1
|
Li Z. Novel perspectives on the pharmacological treatment of thyroid-associated ophthalmopathy. Front Endocrinol (Lausanne) 2025; 15:1469268. [PMID: 39872310 PMCID: PMC11769798 DOI: 10.3389/fendo.2024.1469268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Thyroid-associated ophthalmopathy (TAO), an autoimmune disease closely related to thyroid dysfunction, remains a challenging ophthalmic condition among adults. Its clinical manifestations are complex and diverse, and disease progression can lead to exophthalmos, diplopia, exposure keratitis, corneal ulceration, and compressive optic neuropathy, resulting in irreversible vision damage or even blindness. Traditional treatment methods for TAO, including glucocorticoids, immunosuppressants, and radiation therapy, often have limitations and side effects, making this disease problematic in ophthalmology. As a result, the development of novel targeted drugs has become a research hotspot for addressing the pathogenesis of TAO. A range of novel targeted drugs, such as teprotumumab and tocilizumab, have been successfully developed and demonstrated remarkable efficacy in relieving inflammation and managing this disease. In addition, some drug candidates and molecular targets identified in the TAO in vitro model have shown promising prospects. This article briefly reviews the potential new strategies for future clinical treatment and the progress of new drug therapies for TAO.
Collapse
Affiliation(s)
- Zilin Li
- No. 1 Teaching Hospital, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Wang Y, Gao S, Cao F, Yang H, Lei F, Hou S. Ocular immune-related diseases: molecular mechanisms and therapy. MedComm (Beijing) 2024; 5:e70021. [PMID: 39611043 PMCID: PMC11604294 DOI: 10.1002/mco2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Ocular immune-related diseases, represent a spectrum of conditions driven by immune system dysregulation, include but not limit to uveitis, diabetic retinopathy, age-related macular degeneration, Graves' ophthalmopathy, etc. The molecular and cellular mechanisms underlying these diseases are typically dysfunctioned immune responses targeting ocular tissues, resulting in inflammation and tissue damage. Recent advances have further elucidated the pivotal role of different immune responses in the development, progression, as well as management of various ocular immune diseases. However, there is currently a relative lack of connection between the cellular mechanisms and treatments of several immune-related ocular diseases. In this review, we discuss recent findings related to the immunopathogenesis of above-mentioned diseases. In particular, we summarize the different types of immune cells, inflammatory mediators, and associated signaling pathways that are involved in the pathophysiology of above-mentioned ophthalmopathies. Furthermore, we also discuss the future directions of utilizing anti-inflammatory regime in the management of these diseases. This will facilitate a better understanding of the pathogenesis of immune-related ocular diseases and provide new insights for future treatment approaches.
Collapse
Affiliation(s)
- Yakun Wang
- The First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Shangze Gao
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Fan Cao
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Hui Yang
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Fengyang Lei
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Shengping Hou
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Scarabosio A, Surico PL, Singh RB, Tereshenko V, Musa M, D’Esposito F, Russo A, Longo A, Gagliano C, Agosti E, Jhanji E, Zeppieri M. Thyroid Eye Disease: Advancements in Orbital and Ocular Pathology Management. J Pers Med 2024; 14:776. [PMID: 39064030 PMCID: PMC11278049 DOI: 10.3390/jpm14070776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Thyroid Eye Disease (TED) is a debilitating autoimmune condition often associated with thyroid dysfunction, leading to significant ocular and orbital morbidity. This review explores recent advancements in the management of TED, focusing on both medical and surgical innovations. The introduction of Teprotumumab, the first FDA-approved drug specifically for TED, marks a pivotal development in medical therapy. Teprotumumab targets the insulin-like growth factor-1 receptor (IGF-1R), effectively reducing inflammation and tissue remodeling. Clinical trials demonstrate its efficacy in reducing proptosis and improving quality of life, making it a cornerstone in the treatment of active, moderate-to-severe TED. Surgical management remains critical for patients with chronic TED or those unresponsive to medical therapy. Advancements in orbital decompression surgery, including image-guided and minimally invasive techniques, offer improved outcomes and reduced complications. Innovations in eyelid and strabismus surgery enhance functional and cosmetic results, further improving patient satisfaction. The management of TED necessitates a multidisciplinary approach involving endocrinologists, ophthalmologists, oculoplastic surgeons, radiologists, and other specialists. This collaborative strategy ensures comprehensive care, addressing the diverse aspects of TED from thyroid dysfunction to ocular health and psychological well-being. Future directions in TED treatment include emerging pharmacological therapies targeting different aspects of the disease's pathophysiology and advanced surgical techniques aimed at enhancing precision and safety. This review underscores the importance of a personalized, multidisciplinary approach in managing TED, highlighting current advancements, and exploring potential future innovations to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Anna Scarabosio
- Clinic of Plastic and Reconstructive Surgery, Ospedale Santa Maria della Misericordia, 33100 Udine, Italy;
- Department of Plastic and Reconstructive Surgery, Mass General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (P.L.S.)
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
| | - Rohan Bir Singh
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (P.L.S.)
| | - Vlad Tereshenko
- Department of Plastic and Reconstructive Surgery, Mass General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin 300238, Nigeria
- Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, 153-173 Marylebone Rd., London NW1 5QH, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy
| | - Antonio Longo
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Edoardo Agosti
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Etash Jhanji
- Department of Ophthalmology, University of Pittsburg, Pittsburg, PA 15260, USA
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
4
|
Nivean PD, Madhivanan N, Kumaramanikavel G, Berendschot TTJM, Webers CAB, Paridaens D. Understanding the clinical and molecular basis of thyroid orbitopathy: a review of recent evidence. Hormones (Athens) 2024; 23:25-34. [PMID: 37910311 PMCID: PMC10847210 DOI: 10.1007/s42000-023-00498-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
Thyroid eye disease (TED) is an autoimmune orbital inflammatory disease which ranges from mild to severe. Tissue remodeling, fibrosis and fat proliferation cause changes in the orbital tissues which can affect esthetics and visual function. In its severe form, it is sight threatening, debilitating, and disfiguring and may lead to social stigma, the embarrassment about which has an impact on the quality of life of those affected and the family members. The pathogenesis of TED, which is influenced by genetic, immunological, and environmental factors, is complex and not fully elucidated. However, it remains unknown what factors determine the severity of the disease. Recent research has revealed a number of diagnostic and prognostic biomarkers of this disease. In this overview of TED, we focus on new insights and perspectives regarding biological agents that may provide a basis for new treatment modalities.
Collapse
Affiliation(s)
- Pratheeba Devi Nivean
- M.N Eye Hospital, Chennai, India.
- Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | - Dion Paridaens
- Department of Ophthalmology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Orbital Service, Rotterdam Eye Hospital, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Eckstein A, Stöhr M, Görtz GE, Gulbins A, Möller L, Fuehrer-Sakel D, Oeverhaus M. Current Therapeutic Approaches for Graves' Orbitopathy - are Targeted Therapies the Future? Klin Monbl Augenheilkd 2024; 241:48-68. [PMID: 37799096 DOI: 10.1055/a-2186-5548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Graves' orbitopathy is an autoimmune disease of the orbit that most frequently occurs with Graves' hyperthyroidism. The occurrence of autoantibodies directed against the TSH receptor (TRAb) is of central importance for the diagnosis and pathogenesis. These autoantibodies are mostly stimulating, and induce uncontrolled hyperthyroidism and tissue remodelling in the orbit and more or less pronounced inflammation. Consequently, patients suffer to a variable extent from periocular swelling, exophthalmos, and fibrosis of the eye muscles and thus restrictive motility impairment with double vision. In recent decades, therapeutic approaches have mainly comprised immunosuppressive treatments and antithyroid drug therapy for hyperthyroidism to inhibit thyroid hormone production. With the recognition that TRAb also activates an important growth factor receptor, IGF1R (insulin-like growth factor 1 receptor), biological agents have been developed. Teprotumumab (an inhibitory IGF1R antibody) has already been approved in the USA and the therapeutic effects are enormous, especially with regard to the reduction of exophthalmos. Side effects are to be considered, especially hyperglycaemia and hearing loss. It is not yet clear whether the autoimmune reaction (development of the TRAb/attraction of immunocompetent cells) is also influenced by anti-IGF1R inhibiting agents. Recurrences after therapy show that the inhibition of antibody development must be included in the therapeutic concept, especially in severe cases.
Collapse
Affiliation(s)
- Anja Eckstein
- Klinik für Augenheilkunde, Universitätsklinikum Essen, Deutschland
| | - Mareile Stöhr
- Klinik für Augenheilkunde, Universitätsklinikum Essen, Deutschland
| | - Gina-Eva Görtz
- Labor für Molekulare Augenheilkunde, Universität Duisburg-Essen, Duisburg, Deutschland
| | - Anne Gulbins
- Labor für Molekulare Augenheilkunde, Universität Duisburg-Essen, Duisburg, Deutschland
| | - Lars Möller
- Klinik für Endokrinologie, Diabetologie und Stoffwechsel, Universitätsklinikum Essen, Deutschland
| | - Dagmar Fuehrer-Sakel
- Klinik für Endokrinologie, Diabetologie und Stoffwechsel, Universitätsklinikum Essen, Deutschland
| | - Michael Oeverhaus
- Klinik für Augenheilkunde, Universitätsklinikum Essen, Deutschland
- Gemeinschaftspraxis Dres. Oeverhaus & Weiß, Rietberg, Deutschland
| |
Collapse
|
6
|
Zhang X, Zhao Q, Li B. Current and promising therapies based on the pathogenesis of Graves' ophthalmopathy. Front Pharmacol 2023; 14:1217253. [PMID: 38035032 PMCID: PMC10687425 DOI: 10.3389/fphar.2023.1217253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Graves' ophthalmopathy (GO) is a hyperthyroidism-related and immune-mediated disease that poses a significant threat to human health. The pathogenesis of GO primarily involves T cells, B cells, and fibroblasts, suggesting a pivotal role for the thyrotropin-antibody-immunocyte-fibroblast axis. Traditional treatment approaches for Graves' disease (GD) or GO encompass antithyroid drugs (ATDs), radioactive iodine, and beta-blockers. However, despite decades of treatment, there has been limited improvement in the global incidence of GO. In recent years, promising therapies, including immunotherapy, have emerged as leading contenders, demonstrating substantial benefits in clinical trials by inhibiting the activation of immune cells like Th1 and B cells. Furthermore, the impact of diet, gut microbiota, and metabolites on GO regulation has been recognized, suggesting the potential of non-pharmaceutical interventions. Moreover, as traditional Chinese medicine (TCM) components have been extensively explored and have shown effective results in treating autoimmune diseases, remarkable progress has been achieved in managing GO with TCM. In this review, we elucidate the pathogenesis of GO, summarize current and prospective therapies for GO, and delve into the mechanisms and prospects of TCM in its treatment.
