oxidative stress are highlighted. This review discusses different well-known and newly discovered characteristics that need to be considered for HF therapy and in the context of co-morbidities.
Collapse
Affiliation(s)
- Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Germany
| | | | - Valérie Jahns
- Institute of Pharmacology and Toxicology, University of Würzburg, Germany
| | - Roland Jahns
- Interdisciplinary Bank of Biological Materials and Data Würzburg (ibdw), University Hospital Würzburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Cardiovascular Pharmacology, Dortmund, Germany.
| |
Collapse
|
7
|
Kar S, Das SS, Kundu S, Sahu BD, Kumar KJ, Kesari KK, Singh SK. Intranasal Delivery of Carvedilol- and Quercetin-Encapsulated Cationic Nanoliposomes for Cardiovascular Targeting: Formulation and In Vitro and Ex Vivo Studies. ACS APPLIED BIO MATERIALS 2024; 7:3061-3085. [PMID: 38581388 PMCID: PMC11530090 DOI: 10.1021/acsabm.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Carvedilol (CVD), an adrenoreceptor blocker, is a hydrophobic Biopharmaceutics Classification System class II drug with poor oral bioavailability due to which frequent dosing is essential to attain pharmacological effects. Quercetin (QC), a polyphenolic compound, is a potent natural antioxidant, but its oral dosing is restricted due to poor aqueous solubility and low oral bioavailability. To overcome the common limitations of both drugs and to attain synergistic cardioprotective effects, we formulated CVD- and QC-encapsulated cationic nanoliposomes (NLPs) in situ gel (CVD/QC-L.O.F.) for intranasal administration. We designed CVD- and QC-loaded cationic nanoliposomal (NLPs) in situ gel (CVD/QC-L.O.F.) for intranasal administration. In vitro drug release studies of CVD/QC-L.O.F. (16.25%) exhibited 18.78 ± 0.57% of QC release and 91.38 ± 0.93% of CVD release for 120 h. Ex vivo nasal permeation studies of CVD/QC-L.O.F. demonstrated better permeation of QC (within 96 h), i.e., 75.09% compared to in vitro drug release, whereas CVD permeates within 48 h, indicating the better interaction between cationic NLPs and the negatively charged biological membrane. The developed nasal gel showed a sufficient mucoadhesive property, good spreadability, higher firmness, consistency, and cohesiveness, indicating suitability for membrane application and intranasal administration. CVD-NLPs, QC-NLPs, and CVD/QC-NLPs were evaluated for in vitro cytotoxicity, in vitro ROS-induced cell viability assessment, and a cellular uptake study using H9c2 rat cardiomyocytes. The highest in vitro cellular uptake of CVD/QC-cationic NLPs by H9c2 cells implies the benefit of QC loading within the CVD nanoliposomal carrier system and gives evidence for better interaction of NLPs carrying positive charges with the negatively charged biological cells. The in vitro H2O2-induced oxidative stress cell viability assessment of H9c2 cells established the intracellular antioxidant activity and cardioprotective effect of CVD/QC-cationic NLPs with low cytotoxicity. These findings suggest the potential of cationic NLPs as a suitable drug delivery carrier for CVD and QC combination for the intranasal route in the treatment of various cardiovascular diseases like hypertension, angina pectoris, etc. and for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Sweta Kar
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Sabya Sachi Das
- School
of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Sourav Kundu
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari 781101, Assam, India
| | - Bidya Dhar Sahu
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari 781101, Assam, India
| | - K. Jayaram Kumar
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, 00076 Espoo, Finland
| | - Sandeep Kumar Singh
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
8
|
Martineau-Côté D, Achouri A, Karboune S, L’Hocine L. Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activity of Faba Bean-Derived Peptides After In Vitro Gastrointestinal Digestion: Insight into Their Mechanism of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6432-6443. [PMID: 38470110 PMCID: PMC10979453 DOI: 10.1021/acs.jafc.4c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Faba bean flour, after in vitro gastrointestinal digestion, showed important antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities. In the present study, 11 faba bean- derived peptides were synthesized to confirm their bioactivities and provide a deeper understanding of their mechanisms of action. The results revealed that 7 peptides were potent antioxidants, namely, NYDEGSEPR, TETWNPNHPEL, TETWNPNHPE, VIPTEPPH, VIPTEPPHA, VVIPTEPPHA, and VVIPTEPPH. Among them, TETWNPNHPEL had the highest activity in the ABTS (EC50 = 0.5 ± 0.2 mM) and DPPH (EC50 = 2.1 ± 0.1 mM) assays (p < 0.05), whereas TETWNPNHPE had the highest activity (p < 0.05) in the ORAC assay (2.84 ± 0.08 mM Trolox equivalent/mM). Synergistic and/or additive effects were found when selected peptides (TETWNPNHPEL, NYDEGSEPR, and VVIPTEPPHA) were combined. Four peptides were potent ACE inhibitors, where VVIPTEPPH (IC50 = 43 ± 1 μM) and VVIPTEPPHA (IC50 = 50 ± 5 μM) had the highest activity (p < 0.05), followed by VIPTEPPH (IC50 = 90 ± 10 μM) and then VIPTEPPHA (IC50 = 123 ± 5 μM) (p < 0.05). These peptides were noncompetitive inhibitors, as supported by kinetic studies and a molecular docking investigation. This study demonstrated that peptides derived from faba beans have multifunctional bioactivities, making them a promising food-functional and nutraceutical ingredient.
Collapse
Affiliation(s)
- Delphine Martineau-Côté
- Agriculture
and Agri-Food Canada, Saint-Hyacinthe Research
and Development Centre, Saint-Hyacinthe, Quebec J2S 8E3, Canada
- Department
of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| | - Allaoua Achouri
- Agriculture
and Agri-Food Canada, Saint-Hyacinthe Research
and Development Centre, Saint-Hyacinthe, Quebec J2S 8E3, Canada
| | - Salwa Karboune
- Department
of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| | - Lamia L’Hocine
- Agriculture
and Agri-Food Canada, Saint-Hyacinthe Research
and Development Centre, Saint-Hyacinthe, Quebec J2S 8E3, Canada
| |
Collapse
|
9
|
Hullon D, Taherifard E, Al-Saraireh TH. The effect of the four pharmacological pillars of heart failure on haemoglobin level. Ann Med Surg (Lond) 2024; 86:1575-1583. [PMID: 38463117 PMCID: PMC10923357 DOI: 10.1097/ms9.0000000000001773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/21/2024] [Indexed: 03/12/2024] Open
Abstract
Anaemia, a condition characterized by low levels of haemoglobin, is frequently observed in patients with heart failure (HF). Guideline-directed medical therapy improves HF outcomes by using medications like beta blockers, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers, along with mineralocorticoid receptor antagonists and sodium-glucose cotransporter 2 inhibitors. In this study, we aimed to review the pathophysiology of anaemia in patients with HF and present the current evidence regarding the relationship between the main recommended medications for these patients and haemoglobin levels. The authors conducted a comprehensive search in the medical literature for relevant original clinical articles in which the four pharmacological pillars of HF were given to the patients; we, then, assessed whether the association of use of these medications and haemoglobin level or development of anaemia was provided. These common medications have been shown in the literature that may exacerbate or ameliorate anaemia. Besides, it has been shown that even in the case that they result in the development of anaemia, their use is associated with positive effects that outweigh this potential harm. The literature also suggests that among patients receiving medications with negative effects on the level of haemoglobin, there was no difference in the rate of mortality between anaemic and non-anaemic patients when both were on treatment for anaemia; this point highlights the importance of the detection and treatment of anaemia in these patients. Further research is needed to explore these relationships and identify additional strategies to mitigate the risk of anaemia in this population.
Collapse
Affiliation(s)
| | - Erfan Taherifard
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
10
|
Geng RSQ, Bourkas AN, Mufti A, Sibbald RG. Rosacea: Pathogenesis and Therapeutic Correlates. J Cutan Med Surg 2024; 28:178-189. [PMID: 38450615 PMCID: PMC11015710 DOI: 10.1177/12034754241229365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Rosacea is a chronic inflammatory condition of which there is no cure. The pathogenesis of rosacea is likely multifactorial, involving genetic and environmental contributions. Current understanding suggests that pro-inflammatory pathways involving cathelicidins and inflammasome complexes are central to rosacea pathogenesis. Common rosacea triggers modulate these pathways in a complex manner, which may contribute to the varying severity and clinical presentations of rosacea. Established and emerging rosacea treatments may owe their efficacy to their ability to target different players in these pro-inflammatory pathways. Improving our molecular understanding of rosacea will guide the development of new therapies and the use of combination therapies.
Collapse
Affiliation(s)
- Ryan S. Q. Geng
- Temerty School of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Asfandyar Mufti
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - R. Gary Sibbald
- Temerty School of Medicine, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health and Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Seo K, Yamamoto Y, Kirillova A, Kawana M, Yadav S, Huang Y, Wang Q, Lane KV, Pruitt BL, Perez MV, Bernstein D, Wu JC, Wheeler MT, Parikh VN, Ashley EA. Improved Cardiac Performance and Decreased Arrhythmia in Hypertrophic Cardiomyopathy With Non-β-Blocking R-Enantiomer Carvedilol. Circulation 2023; 148:1691-1704. [PMID: 37850394 DOI: 10.1161/circulationaha.123.065017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Hypercontractility and arrhythmia are key pathophysiologic features of hypertrophic cardiomyopathy (HCM), the most common inherited heart disease. β-Adrenergic receptor antagonists (β-blockers) are the first-line therapy for HCM. However, β-blockers commonly selected for this disease are often poorly tolerated in patients, where heart-rate reduction and noncardiac effects can lead to reduced cardiac output and fatigue. Mavacamten, myosin ATPase inhibitor recently approved by the US Food and Drug Administration, has demonstrated the ability to ameliorate hypercontractility without lowering heart rate, but its benefits are so far limited to patients with left ventricular (LV) outflow tract obstruction, and its effect on arrhythmia is unknown. METHODS We screened 21 β-blockers for their impact on myocyte contractility and evaluated the antiarrhythmic properties of the most promising drug in a ventricular myocyte arrhythmia model. We then examined its in vivo effect on LV function by hemodynamic pressure-volume loop analysis. The efficacy of the drug was tested in vitro and in vivo compared with current therapeutic options (metoprolol, verapamil, and mavacamten) for HCM in an established mouse model of HCM (Myh6R403Q/+ and induced pluripotent stem cell (iPSC)-derived cardiomyocytes from patients with HCM (MYH7R403Q/+). RESULTS We identified that carvedilol, a β-blocker not commonly used in HCM, suppresses contractile function and arrhythmia by inhibiting RyR2 (ryanodine receptor type 2). Unlike metoprolol (a β1-blocker), carvedilol markedly reduced LV contractility through RyR2 inhibition, while maintaining stroke volume through α1-adrenergic receptor inhibition in vivo. Clinically available carvedilol is a racemic mixture, and the R-enantiomer, devoid of β-blocking effect, retains the ability to inhibit both α1-receptor and RyR2, thereby suppressing contractile function and arrhythmias without lowering heart rate and cardiac output. In Myh6R403Q/+ mice, R-carvedilol normalized hyperdynamic contraction, suppressed arrhythmia, and increased cardiac output better than metoprolol, verapamil, and mavacamten. The ability of R-carvedilol to suppress contractile function was well retained in MYH7R403Q/+ iPSC-derived cardiomyocytes. CONCLUSIONS R-enantiomer carvedilol attenuates hyperdynamic contraction, suppresses arrhythmia, and at the same time, improves cardiac output without lowering heart rate by dual blockade of α1-adrenergic receptor and RyR2 in mouse and human models of HCM. This combination of therapeutic effects is unique among current therapeutic options for HCM and may particularly benefit patients without LV outflow tract obstruction.
