1
|
Paterno R, Vu T, Hsieh C, Baraban SC. Host brain environmental influences on transplanted medial ganglionic eminence progenitors. Sci Rep 2024; 14:3610. [PMID: 38351191 PMCID: PMC10864292 DOI: 10.1038/s41598-024-52478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Interneuron progenitor transplantation can ameliorate disease symptoms in a variety of neurological disorders. The strategy is based on transplantation of embryonic medial ganglionic eminence (MGE) progenitors. Elucidating how host brain environment influences the integration of interneuron progenitors is critical for optimizing this strategy across different disease states. Here, we systematically evaluated the influence of age and brain region on survival, migration, and differentiation of transplant-derived cells. We find that early postnatal MGE transplantation yields superior survival and more extensive migratory capabilities compared to transplantation during the juvenile or adult stages. MGE progenitors migrate more widely in the cortex compared to the hippocampus. Maturation to interneuron subtypes is regulated by age and brain region. MGE progenitors transplanted into the dentate gyrus sub-region of the early postnatal hippocampus can differentiate into astrocytes. Our results suggest that the host brain environment critically regulates survival, spatial distribution, and maturation of MGE-derived interneurons following transplantation. These findings inform and enable optimal conditions for interneuron transplant therapies.
Collapse
Affiliation(s)
- Rosalia Paterno
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, 513 Parnassus Ave, Health Science East, E840, San Francisco, CA, 94143, USA.
| | - Thy Vu
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, 513 Parnassus Ave, Health Science East, E840, San Francisco, CA, 94143, USA
| | - Caroline Hsieh
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, 513 Parnassus Ave, Health Science East, E840, San Francisco, CA, 94143, USA
| | - Scott C Baraban
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, 513 Parnassus Ave, Health Science East, E840, San Francisco, CA, 94143, USA
| |
Collapse
|
2
|
Qian X, Zhao X, Yu L, Yin Y, Zhang XD, Wang L, Li JX, Zhu Q, Luo JL. Current status of GABA receptor subtypes in analgesia. Biomed Pharmacother 2023; 168:115800. [PMID: 37935070 DOI: 10.1016/j.biopha.2023.115800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Gamma-aminobutyric acid (GABA), a non-protein-producing amino acid synthesized from the excitatory amino acid glutamate via the enzyme glutamic acid decarboxylase, is extensively found in microorganisms, plants and vertebrates, and is abundantly expressed in the spinal cord and brain. It is the major inhibitory neurotransmitter in the mammalian nervous system. GABA plays crucial roles in the regulation of synaptic transmission, the promotion of neuronal development and relaxation, and the prevention of insomnia and depression. As the major inhibitory neurotransmitter, GABA plays pivotal roles in the regulation of pain sensation, which is initiated by the activation of peripheral nociceptors and transmitted to the spinal cord and brain along nerves. GABA exerts these roles by directly acting on three types of receptors: ionotropic GABAA and GABAC receptors and G protein-coupled GABAB receptor. The chloride-permeable ion channel receptors GABAA and GABAC mediate fast neurotransmission, while the metabotropic GABAB receptor mediates slow effect. Different GABA receptors regulate pain sensation via different signaling pathways. Here we highlight recent updates on the involvement of specific GABA receptors and their subtypes in the process of pain sensation. Further understanding of different GABA receptors and signaling pathways in pain sensation will benefit the development of novel analgesics for pain management by targeting specific GABA receptor subtypes and signaling pathways.
Collapse
Affiliation(s)
- Xunjia Qian
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xinyi Zhao
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Lulu Yu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yujian Yin
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xiao-Dan Zhang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Liyun Wang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jun-Xu Li
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China.