Collapse
Affiliation(s)
- Xin Zhang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qixiang Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bei Li
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
| |
Collapse
|
7
|
Xavier NF, Lucena DT, Cruz AAV. Monoclonal Antibodies for the Treatment of Graves Orbitopathy: Precision Medicine? Ophthalmic Plast Reconstr Surg 2023; 39:307-315. [PMID: 36727923 DOI: 10.1097/iop.0000000000002315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE To summarize the development, nomenclature, and rationale of the reported use of monoclonal antibodies (Mabs) in Graves Orbitopathy (GO) and to undertake a systematic review of the management of GO with Mabs. METHODS The Pubmed and Embase databases and the Federal Brazilian searching site (Periódicos-CAPES) were screened. The authors searched all the keywords "monoclonal antibodies," "adalimumab," "belimumab," "infliximab," "rituximab," "teprotumumab," and "tocilizumab" combined with the terms "Graves Orbitopathy," "Graves eye disease" and "thyroid eye disease." All the articles published in English, French, and Spanish from 2000 to May 2022 were screened. Only publications with quantitative data on the activity of orbitopathy, proptosis, or both were included. RESULTS Seventy-six articles of the 954 screened records met the inclusion criteria. Seven Mabs were described for treating GO. The three most reported Mabs were Rituximab, Tocilizumab, and Teprotumumab. Only eight randomized clinical trials compared the effect of these three Mabs and Belimumab with the effect of steroids or placebos. Adalimumab, Infliximab, and K1-70 only appeared in a few case series and case reports. Frequent mild-to-moderate and few major side effects occurred with the three most used Mabs. Relapse rates ranged from 7.4% for Tocilizumab to at least 29.4% for Teprotumumab. No randomized clinical trials compared Mabs head-to-head. CONCLUSION Considering the lack of head-to-head comparisons between Mabs, the relapse rate, the possibility of severe collateral effects, and the cost of Mabs, it is not clear which Mab is the safest and most useful to treat GO.
Collapse
Affiliation(s)
- Naiara F Xavier
- Department of Ophthalmology, School of Medicine of Ribeirão Preto - University of São Paulo, Brasil
| | | | | |
Collapse
|
8
|
Cui X, Wang F, Liu C. A review of TSHR- and IGF-1R-related pathogenesis and treatment of Graves' orbitopathy. Front Immunol 2023; 14:1062045. [PMID: 36742308 PMCID: PMC9893276 DOI: 10.3389/fimmu.2023.1062045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Graves' orbitopathy (GO) is an organ-specific autoimmune disease, but its pathogenesis remains unclear. There are few review articles on GO research from the perspective of target cells and target antigens. A systematic search of PubMed was performed, focusing mainly on studies published after 2015 that involve the role of target cells, orbital fibroblasts (OFs) and orbital adipocytes (OAs), target antigens, thyrotropin receptor (TSHR) and insulin-like growth factor-1 receptor (IGF-1R), and their corresponding antibodies, TSHR antibodies (TRAbs) and IGF-1R antibodies (IGF-1R Abs), in GO pathogenesis and the potentially effective therapies that target TSHR and IGF-1R. Based on the results, OFs may be derived from bone marrow-derived CD34+ fibrocytes. In addition to CD34+ OFs, CD34- OFs are important in the pathogenesis of GO and may be involved in hyaluronan formation. CD34- OFs expressing Slit2 suppress the phenotype of CD34+ OFs. β-arrestin 1 can be involved in TSHR/IGF-1R crosstalk as a scaffold. Research on TRAbs has gradually shifted to TSAbs, TBAbs and the titre of TRAbs. However, the existence and role of IGF-1R Abs are still unknown and deserve further study. Basic and clinical trials of TSHR-inhibiting therapies are increasing, and TSHR is an expected therapeutic target. Teprotumumab has become the latest second-line treatment for GO. This review aims to effectively describe the pathogenesis of GO from the perspective of target cells and target antigens and provide ideas for its fundamental treatment.
Collapse
Affiliation(s)
- Xuejiao Cui
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Futao Wang
- Department of Endocrinology, Changchun Central Hospital, Changchun, China
| | - Cong Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Görtz GE, Philipp S, Bruderek K, Jesenek C, Horstmann M, Henning Y, Oeverhaus M, Daser A, Bechrakis NE, Eckstein A, Brandau S, Berchner-Pfannschmidt U. Macrophage-Orbital Fibroblast Interaction and Hypoxia Promote Inflammation and Adipogenesis in Graves' Orbitopathy. Endocrinology 2022; 164:6881427. [PMID: 36477465 DOI: 10.1210/endocr/bqac203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The inflammatory eye disease Graves' orbitopathy (GO) is the main complication of autoimmune Graves' disease. In previous studies we have shown that hypoxia plays an important role for progression of GO. Hypoxia can maintain inflammation by attracting inflammatory cells such as macrophages (MQ). Herein, we investigated the interaction of MQ and orbital fibroblasts (OF) in context of inflammation and hypoxia. We detected elevated levels of the hypoxia marker HIF-1α, the MQ marker CD68, and inflammatory cytokines TNFα, CCL2, CCL5, and CCL20 in GO biopsies. Hypoxia stimulated GO tissues to release TNFα, CCL2, and CCL20 as measured by multiplex enzyme-linked immunosorbent assay (ELISA). Further, TNFα and hypoxia stimulated the expression of HIF-1α, CCL2, CCL5, and CCL20 in OF derived from GO tissues. Immunofluorescence confirmed that TNFα-positive MQ were present in the GO tissues. Thus, interaction of M1-MQ with OF under hypoxia also induced HIF-1α, CCL2, and CCL20 in OF. Inflammatory inhibitors etanercept or dexamethasone prevented the induction of HIF-1α and release of CCL2 and CCL20. Moreover, co-culture of M1-MQ/OF under hypoxia enhanced adipogenic differentiation and adiponectin secretion. Dexamethasone and HIF-1α inhibitor PX-478 reduced this effect. Our findings indicate that GO fat tissues are characterized by an inflammatory and hypoxic milieu where TNFα-positive MQ are present. Hypoxia and interaction of M1-MQ with OF led to enhanced secretion of chemokines, elevated hypoxic signaling, and adipogenesis. In consequence, M1-MQ/OF interaction results in constant inflammation and tissue remodeling. A combination of anti-inflammatory treatment and HIF-1α reduction could be an effective treatment option.
Collapse
Affiliation(s)
- Gina-Eva Görtz
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Svenja Philipp
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Kirsten Bruderek
- Department of Otorhinolaryngology, University Hospital Essen, 45147 Essen, Germany
| | - Christoph Jesenek
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Mareike Horstmann
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Yoshiyuki Henning
- Institute of Physiology, University Hospital Essen, 45147 Essen, Germany
| | - Michael Oeverhaus
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Anke Daser
- Department of Otorhinolaryngology, University Hospital Essen, 45147 Essen, Germany
| | - Nikolaos E Bechrakis
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Anja Eckstein
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, 45147 Essen, Germany
| | - Utta Berchner-Pfannschmidt
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
10
|
Thyroid Eye Disease. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122084. [PMID: 36556449 PMCID: PMC9787503 DOI: 10.3390/life12122084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Thyroid eye disease (TED), an autoimmune inflammatory disorder of the orbit, presents with a potential array of clinical sequelae. The pathophysiology behind TED has been partially characterized in the literature. There remain certain elusive mechanisms welcoming of research advances. Disease presentation can vary, but those that follow a characteristic course start mild and increase in severity before plateauing into an inactive phase. Diagnosis and evaluation include careful physical examination, targeted laboratory work up, appropriate imaging studies, and tailored treatment regimens. Special consideration may apply to certain populations, such as pediatric and pregnant patients.
Collapse
|
11
|
Zhang P, Zhu H. Cytokines in Thyroid-Associated Ophthalmopathy. J Immunol Res 2022; 2022:2528046. [PMID: 36419958 PMCID: PMC9678454 DOI: 10.1155/2022/2528046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 09/07/2023] Open
Abstract
Thyroid-associated ophthalmopathy (TAO), also known as thyroid eye disease (TED) or Graves' orbitopathy (GO), is a complex autoimmune condition causing visual impairment, disfigurement, and harm to patients' physical and mental health. The pathogenesis of TAO has not been fully elucidated, and the mainstream view is that coantigens shared by the thyroid and orbit trigger remodeling of extraocular muscles and orbital connective tissues through an inflammatory response. In recent years, cytokines and the immune responses they mediate have been crucial in disease progression, and currently, common evidence has shown that drugs targeting cytokines, such as tocilizumab, infliximab, and adalimumab, may be novel targets for therapy. In this review, we summarize the research development of different cytokines in TAO pathogenesis in the hope of discovering new therapeutic targets.
Collapse
Affiliation(s)
- Pengbo Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Huang Zhu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
12
|
Recent advances in graves ophthalmopathy medical therapy: a comprehensive literature review. Int Ophthalmol 2022; 43:1437-1449. [PMID: 36272013 PMCID: PMC10113320 DOI: 10.1007/s10792-022-02537-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/15/2022] [Indexed: 10/24/2022]
Abstract
Graves ophthalmopathy (GO), which occurs in autoimmune thyroid disease, can reduce patients' quality of life due to its impact on visual function, physical appearance, and emotional health. Corticosteroids have been the first-line treatment for GO. More recently, the pathogenesis of GO has made significant progress. Various targeting biological agents and immunosuppressive agents make GO management more promising. Fully understanding GO pathogenesis and precise clinical management are beneficial for the prognosis of patients. Therefore, we conducted a comprehensive review of the medical management of GO and summarized research developments to highlight future research issues.
