1
|
Xiao W, Xu L, Wang J, Yu K, Xu B, Que Y, Zhao J, Pan Q, Gao C, Zhou P, Zhang X. FGFR4-specific CAR-T cells with inducible caspase-9 suicide gene as an approach to treat rhabdomyosarcoma. Cancer Gene Ther 2024; 31:1571-1584. [PMID: 39183354 PMCID: PMC11489081 DOI: 10.1038/s41417-024-00823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Metastatic rhabdomyosarcoma is associated with poor survival and unsatisfactory treatment outcomes. Therefore, new immunotherapeutic methods are urgently required. Fibroblast growth factor receptor 4 (FGFR4), a new therapeutic target for rhabdomyosarcoma, plays a crucial role in its onset and development. This study aimed to generate FGFR4 single-chain variable fragment-based chimeric antigen receptor (CAR) T cells without causing evident toxicity and incorporating an inducible caspase-9 (iCasp9) suicide gene system to enhance their safety. FGFR4 antigen expression was evaluated in normal murine tissues, normal human tissues, and specimens from patients with rhabdomyosarcoma. Combined with a 4-1BB co-stimulatory domain, a CD3ζ signaling domain, and an iCasp9 suicide gene, CAR-T cells with an FGFR4-specific single-chain variable fragment were developed. The specific cytotoxic effects, T-cell proliferation, cytokine secretion, apoptosis induction by chemical dimerization (AP20187), and toxicity of FGFR4 CAR-T cells were investigated in vitro and in vivo. FGFR4 CAR-T cells generated a variety of immune-promoting cytokines, including tumor necrosis factor α, interleukin 2, and interferon γ, and displayed effective cytotoxic activity against FGFR4-overexpressing rhabdomyosarcoma cells in vitro. FGFR4 CAR-T cells were relatively effective against FGFR4-overexpressing rhabdomyosarcoma, with tumor regression and poor survival in a subcutaneous xenograft model. The iCasp9 gene was incorporated into FGFR4 CAR-T cells and it was demonstrated that effective and reliable suicide gene activity depends on the administration of AP20187. By making use of the cross-reaction of FGFR4 CAR-T cells with murine FGFR4 in a syngeneic tumor model, this study found that FGFR4 CAR-T cells could regulate the growth of tumors without evident toxicity. Our study demonstrates that FGFR4 is a prospective target for CAR-T cell therapy in rhabdomyosarcoma without serious on-target off-tumor toxicity. FGFR4 CAR-T cells with the iCasp9 suicide gene system as a safety switch to limit toxicity may broaden the clinical applications of cellular therapy.
Collapse
MESH Headings
- Rhabdomyosarcoma/therapy
- Rhabdomyosarcoma/genetics
- Animals
- Humans
- Mice
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Genes, Transgenic, Suicide
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Caspase 9/genetics
- Caspase 9/metabolism
- Immunotherapy, Adoptive/methods
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Apoptosis
- Female
Collapse
Affiliation(s)
- Wei Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Liping Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Kuai Yu
- Department of Blood Transfusion, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330209, China
- Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330209, China
| | - Bushu Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Yi Que
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Jingjing Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Qiuzhong Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Chengqi Gao
- Department of Blood Transfusion, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330209, China
- Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330209, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.
| | - Xing Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Ong SY, Baird JH. A Primer on Chimeric Antigen Receptor T-cell Therapy-related Toxicities for the Intensivist. J Intensive Care Med 2024; 39:929-938. [PMID: 37899577 DOI: 10.1177/08850666231205264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an innovative treatment approach that has shown remarkable efficacy against several hematologic malignancies. However, its use can be associated with unique and sometimes severe toxicities that require admission to intensive care unit in 30% of patients, and intensivists should be aware of immune-mediated toxicities of CAR T-cell therapy and management of adverse events. We will review available literature on current diagnostic criteria and therapeutic strategies for mitigating these most common toxicities associated with CAR T-cell therapy including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) in the post-infusion period. The authors will also review other toxicities associated with CAR T-cell therapy including cytopenias, acquired immunocompromised states, and infections, and discuss the available literature on best supportive care and prophylaxis recommendations. Critical care medicine specialists play a crucial role in the management of patients undergoing CAR T-cell therapies. With the expanding use of these products in increasing numbers of treating centers, intensivists' roles as part of the multidisciplinary team caring for these patients will have an outsized impact on the continued success of these promising therapies.
Collapse
Affiliation(s)
- Shin Yeu Ong
- Division of Lymphoma, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - John H Baird
- Division of Lymphoma, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
3
|
Ploch W, Sadowski K, Olejarz W, Basak GW. Advancement and Challenges in Monitoring of CAR-T Cell Therapy: A Comprehensive Review of Parameters and Markers in Hematological Malignancies. Cancers (Basel) 2024; 16:3339. [PMID: 39409959 PMCID: PMC11475293 DOI: 10.3390/cancers16193339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment for relapsed/refractory B-cell lymphomas. Despite its success, this therapy is accompanied by a significant frequency of adverse events, including cytokine release syndrome (CRS), immune-effector-cell-associated neurotoxicity syndrome (ICANS), or cytopenias, reaching even up to 80% of patients following CAR-T cell therapy. CRS results from the uncontrolled overproduction of proinflammatory cytokines, which leads to symptoms such as fever, headache, hypoxia, or neurological complications. CAR-T cell detection is possible by the use of flow cytometry (FC) or quantitative polymerase chain reaction (qPCR) assays, the two primary techniques used for CAR-T evaluation in peripheral blood, bone marrow (BM), and cerebrospinal fluid (CSF). State-of-the-art imaging technologies play a crucial role in monitoring the distribution and persistence of CAR-T cells in clinical trials. Still, they can also be extended with the use of FC and digital PCR (dPCR). Monitoring the changes in cell populations during disease progression and treatment gives an important insight into how the response to CAR-T cell therapy develops on a cellular level. It can help improve the therapeutic design and optimize CAR-T cell therapy to make it more precise and personalized, which is crucial to overcoming the problem of tumor relapse.
Collapse
Affiliation(s)
- Weronika Ploch
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Karol Sadowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Grzegorz W. Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
4
|
Bhullar PK, Motaparthi K, Zieman DP, Johnson C, Gurnani P, Sokumbi O. Toxic epidermal necrolysis-like cutaneous toxicity following chimeric antigen receptor T-cell therapy in recurrent large B-cell lymphoma. J Cutan Pathol 2024. [PMID: 38982730 DOI: 10.1111/cup.14687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has demonstrated remarkable success in treating various B-cell malignancies, redirecting T-cell cytotoxicity toward cancer cells. Despite its efficacy, CAR-T therapy is associated with potential risks, including cytokine release syndrome (CRS) and cytopenia. We present a case of a 69-year-old man with diffuse large B-cell lymphoma treated with axicabtagene-ciloleucel CAR-T therapy, who developed a rare and severe cutaneous toxicity resembling toxic epidermal necrolysis (TEN). The patient exhibited persistent fevers, CRS, and subsequent development of a widespread erythematous macular eruption, progressing to vesiculation with bullae. Notably, allopurinol-induced TEN was considered with the patient's recent exposure to allopurinol, although the onset and minimal mucosal involvement did not align with typical presentations of allopurinol-induced cases. The cutaneous reaction, distinct from typical SJS/TEN, showed minimal mucosal involvement and coincided with the cytokine release storm, differing from allopurinol-induced TEN. Despite the absence of guidelines, the patient was managed with systemic steroids, achieving significant improvement. This case expands the spectrum of CAR-T therapy-related cutaneous toxicities, highlighting the need for early recognition of histopathology and tailored management by dermatologists. Further understanding of these reactions is crucial for optimizing the safety profile of this groundbreaking immunotherapy.
Collapse
Affiliation(s)
- Puneet K Bhullar
- Department of Dermatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Kiran Motaparthi
- Department of Dermatology, University of Florida, Gainesville, Florida, USA
| | - Daniel P Zieman
- Department of Dermatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Cassandra Johnson
- Department of Dermatology, University of Florida, Gainesville, Florida, USA
| | - Pooja Gurnani
- Department of Dermatology, University of Florida, Gainesville, Florida, USA
| | - Olayemi Sokumbi
- Department of Dermatology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
5
|
Rousseau A, Zafrani L. Acute kidney injury after CAR-T cell infusion. Bull Cancer 2024; 111:748-753. [PMID: 36220698 DOI: 10.1016/j.bulcan.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Chimeric antigen receptor T (CAR-T)-cell, an adaptive immune therapy is approved for patients with acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Its use and subsequent toxicities are expected to rise in the coming years. The main toxicities are cytokine release syndrome, hemophagocytic lymphohistiocytosis and immune effector cell associated neurotoxicity syndrome. Cytokine release syndrome is observed in up to 40% of patients. Almost 20% of patient suffer from acute kidney injury after CAR-T cell infusion. Associated factors are high-grade cytokine release syndrome, a prior autologous or allogeneic stem cell transplantation andrequirement of intensive care unit. Several mechanisms may contribute to the occurrence of acute kidney injury after CAR-T infusion: hypoperfusion during cytokine release syndrome, cytokine injury, T cell infiltration, tumor lysis syndrome and sepsis-induced injury. Kidney injury is associated with substantial increase in morbi-mortality.
Collapse
Affiliation(s)
- Adrien Rousseau
- Gustave Roussy, Department of Cancer Medicine, Villejuif, France.
| | - Lara Zafrani
- Saint-Louis Hospital, Assistance Publique des Hôpitaux de Paris, Medical Intensive Care Unit, Paris, France
| |
Collapse
|
6
|
Qureshi Z, Altaf F, Jamil A, Siddique R. Optimization Strategies in CAR T-cell Therapy: A Comprehensive Evaluation of Cytopenia, HLH/MAS, and Other Adverse Events. Am J Clin Oncol 2024:00000421-990000000-00204. [PMID: 38907604 DOI: 10.1097/coc.0000000000001124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a transformative treatment for various hematological malignancies. Still, its remarkable efficacy is accompanied by unique adverse events that must be carefully managed. This comprehensive literature review evaluates the safety profile of CAR T-cell therapy, focusing on cytopenia, hemophagocytic lymphohistiocytosis (HLH)/macrophage activation syndrome (MAS), and other potential complications. Cytopenia, characterized by reduced blood cell counts, affects a significant proportion of patients, with rates of anemia, neutropenia, and thrombocytopenia reaching up to 60%, 70%, and 80%, respectively. Risk factors include high tumor burden, prior chemotherapy, and bone marrow involvement. Cytokine release syndrome (CRS) occurs in 13% to 77% of patients and is linked to the cytokine storm induced by CAR T cells, target antigen expression, and preexisting immune dysregulation. Other notable adverse events discussed are cytokine release syndrome, neurotoxicity, and infections. Understanding the mechanisms, risk factors, and management strategies for these adverse events is crucial for optimizing patient outcomes and unlocking the full potential of this revolutionary therapy. The review highlights the need for continued research, interdisciplinary collaboration, and evidence-based approaches to enhance the safety and efficacy of CAR T-cell therapy.
Collapse
Affiliation(s)
- Zaheer Qureshi
- Department of Medicine, The Frank H. Netter MD School of Medicine at Quinnipiac University, Bridgeport, CT
| | - Faryal Altaf
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/BronxCare Health System, New York
| | - Abdur Jamil
- Department of Medicine, Samaritan Medical Centre
| | | |
Collapse
|
7
|
Choudhery MS, Arif T, Mahmood R, Harris DT. CAR-T-Cell-Based Cancer Immunotherapies: Potentials, Limitations, and Future Prospects. J Clin Med 2024; 13:3202. [PMID: 38892913 PMCID: PMC11172642 DOI: 10.3390/jcm13113202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer encompasses various elements occurring at the cellular and genetic levels, necessitating an immunotherapy capable of efficiently addressing both aspects. T cells can combat cancer cells by specifically recognizing antigens on them. This innate capability of T cells has been used to develop cellular immunotherapies, but most of them can only target antigens through major histocompatibility complexes (MHCs). New gene-editing techniques such as clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (CRISPR-cas9) can precisely edit the DNA sequences. CRISPR-cas9 has made it possible to generate genetically engineered chimeric antigen receptors (CARs) that can overcome the problems associated with old immunotherapies. In chimeric antigen receptor T (CAR-T) cell therapy, the patient's T cells are isolated and genetically modified to exhibit synthetic CAR(s). CAR-T cell treatment has shown remarkably positive clinical outcomes in cancers of various types. Nevertheless, there are various challenges that reduce CAR-T effectiveness in solid tumors. It is required to address these challenges in order to make CAR-T cell therapy a better and safer option. Combining CAR-T treatment with other immunotherapies that target multiple antigens has shown positive outcomes. Moreover, recently generated Boolean logic-gated advanced CARs along with artificial intelligence has expanded its potential to treat solid tumors in addition to blood cancers. This review aims to describe the structure, types, and various methods used to develop CAR-T cells. The clinical applications of CAR-T cells in hematological malignancies and solid tumours have been described in detail. In addition, this discussion has addressed the limitations associated with CAR-T cells, explored potential strategies to mitigate CAR-T-related toxicities, and delved into future perspectives.