Collapse
Affiliation(s)
- Kinya Seo
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Yuta Yamamoto
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Anna Kirillova
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Masataka Kawana
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Sunil Yadav
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Yong Huang
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Qianru Wang
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Kerry V Lane
- Departments of Mechanical Engineering (K.V.L., B.L.P.), University of California, Santa Barbara, CA
| | - Beth L Pruitt
- Departments of Mechanical Engineering (K.V.L., B.L.P.), University of California, Santa Barbara, CA
- BioMolecular Science and Engineering (B.L.P.), University of California, Santa Barbara, CA
| | - Marco V Perez
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | | | - Joseph C Wu
- Cardiovascular Research Institute (J.C.W.), Stanford University School of Medicine, CA
| | - Matthew T Wheeler
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Victoria N Parikh
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
| | - Euan A Ashley
- From the Departments of Medicine (K.S., Y.Y., A.K., M.K., S.Y., Y.H., Q.W., M.V.P., M.T.W., V.N.P., E.A.A.), Stanford University School of Medicine, CA
- Genetics (E.A.A.), Stanford University School of Medicine, CA
| |
Collapse
|
12
|
Ikhmais BA, Hammad AM, Abusara OH, Hamadneh L, Abumansour H, Abdallah QM, Ibrahim AIM, Elsalem L, Awad M, Alshehada R. Investigating Carvedilol's Repurposing for the Treatment of Non-Small Cell Lung Cancer via Aldehyde Dehydrogenase Activity Modulation in the Presence of β-Adrenergic Agonists. Curr Issues Mol Biol 2023; 45:7996-8012. [PMID: 37886948 PMCID: PMC10605277 DOI: 10.3390/cimb45100505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Repurposing existing drugs appears to be a potential solution for addressing the challenges in the treatment of non-small cell lung cancer (NSCLC). β-adrenoceptor antagonist drugs (β-blockers) have tumor-inhibiting effects, making them promising candidates for potential NSCLC treatment. This study investigates the anticancer potential of a subset of β-blockers in NSCLC cell lines; A549 and H1299. Additionally, it investigates the underlying mechanism behind β-blockers' anticancer effect by influencing a potential novel target named aldehyde dehydrogenase (ALDH). The MTT assay assessed β-blockers' cytotoxicity on both cell lines, while Western blot and NADH fluorescence assays evaluated their influence on ALDH protein expression and activity. Carvedilol (CAR) was the most effective blocker in reducing cell survival of A549 and H1299 with IC50 of 18 µM and 13.7 µM, respectively. Significantly, CAR led to a 50% reduction in ALDH expression and 80% decrease in ALDH activity in A549 cells, especially when combined with β-agonists, in comparison to the control. This effect might be attributed to β-agonist blockade or an alternative pathway. This novel finding adds to our understanding of CAR's multifaceted anticancer properties, implying that combining CAR with β-agonists could be a useful strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Balqis A. Ikhmais
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| | - Alaa M. Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| | - Osama H. Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| | - Lama Hamadneh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, P.O. Box 206, Al-Salt 19117, Jordan;
| | - Hamza Abumansour
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| | - Qasem M. Abdallah
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, P.O. Box 961343, Amman 11196, Jordan;
| | - Ali I. M. Ibrahim
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| | - Lina Elsalem
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan;
| | - Mariam Awad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| | - Rahaf Alshehada
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| |
Collapse
|
13
|
Uche N, Dai Q, Lai S, Kolander K, Thao M, Schibly E, Sendaydiego X, Zielonka J, Benjamin IJ. Carvedilol Phenocopies PGC-1α Overexpression to Alleviate Oxidative Stress, Mitochondrial Dysfunction and Prevent Doxorubicin-Induced Toxicity in Human iPSC-Derived Cardiomyocytes. Antioxidants (Basel) 2023; 12:1585. [PMID: 37627583 PMCID: PMC10451268 DOI: 10.3390/antiox12081585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Doxorubicin (DOX), one of the most effective and widely used anticancer drugs, has the major limitation of cancer treatment-related cardiotoxicity (CTRTOX) in the clinic. Reactive oxygen species (ROS) generation and mitochondrial dysfunction are well-known consequences of DOX-induced injury to cardiomyocytes. This study aimed to explore the mitochondrial functional consequences and associated mechanisms of pretreatment with carvedilol, a ß-blocking agent known to exert protection against DOX toxicity. When disease modeling was performed using cultured rat cardiac muscle cells (H9c2 cells) and human iPSC-derived cardiomyocytes (iPSC-CMs), we found that prophylactic carvedilol mitigated not only the DOX-induced suppression of mitochondrial function but that the mitochondrial functional readout of carvedilol-pretreated cells mimicked the readout of cells overexpressing the major regulator of mitochondrial biogenesis, PGC-1α. Carvedilol pretreatment reduces mitochondrial oxidants, decreases cell death in both H9c2 cells and human iPSC-CM and maintains the cellular 'redox poise' as determined by sustained expression of the redox sensor Keap1 and prevention of DOX-induced Nrf2 nuclear translocation. These results indicate that, in addition to the already known ROS-scavenging effects, carvedilol has a hitherto unrecognized pro-reducing property against the oxidizing conditions induced by DOX treatment, the sequalae of DOX-induced mitochondrial dysfunction and compromised cell viability. The novel findings of our preclinical studies suggest future trial design of carvedilol prophylaxis, such as prescreening for redox state, might be an alternative strategy for preventing oxidative stress writ large in lieu of the current lack of clinical evidence for ROS-scavenging agents.
Collapse
Affiliation(s)
- Nnamdi Uche
- Cardiovascular Center, Department of Physiology, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Qiang Dai
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Shuping Lai
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Kurt Kolander
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Mai Thao
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Elizabeth Schibly
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Xavier Sendaydiego
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| | - Jacek Zielonka
- Free Radical Laboratory, Department of Biophysics, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Ivor J. Benjamin
- Cardiovascular Center, Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI 53226, USA; (Q.D.); (S.L.); (K.K.); (M.T.); (E.S.); (X.S.)
| |
Collapse
|
14
|
Akintoye OO, Ajibare AJ, Oriyomi IA, Olofinbiyi BA, Oyiza YG, Christanah AD, Babalola TK, Esther FO, Seun O, Owoyele VB. Synergistic action of carvedilol and clomiphene in mitigating the behavioral phenotypes of letrozole-model of PCOS rats by modulating the NRF2/NFKB pathway. Life Sci 2023; 324:121737. [PMID: 37127183 DOI: 10.1016/j.lfs.2023.121737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Psychiatric and cognitive impairment has been observed in premenopausal women with a hormonal disorder called polycystic ovary syndrome (PCOS). This study aimed to explore the possibility of combining pharmacological agents: Carvedilol and Clomiphene citrate, with antiestrogenic, antioxidant and anti-inflammatory properties in letrozole-induced PCOS rats. METHODS PCOS was induced in rats by the administration of letrozole (1 mg/kg) daily for 21 days. They were subsequently divided into four groups, each receiving either the vehicle or Clomiphene citrate (1 mg/kg) or Carvedilol or a combination of Clomiphene citrate and Carvedilol, respectively from days 22-36. Neurobehavioral studies were conducted on day 35 (Elevated plus maze and Y maze) and day 36 (Novel object recognition). The serum levels of the antioxidants Superoxide dismutase, Catalase, Interleukin 1B (IL-1B), and the gene expression of nuclear factor-erythroid factor 2-related factor 2 (Nrf2), Nuclear Factor k-Beta (NFKB), and acetylcholine esterase in the frontal brain homogenate was determined. RESULT Both Carvedilol and the combination therapy reversed the anxiety-like behavior, while Clomiphene citrate and the combination therapy ameliorated the spatial and non-spatial memory impairment observed in PCOS rats. Carvedilol, Clomiphene citrate, and the combination therapy increased the serum concentration of SOD and Catalase and decreased the serum concentration of IL-1B. The combination therapy up-regulated the NRF-2, NFKB, and acetylcholine esterase gene expression. CONCLUSION Study showed that the combination of carvedilol and clomiphene citrate has anxiolytic potential and improved cognitive functions in PCOS rats. This might have been achieved by carvedilol and clomiphene citrate's ability to modulate the cholinergic system and the Nrf2 pathway while downregulating the NFκB signaling pathway.
Collapse
Affiliation(s)
| | | | - Isaac Adeola Oriyomi
- Physiology Department, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | - Babatunde Ajayi Olofinbiyi
- Department of Obstetrics and Gynaecology, College of Medicine, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria
| | - Yusuf Grace Oyiza
- Physiology Department, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | | | | | | | - Oludipe Seun
- Physiology Department, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | - Victor Bamidele Owoyele
- Physiology Department, Faculty of Basic Medical Sciences, College of Health Science, University of Ilorin, Nigeria
| |
Collapse
|
15
|
The β-Blocker Carvedilol Prevents Benzo(a)pyrene-Induced Lung Toxicity, Inflammation and Carcinogenesis. Cancers (Basel) 2023; 15:cancers15030583. [PMID: 36765542 PMCID: PMC9913110 DOI: 10.3390/cancers15030583] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The current study evaluated the effects of the β-blocker carvedilol on benzo(a)pyrene (B(a)P) and its active metabolite benzo(a)pyrene diol epoxide (BPDE)-induced lung toxicity, inflammation and carcinogenesis and explored the potential mechanisms. Carvedilol blocked the BPDE-induced malignant transformation of human bronchial epithelial cells BEAS-2B. In BEAS-2B cells, B(a)P strongly activated ELK-1, a transcription factor regulating serum response element (SRE) signaling, which was attenuated by carvedilol. Carvedilol also inhibited the B(a)P-induced AhR/xenobiotic responsive element (XRE) and mRNA expression of CYP1A1 and attenuated B(a)P-induced NF-κB activation. In a B(a)P-induced acute lung toxicity model in CD-1/IGS mice, pretreatment with carvedilol for 7 days before B(a)P exposure effectively inhibited the B(a)P-induced plasma levels of lactate dehydrogenase and malondialdehyde, inflammatory cell infiltration and histopathologic abnormalities in the lung, and upregulated the expression of GADD45α, caspase-3 and COX-2 in the lung. In a B(a)P-induced lung carcinogenesis model in A/J mice, carvedilol treatment for 20 weeks did not affect body weight but significantly attenuated tumor multiplicity and volume. These data reveal a previously unexplored role of carvedilol in preventing B(a)P-induced lung inflammation and carcinogenesis by inhibiting the cross-talk of the oncogenic transcription factors ELK-1, AhR and NF-κB.