Collapse
|
13
|
Wang Y, Shao Y, Zhang H, Wang J, Zhang P, Zhang W, Chen H. Comprehensive analysis of key genes and pathways for biological and clinical implications in thyroid-associated ophthalmopathy. BMC Genomics 2022; 23:630. [PMID: 36056316 PMCID: PMC9440526 DOI: 10.1186/s12864-022-08854-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Background Thyroid-associated ophthalmopathy (TAO) is a common and organ-specific autoimmune disease. Early diagnosis and novel treatments are essential to improve the prognosis of TAO patients. Therefore, the current work was performed to identify the key genes and pathways for the biological and clinical implications of TAO through comprehensive bioinformatics analysis and a series of clinical validations. Methods GSE105149 and GSE185952 were obtained from the Gene Expression Omnibus (GEO) database for analysis. The data were normalized to identify the common differentially expressed genes (DEGs) between the two datasets, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to assess key pathways in TAO. Protein–protein interaction (PPI) networks and hub genes among the common DEGs were identified. Furthermore, we collected the general information and blood samples from 50 TAO patients and 20 healthy controls (HCs), and the expression levels of the proteins encoded by hub genes in serum were detected by enzyme-linked immunosorbent assay (ELISA). Then we further assessed the relationship between the ELISA data and the TAO development. Results Several common pathways, including neuroactive ligand-receptor interaction, the IL-17 signaling pathway, and the TNF signaling pathway, were identified in both datasets. In parallel, 52 common DEGs were identified. The KEGG analysis showed that these common DEGs are mainly enriched in long-term depression, the VEGF signaling pathway, the IL-17 signaling pathway, the TNF signaling pathway, and cytokine-cytokine receptor interactions. The key hub genes PRKCG, OSM, DPP4, LRRTM1, CXCL6, and CSF3R were screened out through the PPI network. As confirmation, the ELISA results indicated that protein expression levels of PRKCG, OSM, CSF3R, and DPP4 were significantly upregulated in TAO patients compared with HCs. In addition, PRKCG and DPP4 were verified to show value in diagnosing TAO, and CSF3R was found to be a valuable diagnostic marker in distinguishing active TAO from inactive TAO. Conclusions Inflammation- and neuromodulation-related pathways might be closely associated with TAO. Based on the clinical verification, OSM, CSF3R, CXCL6, DPP4, and PRKCG may serve as inflammation- or neuromodulation-related biomarkers for TAO, providing novel insights for the diagnosis and treatment of TAO. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08854-5.
Collapse
Affiliation(s)
- Yueyue Wang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haitao Zhang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Zhang
- Department of Ophthalmology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Ili, China
| | - Weizhong Zhang
- Department of Ophthalmology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Ili, China. .,Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Huanhuan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Yu CY, Ford RL, Wester ST, Shriver EM. Update on thyroid eye disease: Regional variations in prevalence, diagnosis, and management. Indian J Ophthalmol 2022; 70:2335-2345. [PMID: 35791115 PMCID: PMC9426067 DOI: 10.4103/ijo.ijo_3217_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/20/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
Thyroid eye disease (TED) is a rare disease that can lead to decreased quality of life, permanent disfigurement, and vision loss. Clinically, TED presents with exophthalmos, periorbital edema, extraocular muscle dysfunction, and eyelid retraction, and can lead to vision-threatening complications such as exposure to keratopathy and dysthyroid optic neuropathy (DON). Over the last several years, significant advancements have been made in the understanding of its pathophysiology as well as optimal management. Ethnic variations in the prevalence, clinical presentation, and risk of vision-threatening complications of TED are summarized, and risk factors associated with TED are discussed. Additionally, significant advances have been made in the management of TED. The management of TED traditionally included anti-inflammatory medications, orbital radiation therapy, orbital surgical decompression, and biologic therapies. Most recently, targeted therapies such as teprotumumab, an insulin-like growth factor-1 receptor antagonist, have been studied in the context of TED, with promising initial data. In this review, updates in the understanding and management of TED are presented with a focus on the international variations in presentation and management.
Collapse
Affiliation(s)
- Caroline Y Yu
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Rebecca L Ford
- Department of Ophthalmology, Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Sara T Wester
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Erin M Shriver
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
15
|
Disulfiram Exerts Antifibrotic and Anti-Inflammatory Therapeutic Effects on Perimysial Orbital Fibroblasts in Graves' Orbitopathy. Int J Mol Sci 2022; 23:ijms23095261. [PMID: 35563653 PMCID: PMC9104881 DOI: 10.3390/ijms23095261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Fibrosis of extraocular muscles (EOMs) is a marker of end-stage in Graves’ orbitopathy (GO). To determine the antifibrotic and anti-inflammatory therapeutic effects and the underlying molecular mechanisms of disulfiram (DSF) on perimysial orbital fibroblasts (pOFs) in a GO model in vitro, primary cultures of pOFs from eight patients with GO and six subjects without GO (NG) were established. CCK-8 and EdU assays, IF, qPCR, WB, three-dimensional collagen gel contraction assays, cell scratch experiments, and ELISAs were performed. After TGF-β1 stimulation of pOFs, the proliferation rate of the GO group but not the NG group increased significantly. DSF dose-dependently inhibited the proliferation, contraction, and migration of pOFs in the GO group. Additionally, DSF dose-dependently inhibited fibrosis and extracellular matrix production markers (FN1, COL1A1, α-SMA, CTGF) at the mRNA and protein levels. Furthermore, DSF mediates antifibrotic effects on GO pOFs partially through the ERK-Snail signaling pathway. In addition, DSF attenuated HA production and suppressed inflammatory chemokine molecule expression induced by TGF-β1 in GO pOFs. In this in vitro study, we demonstrate the inhibitory effect of DSF on pOFs fibrosis in GO, HA production, and inflammation. DSF may be a potential drug candidate for preventing and treating tissue fibrosis in GO.
Collapse
|
16
|
Gupta V, Hammond CL, Roztocil E, Gonzalez MO, Feldon SE, Woeller CF. Thinking inside the box: Current insights into targeting orbital tissue remodeling and inflammation in thyroid eye disease. Surv Ophthalmol 2022; 67:858-874. [PMID: 34487739 PMCID: PMC8891393 DOI: 10.1016/j.survophthal.2021.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022]
Abstract
Thyroid eye disease (TED) is an autoimmune disorder that manifests in the orbit. In TED, the connective tissue behind the eye becomes inflamed and remodels with increased fat accumulation and/or increased muscle and scar tissue. As orbital tissue expands, patients develop edema, exophthalmos, diplopia, and optic neuropathy. In severe cases vision loss may occur secondary to corneal scarring from exposure or optic nerve compression. Currently there is no cure for TED, and treatments are limited. A major breakthrough in TED therapy occurred with the FDA approval of teprotumumab, a monoclonal insulin-like growth factor 1 receptor (IGF1R) blocking antibody. Yet, teprotumumab therapy has limitations, including cost, infusion method of drug delivery, variable response, and relapse. We describe approaches to target orbital fibroblasts and the complex pathophysiology that underlies tissue remodeling and inflammation driving TED. Further advances in the elucidation of the mechanisms of TED may lead to prophylaxis based upon early biomarkers as well as lead to more convenient, less expensive therapies.
Collapse
Affiliation(s)
- Vardaan Gupta
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Christine L Hammond
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Elisa Roztocil
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Mithra O Gonzalez
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Steven E Feldon
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Collynn F Woeller
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA.
| |
Collapse
|
17
|
Wang X, Yang S, Ye H, Chen J, Shi L, Feng L, Wang X, Zhang T, Chen R, Xiao W, Yang H. Disulfiram Exerts Antiadipogenic, Anti-Inflammatory, and Antifibrotic Therapeutic Effects in an In Vitro Model of Graves' Orbitopathy. Thyroid 2022; 32:294-305. [PMID: 34605662 DOI: 10.1089/thy.2021.0246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Adipogenesis, glycosaminoglycan hyaluronan (HA) production, inflammation, and fibrosis are the main pathogenic mechanisms responsible for Graves' orbitopathy (GO). We hypothesized that disulfiram (DSF), an aldehyde dehydrogenase (ALDH) inhibitor used to treat alcoholism, would have therapeutic effects on orbital fibroblasts (OFs) in GO. This study aimed at determining the therapeutic effects and underlying mechanisms of DSF on these parameters. Methods: Primary cultures of OFs from six GO patients and six control subjects were established. The OFs were allowed to differentiate into adipocytes and treated with various concentrations of DSF. Lipid accumulation within the cells was evaluated by Oil Red O staining. Real-time polymerase chain reaction (RT-PCR) and Western blotting were used to measure the expression of key adipogenic transcription factors, ALDH1A1, ALDH2, and mitogen-activated protein kinase (MAPK) signaling proteins. Apoptosis assays and reactive oxygen species levels were evaluated by flow cytometry. HA production was measured by using an enzyme-linked immunosorbent assay (ELISA) kit. The mRNA levels of proinflammatory molecules were measured by using RT-PCR after interleukin (IL)-1β stimulation with or without DSF. The mRNA expression of markers associated with fibrosis was examined by using RT-PCR after transforming growth factor (TGF)-β1 stimulation with or without DSF. The wound-healing assay was assessed by phase-contrast microscopy. Results: Under identical adipogenesis conditions, GO OFs effectively differentiated, while normal control (NC) OFs did not. DSF dose dependently suppressed lipid accumulation during adipogenesis in GO OFs. The expression of key adipogenic transcription factors, such as perilipin-1 (PLIN1), PPARγ (PPARG), FABP4, and c/EBPα (CEBPA), was downregulated. Further, DSF inhibited the phosphorylation of ERK by inhibiting ALDH1A1. In addition, DSF attenuated HA production and suppressed inflammatory molecule expression induced by IL-1β in GO OFs and NC OFs. The antifibrotic effects of DSF on TGF-β1 were also observed in GO OFs. Conclusions: In the current study, we provide evidence of the inhibitory effect of DSF on GO OFs adipogenesis, HA production, inflammation, and fibrosis in vitro. The results of this study are noteworthy and indicate the potential use of DSF as a therapeutic agent for the treatment of GO.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shenglan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huijing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingqiao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lu Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lujia Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiandai Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Te Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Rongxin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wei Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Abstract
PURPOSE Our understanding of thyroid-associated ophthalmopathy (TAO, A.K.A Graves' orbitopathy, thyroid eye disease) has advanced substantially, since one of us (TJS) wrote the 2010 update on TAO, appearing in this journal. METHODS PubMed was searched for relevant articles. RESULTS Recent insights have resulted from important studies conducted by many different laboratory groups around the World. A clearer understanding of autoimmune diseases in general and TAO specifically emerged from the use of improved research methodologies. Several key concepts have matured over the past decade. Among them, those arising from the refinement of mouse models of TAO, early stage investigation into restoring immune tolerance in Graves' disease, and a hard-won acknowledgement that the insulin-like growth factor-I receptor (IGF-IR) might play a critical role in the development of TAO, stand out as important. The therapeutic inhibition of IGF-IR has blossomed into an effective and safe medical treatment. Teprotumumab, a β-arrestin biased agonist monoclonal antibody inhibitor of IGF-IR has been studied in two multicenter, double-masked, placebo-controlled clinical trials demonstrated both effectiveness and a promising safety profile in moderate-to-severe, active TAO. Those studies led to the approval by the US FDA of teprotumumab, currently marketed as Tepezza for TAO. We have also learned far more about the putative role that CD34+ fibrocytes and their derivatives, CD34+ orbital fibroblasts, play in TAO. CONCLUSION The past decade has been filled with substantial scientific advances that should provide the necessary springboard for continually accelerating discovery over the next 10 years and beyond.