Collapse
Affiliation(s)
- Mahmood S. Choudhery
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan;
| | - Taqdees Arif
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan;
| | - Ruhma Mahmood
- Jinnah Hospital, Allama Iqbal Medical College, Lahore 54700, Pakistan;
| | - David T. Harris
- Department of Immunobiology, College of Medicine, University of Arizona Health Sciences Biorepository, The University of Arizona, Tucson, AZ 85724-5221, USA;
| |
Collapse
|
8
|
Colomes A, Ellouze S, Fontaine JP, Thieblemont C, Peyrony O. Emergency department visits after chimeric antigen receptor T cell therapy: a retrospective observational study. Eur J Emerg Med 2024; 31:155-157. [PMID: 38416588 DOI: 10.1097/mej.0000000000001086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Affiliation(s)
| | | | | | - Catherine Thieblemont
- Onco-hematology Department, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | |
Collapse
|
9
|
Zhu C, Wu Q, Sheng T, Shi J, Shen X, Yu J, Du Y, Sun J, Liang T, He K, Ding Y, Li H, Gu Z, Wang W. Rationally designed approaches to augment CAR-T therapy for solid tumor treatment. Bioact Mater 2024; 33:377-395. [PMID: 38059121 PMCID: PMC10696433 DOI: 10.1016/j.bioactmat.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023] Open
Abstract
Chimeric antigen receptor T cell denoted as CAR-T therapy has realized incredible therapeutic advancements for B cell malignancy treatment. However, its therapeutic validity has yet to be successfully achieved in solid tumors. Different from hematological cancers, solid tumors are characterized by dysregulated blood vessels, dense extracellular matrix, and filled with immunosuppressive signals, which together result in CAR-T cells' insufficient infiltration and rapid dysfunction. The insufficient recognition of tumor cells and tumor heterogeneity eventually causes cancer reoccurrences. In addition, CAR-T therapy also raises safety concerns, including potential cytokine release storm, on-target/off-tumor toxicities, and neuro-system side effects. Here we comprehensively review various targeting aspects, including CAR-T cell design, tumor modulation, and delivery strategy. We believe it is essential to rationally design a combinatory CAR-T therapy via constructing optimized CAR-T cells, directly manipulating tumor tissue microenvironments, and selecting the most suitable delivery strategy to achieve the optimal outcome in both safety and efficacy.
Collapse
Affiliation(s)
- Chaojie Zhu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Qing Wu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Tao Sheng
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Jiaqi Shi
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Xinyuan Shen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Jicheng Yu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yang Du
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jie Sun
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tingxizi Liang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kaixin He
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
10
|
Lee MK, Seyedmousavi S, Auvity S, Pourroy B, Elleboode V, Kachaner I, Jansen C, Lilliu H. Forecasting the potential impact of cell and gene therapies in France: projecting product launches and patients treated. Front Med (Lausanne) 2024; 11:1324602. [PMID: 38439899 PMCID: PMC10910012 DOI: 10.3389/fmed.2024.1324602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
Objective To evaluate the potential impact of cell and gene therapies (CGTs) in France by forecasting the number of patients that will be treated with CGTs over the period 2023-2030 by therapeutic area and region. Methods A review of CGTs in clinical development and related disease epidemiology was conducted to forecast the number of CGT launches and patient population between 2023 and 2030. The number of expected launches was identified by filtering the clinical development pipeline with estimated time to launch and probability of success values from Project ALPHA. Disease prevalence and incidence in France were combined with projected adoption rates derived from historical data to forecast the patient population to be treated. Results Up to 44 new CGTs are forecasted to launch in France in the period 2023-2030, which translates into more than 69,400 newly treated patients in 2030. Leading indications in terms of newly treated patients per year include cardiovascular disease, hematological cancers and solid tumors with 27,300, 15,200 and 13,000 newly treated patients in 2030, respectively. Discussion The forecast suggests that the future landscape of CGTs will undergo a shift, moving from CGTs targeting (ultra) rare diseases to more prevalent diseases. In France, this will likely pose organizational challenges hindering patient access to these transformative therapies. Further research and planning around network organization and patient distribution are needed to assess and improve the readiness of the French healthcare system for ensuring access for this growing number of patients to be treated with CGTs.
Collapse
Affiliation(s)
| | | | - Sylvain Auvity
- Université Paris Cité, INSERM, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
- Service de Pharmacie, AP-HP, Hôpital Necker, Paris, France
| | - Bertrand Pourroy
- Oncopharma Unit, Pharmacy Department, University Teaching Hospital la Timone, Marseille, France
| | | | | | | | | |
Collapse
|
11
|
Chen Z, Hu Y, Mei H. Harnessing Biomaterials for Safeguarding Chimeric Antigen Receptor T Cell Therapy: An Artful Expedition in Mitigating Adverse Effects. Pharmaceuticals (Basel) 2024; 17:139. [PMID: 38276012 PMCID: PMC10819334 DOI: 10.3390/ph17010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has emerged as a groundbreaking approach in cancer treatment, showcasing remarkable efficacy. However, the formidable challenge lies in taming the formidable side effects associated with this innovative therapy, among which cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS) and on-target off-tumor toxicities (OTOT) are typical representatives. Championing the next frontier in cellular immunotherapy, this comprehensive review embarks on an artistic exploration of leveraging biomaterials to meticulously navigate the intricate landscape of CAR-T cell therapy. Unraveling the tapestry of potential toxicities, our discourse unveils a symphony of innovative strategies designed to elevate the safety profile of this revolutionary therapeutic approach. Through the lens of advanced medical science, we illuminate the promise of biomaterial interventions in sculpting a safer and more efficacious path for CAR-T cell therapy, transcending the boundaries of conventional treatment paradigms.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China;
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China;
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China;
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| |
Collapse
|
12
|
Esmaeilzadeh A, Hadiloo K, Jabbari M, Elahi R. Current progress of chimeric antigen receptor (CAR) T versus CAR NK cell for immunotherapy of solid tumors. Life Sci 2024; 337:122381. [PMID: 38145710 DOI: 10.1016/j.lfs.2023.122381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Equipping cancer-fighting immune cells with chimeric antigen receptor (CAR) has gained immense attention for cancer treatment. CAR-engineered T cells (CAR T cells) are the first immune-engineered cells that have achieved brilliant results in anti-cancer therapy. Despite promising anti-cancer features, CAR T cells could also cause fatal side effects and have shown inadequate efficacy in some studies. This has led to the introduction of other candidates for CAR transduction, e.g., Natural killer cells (NK cells). Regarding the better safety profile and anti-cancer properties, CAR-armored NK cells (CAR NK cells) could be a beneficial and suitable alternative to CAR T cells. Since introducing these two cells as anti-cancer structures, several studies have investigated their efficacy and safety, and most of them have focused on hematological malignancies. Solid tumors have unique properties that make them more resistant and less curable cancers than hematological malignancies. In this review article, we conduct a comprehensive review of the structure and properties of CAR NK and CAR T cells, compare the recent experience of immunotherapy with CAR T and CAR NK cells in various solid cancers, and overview current challenges and future solutions to battle solid cancers using CARNK cells.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Kaveh Hadiloo
- Student Research Committee, Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Marjan Jabbari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
13
|
Khodke P, Kumbhar BV. Engineered CAR-T cells: An immunotherapeutic approach for cancer treatment and beyond. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:157-198. [PMID: 38762269 DOI: 10.1016/bs.apcsb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy is a type of adoptive immunotherapy that offers a promising avenue for enhancing cancer treatment since traditional cancer treatments like chemotherapy, surgery, and radiation therapy have proven insufficient in completely eradicating tumors, despite the relatively positive outcomes. It has been observed that CAR-T cell therapy has shown promising results in treating the majority of hematological malignancies but also have a wide scope for other cancer types. CAR is an extra receptor on the T-cell that helps to increase and accelerate tumor destruction by efficiently activating the immune system. It is made up of three domains, the ectodomain, transmembrane, and the endodomain. The ectodomain is essential for antigen recognition and binding, whereas the co-stimulatory signal is transduced by the endodomain. To date, the Food and Drug Administration (FDA) has granted approval for six CAR-T cell therapies. However, despite its remarkable success, CAR-T therapy is associated with numerous adverse events and has certain limitations. This chapter focuses on the structure and function of the CAR domain, various generations of CAR, and the process of CAR-T cell development, adverse effects, and challenges in CAR-T therapy. CAR-T cell therapy also has scopes in other disease conditions which include systemic lupus erythematosus, multiple sclerosis, and myocardial fibrosis, etc.
Collapse
Affiliation(s)
- Purva Khodke
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Mumbai, India
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Mumbai, India.
| |
Collapse
|
14
|
Matyola M, Martinez A, Dains J. Does Use of Intratumoral Injections in Solid Tumor Malignancies Improve Outcomes and Reduce Adverse Events? An Integrative Review. J Adv Pract Oncol 2024; 15:36-42. [PMID: 39055366 PMCID: PMC11173662 DOI: 10.6004/jadpro.2024.15.1.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
The purpose of this review is to assess the efficacy and adverse events associated with intratumoral injection in the treatment of solid tumor malignancies. A literature review was conducted using PubMed, the Cochrane Database of Systematic Reviews, CINAHL, and Scopus databases from 2009 to 2022. A total of 588 articles were retrieved, with five selected based on inclusion and exclusion criteria. Inclusion criteria specified English language publications, in human trials, and use of intratumoral anticancer agents. The findings from this integrative review demonstrate treatment efficacy as measured by Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 criteria with increased stable disease and partial response in patients as well as a prolonged survival period. Additionally, findings show that this therapy is associated with predominantly mild adverse events.
Collapse
Affiliation(s)
- Maggie Matyola
- From The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ashley Martinez
- From The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joyce Dains
- From The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
15
|
Yoshida M, Matsuoka Y, Mitsuyuki S, Yonetani N, Kawai J, Kondo T, Ishikawa T. Early prediction of cytokine release syndrome by measuring phosphate and magnesium levels following chimeric antigen receptor T cell therapy. BLOOD CELL THERAPY 2023; 6:129-134. [PMID: 38149020 PMCID: PMC10749729 DOI: 10.31547/bct-2023-021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/27/2023] [Indexed: 12/28/2023]
Abstract
Introduction Cytokine release syndrome (CRS) is a life-threatening side effect of chimeric antigen receptor T (CAR-T) cell therapy. This study investigated whether serum inorganic phosphate (IP) and magnesium (Mg) levels are predictive markers of CRS development. Methods This single-center retrospective cohort study enrolled 16 consecutive patients with diffuse large B-cell lymphoma who had received CAR-T cell therapy. Logistic regression models with generalized estimating equations were used to evaluate whether changes in IP and Mg levels from their baseline values were associated with the development of CRS within 48 hours. Results Decreased IP and Mg levels from baseline (per 10% change) were associated with an increased CRS incidence (adjusted odds ratio 2.18 [95% confidence interval (CI), 1.31-3.62], 3.18 [95% CI, 1.57-6.44], respectively). Conclusions Changes in IP and Mg concentrations within 48 hours may be useful predictive markers of CRS onset.