Collapse
|
16
|
Teng H, Zhou L, Wang C, Yuan Z, Cao Q, Wu X, Li M. Novel carvedilol-loaded pro-phytomicelles: formulation, characterization and enhanced protective efficacy against acetaminophen-inducedliverinjury in mice. Int J Pharm 2022; 625:122127. [PMID: 35995319 DOI: 10.1016/j.ijpharm.2022.122127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
The work describes a novel, small-molecule phytochemicals as nanomaterials based pro-micelles (pro-phytomicelles) drug delivery system, for oral delivery of carvedilol (CAR). This novel nanoformulation of CAR, named CAR pro-phytomicelles, was prepared with rebaudioside A (RA) and dipotassium glycyrrhizinate (DG) as mixed nanomaterials. The formulation was optimized, leading to a 502-fold increase in solubility of CAR in water as a result of encapsulation within mixed phytomicelles based on DG and RA. CAR pro-phytomicelles samples could be instantly dissolved into aqueous media to formulate clear phytomicelle solutions with CAR encapsulation efficiency of 99.67 ± 0.02 %, and small micelle size of 15.62 ± 0.27 nm. CAR pro-phytomicelles exhibited good storage stability, rapid in vitro release in simulated intestinal fluid, and improved in vitro antioxidant activity. CAR pro-phytomicelles had good biocompatibility. Protective efficacy evaluation revealed that acetaminophen overdose could induce high mortality and severe liver injury in mice, while CAR pro-phytomicelle treatment exhibited significant protective effect against acetaminophen overdose. This protective efficacy was due to a mechanism that involved the regulation of high-mobility group box 1 and its signaling-related proinflammatory cytokines. These results show that pro-phytomicelles could provide a new concept and promising therapeutics as nanomedicines for improving the activities of CAR against acetaminophen-induced liver injury.
Collapse
Affiliation(s)
- Hanzhang Teng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Qingdao Women and Children's Hospital, Qingdao 266034, China
| | - Liping Zhou
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, China
| | - Cuicui Wang
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, China
| | - Zhixin Yuan
- Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| | - Mengshuang Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Qingdao Women and Children's Hospital, Qingdao 266034, China.
| |
Collapse
|
17
|
He M, Wang D, Xu Y, Jiang F, Zheng J, Feng Y, Cao J, Zhou X. Nitric Oxide-Releasing Platforms for Treating Cardiovascular Disease. Pharmaceutics 2022; 14:pharmaceutics14071345. [PMID: 35890241 PMCID: PMC9317153 DOI: 10.3390/pharmaceutics14071345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease (CVD) is the first leading cause of death globally. Nitric oxide (NO) is an important signaling molecule that mediates diverse processes in the cardiovascular system, thereby providing a fundamental basis for NO-based therapy of CVD. At present, numerous prodrugs have been developed to release NO in vivo. However, the clinical application of these prodrugs still faces many problems, including the low payloads, burst release, and non-controlled delivery. To address these, various biomaterial-based platforms have been developed as the carriers to deliver NO to the targeted tissues in a controlled and sustained manner. This review aims to summarize recent developments of various therapeutic platforms, engineered to release NO for the treatment of CVD. In addition, two potential strategies to improve the effectiveness of existing NO therapy are also discussed, including the combination of NO-releasing platforms and either hydrogen sulfide-based therapy or stem cell therapy. Hopefully, some NO-releasing platforms may provide important therapeutic benefits for CVD.
Collapse
Affiliation(s)
- Mingyue He
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
| | - Deping Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
| | - Yumei Xu
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
| | - Fangying Jiang
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
| | - Jian Zheng
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Department of Breast Surgery, Shanxi Provincial Cancer Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Yanlin Feng
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| | - Xin Zhou
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| |
Collapse
|
18
|
Heart Failure and Drug Therapies: A Metabolic Review. Int J Mol Sci 2022; 23:ijms23062960. [PMID: 35328390 PMCID: PMC8950643 DOI: 10.3390/ijms23062960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality globally with at least 26 million people worldwide living with heart failure (HF). Metabolism has been an active area of investigation in the setting of HF since the heart demands a high rate of ATP turnover to maintain homeostasis. With the advent of -omic technologies, specifically metabolomics and lipidomics, HF pathologies have been better characterized with unbiased and holistic approaches. These techniques have identified novel pathways in our understanding of progression of HF and potential points of intervention. Furthermore, sodium-glucose transport protein 2 inhibitors, a drug that has changed the dogma of HF treatment, has one of the strongest types of evidence for a potential metabolic mechanism of action. This review will highlight cardiac metabolism in both the healthy and failing heart and then discuss the metabolic effects of heart failure drugs.
Collapse
|
19
|
Alhusaini AM, Fadda LM, Alanazi AM, Sarawi WS, Alomar HA, Ali HM, Hasan IH, Ali RA. Nano-Resveratrol: A Promising Candidate for the Treatment of Renal Toxicity Induced by Doxorubicin in Rats Through Modulation of Beclin-1 and mTOR. Front Pharmacol 2022; 13:826908. [PMID: 35281939 PMCID: PMC8913579 DOI: 10.3389/fphar.2022.826908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/30/2022] Open
Abstract
Background: Although doxorubicin (DXR) is one of the most used anticancer drugs, it can cause life-threatening renal damage. There has been no effective treatment for DXR-induced renal damage until now. Aim: This work aims at examining the potential impact of nano-resveratrol (N-Resv), native resveratrol (Resv), and their combination with carvedilol (Card) against DXR-induced renal toxicity in rats and to investigate the mechanisms through which these antioxidants act to ameliorate DXR nephrotoxicity. Method: DXR was administered to rats (2 mg/kg, i.p.) twice weekly over 5 weeks. The antioxidants in question were taken 1 week before the DXR dose for 6 weeks. Results: DXR exhibited an elevation in serum urea, creatinine, renal lipid peroxide levels, endoglin expression, kidney injury molecule-1 (KIM-1), and beclin-1. On the other hand, renal podocin and mTOR expression and GSH levels were declined. In addition, DNA fragmentation was markedly increased in the DXR-administered group. Treatment with either Resv or N-Resv alone or in combination with Card ameliorated the previously measured parameters. Conclusion: N-Resv showed superior effectiveness relative to Resv in most of the measured parameters. Histopathological examination revealed amelioration of renal structural and cellular changes after DXR by Card and N-Resv, thus validating the previous biochemical and molecular results.
Collapse
Affiliation(s)
- Ahlam M. Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Ahlam M. Alhusaini,
| | - Laila M. Fadda
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abeer M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wedad S. Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hatun A. Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanaa M. Ali
- Genetics and Cytology Department, National Research Centre, Cairo, Egypt
| | - Iman H. Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rehab Ahmed Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Mohamed RMSM, Ahmad EA, Omran BHF, Sakr AT, Ibrahim IAAEH, Mahmoud MF, El-Naggar ME. Mitigation of dexamethasone-induced nephrotoxicity by modulating the activity of adrenergic receptors: Implication of Wnt/β-arrestin2/β-catenin pathway. Life Sci 2022; 293:120304. [PMID: 35016879 DOI: 10.1016/j.lfs.2022.120304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022]
Abstract
The present study aimed to investigate the role of α and β-adrenergic receptors (βARs) in mediation or modulation of the dexamethasone-induced nephrotoxicity by using different pharmacological interventions. Nephrotoxicity was induced by subcutaneous injection of dexamethasone (10 mg/kg) for 7 days in Wistar albino rats. Eight groups were used: control; dexamethasone; carvedilol; phenylephrine; carvedilol and phenylephrine; propranolol; doxazosin; propranolol and doxazosin. At the end of experiment, rats were euthanized and blood, urine and kidney samples were collected. Serum and urinary creatinine and urinary total protein levels were measured. Also, the renal tissue levels of diacylglycerol (DAG); Akt kinase activity, malondialdehyde (MDA), NADPH oxidase 2 (NOX2), transforming growth factor-β (TGF-β), Wnt3A and β-catenin were recorded. Furthermore, histopathological and β-arrestin2-immunohistochemical examinations of renal tissues were performed. Results: Dexamethasone induced glomerular damage, proteinuria, renal oxidative stress and upregulated the renal Wnt/β-arrestin2/β-catenin pathway and the profibrotic signals. Blocking the α1 and βARs by carvedilol reduced the dexamethasone-induced nephrotoxicity. Pre-injection of phenylephrine did not reduce the reno-protective action of carvedilol. Blocking the βARs only by propranolol reduced the dexamethasone-induced nephrotoxicity to the same extent of carvedilol group. Blocking the α1ARs only by doxazosin reduced dexamethasone-induced nephrotoxicity to a higher extent than other treatments. However, combined use of propranolol and doxazosin did not synergize the reno-protective effects of doxazosin. Conclusion: Dexamethasone induces nephrotoxicity, possibly, by upregulating the Wnt/β-arrestin2/β-catenin pathway. Blocking either α1ARs or βARs can effectively protect against the dexamethasone-induced nephrotoxicity. However, combined blocking of α1ARs and βARs does not synergize the reno-protective effects.
Collapse
Affiliation(s)
- Rasha M S M Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Enssaf Ahmad Ahmad
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Bothina H F Omran
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amr T Sakr
- Department of Biochemistry, Faculty of Pharmacy, El-Sadat University, University of Sadat City, Menoufia 32897, Egypt
| | - Islam A A E-H Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mostafa E El-Naggar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| |
Collapse
|
21
|
Robinson VM, Alsalahat I, Freeman S, Antzelevitch C, Barajas-Martinez H, Venetucci L. A Carvedilol Analogue, VK-II-86, Prevents Hypokalaemia-induced Ventricular Arrhythmia through Novel multi-Channel Effects. Br J Pharmacol 2021; 179:2713-2732. [PMID: 34877651 DOI: 10.1111/bph.15775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 11/07/2021] [Accepted: 11/23/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE QT prolongation and intracellular Ca2+ loading with diastolic Ca2+ release via ryanodine receptors (RyR2) are the predominant mechanisms underlying hypokalaemia-induced ventricular arrhythmia. We investigated the antiarrhythmic actions of two RyR2 inhibitors: dantrolene and VK-II-86, a carvedilol analogue with no β-blocking activity, in hypokalaemia. EXPERIMENTAL APPROACH Surface ECG and ventricular action potentials (APs) were recorded from whole-heart murine Langendorff preparations. Ventricular arrhythmia incidence was compared in hearts perfused with low [K+ ], and those pre-treated with dantrolene or VK-II-86. Whole-cell patch clamping was used in murine and canine ventricular cardiomyocytes to study the effects of dantrolene and VK-II-86 on AP parameters in low [K+ ] and the effects of VK-II-86 on the inward rectifier current (IK1 ), late sodium current (INa_L ) and the L-type Ca2+ current (ICa ). Effects of VK-II-86 on IKr were investigated in transfected HEK-293 cells. A fluorogenic probe quantified the effects of VK-II-86 on oxidative stress in hypokalaemia. KEY RESULTS Dantrolene reduced the incidence of ventricular arrhythmias induced by low [K+ ] in explanted murine hearts by 94%, whereas VK-II-86 prevented all arrhythmias. VK-II-86 prevented hypokalaemia-induced AP prolongation and depolarization, but did not alter AP parameters in normokalaemia. Hypokalaemia was associated with a significant reduction of IK1 and IKr , and increase in INa-L , and ICa . VK-II-86 prevented all hypokalaemia-induced changes in ion channel activity and oxidative stress. CONCLUSIONS AND IMPLICATIONS VK-II-86 prevents hypokalaemia-induced arrhythmogenesis by normalising calcium homeostasis and repolarization reserve. VK-II-86 may provide an exciting treatment in hypokalaemia and other arrhythmias caused by delayed repolarization or Ca2+ overload.