Collapse
Affiliation(s)
- E J Neag
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Brehm Tower, 1000 Wall Street, Ann Arbor, MI, 48105, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
- Michigan State University College of Osteopathic Medicine, East Lansing, MI, USA
| | - T J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Brehm Tower, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
19
|
Lun AY, Le Bras M, Scharbarg E, Morcel P, Hadjadj S, Lebranchu P, Drui D. L’orbitopathie basedowienne: diagnostic, épidémiologie et principes de traitement. Rev Med Interne 2022; 43:242-251. [DOI: 10.1016/j.revmed.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 01/04/2022] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
|
20
|
Yang S, Wang X, Xiao W, Xu Z, Ye H, Sha X, Yang H. Dihydroartemisinin Exerts Antifibrotic and Anti-Inflammatory Effects in Graves' Ophthalmopathy by Targeting Orbital Fibroblasts. Front Endocrinol (Lausanne) 2022; 13:891922. [PMID: 35663306 PMCID: PMC9157422 DOI: 10.3389/fendo.2022.891922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Graves' ophthalmopathy (GO) is a common orbital disease that threatens visual function and appearance. Orbital fibroblasts (OFs) are considered key target and effector cells in GO. In addition, hyaluronan (HA) production, inflammation, and orbital fibrosis are intimately linked to the pathogenesis of GO. In this study, we explored the therapeutic effects of dihydroartemisinin (DHA), an antimalarial drug, on GO-derived, primary OFs. CCK8 and EdU assays were applied to evaluate the antiproliferative effect of DHA on OFs. Wound healing assays were conducted to assess OF migration capacity, while qRT-PCR, western blotting, ELISA, and immunofluorescence were used to determine the expression of fibrosis-related and pro-inflammatory markers in these cells. Moreover, RNA sequencing was conducted to identify differentially expressed genes (DEGs) in DHA-treated OFs, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs was performed to explore potential mechanisms mediating the antifibrotic effect of DHA on GO-derived OFs. Results showed that DHA dose-dependently inhibited OF proliferation and downregulated, at the mRNA and protein levels, TGF-β1-induced expression of fibrosis markers, including alpha smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF). Furthermore, DHA inhibited TGF-β1 induced phosphorylation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3), which suggested that DHA exerted antifibrotic effects via suppression of the ERK and STAT3 signaling pathways. In addition, DHA suppressed the expression of pro-inflammatory cytokines and chemokines, including IL-6, IL-8, CXCL-1, MCP-1, and ICAM-1, and attenuated HA production induced by IL-1β in GO-derived OFs. In conclusion, our study provides first-time evidence that DHA may significantly alleviate pathogenic manifestations of GO by inhibiting proliferation, fibrosis- and inflammation-related gene expression, and HA production in OFs. These data suggest that DHA may be a promising candidate drug for treatment of GO.
Collapse
|
21
|
Yoon J, Kikkawa D. Thyroid eye disease: From pathogenesis to targeted therapies. Taiwan J Ophthalmol 2022; 12:3-11. [PMID: 35399971 PMCID: PMC8988977 DOI: 10.4103/tjo.tjo_51_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/30/2021] [Indexed: 11/18/2022] Open
Abstract
Thyroid eye disease (TED) is the most common extrathyroidal manifestation of autoimmune Graves’ hyperthyroidism. TED is a debilitating and potentially blinding disease with unclear pathogenesis. Autoreactive inflammatory reactions targeting orbital fibroblasts (OFs) lead to the expansion of orbital adipose tissues and extraocular muscle swelling within the fixed bony orbit. There are many recent advances in the understating of molecular pathogenesis of TED. The production of autoantibodies to cross-linked thyroid-stimulating hormone receptor and insulin-like growth factor-1 receptor (IGF-1R) activates OFs to produce significant cytokines and chemokines and hyaluronan production and to induce adipocyte differentiation. In moderately severe active TED patients, multicenter clinical trials showed that inhibition of IGF-1R with teprotumumab was unprecedentedly effective with minimal side effects. The emergence of novel biologics resulted in a paradigm shift in the treatment of TED. We here review the literature on advances of pathogenesis of TED and promising therapeutic targets and drugs.
Collapse
|
22
|
Lee B, Stevens S, Pirakitikulr N. Subcutaneous tocilizumab for active thyroid eye disease refractory to orbital radiation and systemic steroids in tobacco smokers. Taiwan J Ophthalmol 2022; 12:39-43. [PMID: 35399969 PMCID: PMC8988969 DOI: 10.4103/tjo.tjo_59_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE: Tocilizumab (TCZ) through intravenous infusion has been shown to effectively treat active thyroid eye disease (TED) refractory to systemic steroids. TCZ is also available as a self-administered subcutaneous injection, but data demonstrating the efficacy of this formulation are limited. This study investigated the efficacy and safety of subcutaneous TCZ (SC-TCZ) for the treatment of active, moderate-to-severe TED in smokers. MATERIALS AND METHODS: This retrospective clinical case series evaluated the clinical outcomes and adverse effects of SC-TCZ when taken for a minimum of 4 months by patients with moderate-to-severe TED and a current or recent history of cigarette smoking. RESULTS: Three patients received SC-TCZ every 1-2 weeks (4.6-11.2 mg/kg/month). The average pre-to-posttreatment clinical activity score reduction was 5.4, and proptosis was reduced by an average of 2.0 mm. No serious adverse effects were reported. CONCLUSION: SC-TCZ may be a useful and effective therapy for treating challenging cases of inflammatory TED and offers a safe alternative to office or hospital-based infusions. Further studies are needed to better understand optimal dosing regimens and relative efficacy compared to monthly TCZ infusions and other immunotherapies.
Collapse
|
23
|
Schovanek J, Krupka M, Cibickova L, Karhanova M, Reddy S, Kucerova V, Frysak Z, Karasek D. Adipocytokines in Graves' orbitopathy and the effect of high-dose corticosteroids. Adipocyte 2021; 10:456-462. [PMID: 34602013 PMCID: PMC8496533 DOI: 10.1080/21623945.2021.1980258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] Open
Abstract
Graves' orbitopathy (GO) is a serious, progressive eye condition seen in patients with autoimmune thyroid disease. GO is characterized by inflammation and swelling of soft orbital tissues. Adipose tissue produces cytokine mediators called adipokines. The present study focuses on the relationship between serum levels of selected adipokines in patients with GO, comparing them with the control group, and uniquely describes the effect of high-dose systemic corticosteroids (HDSC) on their levels. For the purposes of this study, we collected blood samples before and after the treatment with HDSC from 60 GO patients and 34 control subjects and measured serum levels of adiponectin, AIF-1, A-FABP and FGF-21. Levels of adiponectin significantly differed among the three study groups (ANOVA p = 0.03). AIF-1 levels were also significantly different among the study groups (ANOVA p < 0.0001). AIF-1 was significantly associated with the presence of GO after adjusting for clinical factors (age, sex, smoking and BMI) and level of TSH (odds ratio 1.003, p < 0.01). This finding could enforce targeting macrophages in treatment strategies for GO since AIF-1 is considered as a marker of their activation.
Collapse
Affiliation(s)
- Jan Schovanek
- Department of Internal Medicine III – Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| | - Michal Krupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| | - Lubica Cibickova
- Department of Internal Medicine III – Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| | - Marta Karhanova
- Department of Ophthalmology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| | - Sunaina Reddy
- Department of Internal Medicine III – Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| | - Veronika Kucerova
- Department of Clinical Biochemistry, University Hospital Olomouc, OlomoucCzech Republic
| | - Zdenek Frysak
- Department of Internal Medicine III – Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| | - David Karasek
- Department of Internal Medicine III – Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| |
Collapse
|
24
|
Cheredanova VR, Poteshkin YE. [Monoclonal antibodies in the treatment of thyroid eye disease]. Vestn Oftalmol 2021; 137:116-122. [PMID: 34410066 DOI: 10.17116/oftalma2021137041116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Thyroid eye disease (TED) is an autoimmune condition affecting extraocular muscles and orbital fat that is most often a manifestation of the Graves' disease or Hashimoto thyroiditis. This disease significantly worsens the quality of life of patients, and therefore requires the use of effective treatment methods. Traditional therapy involves glucocorticosteroids and x-rays aimed at reducing the inflammatory process, rather than proptosis and diplopia, while targeted therapy is better able to influence the clinical course of the disease. The review presents a modern understanding of the pathogenesis of TED and analysis of clinical studies concerning the use of monoclonal antibodies for its treatment.
Collapse
Affiliation(s)
- V R Cheredanova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Y E Poteshkin
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
25
|
Affiliation(s)
- Santosh G Honavar
- Editor, Indian Journal of Ophthalmology, Centre for Sight, Hyderabad, Telangana, India
| |
Collapse
|
26
|
Winn BJ, Kersten RC. Teprotumumab: Interpreting the Clinical Trials in the Context of Thyroid Eye Disease Pathogenesis and Current Therapies. Ophthalmology 2021; 128:1627-1651. [PMID: 33930408 DOI: 10.1016/j.ophtha.2021.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Teprotumumab, a monoclonal antibody targeted against the insulin-like growth factor 1 (IGF-1) receptor, was recently approved by the United States Food and Drug Administration for the treatment of thyroid eye disease (TED). Phase 1 studies of teprotumumab for the treatment of malignancies demonstrated an acceptable safety profile but limited effectiveness. Basic research implicating the IGF-1 receptor on the CD-34+ orbital fibrocyte in the pathogenesis of TED renewed interest in the drug. Two multicenter, randomized, double-masked, clinical trials (phase 2 and 3) evaluated the efficacy of 8 infusions of teprotumumab every 3 weeks versus placebo in 170 patients with recent-onset active TED, as defined by a clinical activity score (CAS) of at least 4. Teprotumumab was superior to placebo for the primary efficacy end points in both studies: overall responder rate as defined by a reduction of 2 or more CAS points and a reduction of 2 mm or more in proptosis (69% vs. 20%; P < 0.001; phase 2 study) and proptosis responder rate as defined by a reduction of 2 mm or more in proptosis (83% vs. 10%; P < 0.001; phase 3 study). In both studies, treatment with teprotumumab compared with placebo achieved a significant mean reduction of proptosis (-3.0 mm vs. -0.3 mm, phase 2 study; -3.32 mm vs. -0.53 mm, phase 3 study) and CAS (-4.0 vs. -2.5, phase 2 study; -3.7 vs. -2.0, phase 3 study). Teprotumumab also resulted in a greater proportion of patients with a final CAS of 0 or 1, higher diplopia responder rate, and a larger improvement in the Graves' Ophthalmopathy Quality of Life overall score. More than half of patients (62%, phase 2 trial; 56%, phase 3 trial) who were primary end point responders maintained this response at 51 weeks after the last dose of therapy. The most common adverse events reported with teprotumumab included muscle spasms (25%), nausea (17%), alopecia (13%), diarrhea (13%), fatigue (10%), hearing impairment (10%), and hyperglycemia (8%). Teprotumumab is contraindicated for those with inflammatory bowel disease and who are pregnant. Although the current dosing regimen has proven effective for TED, dose-ranging studies including variable concentrations, infusion frequencies, and durations of teprotumumab therapy in the setting of TED have not been performed.