Collapse
Affiliation(s)
- Masahiro Yoshida
- Department of Clinical Laboratory, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yoshinori Matsuoka
- Department of Emergency Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
- Department of Research Support, Center for Clinical Research and Innovation, Kobe City Medical Center General Hospital, Kobe, Japan
- Department of Healthcare Epidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan
| | - Satoshi Mitsuyuki
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Noboru Yonetani
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Junichi Kawai
- Department of Clinical Laboratory, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Tadakazu Kondo
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Takayuki Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
16
|
Fazio M, Del Fabro V, Parrinello NL, Allegra A, Markovic U, Botta C, Accardi F, Vincelli ID, Leotta S, Elia F, Esposito B, Garibaldi B, Sapuppo G, Orofino A, Romano A, Palumbo GA, Di Raimondo F, Conticello C. Multiple Myeloma in 2023 Ways: From Trials to Real Life. Curr Oncol 2023; 30:9710-9733. [PMID: 37999125 PMCID: PMC10670159 DOI: 10.3390/curroncol30110705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Multiple myeloma is a chronic hematologic malignancy that obstinately tends to relapse. Basic research has made giant strides in better characterizing the molecular mechanisms of the disease. The results have led to the manufacturing of new, revolutionary drugs which have been widely tested in clinical trials. These drugs have been approved and are now part of the therapeutic armamentarium. As a consequence, it is essential to combine what we know from clinical trials with real-world data in order to improve therapeutic strategies. Starting with this premise, our review aims to describe the currently employed regimens in multiple myeloma and compare clinical trials with real-life experiences. We also intend to put a spotlight on promising therapies such as T-cell engagers and chimeric antigen receptor T-cells (CAR-T) which are proving to be effective in changing the course of advanced-stage disease.
Collapse
Affiliation(s)
- Manlio Fazio
- Post-Graduation School of Haematology, University of Catania, A.O.U. ‘Policlinico-San Marco’, 95123 Catania, Italy; (M.F.); (B.E.); (B.G.); (G.S.); (A.O.); (F.D.R.)
| | - Vittorio Del Fabro
- Division of Haematology and BMT, A.O.U. ‘Policlinico-San Marco’, 95123 Catania, Italy; (V.D.F.); (N.L.P.); (U.M.); (S.L.); (F.E.)
| | - Nunziatina Laura Parrinello
- Division of Haematology and BMT, A.O.U. ‘Policlinico-San Marco’, 95123 Catania, Italy; (V.D.F.); (N.L.P.); (U.M.); (S.L.); (F.E.)
| | - Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Uroš Markovic
- Division of Haematology and BMT, A.O.U. ‘Policlinico-San Marco’, 95123 Catania, Italy; (V.D.F.); (N.L.P.); (U.M.); (S.L.); (F.E.)
| | - Cirino Botta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy;
| | - Fabrizio Accardi
- Department of Hematology I, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy;
| | - Iolanda Donatella Vincelli
- Haematology Unit, Haemato-Oncology and Radiotherapy Department, Grande Ospedale Metropolitano “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy;
| | - Salvatore Leotta
- Division of Haematology and BMT, A.O.U. ‘Policlinico-San Marco’, 95123 Catania, Italy; (V.D.F.); (N.L.P.); (U.M.); (S.L.); (F.E.)
| | - Federica Elia
- Division of Haematology and BMT, A.O.U. ‘Policlinico-San Marco’, 95123 Catania, Italy; (V.D.F.); (N.L.P.); (U.M.); (S.L.); (F.E.)
| | - Benedetta Esposito
- Post-Graduation School of Haematology, University of Catania, A.O.U. ‘Policlinico-San Marco’, 95123 Catania, Italy; (M.F.); (B.E.); (B.G.); (G.S.); (A.O.); (F.D.R.)
| | - Bruno Garibaldi
- Post-Graduation School of Haematology, University of Catania, A.O.U. ‘Policlinico-San Marco’, 95123 Catania, Italy; (M.F.); (B.E.); (B.G.); (G.S.); (A.O.); (F.D.R.)
| | - Gabriele Sapuppo
- Post-Graduation School of Haematology, University of Catania, A.O.U. ‘Policlinico-San Marco’, 95123 Catania, Italy; (M.F.); (B.E.); (B.G.); (G.S.); (A.O.); (F.D.R.)
| | - Alessandra Orofino
- Post-Graduation School of Haematology, University of Catania, A.O.U. ‘Policlinico-San Marco’, 95123 Catania, Italy; (M.F.); (B.E.); (B.G.); (G.S.); (A.O.); (F.D.R.)
| | - Alessandra Romano
- Dipartimento di Specialità Medico-Chirurgiche, CHIRMED, Sezione di Ematologia, Università degli Studi di Catania, 95131 Catania, Italy;
| | - Giuseppe A. Palumbo
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate “G.F.Ingrassia”, University of Catania, 95131 Catania, Italy;
| | - Francesco Di Raimondo
- Post-Graduation School of Haematology, University of Catania, A.O.U. ‘Policlinico-San Marco’, 95123 Catania, Italy; (M.F.); (B.E.); (B.G.); (G.S.); (A.O.); (F.D.R.)
- Division of Haematology and BMT, A.O.U. ‘Policlinico-San Marco’, 95123 Catania, Italy; (V.D.F.); (N.L.P.); (U.M.); (S.L.); (F.E.)
- Dipartimento di Specialità Medico-Chirurgiche, CHIRMED, Sezione di Ematologia, Università degli Studi di Catania, 95131 Catania, Italy;
| | - Concetta Conticello
- Division of Haematology and BMT, A.O.U. ‘Policlinico-San Marco’, 95123 Catania, Italy; (V.D.F.); (N.L.P.); (U.M.); (S.L.); (F.E.)
| |
Collapse
|
17
|
Huang S, de Jong D, Das JP, Widemon RS, Braumuller B, Paily J, Deng A, Liou C, Roa T, Huang A, Ma H, D'Souza B, Leb J, L'Hereaux J, Nguyen P, Luk L, Francescone M, Yeh R, Maccarrone V, Dercle L, Salvatore MM, Capaccione KM. Imaging the Side Effects of CAR T Cell Therapy: A Primer for the Practicing Radiologist. Acad Radiol 2023; 30:2712-2727. [PMID: 37394411 DOI: 10.1016/j.acra.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 07/04/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a revolutionary form of immunotherapy that has proven to be efficacious in the treatment of many hematologic cancers. CARs are modified T lymphocytes that express an artificial receptor specific to a tumor-associated antigen. These engineered cells are then reintroduced to upregulate the host immune responses and eradicate malignant cells. While the use of CAR T cell therapy is rapidly expanding, little is known about how common side effects such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity (ICANS) present radiographically. Here we provide a comprehensive review of how side effects present in different organ systems and how they can be optimally imaged. Early and accurate recognition of the radiographic presentation of these side effects is critical to the practicing radiologist and their patients so that these side effects can be promptly identified and treated.
Collapse
Affiliation(s)
- Sophia Huang
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Dorine de Jong
- Department of Immunology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 (D.J.)
| | - Jeeban P Das
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 (J.D., R.Y.)
| | - Reginald Scott Widemon
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Brian Braumuller
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Jacienta Paily
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Aileen Deng
- Department of Hematology and Oncology, Novant Health, 170 Medical Park Road, Mooresville, North Carolina 28117 (A.D.)
| | - Connie Liou
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Tina Roa
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Alice Huang
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Hong Ma
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Belinda D'Souza
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Jay Leb
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Jade L'Hereaux
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Pamela Nguyen
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Lyndon Luk
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Mark Francescone
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Randy Yeh
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 (J.D., R.Y.)
| | - Valerie Maccarrone
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Laurent Dercle
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Mary M Salvatore
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Kathleen M Capaccione
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.).
| |
Collapse
|
18
|
Wei Z, Xu J, Zhao C, Zhang M, Xu N, Kang L, Lou X, Yu L, Feng W. Prediction of severe CRS and determination of biomarkers in B cell-acute lymphoblastic leukemia treated with CAR-T cells. Front Immunol 2023; 14:1273507. [PMID: 37854590 PMCID: PMC10579557 DOI: 10.3389/fimmu.2023.1273507] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction CAR-T cell therapy is a novel approach in the treatment of hematological tumors. However, it is associated with life-threatening side effects, such as the severe cytokine release syndrome (sCRS). Therefore, predicting the occurrence and development of sCRS is of great significance for clinical CAR-T therapy. The study of existing clinical data by artificial intelligence may bring useful information. Methods By analyzing the heat map of clinical factors and comparing them between severe and non-severe CRS, we can identify significant differences among these factors and understand their interrelationships. Ultimately, a decision tree approach was employed to predict the timing of severe CRS in both children and adults, considering variables such as the same day, the day before, and initial values. Results We measured cytokines and clinical biomarkers in 202 patients who received CAR-T therapy. Peak levels of 25 clinical factors, including IFN-γ, IL6, IL10, ferritin, and D-dimer, were highly associated with severe CRS after CAR T cell infusion. Using the decision tree model, we were able to accurately predict which patients would develop severe CRS consisting of three clinical factors, classified as same-day, day-ahead, and initial value prediction. Changes in serum biomarkers, including C-reactive protein and ferritin, were associated with CRS, but did not alone predict the development of severe CRS. Conclusion Our research will provide significant information for the timely prevention and treatment of sCRS, during CAR-T immunotherapy for tumors, which is essential to reduce the mortality rate of patients.
Collapse
Affiliation(s)
- Zhenyu Wei
- Intelligent Systems Science and Engineering College, Harbin Engineering University, Harbin, China
| | - Jiayu Xu
- Intelligent Systems Science and Engineering College, Harbin Engineering University, Harbin, China
| | - Chengkui Zhao
- Intelligent Systems Science and Engineering College, Harbin Engineering University, Harbin, China
- Shanghai Unicar-Therapy BioMedicine Technology Co., Ltd, Shanghai, China
| | - Min Zhang
- Intelligent Systems Science and Engineering College, Harbin Engineering University, Harbin, China
| | - Nan Xu
- Shanghai Unicar-Therapy BioMedicine Technology Co., Ltd, Shanghai, China
- School of Chemical and Molecular Engineering, East China Normal University, Shanghai, China
| | - Liqing Kang
- Shanghai Unicar-Therapy BioMedicine Technology Co., Ltd, Shanghai, China
- School of Chemical and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiaoyan Lou
- Shanghai Unicar-Therapy BioMedicine Technology Co., Ltd, Shanghai, China
- School of Chemical and Molecular Engineering, East China Normal University, Shanghai, China
| | - Lei Yu
- Shanghai Unicar-Therapy BioMedicine Technology Co., Ltd, Shanghai, China
- School of Chemical and Molecular Engineering, East China Normal University, Shanghai, China
| | - Weixing Feng
- Intelligent Systems Science and Engineering College, Harbin Engineering University, Harbin, China
| |
Collapse
|
19
|
Sastow D, Van Hyfte G, Feld J, Kremyanskaya M, Mascarenhas J, Tremblay D. Exclusion of Acute Myeloid Leukemia Patients with Central Nervous System Involvement from Clinical Trials: An Analysis of the National Institutes of Health Clinical Trials Registry from 2012 to 2022. Acta Haematol 2023; 147:292-299. [PMID: 37751713 DOI: 10.1159/000533819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Central nervous system (CNS) involvement in acute myeloid leukemia (AML) can be successfully treated with intrathecal chemotherapy and carries debatable prognostic impact. However, patients with CNS involvement are commonly excluded from clinical trials at an unknown rate. We systematically evaluated exclusion criteria of AML clinical trials based on CNS involvement and determined associations with clinical trial characteristics. METHODS The National Institutes of Health Clinical Trials Registry was searched for interventional adult AML trials between 2012 and 2022 that were phase 1, 2, or 3 and relevant trial characteristics were extracted. RESULTS 1,270 trials were included in the analysis with 790 trials (62.1%) explicitly excluding CNS involvement. There was no significant change in rates of CNS exclusion over the past decade. CNS exclusion was higher in trials that included the non-transplant population compared to trials exclusive to the transplant population (66.9% vs. 43.8%, p < 0.01). Non-transplant trials were also more likely to exclude patients with a history of or ambiguous timing of CNS involvement (p < 0.01). Phase 3 trials were associated with more liberal definitions of CNS exclusion (history or ambiguous timing) as compared to phase 1 and 2 trials that had higher rates of excluding patients with only active CNS involvement (p < 0.01). CONCLUSION A majority of AML clinical trials, particularly in the non-transplant setting, exclude patients with CNS involvement. Many of these trials, most notably phase 3 trials, exclude patients not only with active but also with any history of CNS involvement. Further research is needed to determine optimal management of these patients in order to increase representation in large clinical trials.