Collapse
Affiliation(s)
- Victoria M Robinson
- The University of Manchester, UK.,Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | | | | | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Wynnewood, PA, USA.,Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,Lankenau Heart Institute, Wynnewood, PA, USA
| | | | | |
Collapse
|
22
|
Effect of a Low Dose of Carvedilol on Cyclophosphamide-Induced Urinary Toxicity in Rats—A Comparison with Mesna. Pharmaceuticals (Basel) 2021; 14:ph14121237. [PMID: 34959638 PMCID: PMC8708009 DOI: 10.3390/ph14121237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 01/28/2023] Open
Abstract
One of the major side effects of cyclophosphamide (CPX)—an alkylating anticancer drug that is still clinically used—is urotoxicity with hemorrhagic cystitis. The present study was designed to evaluate the ability of carvedilol to protect rats from cyclophosphamide-induced urotoxicity. Rats were injected intraperitoneally (i.p.) with CPX (200 mg/kg) and administered carvedilol (2 mg/kg) intragastrically a day before, at the day and a day after a single i.p. injection of CPX, with or without mesna (40, 80, and 80 mg/kg i.p. 20 min before, 4 h and 8 h after CPX administration, respectively). Pretreatment with carvedilol partly prevented the CPX-induced increase in urinary bladder and kidney index, and completely protects from CPX-evoked alterations in serum potassium and creatinine level, but did not prevent histological alterations in the urinary bladder and hematuria. However, carvedilol administration resulted in significant restoration of kidney glutathione (GSH) level and a decrease in kidney interleukin 1β (IL-1β) and plasma asymmetric dimethylarginine (ADMA) concentrations. Not only did mesna improve kidney function, but it also completely reversed histological abnormalities in bladders and prevented hematuria. In most cases, no significant interaction of carvedilol with mesna was observed, although the effect of both drugs together was better than mesna given alone regarding plasma ADMA level and kidney IL-1β concentration. In conclusion, carvedilol did not counteract the injury caused in the urinary bladders but restored kidney function, presumably via its antioxidant and anti-inflammatory properties.
Collapse
|
23
|
Farahani-Zangaraki M, Taheri A, Etebari M. Niosome-carvedilol protects DNA damage of supraphysiologic concentrations of insulin using comet assay: An in vitro study. Hum Exp Toxicol 2021; 40:S150-S157. [PMID: 34334013 DOI: 10.1177/09603271211036124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction: Hyperinsulinemia occurs in type 2 diabetic patients with insulin resistance. This increase in insulin levels in the blood increases reactive oxygen species production and oxidative stress, resulting in DNA damage. Carvedilol (CRV) is a non-selective beta-blocker, and research has shown that this compound and its metabolites have anti-oxidative properties. Carvedilol can, directly and indirectly, reduce reactive oxygen species (ROS) and has a protective effect on DNA damage from oxidative stress. Given the insolubility of CRV in water, finding new methods to increase its solubility can be an essential step in research. This study aimed to determine whether carvedilol could have a protective effect on insulin-induced genomic damage. Methods: We treated cells with insulin alone, amorphous-CRV alone, and amorphous-CRV and niosomal-CRV with insulin and DNA damage were investigated using the comet method to achieve this goal. Results: Our results showed that insulin in the studied concentration has a significant genotoxic effect and non-cytotoxic at higher concentrations. CRV, both in amorphous and niosome form, reduced insulin-induced DNA damage by reducing ROS production. The comet assay results demonstrate that treating HUVEC cells in pretreatment condition with amorphous-CRV and niosome-CRV significantly reduces DNA damage of insulin.
Collapse
Affiliation(s)
- Marzieh Farahani-Zangaraki
- Faculty of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Toxicology, 108868Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azade Taheri
- Faculty of Pharmacy, Department of Pharmaceutics, 108868Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Etebari
- Faculty of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Toxicology, and Isfahan Pharmaceutical Sciences Research Center, 108868Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
24
|
Magadmi RM, Alsulaimani MA, Al-Rafiah AR, Ahmad MS, Esmat A. Carvedilol Exerts Neuroprotective Effect on Rat Model of Diabetic Neuropathy. Front Pharmacol 2021; 12:613634. [PMID: 33927613 PMCID: PMC8077026 DOI: 10.3389/fphar.2021.613634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Diabetic neuropathy (DN) commonly occurs in diabetics, affecting approximately 50% of both type 1 and 2 diabetic patients. It is a leading cause of non-traumatic amputations. Oxidative stress could play a key role in the pathophysiology of DN. This study aimed to investigate the potential neuroprotective effect of carvedilol on STZ-induced DN in rats. Thirty male Sprague Dawley rats (weighing 200–250 g) were randomly divided into five groups (six/group), where group 1 (negative control) received only the vehicle (0.5% of carboxymethyl cellulose orally 1 ml/kg). DN was induced by a single injection of remaining rats with streptozotocin (STZ; 50 mg/kg, i.p.). After diabetes induction, group 2 served as the diabetic untreated animals; while groups 3 and 4 were treated with carvedilol (1 and 10 mg/kg/d, orally, respectively). Group 5 received a-lipoic acid as a reference neuroprotective (100 mg/kg/d, orally). All treatments were continued for 45 days after diabetes induction, followed by behavioural tests. After sacrificing the animals, dorsal root ganglia, and sciatic nerves were collected for histopathological examination and biochemical assessments. Briefly, STZ administration caused cold allodynia, induced oxidative stress, and increased nerve growth factor (NGF) concentration. Nevertheless, carvedilol improved the behavioural tests, ameliorated the oxidative imbalance as manifested by reducing malondialdehyde, restoring glutathione content, and superoxide dismutase activity. Carvedilol also decreased NGF concentration in DRG homogenate. In conclusion, this study demonstrates the neuroprotective effect of carvedilol in an experimentally induced DN rat model through–at least partly–its antioxidant effect and reduced NGF concentration in DRG.
Collapse
Affiliation(s)
- Rania M Magadmi
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mujahid A Alsulaimani
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacy, Ministry of Health, Taif, Saudi Arabia
| | - Aziza R Al-Rafiah
- Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Saeed Ahmad
- King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Esmat
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
25
|
Akinlade OM, Owoyele B, Soladoye OA. Carvedilol improves heart rate variability indices, biomarkers but not cardiac nerve density in streptozotocin-induced T2DM model of diabetic cardiac autonomic neuropathy. J Basic Clin Physiol Pharmacol 2021; 33:213-222. [PMID: 33735951 DOI: 10.1515/jbcpp-2020-0282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES There has been increasing recognition of the significant relationship between the autonomic nervous system and cardiovascular sequel in diabetes mellitus (DM) patients. Diabetic cardiac autonomic neuropathy (DCAN) still poses a treatment challenge in the clinical settings despite several research interventions. This study was designed to investigate the effect of carvedilol on experimentally induced DCAN in type 2 DM rat model. METHODS DCAN was induced in 42 Wistar rats using high fat diet (HFD) for eight weeks, thereafter streptozotocin (STZ) at 25 mg/kg daily for five days. DCAN features were then assessed using non-invasive time and frequency varying holter electrocardiogram (ECG), invasive biomarkers, cardiac histology and cardiac nerve density. RESULTS Carvedilol significantly ameliorated the effects of DCAN on noradrenaline (p=0.010) and advanced glycated end products (AGEs) (p<0.0001). Similarly, carvedilol reversed the reduction in levels of antioxidants, sorbitol dehydrogenase (SD) activity (p=0.009) nerve growth factors (p<0.0001) and choline acetyl-transferase (p=0.031) following DCAN induction. Furthermore, heart rate variability (HRV) indices which were also reduced with DCAN induction were also ameliorated by carvedilol. However, carvedilol had no significant effect on cardiac neuronal dystrophy and reduced cardiac nerve densities. CONCLUSIONS Carvedilol improves physiological HRV indices and biomarkers but not structural lesions. Early detection of DCAN and intervention with carvedilol may prevent progression of autonomic neurologic sequel.
Collapse
Affiliation(s)
- Olawale Mathias Akinlade
- Neuroscience and Inflammation Unit, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria.,Internal Medicine Department, Cardiology Unit, LAUTECH Teaching Hospital, Ogbomoso, Oyo State, Nigeria
| | - Bamidele Owoyele
- Neuroscience and Inflammation Unit, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Olufemi Ayodele Soladoye
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| |
Collapse
|
26
|
Molecules and Mechanisms to Overcome Oxidative Stress Inducing Cardiovascular Disease in Cancer Patients. Life (Basel) 2021; 11:life11020105. [PMID: 33573162 PMCID: PMC7911715 DOI: 10.3390/life11020105] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) are molecules involved in signal transduction pathways with both beneficial and detrimental effects on human cells. ROS are generated by many cellular processes including mitochondrial respiration, metabolism and enzymatic activities. In physiological conditions, ROS levels are well-balanced by antioxidative detoxification systems. In contrast, in pathological conditions such as cardiovascular, neurological and cancer diseases, ROS production exceeds the antioxidative detoxification capacity of cells, leading to cellular damages and death. In this review, we will first describe the biology and mechanisms of ROS mediated oxidative stress in cardiovascular disease. Second, we will review the role of oxidative stress mediated by oncological treatments in inducing cardiovascular disease. Lastly, we will discuss the strategies that potentially counteract the oxidative stress in order to fight the onset and progression of cardiovascular disease, including that induced by oncological treatments.
Collapse
|
27
|
Carrasco R, Castillo RL, Gormaz JG, Carrillo M, Thavendiranathan P. Role of Oxidative Stress in the Mechanisms of Anthracycline-Induced Cardiotoxicity: Effects of Preventive Strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8863789. [PMID: 33574985 PMCID: PMC7857913 DOI: 10.1155/2021/8863789] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/29/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022]
Abstract
Anthracycline-induced cardiotoxicity (AIC) persists as a significant cause of morbidity and mortality in cancer survivors. Although many protective strategies have been evaluated, cardiotoxicity remains an ongoing threat. The mechanisms of AIC remain unclear; however, several pathways have been proposed, suggesting a multifactorial origin. When the central role of topoisomerase 2β in the pathophysiology of AIC was described some years ago, the classical reactive oxygen species (ROS) hypothesis shifted to a secondary position. However, new insights have reemphasized the importance of the role of oxidative stress-mediated signaling as a common pathway and a critical modulator of the different mechanisms involved in AIC. A better understanding of the mechanisms of cardiotoxicity is crucial for the development of treatment strategies. It has been suggested that the available therapeutic interventions for AIC could act on the modulation of oxidative balance, leading to a reduction in oxidative stress injury. These indirect antioxidant effects make them an option for the primary prevention of AIC. In this review, our objective is to provide an update of the accumulated knowledge on the role of oxidative stress in AIC and the modulation of the redox balance by potential preventive strategies.