Collapse
Affiliation(s)
- Bryan J Winn
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California; Ophthalmology Section, Surgical Service, San Francisco Veterans Affairs Medical Center, San Francisco, California.
| | - Robert C Kersten
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
27
|
Patwardhan A, Spencer CH. Biologics in refractory idiopathic inflammatory myositis (IIM): What experience in juvenile vs adult myositis tells us about the use of biologics in pediatric IIM. Mod Rheumatol 2021; 31:933-948. [PMID: 33499694 DOI: 10.1080/14397595.2021.1881027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Juvenile dermatomyositis (JDM) is an extremely heterogeneous orphan disease with limited amount of dedicated research on the subject matter. Recent research suggests that JDM may not just be the classic antibody driven complements mediated microangiopathy as was thought to be in the past. The etiopathogenesis of JDM also involves inappropriate stimulation of innate immune system followed by dysregulation of the adaptive immune response through dendritic cells. Many variable immune factors such as genetics, major histocompatibility complex expressions, immunohistochemical variabilities, and diversity in specific and associated autoantibodies may make individual IIM and JDM cases unique. The diversity in IIM and JDM also explains individual variability in response to specific therapies. Classifying and matching the right patients to the right treatment is crucial to the successful treatment of these patients with better outcomes. Sub-type specific biologic therapy may be the best current treatment that can match the patient to the best treatment options. A PubMed search was performed to find all the available cases of refractory myositis patients treated with biologics up to July 2020. Using this search this article reviews all the current biologic treatment options and experiences for both adults and children in the context of recent basic science to assist pediatric rheumatologists in choosing the optimal biologic therapy for a child with recalcitrant JDM.
Collapse
Affiliation(s)
| | - Charles H Spencer
- University of Mississippi Medical Center, Batson Children's Hospital, Jackson, MS, USA
| |
Collapse
|
28
|
Men CJ, Kossler AL, Wester ST. Updates on the understanding and management of thyroid eye disease. Ther Adv Ophthalmol 2021; 13:25158414211027760. [PMID: 34263138 PMCID: PMC8252358 DOI: 10.1177/25158414211027760] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Thyroid eye disease (TED) is a complex disease associated with myriad clinical presentations, including facial disfigurement, vision loss, and decreased quality of life. Traditionally, steroid therapy and/or radiation therapy were commonly used in the treatment of active TED. While these therapies can help reduce inflammation, they often do not have a sustainable, significant long-term effect on disease outcomes, including proptosis and diplopia. Recent advances in our understanding of the pathophysiology of TED have shifted the focus of treatment toward targeted biologic therapies. Biologics have the advantage of precise immune modulation, which can have better safety profiles and greater efficacy compared to traditional approaches. For instance, the insulin-like growth factor-1 receptor (IGF-1R) has been found to be upregulated in TED patients and to colocalize with the thyroid-stimulating hormone receptor (TSHR), forming a signaling complex. Teprotumumab is an antibody targeted against IGF-1R. By inhibiting the IGF-1R/TSHR signaling pathway, teprotumumab may reduce the production of proinflammatory cytokines, hyaluronan secretion, and orbital fibroblast activation in patients with TED. Due to promising phase II and III clinical trial results, teprotumumab has become the first biologic US Food and Drug Administration (FDA)-approved for the treatment of TED. In addition, there are currently ongoing studies looking at the use of antibodies targeting the neonatal Fc receptor (FcRn) in various autoimmune diseases, including TED. FcRn functions to transport immunoglobulin G (IgG) and prevent their lysosomal degradation. By blocking the recycling of IgG, this approach may dampen the body's immune response, in particular the pathogenic IgG implicated in some autoimmune diseases. Advances in our understanding of the pathophysiology of TED, therefore, are leading to more targeted therapeutic options, and we are entering an exciting new phase in the management of TED. This review will cover recent insights into the understanding of TED pathophysiology and novel treatment options as well as ongoing studies of new potential treatment options for TED.
Collapse
Affiliation(s)
- Clara J. Men
- Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Andrea L. Kossler
- Byers Eye Institute, School of Medicine, Stanford University, 2452 Watson Ct, Palo Alto, CA 94303, USA
- Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sara T. Wester
- Bascom Palmer Eye Institute, Department of Ophthalmology, McKnight Vision Research Center, University of Miami School of Medicine, Miami, FL, USA
| |
Collapse
|
29
|
Fallahi P, Ferrari SM, Elia G, Ragusa F, Paparo SR, Patrizio A, Camastra S, Miccoli M, Cavallini G, Benvenga S, Antonelli A. Cytokines as Targets of Novel Therapies for Graves' Ophthalmopathy. Front Endocrinol (Lausanne) 2021; 12:654473. [PMID: 33935970 PMCID: PMC8085526 DOI: 10.3389/fendo.2021.654473] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Graves' disease (GD) is an organ-specific autoimmune disorder of the thyroid, which is characterized by circulating TSH-receptor (TSH-R) stimulating antibodies (TSAb), leading to hyperthyroidism. Graves' ophthalmopathy (GO) is one of GD extra-thyroidal manifestations associated with the presence of TSAb, and insulin-like growth factor-1 receptor (IGF-1R) autoantibodies, that interact with orbital fibroblasts. Cytokines are elevated in autoimmune (i.e., IL-18, IL-6) and non-autoimmune hyperthyroidism (i.e., TNF-α, IL-8, IL-6), and this could be associated with the chronic effects of thyroid hormone increase. A prevalent Th1-immune response (not related to the hyperthyroidism per se, but to the autoimmune process) is reported in the immune-pathogenesis of GD and GO; Th1-chemokines (CXCL9, CXCL10, CXCL11) and the (C-X-C)R3 receptor are crucial in this process. In patients with active GO, corticosteroids, or intravenous immunoglobulins, decrease inflammation and orbital congestion, and are considered first-line therapies. The more deepened understanding of GO pathophysiology has led to different immune-modulant treatments. Cytokines, TSH-R, and IGF-1R (on the surface of B and T lymphocytes, and fibroblasts), and chemokines implicated in the autoimmune process, are possible targets of novel therapies. Drugs that target cytokines (etanercept, tocilizumab, infliximab, adalimumab) have been tested in GO, with encouraging results. The chimeric monoclonal antibody directed against CD20, RTX, reduces B lymphocytes, cytokines and the released autoantibodies. A multicenter, randomized, placebo-controlled, double-masked trial has investigated the human monoclonal blocking antibody directed against IGF-1R, teprotumumab, reporting its effectiveness in GO. In conclusion, large, controlled and randomized studies are needed to evaluate new possible targeted therapies for GO.
Collapse
Affiliation(s)
- Poupak Fallahi
- Department of Translational Research of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Armando Patrizio
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mario Miccoli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriella Cavallini
- Department of Translational Research of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Salvatore Benvenga
- Section of Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Master Program on Childhood, Adolescent and Women’s Endocrine Health, University of Messina, Messina, Italy
- Interdepartmental Program of Molecular & Clinical Endocrinology, and Women’s Endocrine Health, University Hospital, A.O.U. Policlinico Gaetano Martino, Messina, Italy
| | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
- *Correspondence: Alessandro Antonelli,
| |
Collapse
|
30
|
Lee ACH, Kahaly GJ. Novel Approaches for Immunosuppression in Graves' Hyperthyroidism and Associated Orbitopathy. Eur Thyroid J 2020; 9:17-30. [PMID: 33511082 PMCID: PMC7802437 DOI: 10.1159/000508789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Both Graves' hyperthyroidism (GH) and Graves' orbitopathy (GO) are associated with significant adverse health consequences. All conventional treatment options have limitations regarding efficacy and safety. Most importantly, they do not specifically address the underlying immunological mechanisms. We aim to review the latest development of treatment approaches in these two closely related disorders. SUMMARY Immunotherapies of GH have recently demonstrated clinical efficacy in preliminary studies. They include ATX-GD-59, an antigen-specific immunotherapy which restores immune tolerance to the thyrotropin receptor; iscalimab, an anti-CD40 monoclonal antibody which blocks the CD40-CD154 costimulatory pathway in B-T cell interaction; and K1-70, a thyrotropin receptor-blocking monoclonal antibody. Novel treatment strategies have also become available in GO. Mycophenolate significantly increased the overall response rate combined with standard glucocorticoid (GC) treatment compared to GC monotherapy. Tocilizumab, an anti-interleukin 6 receptor monoclonal antibody, displayed strong anti-inflammatory action in GC-resistant cases. Teprotumumab, an anti-insulin-like growth factor 1 receptor monoclonal antibody, resulted in remarkable improvement in terms of disease activity, proptosis, and diplopia. Further, rituximab appears to be useful in active disease of recent onset without impending dysthyroid optic neuropathy. KEY MESSAGES Therapeutic advances will continue to optimize our management of GH and associated orbitopathy in an effective and safe manner.