Collapse
Affiliation(s)
- Dahniel Sastow
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA,
| | - Grace Van Hyfte
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, Institute for HealthCare Delivery Science, New York, New York, USA
| | - Jonathan Feld
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marina Kremyanskaya
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Douglas Tremblay
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
20
|
Jalota A, Hershberger CE, Patel MS, Mian A, Faruqi A, Khademi G, Rotroff DM, Hill BT, Gupta N. Host metabolome predicts the severity and onset of acute toxicities induced by CAR T-cell therapy. Blood Adv 2023; 7:4690-4700. [PMID: 36399526 PMCID: PMC10468366 DOI: 10.1182/bloodadvances.2022007456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/04/2022] [Accepted: 08/20/2022] [Indexed: 11/19/2022] Open
Abstract
Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy is a highly effective treatment option for patients with relapsed/refractory large B-cell lymphoma. However, widespread use is deterred by the development of clinically significant acute inflammatory toxicities, including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), that induce significant morbidity and require close monitoring. Identification of host biochemical signatures that predict the severity and time-to-onset of CRS and ICANS may assist patient stratification to enable timely mitigation strategies. Here, we report pretreatment host metabolites that are associated with CRS and ICANS induced by axicabtagene ciloleucel or tisagenlecleucel therapy. Both untargeted metabolomics analysis and validation using targeted assays revealed a significant association between the abundance of specific pretreatment biochemical entities and an increased risk and/or onset of clinically significant CRS (q < .1) and ICANS (q < .25). Higher pretreatment levels of plasma glucose and lower levels of cholesterol and glutamate were associated with a faster onset of CRS. In contrast, low baseline levels of the amino acids proline and glycine and the secondary bile acid isoursodeoxycholate were significantly correlated with clinically significant CRS. Lower concentration of the amino acid hydroxyproline was associated with higher grade and faster onset of ICANS, whereas low glutamine was negatively correlated with faster development of ICANS. Overall, our data indicate that the pretreatment host metabolome has biomarker potential in determining the risk of clinically significant CRS and ICANS, and may be useful in risk stratification of patients before anti-CD19 CAR T-cell therapy.
Collapse
Affiliation(s)
- Akansha Jalota
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
| | | | - Manishkumar S. Patel
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
| | - Agrima Mian
- Department of Internal Medicine, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Aiman Faruqi
- Cleveland Clinic Lerner College of Medicine, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Gholamreza Khademi
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland, OH
| | - Daniel M. Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland, OH
- Cleveland Clinic Lerner College of Medicine, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Brian T. Hill
- Cleveland Clinic Lerner College of Medicine, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Neetu Gupta
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
- Cleveland Clinic Lerner College of Medicine, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
21
|
Hung HC, Fan MH, Wang D, Miao CH, Su P, Liu CL. Effect of chimeric antigen receptor T cells against protease-activated receptor 1 for treating pancreatic cancer. BMC Med 2023; 21:338. [PMID: 37667257 PMCID: PMC10478223 DOI: 10.1186/s12916-023-03053-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with a 5-year survival rate of 6% following a diagnosis, and novel therapeutic modalities are needed. Protease-activated receptor 1 (PAR1) is abundantly overexpressed by both tumor cells and multiple stroma cell subsets in the tumor microenvironment (TME), thereby offering a suitable immunotherapy target. METHODS A chimeric antigen receptor (CAR) strategy was applied to target PAR1 using a human anti-PAR1 scFv antibody fused to the transmembrane region with two co-stimulatory intracellular signaling domains of cluster of differentiation 28 (CD28) and CD137 (4-1BB), added to CD3ζ in tandem. RESULTS The engineered PAR1CAR-T cells eliminated PAR1 overexpression and transforming growth factor (TGF)-β-mediated PAR1-upregulated cancer cells by approximately 80% in vitro. The adoptive transfer of PAR1CAR-T cells was persistently enhanced and induced the specific regression of established MIA PaCa-2 cancer cells by > 80% in xenograft models. Accordingly, proinflammatory cytokines/chemokines increased in CAR-T-cell-treated mouse sera, whereas Ki67 expression in tumors decreased. Furthermore, the targeted elimination of PAR1-expressing tumors reduced matrix metalloproteinase 1 (MMP1) levels, suggesting that the blocking of the PAR1/MMP1 pathway constitutes a new therapeutic option for PDAC treatment. CONCLUSIONS Third-generation PAR1CAR-T cells have antitumor activity in the TME, providing innovative CAR-T-cell immunotherapy against PDAC.
Collapse
Affiliation(s)
- Hao-Chien Hung
- Department of General Surgery, Chang-Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Ming-Huei Fan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Daniel Wang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Pong Su
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Chao-Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
22
|
Saleki K, Mohamadi MH, Alijanizadeh P, Rezaei N. Neurological adverse effects of chimeric antigen receptor T-cell therapy. Expert Rev Clin Immunol 2023; 19:1361-1383. [PMID: 37578341 DOI: 10.1080/1744666x.2023.2248390] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR) T-cell is among the most prevalent approaches that act by directing T-cells toward cancer; however, they need to be optimized to minimize side effects and maximize efficacy before being used as standard treatment for malignancies. Neurotoxicity associated with CAR T-cell therapy has been well-documented in recent works. AREAS COVERED In this regard, two established syndromes exist. Immune effector cell-associated neurotoxicity syndrome (ICANS), previously called cytokine release encephalopathy syndrome (CRES), is a neuropsychiatric condition which can occur after therapy by immune effector cells (IEC) and T-lymphocytes utilizing treatments. Another syndrome is cytokine release syndrome (CRS), which may overlap with ICANS. EXPERT OPINION ICANS clinical manifestations include cerebral edema, mild lethargy, aphasia, and seizures. Notably, ICANS is associated with changes to EEG and neuroradiological findings. Therefore, it is necessary to make a timely and accurate diagnosis of neurological complications of CAR T-cells by clinical presentations, neuroimaging, and EEG. Since neurological events by different CAR T-cell products are heterogeneous, guides should be developed according to each product. Here, we provide an updated review of general information on CAR T-cell therapies and applications, neurological syndromes associated with their use, and risk factors contributing to ICANS.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences(SBMU), Tehran, Iran
| | | | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
23
|
Manni S, Del Bufalo F, Merli P, Silvestris DA, Guercio M, Caruso S, Reddel S, Iaffaldano L, Pezzella M, Di Cecca S, Sinibaldi M, Ottaviani A, Quadraccia MC, Aurigemma M, Sarcinelli A, Ciccone R, Abbaszadeh Z, Ceccarelli M, De Vito R, Lodi MC, Cefalo MG, Mastronuzzi A, De Angelis B, Locatelli F, Quintarelli C. Neutralizing IFNγ improves safety without compromising efficacy of CAR-T cell therapy in B-cell malignancies. Nat Commun 2023; 14:3423. [PMID: 37296093 PMCID: PMC10256701 DOI: 10.1038/s41467-023-38723-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/10/2023] [Indexed: 06/12/2023] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy may achieve long-lasting remission in patients with B-cell malignancies not responding to conventional therapies. However, potentially severe and hard-to-manage side effects, including cytokine release syndrome (CRS), neurotoxicity and macrophage activation syndrome, and the lack of pathophysiological experimental models limit the applicability and development of this form of therapy. Here we present a comprehensive humanized mouse model, by which we show that IFNγ neutralization by the clinically approved monoclonal antibody, emapalumab, mitigates severe toxicity related to CAR-T cell therapy. We demonstrate that emapalumab reduces the pro-inflammatory environment in the model, thus allowing control of severe CRS and preventing brain damage, characterized by multifocal hemorrhages. Importantly, our in vitro and in vivo experiments show that IFNγ inhibition does not affect the ability of CD19-targeting CAR-T (CAR.CD19-T) cells to eradicate CD19+ lymphoma cells. Thus, our study provides evidence that anti-IFNγ treatment might reduce immune related adverse effect without compromising therapeutic success and provides rationale for an emapalumab-CAR.CD19-T cell combination therapy in humans.
Collapse
Affiliation(s)
- Simona Manni
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Francesca Del Bufalo
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Pietro Merli
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | | | - Marika Guercio
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Simona Caruso
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Sofia Reddel
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Laura Iaffaldano
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Michele Pezzella
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Stefano Di Cecca
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Matilde Sinibaldi
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Alessio Ottaviani
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Maria Cecilia Quadraccia
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Mariasole Aurigemma
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Andrea Sarcinelli
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Roselia Ciccone
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Zeinab Abbaszadeh
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Manuela Ceccarelli
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Rita De Vito
- Department of Pathological Anatomy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Maria Chiara Lodi
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Maria Giuseppina Cefalo
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Biagio De Angelis
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy.
| | - Franco Locatelli
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy.
- Department of Pediatrics, Catholic University of the Sacred Heart, Rome, Italy.
| | - Concetta Quintarelli
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
24
|
Wilson Dib R, Ariza-Heredia E, Spallone A, Chemaly RF. Respiratory Viral Infections in Recipients of Cellular Therapies: A Review of Incidence, Outcomes, Treatment, and Prevention. Open Forum Infect Dis 2023; 10:ofad166. [PMID: 37065990 PMCID: PMC10096899 DOI: 10.1093/ofid/ofad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/22/2023] [Indexed: 04/18/2023] Open
Abstract
Respiratory viral infections (RVIs) are of major clinical importance in immunocompromised patients and represent a substantial cause of morbidity and mortality in patients with hematologic malignancies and those who have undergone hematopoietic cell transplantation. Similarly, patients receiving immunotherapy with CD19-targeted chimeric antigen receptor-modified T cells, natural killer cells, and genetically modified T-cell receptors are susceptible to RVIs and progression to lower respiratory tract infections. In adoptive cellular therapy recipients, this enhanced susceptibility to RVIs results from previous chemotherapy regimens such as lymphocyte-depleting chemotherapy conditioning regimens, underlying B-cell malignancies, immune-related toxicities, and secondary prolonged, profound hypogammaglobulinemia. The aggregated risk factors for RVIs have both immediate and long-term consequences. This review summarizes the current literature on the pathogenesis, epidemiology, and clinical aspects of RVIs that are unique to recipients of adoptive cellular therapy, the preventive and therapeutic options for common RVIs, and appropriate infection control and preventive strategies.
Collapse
Affiliation(s)
- Rita Wilson Dib
- Department of Internal Medicine, Division of Infectious Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ella Ariza-Heredia
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amy Spallone
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
25
|
Kegyes D, Jitaru C, Ghiaur G, Ciurea S, Hoelzer D, Tomuleasa C, Gale RP. Switching from salvage chemotherapy to immunotherapy in adult B-cell acute lymphoblastic leukemia. Blood Rev 2023; 59:101042. [PMID: 36732205 DOI: 10.1016/j.blre.2023.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
About one-half of adults with acute B-cell lymphoblastic leukemia (B-ALL) who do not achieve molecular complete remission or who subsequently relapse are not cured by current chemo- or targeted therapies. Previously, the sole therapeutic option for such persons was a hematopoietic stem cell transplant. Recently, several immune therapies including monoclonal antibodies, bispecific T-cell engagers (BiTEs), antibody-drug conjugates (ADCs), and chimeric antigen receptor T-cells (CARs) have been shown safe and effective in this setting. In this manuscript, we summarize data on US FDA-approved immune therapies of advanced adult B-ALL including rituximab, blinatumomab, inotuzumab ozogamicin, tisagenlecleucel and brexucabtagene autoleucel. We consider the results of clinical trials focusing on efficacy, safety, and quality of life (QoL). Real-world evidence is presented as well. We also briefly discuss pharmacodynamics, pharmacokinetics, and pharmacoeconomics followed by risk-benefit analyses. Lastly, we present future directions of immune therapies for advanced B-ALL in adults.