Collapse
Affiliation(s)
- Rodrigo Carrasco
- Division of Cardiology, Peter Munk Cardiac Centre and the Ted Rogers Centre for Heart Research, University Health Network, Toronto, Ontario, Canada
| | - Rodrigo L. Castillo
- Medicine Department, East Division, Faculty of Medicine, University of Chile. Santiago, Chile; Critical Care Patient Unit, Hospital Salvador, Santiago, Chile
| | - Juan G. Gormaz
- Faculty of Medicine, University of Chile, Santiago, Chile
| | - Montserrat Carrillo
- Division of Cardiology, Peter Munk Cardiac Centre and the Ted Rogers Centre for Heart Research, University Health Network, Toronto, Ontario, Canada
| | - Paaladinesh Thavendiranathan
- Division of Cardiology, Peter Munk Cardiac Centre and the Ted Rogers Centre for Heart Research, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Beck L, Pinilla E, Arcanjo DDR, Hernanz R, Prat-Duran J, Petersen AG, Köhler R, Sheykhzade M, Comerma-Steffensen S, Simonsen U. Pirfenidone Is a Vasodilator: Involvement of K V7 Channels in the Effect on Endothelium-Dependent Vasodilatation in Type-2 Diabetic Mice. Front Pharmacol 2021; 11:619152. [PMID: 33643042 PMCID: PMC7906977 DOI: 10.3389/fphar.2020.619152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022] Open
Abstract
Endothelial cell dysfunction and fibrosis are associated with worsening of the prognosis in patients with cardiovascular disease. Pirfenidone has a direct antifibrotic effect, but vasodilatation may also contribute to the effects of pirfenidone. Therefore, in a first study we investigated the mechanisms involved in the relaxant effect of pirfenidone in rat intrapulmonary arteries and coronary arteries from normal mice. Then in a second study, we investigated whether pirfenidone restores endothelial function in the aorta and mesenteric arteries from diabetic animals. From 16–18-week old normal male C57BL/6 mice and normoglycemic (db/db+), and type 2 diabetic (db/db) male and female mice, arteries were mounted in microvascular isometric myographs for functional studies, and immunoblotting was performed. In rat pulmonary arteries and mouse coronary arteries, pirfenidone induced relaxations, which were inhibited in preparations without endothelium. In mouse coronary arteries, pirfenidone relaxation was inhibited in the presence of a nitric oxide (NO) synthase inhibitor, NG-nitro-l-arginine (L-NOARG), a blocker of large-conductance calcium-activated potassium channels (BKCa), iberiotoxin, and a blocker of KV7 channels, XE991. Patch clamp studies in vascular smooth muscle revealed pirfenidone increased iberiotoxin-sensitive current. In the aorta and mesenteric small arteries from diabetic db/db mice relaxations induced by the endothelium-dependent vasodilator, acetylcholine, were markedly reduced compared to db/db + mice. Pirfenidone enhanced the relaxations induced by acetylcholine in the aorta from diabetic male and female db/db mice. An opener of KV7 channels, flupirtine, had the same effect as pirfenidone. XE991 reduced the effect of pirfenidone and flupirtine and further reduced acetylcholine relaxations in the aorta. In the presence of iberiotoxin, pirfenidone still increased acetylcholine relaxation in aorta from db/db mice. Immunoblotting for KV7.4, KV7.5, and BKCa channel subunits were unaltered in aorta from db/db mice. Pirfenidone failed to improve acetylcholine relaxation in mesenteric arteries, and neither changed acetylcholine-induced transient decreases in blood pressure in db/db+ and db/db mice. In conclusion, pirfenidone vasodilates pulmonary and coronary arteries. In coronary arteries from normal mice, pirfenidone induces NO-dependent vasodilatation involving BKCa and KV7 channels. Pirfenidone improves endothelium-dependent vasodilatation in aorta from diabetic animals by a mechanism involving voltage-gated KV7 channels, a mechanism that may contribute to the antifibrotic effect of pirfenidone.
Collapse
Affiliation(s)
- Lilliana Beck
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Estéfano Pinilla
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark.,Department of Physiology, Faculty of Pharmacy, Universidad Complutense, Madrid, Spain
| | - Daniel Dias Rufino Arcanjo
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark.,Department of Biophysics and Physiology, Laboratory of Functional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Brazil
| | - Raquel Hernanz
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark.,Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Judit Prat-Duran
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Asbjørn Graver Petersen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Ralf Köhler
- Aragón Agency for Research and Development (ARAID), Zaragoza, Spain
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon Comerma-Steffensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark.,Department of Biomedical Sciences/Animal Physiology, Faculty of Veterinary, Central University of Venezuela, Maracay, Venezuela
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
29
|
Etebari M, Naghsh-Nilchi F. Attenuation of hyperinsulinemia-induced DNA damage of peripheral lymphocytes by carvedilol. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2021. [DOI: 10.4103/jrptps.jrptps_1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Oxidative Stress and Antioxidant Treatments in Cardiovascular Diseases. Antioxidants (Basel) 2020; 9:antiox9121292. [PMID: 33348578 PMCID: PMC7766219 DOI: 10.3390/antiox9121292] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress plays a key role in many physiological and pathological conditions. The intracellular oxidative homeostasis is tightly regulated by the reactive oxygen species production and the intracellular defense mechanisms. Increased oxidative stress could alter lipid, DNA, and protein, resulting in cellular inflammation and programmed cell death. Evidences show that oxidative stress plays an important role in the progression of various cardiovascular diseases, such as atherosclerosis, heart failure, cardiac arrhythmia, and ischemia-reperfusion injury. There are a number of therapeutic options to treat oxidative stress-associated cardiovascular diseases. Well known antioxidants, such as nutritional supplements, as well as more novel antioxidants have been studied. In addition, novel therapeutic strategies using miRNA and nanomedicine are also being developed to treat various cardiovascular diseases. In this article, we provide a detailed description of oxidative stress. Then, we will introduce the relationship between oxidative stress and several cardiovascular diseases. Finally, we will focus on the clinical implications of oxidative stress in cardiovascular diseases.
Collapse
|
31
|
Amirshahrokhi K, Zohouri A. Carvedilol prevents pancreatic β-cell damage and the development of type 1 diabetes in mice by the inhibition of proinflammatory cytokines, NF-κB, COX-2, iNOS and oxidative stress. Cytokine 2020; 138:155394. [PMID: 33310423 DOI: 10.1016/j.cyto.2020.155394] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023]
Abstract
Inflammation is one of the main mechanisms of pancreatic β-cell damage and the development of type 1 diabetes (T1D). Carvedilol, a beta-adrenergic receptor blocker, has been demonstrated to have anti-inflammatory and antioxidant effects. The aim of this study was to investigate the protective effect of carvedilol against pancreatic β-cell damage and the development of T1D in an experimental model. T1D was induced in mice by multiple low-dose streptozotocin (STZ) injections. Diabetic mice were treated with carvedilol (15 and 20 mg/kg/day, orally) for 14 days. Results showed that blood glucose levels, diabetes incidence, body weight loss and insulitis in the pancreatic tissue were significantly reduced in mice treated with carvedilol. Treatment of mice with carvedilol significantly increased the levels of antioxidants glutathione (GSH), superoxide dismutase (SOD), and catalase and decreased the levels of malondialdehyde (MDA), nitric oxide (NO) and myeloperoxidase (MPO) in the pancreatic tissue as compared with those in the STZ-induced diabetic mice. Carvedilol decreased the expression of nuclear factor kappa B (NF-κB), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as important modulators of inflammation and β-cell damage in the pancreatic tissue. In addition, carvedilol significantly reduced the levels of proinflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 IL-12, IL-17, interferon (IFN)-γ and chemokine MCP-1, while increased the anti-inflammatory cytokine IL-10 in the pancreatic tissue. In conclusion, these findings suggest that carvedilol is able to prevent pancreatic β-cell damage and the development of T1D in mice by the inhibition of inflammatory and oxidative mediators.
Collapse
Affiliation(s)
- Keyvan Amirshahrokhi
- Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Ali Zohouri
- Division of Pathology, Fatemi Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
32
|
Baou K, Katsi V, Makris T, Tousoulis D. Beta Blockers and Chronic Obstructive Pulmonary Disease (COPD): Sum of Evidence. Curr Hypertens Rev 2020; 17:196-206. [PMID: 33302840 DOI: 10.2174/1573402116999201209203250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
Approximately, half a century has passed since the discovery of beta blockers. Then, their prime therapeutic purpose was to treat angina and cardiac arrhythmias, nowadays, beta blockers' usage and effectiveness is extended to treat other cardiovascular diseases, such as hypertension, congestive heart failure, and coronary artery disease. Safety concerns were raised about beta blockers and their use for chronic obstructive pulmonary disease (COPD) patients with concurrent cardiovascular disease. After a thorough research of the literature, this review summarizes the evidence proving that beta blockers not only might be well tolerated in COPD patients, but they might also have a beneficial effect in this group of patients.
Collapse
Affiliation(s)
- Katerina Baou
- First Department of Pulmonary Medicine, Sismanoglio Hospital, Sismanogliou 1, Marousi,. Greece
| | - Vasiliki Katsi
- First Department of Cardiology, Hippokration Hospital, University of Athens, Vasilissis Sofias 114, Athens,. Greece
| | - Thomas Makris
- Department of Cardiology, Helena Venizelou Hospital, Helenas Venizelou 2 Square, Ampelokipi,. Greece
| | - Dimitris Tousoulis
- First Department of Cardiology, Hippokration Hospital, University of Athens, Vasilissis Sofias 114, Athens,. Greece
| |
Collapse
|
33
|
Kim YJ, Oh SH, Ahn JS, Yook JM, Kim CD, Park SH, Cho JH, Kim YL. The Crucial Role of Xanthine Oxidase in CKD Progression Associated with Hypercholesterolemia. Int J Mol Sci 2020; 21:ijms21207444. [PMID: 33050202 PMCID: PMC7589966 DOI: 10.3390/ijms21207444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023] Open
Abstract
In the present study, we investigated the effects of xanthine oxidase (XO) inhibition on cholesterol-induced renal dysfunction in chronic kidney disease (CKD) mice, and in low-density lipoprotein (LDL)-treated human kidney proximal tubule epithelial (HK-2) cells. ApoE knockout (KO) mice underwent uninephrectomy to induce CKD, and were fed a normal diet or high-cholesterol (HC) diet along with the XO inhibitor topiroxostat (1 mg/kg/day). HK-2 cells were treated with LDL (200 µg/mL) and topiroxostat (5 µM) or small interfering RNA against xanthine dehydrogenase (siXDH; 20 nM). In uninephrectomized ApoE KO mice, the HC diet increased cholesterol accumulation, oxidative stress, XO activity, and kidney damage, while topiroxostat attenuated the hypercholesterolemia-associated renal dysfunction. The HC diet induced cholesterol accumulation by regulating the expressions of genes involved in cholesterol efflux (Nr1h3 and Abca1) and synthesis (Srebf2 and Hmgcr), which was reversed by topiroxostat. Topiroxostat suppressed the expressions of genes related to hypercholesterolemia-associated inflammation and fibrosis in the unilateral kidney. LDL stimulation evoked changes in the cholesterol metabolism, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and NF-κB pathways in HK-2 cells, which were mitigated by XO inhibition with topiroxostat or siXDH. These findings suggest that XO inhibition exerts renoprotective effects against hypercholesterolemia-associated kidney injury. XO could be a novel therapeutic target for hypercholesterolemia-associated kidney injury in uninephrectomized patients.
Collapse
Affiliation(s)
- You-Jin Kim
- Division of Nephrology, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.-J.K.); (S.-H.O.); (J.-S.A.); (J.-M.Y.); (C.-D.K.); (S.-H.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - Se-Hyun Oh
- Division of Nephrology, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.-J.K.); (S.-H.O.); (J.-S.A.); (J.-M.Y.); (C.-D.K.); (S.-H.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - Ji-Sun Ahn
- Division of Nephrology, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.-J.K.); (S.-H.O.); (J.-S.A.); (J.-M.Y.); (C.-D.K.); (S.-H.P.)
| | - Ju-Min Yook
- Division of Nephrology, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.-J.K.); (S.-H.O.); (J.-S.A.); (J.-M.Y.); (C.-D.K.); (S.-H.P.)
| | - Chan-Duck Kim
- Division of Nephrology, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.-J.K.); (S.-H.O.); (J.-S.A.); (J.-M.Y.); (C.-D.K.); (S.-H.P.)
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Sun-Hee Park
- Division of Nephrology, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.-J.K.); (S.-H.O.); (J.-S.A.); (J.-M.Y.); (C.-D.K.); (S.-H.P.)
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jang-Hee Cho
- Division of Nephrology, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.-J.K.); (S.-H.O.); (J.-S.A.); (J.-M.Y.); (C.-D.K.); (S.-H.P.)