Collapse
Affiliation(s)
- Alan Chun Hong Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Queen Mary Hospital, Hong Kong, China
- Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - George J. Kahaly
- Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
- *George J. Kahaly, Department of Medicine I, Johannes Gutenberg University Medical Center, Langenbeckstraße 1, DE–55131 Mainz (Germany),
| |
Collapse
|
31
|
Kahaly GJ. Management of Graves Thyroidal and Extrathyroidal Disease: An Update. J Clin Endocrinol Metab 2020; 105:5905591. [PMID: 32929476 PMCID: PMC7543578 DOI: 10.1210/clinem/dgaa646] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
CONTEXT Invited update on the management of systemic autoimmune Graves disease (GD) and associated Graves orbitopathy (GO). EVIDENCE ACQUISITION Guidelines, pertinent original articles, systemic reviews, and meta-analyses. EVIDENCE SYNTHESIS Thyrotropin receptor antibodies (TSH-R-Abs), foremost the stimulatory TSH-R-Abs, are a specific biomarker for GD. Their measurement assists in the differential diagnosis of hyperthyroidism and offers accurate and rapid diagnosis of GD. Thyroid ultrasound is a sensitive imaging tool for GD. Worldwide, thionamides are the favored treatment (12-18 months) of newly diagnosed GD, with methimazole (MMI) as the preferred drug. Patients with persistently high TSH-R-Abs and/or persistent hyperthyroidism at 18 months, or with a relapse after completing a course of MMI, can opt for a definitive therapy with radioactive iodine (RAI) or total thyroidectomy (TX). Continued long-term, low-dose MMI administration is a valuable and safe alternative. Patient choice, both at initial presentation of GD and at recurrence, should be emphasized. Propylthiouracil is preferred to MMI during the first trimester of pregnancy. TX is best performed by a high-volume thyroid surgeon. RAI should be avoided in GD patients with active GO, especially in smokers. Recently, a promising therapy with an anti-insulin-like growth factor-1 monoclonal antibody for patients with active/severe GO was approved by the Food and Drug Administration. COVID-19 infection is a risk factor for poorly controlled hyperthyroidism, which contributes to the infection-related mortality risk. If GO is not severe, systemic steroid treatment should be postponed during COVID-19 while local treatment and preventive measures are offered. CONCLUSIONS A clear trend towards serological diagnosis and medical treatment of GD has emerged.
Collapse
Affiliation(s)
- George J Kahaly
- Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
- Correspondence and Reprint Requests: George J. Kahaly, MD, PhD, JGU Medical Center, Mainz 55101, Germany. E-mail:
| |
Collapse
|
32
|
Abstract
Thyroid eye disease (TED) is an autoimmune inflammatory disease of the orbit and the most common extrathyroidal manifestation of Graves disease. The release of pro-inflammatory cytokines is associated with inflammation of the ocular surface and lacrimal gland along with periorbital skin erythema and edema. Resultant tissue remodeling, fibrosis, and fat deposition can impart permanent physical changes to the ocular adnexa with effects on function and cosmesis. These changes occur in the active phase of disease, and it is during this time that steroids are often relied on to help alleviate symptoms. Due to the common and predictable side effects of long-term and high-dose steroid use, there has been a continuous effort to find alternative steroid-sparing medical management options for TED. This review highlights the various research studies that support the use of these medications.
Collapse
Affiliation(s)
- Victor D Liou
- Ophthalmic Plastic Surgery Service, Massachusetts Eye and Ear , Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School , Boston, MA, USA
| | - Michael K Yoon
- Ophthalmic Plastic Surgery Service, Massachusetts Eye and Ear , Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School , Boston, MA, USA
| |
Collapse
|
33
|
Huang Y, Fang S, Zhang S, Zhou H. Progress in the pathogenesis of thyroid-associated ophthalmopathy and new drug development. Taiwan J Ophthalmol 2020; 10:174-180. [PMID: 33110747 PMCID: PMC7585473 DOI: 10.4103/tjo.tjo_18_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/12/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid-associated ophthalmopathy (TAO) is the most common extrathyroidal manifestation of toxic diffuse goiter (Graves' disease), also known as Graves' ophthalmopathy/orbitopathy. As an organ-specific autoimmune disease, the pathogenesis of TAO is still unclear. In recent years, great progress has been made in revealing the mechanism of TAO. Various biological and immunosuppressive agents have emerged in an endless stream, showing encouraging results. Strengthening the basic research, establishing ideal animal models, deeply understanding the pathogenesis, and developing novel targeted drugs are of great significance to guide the clinical diagnosis and management of TAO and improve the prognosis of patients.
Collapse
Affiliation(s)
- Yazhuo Huang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shuo Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
34
|
Davies TF, Andersen S, Latif R, Nagayama Y, Barbesino G, Brito M, Eckstein AK, Stagnaro-Green A, Kahaly GJ. Graves' disease. Nat Rev Dis Primers 2020; 6:52. [PMID: 32616746 DOI: 10.1038/s41572-020-0184-y] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 02/08/2023]
Abstract
Graves' disease (GD) is an autoimmune disease that primarily affects the thyroid gland. It is the most common cause of hyperthyroidism and occurs at all ages but especially in women of reproductive age. Graves' hyperthyroidism is caused by autoantibodies to the thyroid-stimulating hormone receptor (TSHR) that act as agonists and induce excessive thyroid hormone secretion, releasing the thyroid gland from pituitary control. TSHR autoantibodies also underlie Graves' orbitopathy (GO) and pretibial myxoedema. Additionally, the pathophysiology of GO (and likely pretibial myxoedema) involves the synergism of insulin-like growth factor 1 receptor (IGF1R) with TSHR autoantibodies, causing retro-orbital tissue expansion and inflammation. Although the aetiology of GD remains unknown, evidence indicates a strong genetic component combined with random potential environmental insults in an immunologically susceptible individual. The treatment of GD has not changed substantially for many years and remains a choice between antithyroid drugs, radioiodine or surgery. However, antithyroid drug use can cause drug-induced embryopathy in pregnancy, radioiodine therapy can exacerbate GO and surgery can result in hypoparathyroidism or laryngeal nerve damage. Therefore, future studies should focus on improved drug management, and a number of important advances are on the horizon.
Collapse
Affiliation(s)
- Terry F Davies
- Thyroid Research Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,James J. Peters VA Medical Center, New York, NY, USA. .,Mount Sinai Thyroid Center, Mount Sinai Downtown at Union Sq, New York, NY, USA.
| | - Stig Andersen
- Department of Geriatric and Internal Medicine and Arctic Health Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Rauf Latif
- Thyroid Research Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,James J. Peters VA Medical Center, New York, NY, USA
| | - Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Giuseppe Barbesino
- Thyroid Unit, Division of Endocrinology, Massachusetts General Hospital, Boston, MA, USA
| | - Maria Brito
- Mount Sinai Thyroid Center, Mount Sinai Downtown at Union Sq, New York, NY, USA
| | - Anja K Eckstein
- Department of Ophthalmology, University Duisburg Essen, Essen, Germany
| | - Alex Stagnaro-Green
- Departments of Medicine, Obstetrics and Gynecology and Medical Education, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - George J Kahaly
- Department of Medicine I, Johannes Gutenberg University Medical Centre, Mainz, Germany
| |
Collapse
|
35
|
Guo Y, Li H, Chen X, Yang H, Guan H, He X, Chen Y, Pokharel S, Xiao H, Li Y. Novel Roles of Chloroquine and Hydroxychloroquine in Graves' Orbitopathy Therapy by Targeting Orbital Fibroblasts. J Clin Endocrinol Metab 2020; 105:5813893. [PMID: 32249902 PMCID: PMC7183395 DOI: 10.1210/clinem/dgaa161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT Graves' orbitopathy (GO) causes infiltrative exophthalmos by inducing excessive proliferation, adipogenesis, and glycosaminoglycan production in orbital fibroblasts (OFs). Interference with OF autophagy is a potential therapy for proptosis. OBJECTIVES Here, we aimed to evaluate the effects of chloroquine (CQ) and hydroxychloroquine (HCQ), the autophagy inhibitors commonly used in clinical practice, on OFs. DESIGN/SETTING/PARTICIPANTS OFs isolated from patients with GO (GO-OFs) or control individuals (non-GO-OFs) were cultured in proliferation medium (PM) or subjected to differentiation medium. OFs were treated with CQ or HCQ (0, 0.5, 2, and 10 μM), and subsequently examined in vitro. MAIN OUTCOME MEASURES CCK-8, EdU incorporation, and flow cytometry assays were used to assess cellular viability. Adipogenesis was assessed with Western blot analysis, real-time polymerase chain reaction (PCR) , and Oil Red O staining. Hyaluronan production was determined by real-time PCR and enzyme-linked immunosorbent assay. Autophagy flux was detected through red fluorescent protein (RFP)-green fluorescent protein (GFP)-LC3 fluorescence staining and Western blot analyses. RESULTS CQ/HCQ halted proliferation and adipogenesis in GO-OFs in a concentration-dependent manner through blockage of autophagy, phenotypes that were not detected in non-GO-OFs. The inhibitory effect of CQ/HCQ on hyaluronan secretion of GO-OFs was also concentration dependent, mediated by downregulation of hyaluronan synthase 2 rather than hyaluronidases. Moreover, CQ (10 μM) induced GO-OF apoptosis without aggravating oxidative stress. CONCLUSIONS The antimalarials CQ/HCQ affect proliferation, adipogenesis, and hyaluronan generation in GO-OFs by inhibiting autophagy, providing evidence that they can be used to treat GO as autophagy inhibitors.
Collapse
Affiliation(s)
- Yan Guo
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xueying Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoying He
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sunil Pokharel
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Correspondence and Reprint Requests: Yanbing Li, M.D., Ph.D., 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China. E-mail:
| |
Collapse
|
36
|
Hai YP, Lee ACH, Frommer L, Diana T, Kahaly GJ. Immunohistochemical analysis of human orbital tissue in Graves' orbitopathy. J Endocrinol Invest 2020; 43:123-137. [PMID: 31538314 DOI: 10.1007/s40618-019-01116-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Immunohistochemistry of orbital tissues offers a correlation between the microscopic changes and macroscopic clinical manifestation of Graves' orbitopathy (GO). Summarizing the participation of different molecules will help us to understand the pathogenesis of GO. METHODS The pertinent and current literature on immunohistochemistry of human orbital tissue in GO was reviewed using the NCBI PubMed database. RESULTS 33 articles comprising over 700 orbital tissue samples were included in this review. The earliest findings included the demonstration of HLA-DR and T cell (to a lesser extent B cell) markers in GO orbital tissues. Subsequent investigators further contributed by characterizing cellular infiltration, confirming the presence of HLA-DR and TSHR, as well as revealing the participation of cytokines, growth factors, adhesion molecules and miscellaneous substances. HLA-DR and TSHR are over-expressed in orbital tissues of GO patients. The inflammatory infiltration mainly comprises CD4 + T cells and macrophages. Cytokine profile suggests the importance of Th1 (especially in early active phase) and Th17 immunity in the pathogenesis of GO. Upregulation of proinflammatory/profibrotic cytokines, adhesion molecules and growth factors finally culminate in activation of orbital fibroblasts and perpetuation of orbital inflammation. The molecular status of selected parameters correlates with the clinical presentation of GO. CONCLUSION Further investigation is warranted to define precisely the role of different molecules and ongoing search for new players yet to be discovered is also important. Unfolding the molecular mechanisms behind GO will hopefully provide insights into the development of novel therapeutic strategies and optimize our clinical management of the disease.