Collapse
Affiliation(s)
- David Kegyes
- Department of Hematology-Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania
| | - Ciprian Jitaru
- Department of Hematology-Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania
| | - Gabriel Ghiaur
- Department of Hematology-Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj Napoca, Romania; Department of Leukemia, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Stefan Ciurea
- Department of Stem Cell Transplant and Cellular Therapies, University of California, Irvine, CA, USA
| | - Dieter Hoelzer
- Department of Medicine, Goethe University, Frankfurt, Germany
| | - Ciprian Tomuleasa
- Department of Hematology-Medfuture Research Center for Advanced Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania.
| | - Robert Peter Gale
- Centre for Haematology, Imperial College of Science, Technology and Medicine, London, UK; Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
26
|
Frigault M, Rotte A, Ansari A, Gliner B, Heery C, Shah B. Dose fractionation of CAR-T cells. A systematic review of clinical outcomes. J Exp Clin Cancer Res 2023; 42:11. [PMID: 36627710 PMCID: PMC9830795 DOI: 10.1186/s13046-022-02540-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/18/2022] [Indexed: 01/12/2023] Open
Abstract
CAR-T cells are widely recognized for their potential to successfully treat hematologic cancers and provide durable response. However, severe adverse events such as cytokine release syndrome (CRS) and neurotoxicity are concerning. Our goal is to assess CAR-T cell clinical trial publications to address the question of whether administration of CAR-T cells as dose fractions reduces toxicity without adversely affecting efficacy. Systematic literature review of studies published between January 2010 and May 2022 was performed on PubMed and Embase to search clinical studies that evaluated CAR-T cells for hematologic cancers. Studies published in English were considered. Studies in children (age < 18), solid tumors, bispecific CAR-T cells, and CAR-T cell cocktails were excluded. Data was extracted from the studies that met inclusion and exclusion criteria. Review identified a total of 18 studies that used dose fractionation. Six studies used 2-day dosing schemes and 12 studies used 3-day schemes to administer CAR-T cells. Three studies had both single dose and fractionated dose cohorts. Lower incidence of Grade ≥ 3 CRS and neurotoxicity was seen in fractionated dose cohorts in 2 studies, whereas 1 study reported no difference between single and fractionated dose cohorts. Dose fractionation was mainly recommended for high tumor burden patients. Efficacy of CAR-T cells in fractionated dose was comparable to single dose regimen within the same or historical trial of the same agent in all the studies. The findings suggest that administering dose fractions of CAR-T cells over 2-3 days instead of single dose infusion may mitigate the toxicity of CAR-T cell therapy including CRS and neurotoxicity, especially in patients with high tumor burden. However, controlled studies are likely needed to confirm the benefits of dose fractionation.
Collapse
Affiliation(s)
- Matthew Frigault
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Zhao D, Zhu D, Cai F, Jiang M, Liu X, Li T, Zheng Z. Current Situation and Prospect of Adoptive Cellular Immunotherapy for Malignancies. Technol Cancer Res Treat 2023; 22:15330338231204198. [PMID: 38037341 PMCID: PMC10693217 DOI: 10.1177/15330338231204198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 12/02/2023] Open
Abstract
Adoptive cell immunotherapy (ACT) is an innovative promising treatment for tumors. ACT is characterized by the infusion of active anti-tumor immune cells (specific and non-specific) into patients to kill tumor cells either directly or indirectly by stimulating the body's immune system. The patient's (autologous) or a donor's (allogeneic) immune cells are used to improve immune function. Chimeric antigen receptor (CAR) T cells (CAR-T) is a type of ACT that has gained attention. T cells from the peripheral blood are genetically engineered to express CARs that rapidly proliferate and specifically recognize target antigens to exert its anti-tumor effects. Clinical application of CAR-T therapy for hematological tumors has shown good results, but adverse reactions and recurrence limit its applicability. Tumor infiltrating lymphocyte (TIL) therapy is effective for solid tumors. TIL therapy exhibits T cell receptor (TCR) clonality, superior tumor homing ability, and low targeted toxicity, but its successful application is limited to a number of tumors. Regardless, TIL and CAR-T therapies are effective for treating cancer. Additionally, CAR-natural killer (NK), CAR-macrophages (M), and TCR-T therapies are currently being researched. In this review, we highlight the current developments and limitations of several types of ACT.
Collapse
Affiliation(s)
- Dong Zhao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Dantong Zhu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Fei Cai
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Mingzhe Jiang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Xuefei Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Tingting Li
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Zhendong Zheng
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| |
Collapse
|
28
|
Bailly S, Cartron G, Chaganti S, Córdoba R, Corradini P, Düll J, Ferrarini I, Osborne W, Rosenwald A, Sancho J, Tilly H, Van Den Neste E, Viardot A, Visco C. Targeting CD19 in diffuse large B-cell lymphoma: An expert opinion paper. Hematol Oncol 2022; 40:505-517. [PMID: 35488888 PMCID: PMC9796473 DOI: 10.1002/hon.3013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/07/2022] [Indexed: 01/01/2023]
Abstract
The ubiquitous, early-stage expression, efficient internalization, limited off-target effects, and high disease specificity of CD19 make it an attractive therapeutic target. Currently available anti-CD19 therapies have demonstrated particular promise in patients with relapsed or refractory B-cell non-Hodgkin lymphoma. Selection of the most appropriate treatment strategy should be based on individual patient characteristics and the goal of therapy. However, evidence and knowledge about the sequencing of anti-CD19 therapies are limited. Here, we review the current evidence for CD19 as a target in diffuse large B-cell lymphoma and consider approaches to the use of anti-CD19 therapy.
Collapse
Affiliation(s)
- Sarah Bailly
- Département d’HématologieCliniques Universitaires Saint‐LucBrusselsBelgium
| | - Guillaume Cartron
- Department of HaematologyCentre Hospitalier Universitaire de MontpellierUMR‐CNRS 5535MontpellierFrance
| | | | - Raul Córdoba
- Department of HematologyFundación Jiménez Díaz University HospitalHealth Research Institute IIS‐FJDMadridSpain
| | - Paolo Corradini
- Fondazione IRCCS Istituto Nazionale dei TumoriUniversity of MilanMilanItaly
| | - Johannes Düll
- Medizinische Klinik und Poliklinik IIUniversitätsklinikum WürzburgWürzburgGermany
| | - Isacco Ferrarini
- Department of MedicineSection of HematologyUniversity of VeronaVeronaItaly
| | - Wendy Osborne
- Newcastle Upon Tyne Hospitals NHS Foundation TrustNewcastleUK
| | - Andreas Rosenwald
- Institute of PathologyUniversity of Würzburg, and Comprehensive Cancer Center MainfrankenWürzburgGermany
| | | | - Hervé Tilly
- Department of Hematology and U1245Centre Henri Becquerel and University of RouenRouenFrance
| | - Eric Van Den Neste
- Département d’HématologieCliniques Universitaires Saint‐LucBrusselsBelgium
| | - Andreas Viardot
- Department of Internal Medicine IIIUniversity Hospital UlmUlmGermany
| | - Carlo Visco
- Department of MedicineSection of HematologyUniversity of VeronaVeronaItaly
| |
Collapse
|
29
|
Rao A, Stewart A, Eljalby M, Ramakrishnan P, Anderson LD, Awan FT, Chandra A, Vallabhaneni S, Zhang K, Zaha VG. Cardiovascular disease and chimeric antigen receptor cellular therapy. Front Cardiovasc Med 2022; 9:932347. [PMID: 36211558 PMCID: PMC9538377 DOI: 10.3389/fcvm.2022.932347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chimeric antigen receptor T-cell (CAR T) therapy is a revolutionary personalized therapy that has significantly impacted the treatment of patients with hematologic malignancies refractory to other therapies. Cytokine release syndrome (CRS) is a major side effect of CAR T therapy that can occur in 70–90% of patients, with roughly 40% of patients at grade 2 or higher. CRS can cause an intense inflammatory state leading to cardiovascular complications, including troponin elevation, arrhythmias, hemodynamic instability, and depressed left ventricular systolic function. There are currently no standardized guidelines for the management of cardiovascular complications due to CAR T therapy, but systematic practice patterns are emerging. In this review, we contextualize the history and indications of CAR T cell therapy, side effects related to this treatment, strategies to optimize the cardiovascular health prior to CAR T and the management of cardiovascular complications related to CRS. We analyze the existing data and discuss potential future approaches.
Collapse
Affiliation(s)
- Anjali Rao
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Cardio-Oncology Program, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| | - Andrew Stewart
- Parkland Health and Hospital System, Dallas, TX, United States
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - Mahmoud Eljalby
- Parkland Health and Hospital System, Dallas, TX, United States
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - Praveen Ramakrishnan
- Division of Hematology and Oncology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - Larry D. Anderson
- Division of Hematology and Oncology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Myeloma, Waldenstrom's, and Amyloidosis Program, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
| | - Farrukh T. Awan
- Division of Hematology and Oncology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - Alvin Chandra
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Cardio-Oncology Program, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| | - Srilakshmi Vallabhaneni
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Cardio-Oncology Program, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| | - Kathleen Zhang
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Cardio-Oncology Program, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| | - Vlad G. Zaha
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Cardio-Oncology Program, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
- *Correspondence: Vlad G. Zaha
| |
Collapse
|
30
|
Sivarajah S, Emerick K, Kaufman HL. What Surgeons Need to Know About Gene Therapy for Cancer. Adv Surg 2022; 56:151-168. [PMID: 36096566 DOI: 10.1016/j.yasu.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The broad field of gene therapy offers numerous innovative approaches for cancer treatment. An understanding of the different modalities including gene replacement therapy, cancer vaccines, oncolytic viruses, cellular therapy, and gene editing is essential for managing patients with neoplastic disease. As in other areas of oncology, the surgeon plays a pivotal role in the diagnosis and treatment of the disease. This review focuses on what the clinical surgeon needs to know to optimize the benefit of gene therapy for patients with cancer.
Collapse
Affiliation(s)
- Shanmugappiriya Sivarajah
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, 243 Charles Street Boston, MA 02114 USA
| | - Kevin Emerick
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, 243 Charles Street Boston, MA 02114 USA
| | - Howard L Kaufman
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, 55 Fruit Street, Yawkey 7E, Boston, MA 02114, USA.
| |
Collapse
|
31
|
Perales MA, Anderson LD, Jain T, Kenderian SS, Oluwole OO, Shah GL, Svoboda J, Hamadani M. Role of CD19 Chimeric Antigen Receptor T Cells in Second-Line Large B Cell Lymphoma: Lessons from Phase 3 Trials. An Expert Panel Opinion from the American Society for Transplantation and Cellular Therapy. Transplant Cell Ther 2022; 28:546-559. [PMID: 35768052 PMCID: PMC9427727 DOI: 10.1016/j.jtct.2022.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/25/2022]
Abstract
Since 2017, 3 CD19-directed chimeric antigen receptor (CAR) T cell therapies-axicabtagene ciloleucel, tisagenlecleucel, and lisocabtagene maraleucel-have been approved for relapsed/refractory aggressive diffuse large B cell lymphoma after 2 lines of therapy. Recently, 3 prospective phase 3 randomized clinical trials were conducted to define the optimal second-line treatment by comparing each of the CAR T cell products to the current standard of care: ZUMA-7 for axicabtagene ciloleucel, BELINDA for tisagenlecleucel, and TRANSFORM for lisocabtagene maraleucel. These 3 studies, although largely addressing the same question, had different outcomes, with ZUMA-7 and TRANSFORM demonstrating significant improvement with CD19 CAR T cells in second-line therapy compared with standard of care but BELINDA not showing any benefit. The US Food and Drug Administration has now approved axicabtagene ciloleucel and lisocabtagene maraleucel for LBCL that is refractory to first-line chemoimmunotherapy or relapse occurring within 12 months of first-line chemoimmunotherapy. Following the reporting of these practice changing studies, here a group of experts convened by the American Society for Transplantation and Cellular Therapy provides a comprehensive review of the 3 studies, emphasizing potential differences, and shares perspectives on what these results mean to clinical practice in this new era of treatment of B cell lymphomas.