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (J.-H.C.); (Y.-L.K.); Tel.: +82-10-6566-7551(J.-H.C.); +82-53-420-5553 (Y.-L.K.); Fax: +82-53-426-2046 (J.-H.C.); +82-53-423-7583 (Y.-L.K.)
| | - Yong-Lim Kim
- Division of Nephrology, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.-J.K.); (S.-H.O.); (J.-S.A.); (J.-M.Y.); (C.-D.K.); (S.-H.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (J.-H.C.); (Y.-L.K.); Tel.: +82-10-6566-7551(J.-H.C.); +82-53-420-5553 (Y.-L.K.); Fax: +82-53-426-2046 (J.-H.C.); +82-53-423-7583 (Y.-L.K.)
| |
Collapse
|
34
|
El Morsy EM, Ahmed MA. Carvedilol attenuates l-arginine induced acute pancreatitis in rats through modulation of oxidative stress and inflammatory mediators. Chem Biol Interact 2020; 327:109181. [DOI: 10.1016/j.cbi.2020.109181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 05/29/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
|
35
|
Wang Q, Wu J, Zeng Y, Chen K, Wang C, Yang S, Sun N, Chen H, Duan K, Zeng G. Pyroptosis: A pro-inflammatory type of cell death in cardiovascular disease. Clin Chim Acta 2020; 510:62-72. [PMID: 32622968 DOI: 10.1016/j.cca.2020.06.044] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 01/12/2023]
Abstract
Pyroptosis is a pro-inflammatory type of regulated cell death (RCD) characterized by gasdermin D (GSDMD)-mediated membrane pore formation, cell swelling and rapid lysis, followed by the massive release of pro-inflammatory mediators such as interleukin-1β and interleukin-18. There are two main pathways of pyroptosis: the caspase-1-mediated canonical pathway and the caspase-4/5/11-mediated noncanonical pathway. However, the caspase-3-gasdermin E (GSDME) pathway and caspase-8-GSDMD pathway also induce pyroptosis. Pyroptosis can not only cause local inflammation but also lead to amplification of the inflammatory response. Recent studies have suggested that pyroptosis is closely related with cardiovascular disease (CVD); for example, in atherosclerosis, myocardial infarction, ischemia-reperfusion injury, heart failure, coronary calcification and aortic aneurysm, study results have promoted the development of inhibitors targeting the components related to pyroptosis, and some agents have been clinically proven to have cardiovascular benefits. In this review, we summarize emerging evidence to discuss the progressive understanding of pyroptosis and the pathways, effect and effectors of pyroptosis, as well as the role of pyroptosis in CVD. Additionally, we summarize pyroptosis-related pathway inhibitors and classic cardiovascular drugs targeting pyroptosis.
Collapse
Affiliation(s)
- Qun Wang
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Jianfeng Wu
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Yicheng Zeng
- Hengyang Medical College, University of South China, 421001 Hunan Province, China
| | - Kong Chen
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Chuangxin Wang
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Shiqi Yang
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Nisi Sun
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Hao Chen
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Kang Duan
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China
| | - Gaofeng Zeng
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, the Second Affiliated Hospital of University of South China, 421001 Hunan Province, China.
| |
Collapse
|
36
|
Raber I, Asnani A. Cardioprotection in cancer therapy: novel insights with anthracyclines. Cardiovasc Res 2020; 115:915-921. [PMID: 30726931 DOI: 10.1093/cvr/cvz023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/12/2018] [Accepted: 01/25/2019] [Indexed: 12/23/2022] Open
Abstract
Anthracyclines are a class of antineoplastic agents that remain critical to modern-day cancer treatment. However, their propensity to cause cardiotoxic effects limits their use and can cause increased morbidity and mortality among patients with cancer. Currently available methods to minimize the impact of anthracycline cardiotoxicity have not been widely successful. While it is largely accepted that the generation of oxygen radicals contributes to the development of anthracycline cardiotoxicity, the exact mechanisms of cardiomyocyte injury remain unclear. In this review, we discuss the current state of basic and translational research on the cardiotoxic mechanisms of anthracyclines that have led to the discovery of new therapeutic targets. Pending validation in patient populations, these recent advances have the potential to be translated into clinical approaches that will minimize anthracycline cardiotoxicity and improve outcomes in cancer survivors.
Collapse
Affiliation(s)
- Inbar Raber
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Aarti Asnani
- Harvard Medical School, Boston, MA, USA.,CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
37
|
Huang S, Zhao Q, Yang ZG, Diao KY, He Y, Shi K, Shen MT, Fu H, Guo YK. Protective role of beta-blockers in chemotherapy-induced cardiotoxicity-a systematic review and meta-analysis of carvedilol. Heart Fail Rev 2020; 24:325-333. [PMID: 30523513 PMCID: PMC6476829 DOI: 10.1007/s10741-018-9755-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Some randomized controlled trials (RCTs) have tested the efficacy of beta-blockers as prophylactic agents on cancer therapy-induced cardiotoxicity; however, the quality of this evidence remains undetermined. This systematic review and meta-analysis study aims to evaluate the prophylactic effects of beta-blockers, especially carvedilol, on chemotherapy-induced cardiotoxicity. RCTs were identified by searching the MEDLINE (PubMed), Embase (OvidSP), Cochrane CENTRAL (OvidSP), etc., until December 2017. Inclusion criteria were randomized clinical trial and adult cancer patients started beta-blockers before chemotherapy. We evaluated the mean differences (MD) by fixed- or random-effects model and the odds ratio by Peto’s method. Primary outcome was the left ventricular ejection fraction (LVEF) of patients after chemotherapy, and secondary outcomes were all-cause mortality, clinically overt cardiotoxicity, and other echocardiographic measurements. In total, we included six RCTs that used carvedilol as a prophylactic agent in patients receiving chemotherapy. The LVEF was not significantly distinct between those using carvedilol and placebo after chemotherapy (MD, 1.74; 95% confidence interval (CI), − 0.18 to 3.66; P = 0.08). The incidence of clinically overt cardiotoxicity was lower in the carvedilol group compared with the control group (Peto OR, 0.42; 95% CI, 0.20–0.89; P = 0.02). Furthermore, after chemotherapy, the LV end-diastolic diameter did not increase in the carvedilol group compared with the placebo group (MD, − 1.41; 95% CI, − 2.32 to − 0.50; P = 0.002). The prophylactic use of carvedilol exerted no impact on the early asymptomatic LVEF decrease but seemed to attenuate the frequency of clinically overt cardiotoxicity and prevent ventricular remodeling.
Collapse
Affiliation(s)
- Shan Huang
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Qin Zhao
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| | - Kai-Yue Diao
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yong He
- Department of Cardiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, China
| | - Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Meng-Ting Shen
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Hang Fu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
38
|
Ahmed I, Elkablawy MA, El-Agamy DS, Bazarbay AA, Ahmed N. Carvedilol safeguards against aspirin-induced gastric damage in rats. Hum Exp Toxicol 2020; 39:1257-1267. [PMID: 32295429 DOI: 10.1177/0960327120918306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study investigated the effect of carvedilol on aspirin-induced gastric damage. Male Wistar rats were divided into three groups. Control rats received the vehicle, while the aspirin group received aspirin (200 mg/kg) orally for 4 days. Rats of aspirin + carvedilol group were administered aspirin along with carvedilol (5 mg/kg; intraperitoneal) for 4 days. Animals were euthanized at the end of the treatment period, and gastric tissues were collected to perform histopathological and mechanistic studies. The results revealed that aspirin administration induced gastric ulcer as there were remarkable histopathological lesions in the form of marked necrosis, inflammation, hemorrhage, edema, and dysplastic changes. Lipid peroxidative markers such as malondialdehyde, 4-hydroxynonenal, and protein carbonyl were significantly elevated in the aspirin group. This was concurrent with a significant amelioration of antioxidants such as reduced glutathione, superoxide dismutase, and catalase. Furthermore, aspirin increased the immunoexpression of cyclooxygenase (COX) 2 and nuclear factor kappa-B (NF-κB). Aspirin induced elevation in the inflammatory cytokines such as tumor necrosis factor-α, interleukin-6, and interleukin-1β. Aspirin enhanced the immunoexpression of inducible nitric oxide synthetase (iNOS) and increased the level of nitrite/nitrate in gastric tissue. On the other hand, carvedilol treatment reversed all these pathological changes. Carvedilol succeeded to enhance antioxidants in gastric tissue, attenuated lipid peroxidative parameters, and suppressed the release of inflammatory mediators. It attenuated the immunoexpression of COX-2, NF-κB, and iNOS. Collectively, carvedilol has a gastro-protective effect that could be attributed to its antioxidative and anti-inflammatory properties, which modulate NF-κB/COX-2/iNOS pathways.
Collapse
Affiliation(s)
- I Ahmed
- Department of Pharmacology and Toxicology, Nizam Institute of Pharmacy, Jawaharlal Nehru Technological University, Hyderabad, Telangana, India
| | - M A Elkablawy
- Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - D S El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - A A Bazarbay
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - N Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| |
Collapse
|
39
|
Sánchez-Villamil JP, Bautista-Niño PK, Serrano NC, Rincon MY, Garg NJ. Potential Role of Antioxidants as Adjunctive Therapy in Chagas Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9081813. [PMID: 32308809 PMCID: PMC7136780 DOI: 10.1155/2020/9081813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/02/2020] [Accepted: 03/07/2020] [Indexed: 02/07/2023]
Abstract
Chagas disease (CD) is one of the most important neglected tropical diseases in the American continent. Host-derived nitroxidative stress in response to Trypanosoma cruzi infection can induce tissue damage contributing to the progression of Chagas disease. Antioxidant supplementation has been suggested as adjuvant therapy to current treatment. In this article, we synthesize and discuss the current evidence regarding the use of antioxidants as adjunctive compounds to fight harmful reactive oxygen species and lower the tissue oxidative damage during progression of chronic Chagas disease. Several antioxidants evaluated in recent studies have shown potential benefits for the control of oxidative stress in the host's tissues. Melatonin, resveratrol, the combination of vitamin C/vitamin E (vitC/vitE) or curcumin/benznidazole, and mitochondria-targeted antioxidants seem to be beneficial in reducing plasma and cardiac levels of lipid peroxidation products. Nevertheless, further research is needed to validate beneficial effects of antioxidant therapies in Chagas disease.