Collapse
Affiliation(s)
- Y P Hai
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University Medical Center, Langenbeckstreet 1, 55131, Mainz, Germany
| | - A C H Lee
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University Medical Center, Langenbeckstreet 1, 55131, Mainz, Germany
| | - L Frommer
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University Medical Center, Langenbeckstreet 1, 55131, Mainz, Germany
| | - T Diana
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University Medical Center, Langenbeckstreet 1, 55131, Mainz, Germany
| | - G J Kahaly
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University Medical Center, Langenbeckstreet 1, 55131, Mainz, Germany.
| |
Collapse
|
37
|
Thyroid eye disease: current and potential medical management. Int Ophthalmol 2020; 40:1035-1048. [PMID: 31919775 DOI: 10.1007/s10792-019-01258-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 12/28/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Thyroid eye disease (TED) is the most frequent extra-thyroid manifestation of Graves' disease and it is more frequent in middle age and in female gender. Nowadays, the causal mechanisms of this disease are not completely understood, but the current available studies suggest that the main causative factor is the thyroid stimulating hormone receptor. MATERIALS AND METHODS To collect reports on TED medical management, a thorough literature search was performed in PubMed database. An additional search was made in Google Scholar to complete the collected items. RESULTS Among the indentified risk factors, tobacco habit is the most relevant. The main criteria to choose a suitable treatment are the activity and severity of the disease. Support measures can be used to improve the patient's symptoms in any phase of the disease. There is a large number of drugs proposed to manage TED, although with different reported rates of success. CONCLUSIONS Currently, the drugs of choice are corticosteroids in moderate-to-severe and in sight-threatening forms. The main problem of corticosteroids is their spectrum of side effects. Therefore, other alternatives are being suggested for medical management of this disease. The efficacy of these alternatives remains unclear.
Collapse
|
38
|
Current Understanding of the Progression and Management of Thyroid Associated Orbitopathy: A Systematic Review. Ophthalmol Ther 2019; 9:21-33. [PMID: 31823232 PMCID: PMC7054489 DOI: 10.1007/s40123-019-00226-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
Thyroid associated orbitopathy (TAO) is a common diagnosis encountered by ophthalmologists and oculoplastic surgeons. TAO has a varying clinical presentation that can include upper eyelid retraction, restrictive strabismus, proptosis, exposure keratopathy, and optic neuropathy. In this review, we discuss the most recent literature on and the current understanding of the pathophysiology of TAO. We also review available and potential future treatment options for the management of TAO.
Collapse
|
39
|
Immunological Aspects of Graves' Ophthalmopathy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7453260. [PMID: 31781640 PMCID: PMC6875285 DOI: 10.1155/2019/7453260] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022]
Abstract
The body's autoimmune process is involved in the development of Graves' disease (GD), which is manifested by an overactive thyroid gland. In some patients, autoreactive inflammatory reactions contribute to the development of symptoms such as thyroid ophthalmopathy, and the subsequent signs and symptoms are derived from the expansion of orbital adipose tissue and edema of extraocular muscles within the orbit. The autoimmune process, production of antibodies against self-antigens such as TSH receptor (TSHR) and IGF-1 receptor (IGF-1R), inflammatory infiltration, and accumulation of glycosaminoglycans (GAG) lead to edematous-infiltrative changes in periocular tissues. As a consequence, edema exophthalmos develops. Orbital fibroblasts seem to play a crucial role in orbital inflammation, tissue expansion, remodeling, and fibrosis because of their proliferative activity as well as their capacity to differentiate into adipocytes and myofibroblasts and production of GAG. In this paper, based on the available medical literature, the immunological mechanism of GO pathogenesis has been summarized. Particular attention was paid to the role of orbital fibroblasts and putative autoantigens. A deeper understanding of the pathomechanism of the disease and the involvement of immunological processes may give rise to the introduction of new, effective, and safe methods of treatment or monitoring of the disease activity.
Collapse
|
40
|
Wang Y, Patel A, Douglas RS. Thyroid Eye Disease: How A Novel Therapy May Change The Treatment Paradigm. Ther Clin Risk Manag 2019; 15:1305-1318. [PMID: 31814726 PMCID: PMC6858302 DOI: 10.2147/tcrm.s193018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022] Open
Abstract
Thyroid eye disease (TED) is a complex, debilitating autoimmune disease that causes orbital inflammation and tissue remodeling, resulting in proptosis, diplopia, and in severe cases, loss of vision. TED can lead to facial disfigurement and severely impact patients’ quality of life. Although the course of TED was identified over 60 years ago, effective treatment options have proved to be challenging. Current treatments such as glucocorticoid therapy and orbital radiation focus on reducing orbital inflammation. However, these therapies fail to modify the disease outcomes, including proptosis and diplopia. Recent advances in the understanding of the molecular basis of TED have facilitated the development of targeted molecular therapies such as teprotumumab, an insulin-like growth factor-1 receptor inhibiting monoclonal antibody. In recent phase 2 and phase 3 randomized placebo-controlled trials, teprotumumab rapidly achieved improvement in clinical endpoints defining TED, including improved proptosis and diplopia. Dramatic improvement in clinical outcomes achieved after teprotumumab therapy during active TED are heretofore singular and comparable only to surgical therapies achieved during the inactive phase of TED. The advent of effective medical therapy can lead to a paradigm shift in the clinical management of TED. This review will provide an overview of TED, its epidemiology, insight into the molecular biology of the disease, clinical characteristics and diagnosis, and current and emerging treatment modalities.
Collapse
Affiliation(s)
- Yao Wang
- Department of Surgery, Division of Ophthalmology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Amy Patel
- Department of Surgery, Division of Ophthalmology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Raymond S Douglas
- Department of Surgery, Division of Ophthalmology, Cedars Sinai Medical Center, Los Angeles, CA, USA.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Thyroid eye disease is a complex autoimmune disorder which causes substantial morbidity. It can result in orbital disfigurement, double vision, and visual loss. Consequently, it has a substantial negative effect on quality of life, mental health, and socioeconomic status. Most signs and symptoms of thyroid eye disease (TED) can be explained by the expansion of the orbital contents. Steroids are the mainstay of treatment in TED. However, recurrence may occur once steroids are withdrawn. Furthermore, in most cases, normal orbital anatomy is not restored, and skilled rehabilitative surgery is required to reduce disfigurement, double vision, and to preserve vision. Therefore, novel, causal, and more efficacious treatment strategies are warranted. RECENT FINDINGS In the last decade, the pathophysiology of TED has also been revised with the identification of new potential therapeutic targets. Recent clinical trials have shown that considerable benefit may be derived from the addition of antiproliferative agents (e.g., mycophenolate sodium) in preventing deterioration after steroid cessation. In addition, targeted biologic therapies have shown promise, including teprotumumab (anti-IGFR) which appears to substantially reduce proptosis, rituximab (anti-CD20) which reduces inflammation and tocilizumab (anti-IL-6) which potentially benefits both of these parameters. SUMMARY This short review summarizes the recent research developments in this area.
Collapse
Affiliation(s)
- George J Kahaly
- Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
42
|
Abstract
Graves' orbitopathy is a debilitating disorder which occurs in patients with autoimmune thyroid disease, mainly Graves' disease, and adds layers of complexity to management of both conditions. We conducted a comprehensive review of literature for publications relating to established and new management options for Graves' orbitopathy and have summarized key articles in this review. Initial evaluation of patients with Graves' disease should also include clinical evaluation for orbitopathy. If eye disease is present, patients are best managed by a multi-specialty team including an endocrinologist and ophthalmologist. All patients with Graves' orbitopathy benefit from risk factor modification and normalization of thyroid function tests. Patients with active, mild disease generally benefit from local therapies and selenium, while patients with moderate-to-severe disease usually require the addition of intravenous glucocorticoid therapy. If there is an inadequate response to glucocorticoid therapy, several second-line therapies have been investigated for use, including orbital radiotherapy (with additional glucocorticoids), rituximab, cyclosporine, mycophenolate mofetil, and methotrexate. Use of new biologic agents, mainly teprotumumab and tocilizumab, have demonstrated impressive reductions in disease activity and severity. If these results are confirmed, the treatment paradigm is likely to change in the future. Finally, there are several novel immunotherapies being investigated for Graves' disease, which may have treatment implications for Graves' orbitopathy as well. Overall, there are many encouraging advances in the therapy of Graves' orbitopathy that are making the future more promising for patients suffering from this disease.
Collapse
|
43
|
Lu Y, Atkins SJ, Fernando R, Trierweiler A, Mester T, Grisolia ABD, Mou P, Novaes P, Smith TJ. CD34- Orbital Fibroblasts From Patients With Thyroid-Associated Ophthalmopathy Modulate TNF-α Expression in CD34+ Fibroblasts and Fibrocytes. Invest Ophthalmol Vis Sci 2019; 59:2615-2622. [PMID: 29847668 PMCID: PMC5968835 DOI: 10.1167/iovs.18-23951] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose Orbital fibroblasts from patients with Graves' disease (GD-OF) express many different cytokines when treated with bovine thyrotropin (bTSH). The present study aimed to determine why TNF-α cannot be induced by bTSH in GD-OF. Methods Fibrocytes and GD-OFs were cultivated from donors who were patients in a busy academic medical center practice. Real-time PCR, Western blot analysis, reporter gene assays, cell transfections, mRNA stability assays, ELISA, and flow cytometry were performed. Results We found that bTSH induces TNF-α dramatically in fibrocytes but is undetectable in GD-OF. The induction in fibrocytes is a consequence of increased TNF-α gene promoter activity and is independent of ongoing protein synthesis. It could be attenuated by dexamethasone and the IGF-1 receptor inhibiting antibody, teprotumumab. When separated into pure CD34+ OF and CD34- OF subsets, TNF-α mRNA became highly inducible by bTSH in CD34+ OF but remained undetectable in CD34- OF. Conditioned medium from CD34- OF inhibited induction of TNF-α in fibrocytes. Conclusions Our data indicate that CD34- OF appear to release a soluble(s) factor that downregulates expression and induction by bTSH of TNF-α in fibrocytes and their derivative CD34+ OF. We proffer that CD34- OF produce an unidentified modulatory factor that attenuates TNF-α expression in GD-OF and may do so in the TAO orbit.