Collapse
Affiliation(s)
- Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York.
| | - Larry D Anderson
- Hematologic Malignancies, Transplantation, and Cellular Therapy Program, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Tania Jain
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Mayo Clinic Graduate School of Biomedical Sciences, Division of Hematology, Department of Immunology and Department of Molecular Medicine, Rochester, Minnesota
| | - Olalekan O Oluwole
- Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Gunjan L Shah
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Jakub Svoboda
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mehdi Hamadani
- BMT & Cellular Therapy Program, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
32
|
Hillis C, Vicente C, Ball G. The Cost Effectiveness of Axicabtagene Ciloleucel Versus Best Supportive Care in the Treatment of Adult Patients with Relapsed or Refractory Large B-Cell Lymphoma (LBCL) After Two or More Lines of Systemic Therapy in Canada. PHARMACOECONOMICS 2022; 40:917-928. [PMID: 35844002 DOI: 10.1007/s40273-022-01169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Axicabtagene ciloleucel (axi-cel) received marketing authorisation in Canada for the treatment of relapsed or refractory large B-cell lymphoma after two or more lines of systemic therapy, and the clinical and economic value of axi-cel to patients and the healthcare system should be examined. The objective of this analysis is to determine, from societal and public healthcare payer perspectives, the cost effectiveness of axi-cel versus best supportive care for patients with relapsed or refractory large B-cell lymphoma in Canada. METHODS A pharmacoeconomic model was developed and populated with clinical data derived from the ZUMA-1 and SCHOLAR-1 studies using a propensity score-matched comparison. A partitioned survival mixture-cure modelling approach was taken to characterise the potential curative effect of axi-cel therapy in large B-cell lymphoma. Healthcare resource utilisation and adverse event data were based on results from ZUMA-1, and utility values were derived from ZUMA-1 data supplemented with published literature. Costs (in 2021 Canadian dollars) were taken from publicly available Canadian cost databases and published literature. Benefits and costs were discounted at 1.5% per year, and sensitivity analyses were conducted to assess the robustness of the results. RESULTS In the base case, axi-cel generated an incremental 6.2 life-years compared to best supportive care, corresponding to 4.6 additional quality-adjusted life-years, and was associated with $606,010 in additional costs. The incremental cost-utility ratio was $132,747 per quality-adjusted life-year gained compared with best supportive care from a societal perspective ($106,392 per quality-adjusted life-year gained from a public healthcare payer perspective). Key drivers of the analysis included progression-free survival and overall survival values for axi-cel. CONCLUSIONS The results of this analysis suggest that axi-cel may be considered a cost-effective allocation of resources compared with best supportive care for the treatment of adult patients with relapsed or refractory large B-cell lymphoma in Canada.
Collapse
Affiliation(s)
| | | | - Graeme Ball
- Gilead Sciences Canada Inc., Mississauga, ON, Canada
| |
Collapse
|
33
|
Hanna KS, Kaur H, Alazzeh MS, Thandavaram A, Channar A, Purohit A, Shrestha B, Patel D, Shah H, Mohammed L. Cardiotoxicity Associated With Chimeric Antigen Receptor (CAR)-T Cell Therapy for Hematologic Malignancies: A Systematic Review. Cureus 2022; 14:e28162. [PMID: 36148204 PMCID: PMC9482759 DOI: 10.7759/cureus.28162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
Chimeric Antigen Receptor (CAR)-T cell therapy has been one of the most important breakthroughs for treating hematologic malignancies. On the other hand, the therapy had many toxicities. One of the toxicities of the CAR-T therapy is cardiotoxicity. The goal of the systematic review is to elaborate on the cardiotoxicities related to CAR-T therapy for hematologic malignancies. The systematic review is following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) 2020 guidelines. The systematic search was done using PubMed, PubMed Central (PMC), Google Scholar, Cochrane Library, ScienceDirect, and clinicaltrial.gov. The search and selection of studies were done on April 28, 2022, and May 6, 2022, respectively. The studies were selected based upon participants, intervention, and outcomes (PIO) elements and the articles that were included were, full-text articles published within the last ten years, clinical trials, meta-analyses, randomized controlled trial, review, and systematic review. The exclusion criteria were non-hematologic malignancy, non-English-language articles. The initial search had 2,159 publications. The publications were assessed with assessment tools of Scale of the Assessment of Narrative Review Articles (SANRA), Newcastle-Ottawa Scale (NCOS), and Cochrane Collaboration Risk of Bias Tool (CCRBT), which led to selection of eight publications. The systematic review concludes that cardiotoxicity happened in adults and pediatric patients receiving the CAR-T cell therapy and that those cardiac adverse events had many risk factors. Therefore, monitoring these cardiotoxicities is highly essential.
Collapse
Affiliation(s)
- Kerollos S Hanna
- General Physician, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Harkirat Kaur
- General Physician, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mohammad S Alazzeh
- Orthopaedic Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Abhay Thandavaram
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aneeta Channar
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ansh Purohit
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Bijay Shrestha
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Deepkumar Patel
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hriday Shah
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
34
|
Ramos‑Cardona X, Luo W, Mohammed S. Advances and challenges of CAR T therapy and suitability of animal models (Review). Mol Clin Oncol 2022; 17:134. [PMID: 35949897 PMCID: PMC9353808 DOI: 10.3892/mco.2022.2567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022] Open
Abstract
Chimeric antigen receptors (CARs) recently gained momentum in cancer treatment due to their ability to promote T-cell mediated responses to a specific tumor-associated antigen. CARs are part of the adoptive cell transfer (ACT) strategies that utilize patients' T lymphocytes, genetically engineered to kill cancer cells. However, despite the therapy's success against blood-related malignancies, treating solid tumors has not reached its fullest potential yet. The reasons include the complex suppressive tumor microenvironment, mutations on cancer cells' target receptors, lethal side-effects, restricted trafficking into the tumor, suboptimal persistence in vivo and the lack of animal models that faithfully resemble human tumor's immunological responses. Currently, rodent models are used to investigate the safety and efficacy of CAR therapies. However, these models are limited in representing the human disease faithfully, fail to predict the adverse treatment events and overestimate the efficacy of the therapy. On the other hand, spontaneously developed tumors in dogs are more suited in CAR research and their efficacy has been demonstrated in a number of diseases, including lymphoma, osteosarcoma and mammary tumors. The present review discusses the design and evolution of CARs, challenges of CAR in solid tumors, human and canine clinical trials and advantages of the canine model.
Collapse
Affiliation(s)
- Xavier Ramos‑Cardona
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
| | - Weichuan Luo
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sulma Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
| |
Collapse
|
35
|
Sudarsanam H, Buhmann R, Henschler R. Influence of Culture Conditions on Ex Vivo Expansion of T Lymphocytes and Their Function for Therapy: Current Insights and Open Questions. Front Bioeng Biotechnol 2022; 10:886637. [PMID: 35845425 PMCID: PMC9277485 DOI: 10.3389/fbioe.2022.886637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/16/2022] [Indexed: 01/03/2023] Open
Abstract
Ex vivo expansion of T lymphocytes is a central process in the generation of cellular therapies targeted at tumors and other disease-relevant structures, which currently cannot be reached by established pharmaceuticals. The influence of culture conditions on T cell functions is, however, incompletely understood. In clinical applications of ex vivo expanded T cells, so far, a relatively classical standard cell culture methodology has been established. The expanded cells have been characterized in both preclinical models and clinical studies mainly using a therapeutic endpoint, for example antitumor response and cytotoxic function against cellular targets, whereas the influence of manipulations of T cells ex vivo including transduction and culture expansion has been studied to a much lesser detail, or in many contexts remains unknown. This includes the circulation behavior of expanded T cells after intravenous application, their intracellular metabolism and signal transduction, and their cytoskeletal (re)organization or their adhesion, migration, and subsequent intra-tissue differentiation. This review aims to provide an overview of established T cell expansion methodologies and address unanswered questions relating in vivo interaction of ex vivo expanded T cells for cellular therapy.
Collapse
Affiliation(s)
| | | | - Reinhard Henschler
- Institute of Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
36
|
Lei J, Yang Y, Lu Z, Pan H, Fang J, Jing B, Chen Y, Yin L. Taming metabolic competition via glycolysis inhibition for safe and potent tumor immunotherapy. Biochem Pharmacol 2022; 202:115153. [PMID: 35750199 DOI: 10.1016/j.bcp.2022.115153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
Abstract
Metabolic competition between tumors and T cells is fierce in the tumor microenvironment (TME). Tumors usually exhaust glucose and accumulate lactic acid in TME. Nutrient deprivation and lactic acid accumulation in TME blunt T cell functions and antitumor immune responses. Here, we reported that glycolysis-related genes were upregulated in melanoma patients with weak immune responses and T cell poorly infiltrated tumors of BRCA and COAD patients. Dimethyl fumarate (DMF), a GAPDH inhibitor, which is FDA proved to treat autoimmune diseases was identified to promote oxidative pentose phosphate pathway through glucose-6-phosphate dehydrogenase (G6PD) but to suppress aerobic glycolysis and oxidative phosphorylation in tumor cells. Additionally, DMF normalized metabolic competition between tumors and T cells, thus potentiate antitumor responses of tumor infiltrating CD8+ T lymphocytes (TILs). Moreover, DMF optimized the efficiency of immune checkpoint therapy and interleukin-2 (IL-2) therapy while eliminating severe toxicity induced by IL-2 therapy. This study indicates a novel clinically feasible therapy strategy aiming shared metabolic pathway of tumors and T cells for effective and less toxic tumor immunotherapy.
Collapse
Affiliation(s)
- Jun Lei
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Yang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhaoliang Lu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haiyan Pan
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jialing Fang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Baowei Jing
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yongshun Chen
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
37
|
A strategic reflection for the management and implementation of CAR-T therapy in Spain: an expert consensus paper. Clin Transl Oncol 2022; 24:968-980. [PMID: 34997475 PMCID: PMC8741571 DOI: 10.1007/s12094-021-02757-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/09/2021] [Indexed: 11/03/2022]
Abstract
CAR-T cell therapy represents a therapeutic revolution in the prognosis and treatment of patients with certain types of hematological cancer. However, they also pose new challenges in the healthcare, regulatory and financial fields. The aim of the RET-A project was to undertake a strategic reflection on the management of CAR-T therapies within the Spanish National Health System, to agree on recommendations that will help to better deal with the new context introduced by these cell therapies in the present and in the future. This think tank involved 40 key agents and opinion leaders. The experts identified three great challenges for implementing advanced therapies in Spain: therapeutic individualisation, with a multidisciplinary approach; acceleration of access times, by minimizing bureaucracy; and increase in the number of centers qualified to manage the CAR-T therapies in the NHS. The experts agreed on the ideal criteria for designating those qualified centers. They also agreed on a comprehensive CAR-T care pathway with the timings and roles which would ideally be involved in each part of the process.
Collapse
|
38
|
Rahmani S, Yazdanpanah N, Rezaei N. Natural killer cells and acute myeloid leukemia: promises and challenges. Cancer Immunol Immunother 2022; 71:2849-2867. [PMID: 35639116 DOI: 10.1007/s00262-022-03217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Acute myeloid leukemia (AML) is considered as one of the most malignant conditions of the bone marrow. Over the past few decades, despite substantial progresses in the management of AML, relapse remission remains a major problem. Natural killer cells (NK cells) are known as a unique component of the innate immune system. Due to swift tumor detection, distinct cytotoxic action, and extensive immune interaction, NK cells have been used in various cancer settings for decades. It has been a growing knowledge of therapeutic magnitudes ranging from adoptive NK cell transfer to chimeric antigen receptor NK cells, aiming to achieve better therapeutic responses in patients with AML. In this article, the potentials of NK cells for treatment of AML are highlighted, and challenges for such therapeutic methods are discussed. In addition, the clinical application of NK cells, mainly in patients with AML, is pictured according to the existing evidence.