Collapse
Affiliation(s)
- Juana P. Sánchez-Villamil
- Translational Biomedical Research Group, Centro de Investigaciones, Fundación Cardiovascular de Colombia, Santander, Colombia
- Faculty of Basic Sciences, Universidad Antonio Nariño, Santander, Colombia
| | - Paula K. Bautista-Niño
- Translational Biomedical Research Group, Centro de Investigaciones, Fundación Cardiovascular de Colombia, Santander, Colombia
| | - Norma C. Serrano
- Translational Biomedical Research Group, Centro de Investigaciones, Fundación Cardiovascular de Colombia, Santander, Colombia
| | - Melvin Y. Rincon
- Translational Biomedical Research Group, Centro de Investigaciones, Fundación Cardiovascular de Colombia, Santander, Colombia
| | - Nisha J. Garg
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
40
|
Carrasco R, Ramirez MC, Nes K, Schuster A, Aguayo R, Morales M, Ramos C, Hasson D, Sotomayor CG, Henriquez P, Cortés I, Erazo M, Salas C, Gormaz JG. Prevention of doxorubicin-induced Cardiotoxicity by pharmacological non-hypoxic myocardial preconditioning based on Docosahexaenoic Acid (DHA) and carvedilol direct antioxidant effects: study protocol for a pilot, randomized, double-blind, controlled trial (CarDHA trial). Trials 2020; 21:137. [PMID: 32019575 PMCID: PMC7001267 DOI: 10.1186/s13063-019-3963-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Background Anthracycline-induced cardiotoxicity (AIC), a condition associated with multiple mechanisms of damage, including oxidative stress, has been associated with poor clinical outcomes. Carvedilol, a β-blocker with unique antioxidant properties, emerged as a strategy to prevent AIC, but recent trials question its effectiveness. Some evidence suggests that the antioxidant, not the β-blocker effect, could prevent related cardiotoxicity. However, carvedilol’s antioxidant effects are probably not enough to prevent cardiotoxicity manifestations in certain cases. We hypothesize that breast cancer patients taking carvedilol as well as a non-hypoxic myocardial preconditioning based on docosahexaenoic acid (DHA), an enhancer of cardiac endogenous antioxidant capacity, will develop less subclinical cardiotoxicity manifestations than patients randomized to double placebo. Methods/design We designed a pilot, randomized controlled, two-arm clinical trial with 32 patients to evaluate the effects of non-hypoxic cardiac preconditioning (DHA) plus carvedilol on subclinical cardiotoxicity in breast cancer patients undergoing anthracycline treatment. The trial includes four co-primary endpoints: changes in left ventricular ejection fraction (LVEF) determined by cardiac magnetic resonance (CMR); changes in global longitudinal strain (GLS) determined by two-dimensional echocardiography (ECHO); elevation in serum biomarkers (hs-cTnT and NT-ProBNP); and one electrocardiographic variable (QTc interval). Secondary endpoints include other imaging, biomarkers and the occurrence of major adverse cardiac events during follow-up. The enrollment and follow-up for clinical outcomes is ongoing. Discussion We expect a group of anthracycline-treated breast cancer patients exposed to carvedilol and non-hypoxic myocardial preconditioning with DHA to show less subclinical cardiotoxicity manifestations than a comparable group exposed to placebo. Trial registration ISRCTN registry, ID: ISRCTN69560410. Registered on 8 June 2016.
Collapse
Affiliation(s)
- Rodrigo Carrasco
- Cardiology Department, Clinica Alemana de Santiago, Santiago, Chile.,Cardiology Department, Hospital del Salvador, Santiago, Chile
| | | | - Kjersti Nes
- Cardiology Department, Hospital San Juan de Dios, Santiago, Chile
| | - Andrés Schuster
- Cardiology Department, Clinica Alemana de Santiago, Santiago, Chile
| | - Rubén Aguayo
- Cardiology Department, Hospital San Juan de Dios, Santiago, Chile
| | - Marcelo Morales
- Cardiology Department, Clinica Alemana de Santiago, Santiago, Chile.,Cardiology Department, Hospital San Juan de Dios, Santiago, Chile
| | - Cristobal Ramos
- Radiology Department, Clinica Alemana de Santiago, Santiago, Chile
| | - Daniel Hasson
- Radiology Department, Clinica Alemana de Santiago, Santiago, Chile
| | - Camilo G Sotomayor
- Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Pablo Henriquez
- Cardiology Department, Hospital San Juan de Dios, Santiago, Chile
| | - Ignacio Cortés
- Cardiology Department, Hospital San Juan de Dios, Santiago, Chile
| | - Marcia Erazo
- Publich Health Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claudio Salas
- Medical Oncology Department, Clinica Alemana de Santiago, Vitacura 5951, Santiago, Chile
| | - Juan G Gormaz
- Medical Oncology Department, Clinica Alemana de Santiago, Vitacura 5951, Santiago, Chile.
| |
Collapse
|
41
|
The β-Blocker Carvedilol Prevented Ultraviolet-Mediated Damage of Murine Epidermal Cells and 3D Human Reconstructed Skin. Int J Mol Sci 2020; 21:ijms21030798. [PMID: 31991834 PMCID: PMC7037760 DOI: 10.3390/ijms21030798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 11/17/2022] Open
Abstract
The β-blocker carvedilol prevents ultraviolet (UV)-induced skin cancer, but the mechanism is unknown. Since carvedilol possesses antioxidant activity, this study investigated whether carvedilol prevents oxidative photodamage of skin, a precursor event in skin carcinogenesis. The effects of carvedilol, metoprolol (a β-blocker without antioxidant property), and 4-hydroxycarbazole (4-OHC, a carvedilol synthesis intermediate and a free radical scavenger) were compared on UV- or H2O2-induced cell death and reactive oxygen species (ROS) production in murine epidermal JB6 P+ cells. Although carvedilol attenuated cell death, metoprolol and 4-OHC failed to show protective effects. As expected, increased cellular ROS induced by H2O2 or UV was abolished by carvedilol and 4-OHC, but not by metoprolol. Consistently, carvedilol attenuated the formation of UV-induced cyclobutane pyrimidine dimers (CPDs) and release of prostaglandin E2 in JB6 P+ cells. Carvedilol's activity was further confirmed in full thickness 3D human reconstituted skin, where carvedilol attenuated UV-mediated epidermal thickening, the number of Ki-67 and p53 positive cells as well as CPD formation. Based on pathway-specific Polymerase Chain Reaction (PCR) Array analysis, carvedilol treatment in many cases normalized UV-induced expression changes in DNA repair genes. Thus, carvedilol's photoprotective activity is not attributed to β-blockade or direct ROS-scavenging capacity, but likely via DNA repair regulation.
Collapse
|
42
|
Sousa RCD, Deus DBD, Costa TÁD, Silva MVD, Rodrigues Junior V, Correia D. Correlation between the cytokine profile and anticongestive medication in patients with chronic chagasic cardiopathy. Rev Soc Bras Med Trop 2019; 52:e20190386. [PMID: 31800924 DOI: 10.1590/0037-8682-0386-2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/20/2019] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Chronic chagasic cardiopathy (CCC) is essentially a dilated cardiomyopathy in which a subacute, but constant chronic inflammatory process causes progressive destruction of the heart tissue. The action of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), and anti-inflammatory cytokines, like interleukin IL-10 and IL-17, plays a fundamental role in the immunopathogenesis and evolution of disease. Early anti-congestive therapy, aimed at changing the morbidity and mortality rate, has been shown to reduce disease progression and to alter patients' immune response pattern. METHODS This cross-sectional study aimed to evaluate the profile of Th1 and Th17 cytokines and IL-17, TNF-α, and IFN-γ expressions in different stages of CCC. Forty patients affected by chronic Chagas disease were divided into different groups according to the stage of the pathology. In agreement with the Brazilian consensus on Chagas disease, patients were classified as presenting an undetermined form, a cardiac form and a digestive form. Serum IFN-γ, TNF-α, IL-10, and IL-17 were evaluated. RESULTS Lower serum IFN-γ concentrations were detected in patients receiving angiotensin-converting enzyme inhibitors (p = 0.0182), but not in those using angiotensin receptor blockers (p = 0.0783). Patients using amiodarone and aldosterone antagonist presented higher serum TNF-α concentrations (p = 0.0106 and 0.0187, respectively). IL-10 and IL-17 levels did not differ between the study groups (p = 0.7273 and p = 0.6697, respectively). CONCLUSIONS These results suggest that the cytokine profile and disease progression are altered by anti-congestive medications commonly prescribed for CCC.
Collapse
Affiliation(s)
- Rodrigo Cunha de Sousa
- Universidade Federal do Triângulo Mineiro, Departamento de Medicina Interna, Uberaba, MG, Brasil
| | - Diego Bernardo de Deus
- Universidade Federal do Triângulo Mineiro, Departamento de Medicina Interna, Uberaba, MG, Brasil
| | - Thiago Álvares da Costa
- Universidade Federal do Triângulo Mineiro, Departamento de Microbiologia, Imunologia e Parasitologia, Uberaba, MG, Brasil
| | - Marcos Vinícius da Silva
- Universidade Federal do Triângulo Mineiro, Departamento de Microbiologia, Imunologia e Parasitologia, Uberaba, MG, Brasil
| | - Virmondes Rodrigues Junior
- Universidade Federal do Triângulo Mineiro, Departamento de Microbiologia, Imunologia e Parasitologia, Uberaba, MG, Brasil
| | - Dalmo Correia
- Universidade Federal do Triângulo Mineiro, Departamento de Medicina Interna, Uberaba, MG, Brasil
| |
Collapse
|
43
|
Rambacher KM, Moniri NH. The β2-adrenergic receptor-ROS signaling axis: An overlooked component of β2AR function? Biochem Pharmacol 2019; 171:113690. [PMID: 31697929 DOI: 10.1016/j.bcp.2019.113690] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
Abstract
β2-Adrenergic receptor (β2AR) agonists are clinically used to elicit rapid bronchodilation for the treatment of bronchospasms in pulmonary diseases such as asthma and COPD, both of which exhibit characteristically high levels of reactive oxygen species (ROS); likely secondary to over-expression of ROS generating enzymes and chronically heightened inflammation. Interestingly, β2AR has long-been linked to ROS, yet the involvement of ROS in β2AR function has not been as vigorously studied as other aspects of β2AR signaling. Herein, we discuss the existing body of evidence linking β2AR activation to intracellular ROS generation and importantly, the role of ROS in regulating β2AR function. The reciprocal interplay of the β2AR and ROS appear to endow this receptor with the ability to self-regulate signaling efficacy and ligand binding, hereby unveiling a redox-axis that may be unfavorably altered in pathological states contributing to both disease progression and therapeutic drug responses.
Collapse
Affiliation(s)
- Kalyn M Rambacher
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, USA
| | - Nader H Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, USA.
| |
Collapse
|
44
|
Carvedilol Ameliorates Experimental Atherosclerosis by Regulating Cholesterol Efflux and Exosome Functions. Int J Mol Sci 2019; 20:ijms20205202. [PMID: 31635197 PMCID: PMC6834197 DOI: 10.3390/ijms20205202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Carvedilol (Cav), a nonselective β-blocker with α1 adrenoceptor blocking effect, has been used as a standard therapy for coronary artery disease. This study investigated the effects of Cav on exosome expression and function, ATP-binding cassette transporter A1 (ABCA1) expression, and cholesterol efflux that are relevant to the process of atherosclerosis. Human monocytic (THP-1) cell line and human hepatic (Huh-7) cells were treated with Cav, and cholesterol efflux was measured. Exosomes from cell culture medium or mice serum were isolated using glycan-coated recognition beads. Low-density lipoprotein receptor knockout (ldlr−/−) mice were fed with high-fat diet and treated with Cav. Cav accentuated cholesterol efflux and enhanced the expressions of ABCA1 protein and mRNA in both THP-1 and Huh-7 cells. In addition, Cav increased expression and function of exosomal ABCA1 in THP-1 macrophage exosomes. The mechanisms were associated with inhibition of nuclear factor-κB (NF-κB) and protein kinase B (Akt). In hypercholesterolemic ldlr−/− mice, Cav enhanced serum exosomal ABCA1 expression and suppressed atherosclerosis by inhibiting lipid deposition and macrophage accumulation. Cav halts atherosclerosis by enhancing cholesterol efflux and increasing ABCA1 expression in macrophages and in exosomes, possibly through NF-κB and Akt signaling, which provides mechanistic insights regarding the beneficial effects of Cav on atherosclerotic cardiovascular disease.