Collapse
Affiliation(s)
- Yan Lu
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Stephen J Atkins
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Roshini Fernando
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Aaron Trierweiler
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Tünde Mester
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Ana Beatriz Diniz Grisolia
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Pei Mou
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Priscila Novaes
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Terry J Smith
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States.,Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
44
|
Interruption of autoimmunity for thyroid eye disease: B-cell and T-cell strategy. Eye (Lond) 2019; 33:191-199. [PMID: 30610229 DOI: 10.1038/s41433-018-0315-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/25/2018] [Indexed: 02/08/2023] Open
Abstract
Recent new insights into the molecular basis of thyroid eye disease have led to the use of more specific therapies such as monoclonal antibodies This review explores the traditional immunosuppressant therapy for TED, highlighting the basis for emergent recent medications, possible treatment options and, eventually possible new general recommendation for management of TED. Data has been retrieved from the literature searching on Pubmed. Steroid therapy remains the first line therapy for moderate/severe and severe vision threatening TED The use of some traditional nonspecific immunosuppressant such as mycophenolate, cyclosporine and azathioprine seems useful in combination with steroid therapy to achieve stable results in the long term; methotrexate is useful as steroid-sparing medications and in steroid resistant or intolerant patients. In recent years, many scientific reports have showed the effectiveness of biological immunosuppressive agents in the management of TED. Etanercept, adalimumab, and tocilizumab have shown to be effective in reduction of the inflammatory signs with the possible advantage to prevent relapse of the disease. Particularly Tociliuzumab seems very effective as second line therapy, after steroid failure. Teprotumumab may control the disease activity and it seems to be very effective in preventing severity disease progression. Infliximab might be useful in severe TED with optic nerve compression resistant to steroid and decompression. Indeed, the actual incidence of adverse effects is not well assessed yet, therefore the use should be limited at those cases that really need an alternative therapy to steroid, handled by an expert multidisciplinary team.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW The pathophysiology of thyroid eye disease (TED) is still not fully understood. However, recently described risk factors and molecular findings have brought new insights into the mechanisms of TED and could lead to the emerging use of more targeted therapies. This article aims to review the clinical findings of TED, and the most recent advances in our understanding of the risk factors and therapeutic options for TED. RECENT FINDINGS Smoking has been recently shown to have an impact on specific gene expression involved in several disease-related pathways, which seems to be reversible with smoking cessation. This finding further emphasizes the importance of smoking cessation in the prevention and treatment of TED. Selenium deficiency and high-serum cholesterol have been described to be potential independent risk factors for TED and their management could decrease the incidence and severity of TED. In terms of therapeutic options, immunomodulatory medications have shown some promising results for disease control in TED over the past years, but further randomized prospective studies with larger sample sizes are still needed to prove their efficacy. A new technique of P brachytherapy was shown to have quick therapeutic effects on TED without significant side effects and could be a promising therapy for selected cases of TED. SUMMARY TED is one of the most common autoimmune inflammatory disorders of the orbit. Although its pathophysiology remains unclear, newly described genetic findings and risk factors could help in explaining its occurrence and guide future therapies. Immunosuppressant medications are increasingly used in the management of TED, but further studies are needed to confirm their effectiveness.
Collapse
|
46
|
Efficacy and Safety of Immunosuppressive Agents for Thyroid Eye Disease. Ophthalmic Plast Reconstr Surg 2018; 34:S56-S59. [PMID: 29923966 DOI: 10.1097/iop.0000000000001131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE To present an update on the efficacy and safety of immunosuppressive therapy for thyroid eye disease (TED) and to offer a general recommendation for management of TED, in light of these reports. METHODS Data were retrieved from a literature search on PubMed, using the following words: thyroid eye disease, immunosuppressant, corticosteroid, methotrexate, azathioprine, cyclosporine, cyclophosphamide, rituximab, etanercept, adalimumab, tocilizumab, teprotumumab, adverse effects, side effects, and complications. RESULTS Corticosteroids continue to be the primary medical therapy for TED. Recent research has offered insight into potential differences between oral corticosteroid and intravenous corticosteroid treatment regimens in terms of efficacy and side-effect profiles, which proved more favorable for the latter. The use of some traditional immunosuppressive agents, such as methotrexate and mycophenolate, seems suitable as steroid-sparing medications. In recent years, many scientific reports demonstrated the effectiveness of biologic immunosuppressive agents in the management of TED. Etanercept, adalimumab, and tocilizumab have been shown to be effective in reduction of the inflammatory signs with the possible added advantage of preventing relapse of the disease. Teprotumumab may control the disease activity, and it seems to be very effective in preventing disease progression. Infliximab might be useful in severe TED resistant to steroids and orbital decompression. CONCLUSIONS Steroid therapy remains the first-line therapy for moderate/severe and severe vision-threatening TED. The biological agents may provide a deep and long-standing block of inflammatory activity in TED, with the hope to lower the risk of recurrences and to reduce the need of surgical intervention in moderate-to-severe disease. Indeed, the actual incidence of adverse effects is not yet well assessed because of the paucity of studies. Therefore, their use should be limited to those cases that really need an alternative therapy to steroids, handled by expert physician in this field.
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Significant advances have been made in oncology and rheumatology with the introduction of molecularly targeted agents (MTAs). MTAs consist of monoclonal antibodies and small molecule inhibitors. The purpose of this manuscript is to review the recent applications of MTAs to orbital, lacrimal, and eyelid disease. RECENT FINDINGS The use of monoclonal antibodies has been described in the treatment of orbital vascular lesions, lymphoma, and squamous cell carcinoma. Inflammatory conditions treated with monoclonal antibodies include thyroid eye disease, IgG4 disease, and granulomatosis with polyangiitis. Immunotherapy with checkpoint inhibitors has also found applications to orbital disease. Use of small molecule inhibitors has been described in the treatment of basal cell carcinoma, squamous cell carcinoma, and Erdheim-Chester disease. There are many orbital, lacrimal, and eyelid side effects of MTAs with which the oculoplastic surgeon should be familiar, including hypertrichosis, edema, and orbital and eyelid inflammation. SUMMARY MTAs represent the future of treatment of oncologic and inflammatory conditions. Application of these agents to orbital, lacrimal, and eyelid disease will continue to expand. Elucidating the molecular mechanisms of oculoplastic disorders will facilitate additional potential pathways that could be targeted for therapy.
Collapse
|
48
|
Update on Graves disease: advances in treatment of mild, moderate and severe thyroid eye disease. Curr Opin Ophthalmol 2017; 28:505-513. [PMID: 28700384 DOI: 10.1097/icu.0000000000000402] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW To report the most recent therapeutic advances of thyroid eye disease (TED) and offer general recommendations for management of TED. RECENT FINDINGS Treatment of Graves ophthalmopathy is traditionally based on the use of high doses of corticosteroids and/or radiotherapy (RT) to decrease the activity of the disease, with the subsequent proptosis, strabismus and eyelid deformites treated with different surgical procedures. In recent years, the evidence that oxidative stress plays a relevant role in exacerbating TED severity has encouraged the use of antioxydative agents such as selenium, which has shown a capacity in limiting the disease progression. In addition, reports have shown the effectiveness of biological immunosuppressive agents in the management of TED. The main advantage of these medications seems to be the long lasting effects, which may reduce recurrence, and effectiveness in steroid-resistant cases. The reported increased accuracy of imaging techniques in evaluating fat and muscle volumes may provide useful information for surgical management. SUMMARY The use of selenium, in mild TED, seems to limit disease progression without carrying the risk of relevant side-effects. Biological agents may provide an effective and long lasting block of the inflammatory activity of TED, with a possible lower risk of recurrence and reduction in the need for surgical intervention in moderate-to-severe disease. The accurate evaluation of fat and muscle volume, using a recently published algorithm for imaging, gives relevant information for preoperative assessment, allowing the customization of orbital decompression.
Collapse
|
49
|
Advances in the management of thyroid eye diseases: An overview. Int Ophthalmol 2017; 38:2247-2255. [PMID: 28822031 DOI: 10.1007/s10792-017-0694-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 08/12/2017] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Thyroid eye disease (TED) remains a notorious ailment for both patients and the treating ophthalmologists. Recent years have witnessed considerable research in the immunopathogenic mechanism of TED that has resulted in an expansion and modification of the available management options. AIM Purpose of this review is to summarise the advances in the management of thyroid ophthalmopathy. MATERIAL AND METHOD A thorough literature search and of the past 10 years web search with words Thyroid ophthalmopathy, recent, advances. RESULTS Recent VISA classification and new serum markers seem to have potential to give diagnostic as well as therapeutic guidance, gauge treatment response and even identify risk of disease progression. Majority of TED patients can be managed conservatively due to its self-limiting nature but if indicated, still steroids are the preferable medical therapy; however, there is an increasing consensus towards the use of parenteral form as compared to the oral one on account of greater efficacy with lesser side effects. Steroid sparing medications, for example, rituximab, infliximab, etanercept, adalimumab, teprotumumab, tocilizumab, tanshinone, are showing encouraging results and form an area of active research. CONCLUSION Radiation therapy remains as an adjunctive modality in active diseases as a nonmedical treatment for TED with some promising data. Surgical intervention may be required in vision threatening conditions or to counteract the sequel of inflammatory phase. Advances in surgical techniques like stereotactic image-guided balanced orbital decompression with endoscopic approach ensure meticulous dissection with minimal trauma.
Collapse
|
50
|
Tocilizumab as a steroid sparing agent for the treatment of Graves' orbitopathy. Am J Ophthalmol Case Rep 2017; 7:146-148. [PMID: 29260102 PMCID: PMC5722155 DOI: 10.1016/j.ajoc.2017.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/12/2017] [Accepted: 07/06/2017] [Indexed: 11/21/2022] Open
Abstract
Purpose To describe the effect of tocilizumab in two patients with thyroid associated orbitopathy (TAO). Observations We present two patients with TAO who could not tolerate corticosteroids and had a reduction in clinical and laboratory markers of inflammatory activity with subsequent tocilizumab therapy. Conclusions and importance The IL-6 receptor antibody tocilizumab is a promising candidate for the treatment of TAO because it selectively targets a key inflammatory mediator and has a favorable side effect profile. Our report demonstrates that tocilizumab can achieve further reduction in inflammatory activity after treatment with corticosteroids. Importantly, we and others have observed a decrease in the level of thyroid stimulating immunoglobulin (TSI) with tocilizumab treatment. This suggests an upstream effect in the inflammatory cascade. Although the impact of tocilizumab on long-term outcome is unknown at this time, we believe that early disruption of the inflammatory process may prevent late complications and decrease the need for rehabilitative surgery.
Collapse
|