Collapse
Affiliation(s)
- Shayan Rahmani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran. .,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Chen S, Luo Y, Gao H, Li F, Chen Y, Li J, You R, Hao M, Bian H, Xi X, Li W, Li W, Ye M, Meng Q, Zou Z, Li C, Li H, Zhang Y, Cui Y, Wei L, Chen F, Wang X, Lv H, Hua K, Jiang R, Zhang X. hECA: The cell-centric assembly of a cell atlas. iScience 2022; 25:104318. [PMID: 35602947 PMCID: PMC9114628 DOI: 10.1016/j.isci.2022.104318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/18/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
The accumulation of massive single-cell omics data provides growing resources for building biomolecular atlases of all cells of human organs or the whole body. The true assembly of a cell atlas should be cell-centric rather than file-centric. We developed a unified informatics framework for seamless cell-centric data assembly and built the human Ensemble Cell Atlas (hECA) from scattered data. hECA v1.0 assembled 1,093,299 labeled human cells from 116 published datasets, covering 38 organs and 11 systems. We invented three new methods of atlas applications based on the cell-centric assembly: “in data” cell sorting for targeted data retrieval with customizable logic expressions, “quantitative portraiture” for multi-view representations of biological entities, and customizable reference creation for generating references for automatic annotations. Case studies on agile construction of user-defined sub-atlases and “in data” investigation of CAR-T off-targets in multiple organs showed the great potential enabled by the cell-centric ensemble atlas. A unified informatics framework for seamless cell-centric assembly of massive single-cell data Built the general-purpose human Ensemble Cell Atlas (hECA) V1.0 from scattered data Three new methods of applications enabling “in data” cell experiments and portraiture Case studies of agile atlas reconstruction and target therapies side-effect discovery
Collapse
Affiliation(s)
- Sijie Chen
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yanting Luo
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Haoxiang Gao
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Fanhong Li
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yixin Chen
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Jiaqi Li
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Renke You
- Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Minsheng Hao
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Haiyang Bian
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xi Xi
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wenrui Li
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Weiyu Li
- Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Mingli Ye
- Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Qiuchen Meng
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Ziheng Zou
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Chen Li
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Haochen Li
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yangyuan Zhang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yanfei Cui
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Lei Wei
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Fufeng Chen
- Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Xiaowo Wang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Hairong Lv
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China.,Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Kui Hua
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Rui Jiang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xuegong Zhang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China.,School of Medicine, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Relative hypercoagulation induced by suppressed fibrinolysis after tisagenlecleucel infusion in malignant lymphoma. Blood Adv 2022; 6:4216-4223. [PMID: 35580321 PMCID: PMC9327547 DOI: 10.1182/bloodadvances.2022007454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023] Open
Abstract
A hypofibrinolytic state with total PAI-1 elevation at the onset of CRS is the initial step of coagulopathy early after CAR-T infusion. Suppressed fibrinolysis induces hypercoagulable status, which is gradually resolved after CRS remission without any organ damage in DLBCL.
Anti-CD19 chimeric antigen receptor T (CAR-T) cell therapy has facilitated progress in treatment of refractory/relapsed diffuse large B-cell lymphoma (DLBCL). A well-known adverse event after CAR-T therapy is cytokine release syndrome(CRS). However, the etiology and pathophysiology of CRS-related coagulopathy remain unknown. Therefore, we conducted a prospective cohort study to comprehensively analyze coagulation/ fibrinolysis parameters present in peripheral blood of adult DLBCL patients treated with tisagenlecleucel in a single institution. Samples were collected from 25 patients at 3 time points: before lymphocyte-depletion chemotherapy and on days 3 and 13 after CAR-T infusion. After infusion, all patients except 1 experienced CRS, and 13 required the administration of tocilizumab. A significant elevation in the plasma level of total plasminogen activator inhibitor 1 (PAI-1), which promotes the initial step of coagulopathy (mean, 22.5 ng/mL before lymphocyte-depletion and 41.0 on day 3, P = .02), was observed at the onset of CRS. Moreover, this suppressed fibrinolysis-induced relatively hypercoagulable state was gradually resolved after CRS remission with normalization of total PAI-1 to preinfusion levels without any organ damage (mean values of soluble fibrin: 3.16 µg/mL at baseline, 8.04 on day 3, and 9.16 on day 13, P < .01; and mean PAI-1: 25.1 ng/mL on day 13). In conclusion, a hypofibrinolytic and relatively hypercoagulable state concomitant with significant total PAI-1 elevation was observed at the onset of CRS even in DLBCL patients with mild CRS. Our results will facilitate understanding of CRS-related coagulopathy, and they emphasize the importance of monitoring sequential coagulation/fibrinolysis parameters during CAR-T therapy.
Collapse
|
41
|
Ferrer G, Álvarez-Errico D, Esteller M. Biological and Molecular Factors Predicting Response to Adoptive Cell Therapies in Cancer. J Natl Cancer Inst 2022; 114:930-939. [PMID: 35438170 PMCID: PMC9275759 DOI: 10.1093/jnci/djac088] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Adoptive cell therapy (ACT) constitutes a major breakthrough in cancer management that has expanded in the past years due to impressive results showing durable and even curative responses for some patients with hematological malignancies. ACT leverages antigen specificity and cytotoxic mechanisms of the immune system, particularly relying on the patient’s T lymphocytes to target and eliminate malignant cells. This personalized therapeutic approach exemplifies the success of the joint effort of basic, translational, and clinical researchers that has turned the patient’s immune system into a great ally in the search for a cancer cure. ACTs are constantly improving to reach a maximum beneficial clinical response. Despite being very promising therapeutic options for certain types of cancers, mainly melanoma and hematological malignancies, these individualized treatments still present several shortcomings, including elevated costs, technical challenges, management of adverse side effects, and a limited population of responder patients. Thus, it is crucial to discover and develop reliable and robust biomarkers to specifically and sensitively pinpoint the patients that will benefit the most from ACT as well as those at higher risk of developing potentially serious toxicities. Although unique readouts of infused cell therapy success have not yet been identified, certain characteristics from the adoptive cells, the tumor, and/or the tumor microenvironment have been recognized to predict patients’ outcome on ACT. Here, we comment on the importance of biomarkers to predict ACT chances of success to maximize efficacy of treatments and increase patients’ survival.
Collapse
Affiliation(s)
- Gerardo Ferrer
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Catalonia, Spain.,Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Madrid, Spain
| | | | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| |
Collapse
|
42
|
Teng KY, Mansour AG, Zhu Z, Li Z, Tian L, Ma S, Xu B, Lu T, Chen H, Hou D, Zhang J, Priceman SJ, Caligiuri MA, Yu J. Off-the-Shelf Prostate Stem Cell Antigen-Directed Chimeric Antigen Receptor Natural Killer Cell Therapy to Treat Pancreatic Cancer. Gastroenterology 2022; 162:1319-1333. [PMID: 34999097 PMCID: PMC8963130 DOI: 10.1053/j.gastro.2021.12.281] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/06/2021] [Accepted: 12/28/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Pancreatic cancer (PC) is the third leading cause of cancer-related death with a 5-year survival rate of approximately 10%. It typically presents as a late-stage incurable cancer and chemotherapy provides modest benefit. Here, we demonstrate the feasibility, safety, and potency of a novel human natural killer (NK) cell-based immunotherapy to treat PC. METHODS The expression of prostate stem cell antigen (PSCA) was evaluated in primary PC at messenger RNA and protein levels. The processes of retroviral transduction, expansion, activation, and cryopreservation of primary human NK cells obtained from umbilical cord blood were optimized, allowing us to develop frozen, off-the-shelf, allogeneic PSCA chimeric antigen receptor (CAR) NK cells. The safety and efficacy of PSCA CAR NK cells also expressing soluble (s) interleukin 15 (PSCA CAR_s15 NK cells) were evaluated in vitro and in vivo. RESULTS PSCA was elevated in primary human PC compared with the adjacent or other normal tissues. PSCA CAR_s15 NK cells displayed significant tumor-suppressive effects against PSCA(+) PC in vitro before and after 1 cycle of freeze-thaw. The viability of frozen PSCA CAR_s15 NK cells persisted more than 90 days in vivo after their last infusion and significantly prolonged the survival of mice engrafted with human PC. CONCLUSIONS PSCA CAR_s15 NK cells showed therapeutic efficacy in human metastatic PC models without signs of systematic toxicity, providing a strong rationale to support clinical development.
Collapse
Affiliation(s)
- Kun-Yu Teng
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Anthony G Mansour
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Zheng Zhu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Zhiyao Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Bo Xu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Ting Lu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Hanyu Chen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - David Hou
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, California
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California; City of Hope Comprehensive Cancer Center, Los Angeles, California
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, California; City of Hope Comprehensive Cancer Center, Los Angeles, California.
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California; Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Centre, Los Angeles, California; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, California; City of Hope Comprehensive Cancer Center, Los Angeles, California.
| |
Collapse
|
43
|
Her JH, Pretscher D, Patra-Kneuer M, Schanzer J, Cho SY, Hwang YK, Hoeres T, Boxhammer R, Heitmueller C, Wilhelm M, Steidl S, Endell J. Tafasitamab mediates killing of B-cell non-Hodgkin's lymphoma in combination with γδ T cell or allogeneic NK cell therapy. Cancer Immunol Immunother 2022; 71:2829-2836. [PMID: 35348812 PMCID: PMC9519642 DOI: 10.1007/s00262-022-03165-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/28/2022] [Indexed: 11/24/2022]
Abstract
Tafasitamab is an Fc-modified monoclonal antibody that binds to CD19, a cell-surface antigen that is broadly expressed on various types of B-cell non-Hodgkin’s lymphoma (NHL). Antibody-dependent cellular cytotoxicity (ADCC), a key mode of action of tafasitamab, is mediated through the binding of tafasitamab’s Fc region to FcγRIIIa receptors on immune effector cells and results in antitumor activity. Despite the proven clinical activity of tafasitamab in combination with lenalidomide in the treatment of diffuse large B-cell lymphoma (DLBCL), a higher number of immune cells in cancer patients may improve the activity of tafasitamab. Here, we characterized two ex vivo-expanded FcγRIIIa receptor—expressing cell types—γδ T and MG4101 natural killer (NK) cells—as effector cells for tafasitamab in vitro, and found that in the presence of these cells tafasitamab was able to induce ADCC against a range of NHL cell lines and patient-derived cells. We also explored the concept of effector cell supplementation during tafasitamab treatment in vivo by coadministering MG4101 NK cells in Raji and Ramos xenograft models of NHL. Combination treatment of tafasitamab and allogeneic MG4101 NK cells in these models demonstrated a survival benefit compared with tafasitamab or MG4101 monotherapy (Raji: 1.7- to 1.9-fold increase in lifespan; Ramos: 2.0- to 4.1-fold increase in lifespan). In conclusion, adoptive cell transfer of ex vivo-expanded allogeneic NK or autologous γδ T cells in combination with tafasitamab treatment may potentially be a promising novel approach to increase the number of immune effector cells and enhance the antitumor effect of tafasitamab.
Collapse
Affiliation(s)
- Jung Hyun Her
- Cell Therapy Research Center, GC LabCell, Yongin, Republic of Korea
| | - Dominik Pretscher
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | | | | | - Sung Yoo Cho
- Cell Therapy Research Center, GC LabCell, Yongin, Republic of Korea
| | - Yu Kyeong Hwang
- Cell Therapy Research Center, GC LabCell, Yongin, Republic of Korea
| | - Timm Hoeres
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | | | | | - Martin Wilhelm
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | | | | |
Collapse
|
44
|
Corti C, Venetis K, Sajjadi E, Zattoni L, Curigliano G, Fusco N. CAR-T cell therapy for triple-negative breast cancer and other solid tumors: preclinical and clinical progress. Expert Opin Investig Drugs 2022; 31:593-605. [PMID: 35311430 DOI: 10.1080/13543784.2022.2054326] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Most breast cancer-related deaths arise from triple-negative breast cancer (TNBC). Molecular heterogeneity, aggressiveness and the lack of effective therapies are major hurdles to therapeutic progress. Chimeric antigen receptor (CAR)-T cells have emerged as a promising immunotherapeutic strategy in TNBC. This approach combines the antigen specificity of an antibody with the effector function of T cells. AREAS COVERED This review examines the opportunities provided by CAR-T cell therapies in solid tumors. Emerging targets, ongoing clinical trials, and prospective clinical implications in TNBC are considered later. An emphasis is placed on the key challenges and possible solutions for this therapeutic approach. EXPERT OPINION A challenge for CAR-T cell therapy is the selection of the optimal targets to minimize on-target/off-tumor toxicity. Tumor escape via antigen loss and intrinsic heterogeneity is a further hurdle. TROP2, GD2, ROR1, MUC1 and EpCAM are promising targets. Persistence and trafficking to tumor cells may be enhanced by the implementation of CARs with a chemokine receptor and/or constitutively activated interleukin receptors. Fourth-generation CARs (TRUCKs) may redirect T-cells for universal cytokine-mediated killing. Combinatorial approaches and the application of CARs to other immune cells could revert the suppressive immune environment that characterizes solid neoplasms.