Collapse
|
45
|
dos Santos Chaves P, Frank LA, Torge A, Schneider M, Pohlmann AR, Guterres SS, Beck RCR. Spray-dried carvedilol-loaded nanocapsules for sublingual administration: Mucoadhesive properties and drug permeability. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Cleveland KH, Liang S, Chang A, Huang KM, Chen S, Guo L, Huang Y, Andresen BT. Carvedilol inhibits EGF-mediated JB6 P+ colony formation through a mechanism independent of adrenoceptors. PLoS One 2019; 14:e0217038. [PMID: 31107911 PMCID: PMC6527222 DOI: 10.1371/journal.pone.0217038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/02/2019] [Indexed: 01/13/2023] Open
Abstract
Carvedilol is reported to prevent cancers in humans and animal models. However, a molecular mechanism has yet to be established, and the extent to which other β-blockers are chemopreventive remains relatively unknown. A comparative pharmacological approach was utilized with the expectation that a mechanism of action could be devised. JB6 Cl 41-5a (JB6 P+) murine epidermal cells were used to elucidate the chemopreventative properties of β-blockers, as JB6 P+ cells recapitulate in vivo tumor promotion and chemoprevention. The initial hypothesis was that β-blockers that are GRK/β-arrestin biased agonists, like carvedilol, are chemopreventive. Sixteen β-blockers of different classes, isoproterenol, and HEAT HCl were individually co-administered with epidermal growth factor (EGF) to JB6 P+ cells to examine the chemopreventative properties of each ligand. Cytotoxicity was examined to ensure that the anti-transformation effects of each ligand were not due to cellular growth inhibition. Many of the examined β-blockers suppressed EGF-induced JB6 P+ cell transformation in a non-cytotoxic and concentration-dependent manner. However, the IC50 values are high for the most potent inhibitors (243, 326, and 431 nM for carvedilol, labetalol, and alprenolol, respectively) and there is no correlation between pharmacological properties and inhibition of transformation. Therefore, the role of α1- and β2-adrenergic receptors (AR) was examined by standard competition assays and shRNA targeting β2-ARs, the only β-AR expressed in JB6 P+ cells. The results reveal that pharmacological inhibition of α1- and β2-ARs and genetic knockdown of β2-ARs did not abrogate carvedilol-mediated inhibition of EGF-induced JB6 P+ cell transformation. Furthermore, topical administration of carvedilol protected mice from UV-induced skin damage, while genetic ablation of β2-ARs increased carvedilol-mediated effects. Therefore, the prevailing hypothesis that the chemopreventive property of carvedilol is mediated through β-ARs is not supported by this data.
Collapse
Affiliation(s)
- Kristan H. Cleveland
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Sherry Liang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Andy Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Kevin M. Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (YH); (BTA)
| | - Bradley T. Andresen
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (YH); (BTA)
| |
Collapse
|
47
|
Li T, Yuan G, Ma C, Jin P, Zhou C, Li W. Clinical efficacy of carvedilol treatment for dilated cardiomyopathy: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2019; 98:e15403. [PMID: 31045794 PMCID: PMC6504318 DOI: 10.1097/md.0000000000015403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Clinical trials examining the therapeutic benefit of carvedilol on patients with dilated cardiomyopathy have reported inconsistent results. The aim of this study was to evaluate the clinical efficacy of carvedilol on patients with dilated cardiomyopathy. METHODS PubMed, Embase, Cochrane Library, web of science, China National Knowledge Infrastructure (CNKI), Wanfang, and Chinese Scientific and Technological Journal (VIP) databases were searched for randomized controlled trials (RCTs) before March 2018. Weighted mean differences (WMDs) and 95% confidence intervals (CIs) were used to evaluate the effects of carvedilol on patients with dilated cardiomyopathy. RESULTS Twenty one studies including 1146 participants were included. There were significant improvements on heart rate (HR) (WMD = -14.18, 95% CI: -17.72 to -10.63, P < .001), LVEF (WMD = 7.28, 95% CI: 6.53-8.03, P < .001), SBP (WMD = -10.74, 95% CI: -12.78 to -8.70, P < .001), DBP (WMD = -4.61, 95% CI: -7.32 to -1.90, P = .001), LVEDD (WMD = -2.76, 95% CI: -4.89 to -0.62, P = .011), LVESD (WMD = -3.63, 95% CI: -6.55 to -0.71, P = .015), LVEDV (WMD = -9.30, 95% CI: -11.89 to -6.71, P < .001), LVESV (WMD = -12.28, 95% CI: -14.86 to -9.70, P < .001) under carvedilol treatment compared with control. CONCLUSION This meta-analysis demonstrates that carvedilol significantly improves cardiac function on patients with dilated cardiomyopathy. Further large scale, high-quality and multicenter RCTs are still required to confirm the impacts of carvedilol on patients with dilated cardiomyopathy.
Collapse
|
48
|
Oh SH, Choi SY, Choi HJ, Ryu HM, Kim YJ, Jung HY, Cho JH, Kim CD, Park SH, Kwon TH, Kim YL. The emerging role of xanthine oxidase inhibition for suppression of breast cancer cell migration and metastasis associated with hypercholesterolemia. FASEB J 2019; 33:7301-7314. [PMID: 30860872 DOI: 10.1096/fj.201802415rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypercholesterolemia is reported to increase reactive oxygen species (ROS) and to promote breast cancer progression. ROS play an important role in tumor biology, and xanthine oxidase (XO) is an enzyme that generates ROS. The effects of febuxostat (FBX), an XO inhibitor, on breast cancer cell migration under LDL stimulation in vitro and metastasis of breast cancer associated with hypercholesterolemia in vivo were studied. In vitro, FBX significantly inhibited LDL-induced ROS production and cell migration. Treatment of small interfering RNA against XO was consistent with the findings of FBX treatment. In vivo, a significant increase of tumor growth and pulmonary metastasis was observed in a xenograft mouse model with 4T1 cells on a high cholesterol diet (HCD), both of which were markedly inhibited by FBX or allopurinol treatment. Moreover, ERK represented the main target-signaling pathway that was affected by FBX treatment in a xenograft mouse model on an HCD evaluated by NanoString nCounter analysis. Consistently, MEK/ERK inhibitors directly decreased the LDL-induced cell migration in vitro. In conclusion, FBX mitigates breast cancer cell migration and pulmonary metastasis in the hyperlipidemic condition, associated with decreased ROS generation and MAPK phosphorylation. The inhibition of ERK pathways is likely to underlie the XO inhibitor-mediated suppression of breast cancer cell migration.-Oh, S.-H., Choi, S.-Y., Choi, H.-J., Ryu, H.-M., Kim, Y.-J., Jung, H.-Y., Cho, J.-H., Kim, C.-D., Park, S.-H., Kwon, T.-H., Kim, Y.-L. The emerging role of xanthine oxidase inhibition for suppression of breast cancer cell migration and metastasis associated with hypercholesterolemia.
Collapse
Affiliation(s)
- Se-Hyun Oh
- Department of Internal Medicine, Kyungpook National University, Daegu, South Korea.,Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea; and
| | - Soon-Youn Choi
- Department of Internal Medicine, Kyungpook National University, Daegu, South Korea.,Department of Biomedical Science, Kyungpook National University, Daegu, South Korea
| | - Hyo-Jung Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea; and
| | - Hye-Myung Ryu
- Department of Internal Medicine, Kyungpook National University, Daegu, South Korea
| | - You-Jin Kim
- Department of Internal Medicine, Kyungpook National University, Daegu, South Korea.,Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea; and
| | - Hee-Yeon Jung
- Department of Internal Medicine, Kyungpook National University, Daegu, South Korea
| | - Jang-Hee Cho
- Department of Internal Medicine, Kyungpook National University, Daegu, South Korea
| | - Chan-Duck Kim
- Department of Internal Medicine, Kyungpook National University, Daegu, South Korea
| | - Sun-Hee Park
- Department of Internal Medicine, Kyungpook National University, Daegu, South Korea
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea; and.,Department of Biomedical Science, Kyungpook National University, Daegu, South Korea
| | - Yong-Lim Kim
- Department of Internal Medicine, Kyungpook National University, Daegu, South Korea.,Department of Biomedical Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
49
|
Doxazosin and Carvedilol Treatment Improves Hepatic Regeneration in a Hamster Model of Cirrhosis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4706976. [PMID: 30643808 PMCID: PMC6311259 DOI: 10.1155/2018/4706976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/29/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
Regulation of the mechanisms of fibrosis is an important goal in the treatment of liver cirrhosis. One mechanism is the participation of hepatic stellate cells in fibrogenesis when activated by catecholamines. Consequently, α/β adrenoblockers are proposed as an alternative treatment for chronic liver lesions such as fibrosis and/or cirrhosis and for possible liver regeneration. We herein analyzed the effect of doxazosin and carvedilol treatments during the regeneration of tissue in a hamster model of liver cirrhosis. Tissue samples were examined by H&E and PAS to evaluate tissue damage and with Sirius red to assess collagen fiber content. ALT, AST, albumin, and total proteins were examined by spectrophotometry. Determination of the levels of α-SMA and TGF-β in hepatic tissue was examined by Western blot and of the expression of TIMP-2, MMP-13, α-FP, HGF, CK-7, and c-Myc was examined by qPCR. Treatment with doxazosin or carvedilol prompted histological recovery and reduced collagen fibers in the livers of cirrhotic hamsters. The expression of TIMP-2 decreased and that of MMP-13 increases in animals treated with adrenoblockers with respect to the group with cirrhosis. Additionally, the concentration of α-SMA and TGF-β declined with both drugs with respect to placebo p<0.05. On the other hand, each drug treatment led to a distinct scenario for cell proliferation markers. Whereas doxazosin produced no irregularities in α-FP, Ki-67, and c-Myc expression, carvedilol induced an increment in the expression of these markers with respect to the intact. Hence, doxazosin and carvedilol are potential treatments for the regression of hepatic cirrhosis in hamsters in relation to the decrease of collagen in the hepatic parenchyma. However, at regeneration level we observed that doxazosin caused slight morphological changes in hepatocytes, such as its balonization without affecting the hepatic function, and on the other hand, carvedilol elicited a slight irregular expression of cell proliferation markers.
Collapse
|
50
|
Halder S, Ogino M, Seto Y, Sato H, Onoue S. Improved biopharmaceutical properties of carvedilol employing α-tocopheryl polyethylene glycol 1000 succinate-based self-emulsifying drug delivery system. Drug Dev Ind Pharm 2018; 44:1838-1844. [PMID: 30059249 DOI: 10.1080/03639045.2018.1503294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The main objective of this study was to develop a self-emulsifying drug delivery system (SEDDS) of carvedilol (CAR) with improved oral absorption and hepatoprotective properties. SEDDS-CAR was prepared based on d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and physicochemically characterized. Pharmacokinetic behaviors after the oral administration of CAR samples in rats were evaluated to clarify the possible enhancement of the oral absorption of CAR. The hepatoprotective effects of orally dosed CAR samples were assessed in a rat model of acute hepatic injury induced by carbon tetrachloride (CCl4). SEDDS-CAR showed the immediate formation of fine micelles with a mean droplet size of 84 nm when introduced in aqueous media. SEDDS-CAR improved the dissolution behavior of CAR in distilled water as evidenced by at least five-fold higher solubility than the equilibrium solubility of CAR. After the single oral administration of SEDDS-CAR (10 mg-CAR/kg) in rats, enhanced CAR exposure was observed with an increase of AUC0-∞ showing a 2.5-fold increase compared with crystalline CAR. In CCl4-treated rats, orally dosed SEDDS-CAR (10 mg-CAR/kg, p.o.) led to 91.8 and 91.2% reductions of ALT and AST, respectively; however, crystalline CAR was found to be less effective. From these findings, SEDDS-CAR might be an efficacious oral dosage option for enhancing the hepatoprotective potential of CAR.
Collapse
Affiliation(s)
- Shimul Halder
- a Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku , Shizuoka , Japan
| | - Mizuki Ogino
- a Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku , Shizuoka , Japan
| | - Yoshiki Seto
- a Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku , Shizuoka , Japan
| | - Hideyuki Sato
- a Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku , Shizuoka , Japan
| | - Satomi Onoue
- a Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku , Shizuoka , Japan
| |
Collapse
|