Collapse
Affiliation(s)
- Chiara Corti
- Division of New Drugs and Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Elham Sajjadi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lorenzo Zattoni
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
45
|
Totzeck M, Michel L, Lin Y, Herrmann J, Rassaf T. Cardiotoxicity from chimeric antigen receptor-T cell therapy for advanced malignancies. Eur Heart J 2022; 43:1928-1940. [PMID: 35257157 PMCID: PMC9123242 DOI: 10.1093/eurheartj/ehac106] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is the next revolutionary advance in cancer therapy. By using ex vivo engineered T cells to specifically target antigens, a targeted immune reaction is induced. Chimeric antigen receptor-T cell therapy is approved for patients suffering from advanced and refractory B cell and plasma cell malignancies and is undergoing testing for various other haematologic and solid malignancies. In the process of triggering an anticancer immune reaction, a systemic inflammatory response can emerge as cytokine release syndrome (CRS). The severity of CRS is highly variable across patients, ranging from mild flu-like symptoms to fulminant hyperinflammatory states with excessive immune activation, associated multiorgan failure and high mortality risk. Cytokine release syndrome is also an important factor for adverse cardiovascular (CV) events. Sinus tachycardia and hypotension are the most common reflections, similar to what is seen with other systemic inflammatory response syndromes. Corrected QT interval prolongation and tachyarrhythmias, including ventricular arrhythmias and atrial fibrillation, also show a close link with CRS. Events of myocardial ischaemia and venous thromboembolism can be provoked during CAR-T cell therapy. Although not as closely related to CRS, changes in cardiac function can be observed to the point of heart failure and cardiogenic shock. This may also be encountered in patients with severe valvular heart disease in the setting of CRS. This review will discuss the pertinent CV risks of the growing field of CAR-T cell therapy for today's cardiologists, including incidence, characteristics, and treatment options, and will conclude with an integrated management algorithm.
Collapse
Affiliation(s)
- Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Lars Michel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Yi Lin
- Division of Hematology and Division of Experimental Pathology, Mayo Clinic, Rochester, MN 55901, USA
| | - Joerg Herrmann
- Department of Cardiovascular Disease, Mayo Clinic, Rochester, MN 55901, USA
| | - Tienush Rassaf
- Corresponding author. Tel: +49 201 723 4801, Fax: +49201 723 5401,
| |
Collapse
|
46
|
Mumtaz AA, Fischer A, Lutfi F, Matsumoto LR, Atanackovic D, Kolanci ET, Hankey KG, Hardy NM, Yared JA, Kocoglu MH, Rapoport AP, Dahiya S, Li AS, Sunshine SB. Ocular adverse events associated with chimeric antigen receptor T-cell therapy: a case series and review. Br J Ophthalmol 2022:bjophthalmol-2021-320814. [PMID: 35144919 DOI: 10.1136/bjophthalmol-2021-320814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/18/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS Chimeric antigen receptor T-cell (CAR T) therapy has been shown to improve the remission rate and survival for patients with refractory haematological malignancies. The aim of this study is to describe ocular adverse effects associated with CAR T therapy in patients with haematological malignancies. METHODS This is a retrospective, single-institution, case series. Patients aged 18 years or older who received standard of care CAR T therapy for relapsed/refractory large B-cell lymphoma with a documented ophthalmic evaluation were included. The primary outcome was clinician ophthalmic examination findings. RESULTS A total of 66 patients received CAR T-cell therapy from February 2018 to October 2019 with 11 receiving an ophthalmic examination. Eleven patients (n=22 eyes) who received CAR T-cell therapy were included in review. The median time from CAR T-cell infusion date to ocular examination was 57.5 days. The median patient age at the time of examination was 60.5 years. Ten patients had subjective symptoms prompting ophthalmic examination. Two patients reported floaters and photopsias. One patient had worsening ocular graft-versus-host disease. Two patients were identified with possible reactivation of viral infections, including herpes zoster ophthalmicus and regressing acute retinal necrosis. CONCLUSIONS The increasing use of CAR T therapy for malignancies underscores the importance of ophthalmologists and oncologists understanding the potential toxicities associated with its use, particularly ocular toxicities and when to refer for an ophthalmic examination.
Collapse
Affiliation(s)
- Aisha A Mumtaz
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrew Fischer
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Forat Lutfi
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland - Baltimore, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lisa R Matsumoto
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland - Baltimore, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Djordje Atanackovic
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland - Baltimore, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Elif T Kolanci
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kim G Hankey
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland - Baltimore, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nancy M Hardy
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland - Baltimore, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jean A Yared
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland - Baltimore, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mehmet H Kocoglu
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland - Baltimore, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aaron P Rapoport
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland - Baltimore, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Saurabh Dahiya
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland - Baltimore, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Albert S Li
- Vitreoretinal Consultants of New York, Northwell Health Eye Institute, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Sarah Brem Sunshine
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland - Baltimore, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Luginbuehl V, Abraham E, Kovar K, Flaaten R, Müller AMS. Better by design: What to expect from novel CAR-engineered cell therapies? Biotechnol Adv 2022; 58:107917. [PMID: 35149146 DOI: 10.1016/j.biotechadv.2022.107917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
Chimeric antigen receptor (CAR) technology, and CAR-T cells in particular, have emerged as a new and powerful tool in cancer immunotherapy since demonstrating efficacy against several hematological malignancies. However, despite encouraging clinical results of CAR-T cell therapy products, a significant proportion of patients do not achieve satisfactory responses, or relapse. In addition, CAR-T cell applications to solid tumors is still limited due to the tumor microenvironment and lack of specifically targetable tumor antigens. All current products on the market, as well as most investigational CAR-T cell therapies, are autologous, using the patient's own peripheral blood mononuclear cells as starting material to manufacture a patient-specific batch. Alternative cell sources are, therefore, under investigation (e.g. allogeneic cells from an at least partially human leukocyte antigen (HLA)-matched healthy donor, universal "third-party" cells from a non-HLA-matched donor, cord blood-derived cells, immortalized cell lines or cells differentiated from induced pluripotent stem cells). However, genetic modifications of CAR-engineered cells, bioprocesses used to expand cells, and improved supply chains are still complex and costly. To overcome drawbacks associated with CAR-T technologies, novel CAR designs have been used to genetically engineer cells derived from alpha beta (αβ) T cells, other immune cells such as natural killer (NK) cells, gamma delta (γδ) T cells, macrophages or dendritic cells. This review endeavours to trigger ideas on the next generation of CAR-engineered cell therapies beyond CAR-T cells and, thus, will enable effective, safe and affordable therapies for clinical management of cancer. To achieve this, we present a multidisciplinary overview, addressing a wide range of critical aspects: CAR design, development and manufacturing technologies, pharmacological concepts and clinical applications of CAR-engineered cell therapies. Each of these fields employs a large number of ground-breaking scientific advances, where coordinated and complex process and product development occur at their interfaces.
Collapse
Affiliation(s)
- Vera Luginbuehl
- Novartis Oncology, Cell & Gene Therapy, Novartis Pharma Schweiz AG, Rotkreuz, Switzerland.
| | - Eytan Abraham
- Personalized Medicine Lonza Pharma&Biotech, Lonza Ltd., Walkersville, MD, USA
| | | | - Richard Flaaten
- Novartis Oncology, Cell & Gene Therapy, Novartis Norge AS, Oslo, Norway
| | - Antonia M S Müller
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Cao W, Geng ZZ, Wang N, Pan Q, Guo S, Xu S, Zhou J, Liu WR. A Reversible Chemogenetic Switch for Chimeric Antigen Receptor T Cells**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenyue Cao
- Department of Hematology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
- The Texas A&M Drug Discovery Laboratory Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Zhi Zachary Geng
- The Texas A&M Drug Discovery Laboratory Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Na Wang
- Department of Hematology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
| | - Quan Pan
- The Texas A&M Drug Discovery Laboratory Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Shaodong Guo
- The Texas A&M Drug Discovery Laboratory Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Shiqing Xu
- The Texas A&M Drug Discovery Laboratory Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Jianfeng Zhou
- Department of Hematology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
| | - Wenshe Ray Liu
- The Texas A&M Drug Discovery Laboratory Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences College of Medicine Texas A&M University Houston TX 77030 USA
- Department of Biochemistry and Biophysics Texas A&M University Houston TX 77843 USA
- Department of Molecular and Cellular Medicine College of Medicine Texas A&M University Houston TX 77843 USA
| |
Collapse
|
49
|
Mirzaee Godarzee M, Mahmud Hussen B, Razmara E, Hakak‐Zargar B, Mohajerani F, Dabiri H, Fatih Rasul M, Ghazimoradi MH, Babashah S, Sadeghizadeh M. Strategies to overcome the side effects of chimeric antigen receptor T cell therapy. Ann N Y Acad Sci 2022; 1510:18-35. [DOI: 10.1111/nyas.14724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022]
Affiliation(s)
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy Hawler Medical University Erbil Iraq
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute Monash University, Clayton, Victoria, Australia, 3800
| | | | - Fatemeh Mohajerani
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Hamed Dabiri
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Sciences Tishk International University Erbil Iraq
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| |
Collapse
|
50
|
de Groot PM, Arevalo O, Shah K, Strange CD, Shroff GS, Ahuja J, Truong MT, de Groot JF, Vlahos I. Imaging Primer on Chimeric Antigen Receptor T-Cell Therapy for Radiologists. Radiographics 2022; 42:176-194. [PMID: 34990326 DOI: 10.1148/rg.210065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a recently approved breakthrough treatment that has become a new paradigm in treatment of recurrent or refractory B-cell lymphomas and pediatric or adult acute lymphoid leukemia. CAR T cells are a type of cellular immunotherapy that artificially enhances T cells to boost eradication of malignancy through activation of the native immune system. The CAR construct is a synthetically created functional cell receptor grafted onto previously harvested patient T cells, which bind to preselected tumor-associated antigens and thereby activate host immune signaling cascades to attack tumor cells. Advantages include a single treatment episode of 2-3 weeks and durable disease elimination, with remission rates of over 80%. Responses to therapy are more rapid than with conventional chemotherapy or immunotherapy, with intervening short-interval edema. CAR T-cell administration is associated with therapy-related toxic effects in a large percentage of patients, notably cytokine release syndrome, immune effect cell-associated neurotoxicity syndrome, and infections related to immunosuppression. Knowledge of the expected evolution of therapy response and potential adverse events in CAR T-cell therapy and correlation with the timeline of treatment are important to optimize patient care. Some toxic effects are radiologically evident, and familiarity with their imaging spectrum is key to avoiding misinterpretation. Other clinical toxic effects may be occult at imaging and are diagnosed on the basis of clinical assessment. Future directions for CAR T-cell therapy include new indications and expanded tumor targets, along with novel ways to capture T-cell activation with imaging. An invited commentary by Ramaiya and Smith is available online. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Patricia M de Groot
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Octavio Arevalo
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Komal Shah
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Chad D Strange
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Girish S Shroff
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Jitesh Ahuja
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Mylene T Truong
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - John F de Groot
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Ioannis Vlahos
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| |
Collapse
|