| | - Jia-Lie Luo
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
3
|
Breitinger U, Breitinger HG. Excitatory and inhibitory neuronal signaling in inflammatory and diabetic neuropathic pain. Mol Med 2023; 29:53. [PMID: 37069517 PMCID: PMC10111846 DOI: 10.1186/s10020-023-00647-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
Pain, although unpleasant, is an essential warning mechanism against injury and damage of the organism. An intricate network of specialised sensors and transmission systems contributes to reception, transmission and central sensitization of pain. Here, we briefly introduce some of the main aspects of pain signal transmission, including nociceptors and nociceptive signals, mechanisms of inflammatory and neuropathic pain, and the situation of diabetes-associated neuropathic pain. The role of glia-astrocytes, microglia, satellite glia cells-and their specific channels, transporters and signaling pathways is described. A focus is on the contribution of inhibitory synaptic signaling to nociception and a possible role of glycine receptors in glucose-mediated analgesia and treatment-induced diabetic neuropathy. Inhibitory receptors such as GABAA- and glycine receptors are important contributors to nociceptive signaling; their contribution to altered pain sensation in diabetes may be of clinical relevance, and they could be promising therapeutic targets towards the development of novel analgesics.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, 11835, Egypt
| | | |
Collapse
|
4
|
Shan Y, Zhao J, Zheng Y, Guo S, Schrodi SJ, He D. Understanding the function of the GABAergic system and its potential role in rheumatoid arthritis. Front Immunol 2023; 14:1114350. [PMID: 36825000 PMCID: PMC9941139 DOI: 10.3389/fimmu.2023.1114350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Rheumatoid arthritis (RA) is a highly disabling chronic autoimmune disease. Multiple factors contribute to the complex pathological process of RA, in which an abnormal autoimmune response, high survival of inflammatory cells, and excessive release of inflammatory factors lead to a severe chronic inflammatory response. Clinical management of RA remains limited; therefore, exploring and discovering new mechanisms of action could enhance clinical benefits for patients with RA. Important bidirectional communication occurs between the brain and immune system in inflammatory diseases such as RA, and circulating immune complexes can cause neuroinflammatory responses in the brain. The gamma-aminobutyric acid (GABA)ergic system is a part of the nervous system that primarily comprises GABA, GABA-related receptors, and GABA transporter (GAT) systems. GABA is an inhibitory neurotransmitter that binds to GABA receptors in the presence of GATs to exert a variety of pathophysiological regulatory effects, with its predominant role being neural signaling. Nonetheless, the GABAergic system may also have immunomodulatory effects. GABA/GABA-A receptors may inhibit the progression of inflammation in RA and GATs may promote inflammation. GABA-B receptors may also act as susceptibility genes for RA, regulating the inflammatory response of RA via immune cells. Furthermore, the GABAergic system may modulate the abnormal pain response in RA patients. We also summarized the latest clinical applications of the GABAergic system and provided an outlook on its clinical application in RA. However, direct studies on the GABAergic system and RA are still lacking; therefore, we hope to provide potential therapeutic options and a theoretical basis for RA treatment by summarizing any potential associations.
Collapse
Affiliation(s)
- Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Shicheng Guo, ; Steven J. Schrodi, ; Dongyi He,
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Shicheng Guo, ; Steven J. Schrodi, ; Dongyi He,
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China,Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China,*Correspondence: Shicheng Guo, ; Steven J. Schrodi, ; Dongyi He,
| |
Collapse
|
5
|
Jergova S, Dugan EA, Sagen J. Attenuation of SCI-Induced Hypersensitivity by Intensive Locomotor Training and Recombinant GABAergic Cells. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010084. [PMID: 36671656 PMCID: PMC9854592 DOI: 10.3390/bioengineering10010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
The underlying mechanisms of spinal cord injury (SCI)-induced chronic pain involve dysfunctional GABAergic signaling and enhanced NMDA signaling. Our previous studies showed that SCI hypersensitivity in rats can be attenuated by recombinant rat GABAergic cells releasing NMDA blocker serine-histogranin (SHG) and by intensive locomotor training (ILT). The current study combines these approaches and evaluates their analgesic effects on a model of SCI pain in rats. Cells were grafted into the spinal cord at 4 weeks post-SCI to target the chronic pain, and ILT was initiated 5 weeks post-SCI. The hypersensitivity was evaluated weekly, which was followed by histological and biochemical assays. Prolonged effects of the treatment were evaluated in subgroups of animals after we discontinued ILT. The results show attenuation of tactile, heat and cold hypersensitivity in all of the treated animals and reduced levels of proinflammatory cytokines IL1β and TNFα in the spinal tissue and CSF. Animals with recombinant grafts and ILT showed the preservation of analgesic effects even during sedentary periods when the ILT was discontinued. Retraining helped to re-establish the effect of long-term training in all of the groups, with the greatest impact being in animals with recombinant grafts. These findings suggest that intermittent training in combination with cell therapy might be an efficient approach to manage chronic pain in SCI patients.
Collapse
|
6
|
Hao H, Ramli R, Wang C, Liu C, Shah S, Mullen P, Lall V, Jones F, Shao J, Zhang H, Jaffe DB, Gamper N, Du X. Dorsal root ganglia control nociceptive input to the central nervous system. PLoS Biol 2023; 21:e3001958. [PMID: 36603052 PMCID: PMC9847955 DOI: 10.1371/journal.pbio.3001958] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/18/2023] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Accumulating observations suggest that peripheral somatosensory ganglia may regulate nociceptive transmission, yet direct evidence is sparse. Here, in experiments on rats and mice, we show that the peripheral afferent nociceptive information undergoes dynamic filtering within the dorsal root ganglion (DRG) and suggest that this filtering occurs at the axonal bifurcations (t-junctions). Using synchronous in vivo electrophysiological recordings from the peripheral and central processes of sensory neurons (in the spinal nerve and dorsal root), ganglionic transplantation of GABAergic progenitor cells, and optogenetics, we demonstrate existence of tonic and dynamic filtering of action potentials traveling through the DRG. Filtering induced by focal application of GABA or optogenetic GABA release from the DRG-transplanted GABAergic progenitor cells was specific to nociceptive fibers. Light-sheet imaging and computer modeling demonstrated that, compared to other somatosensory fiber types, nociceptors have shorter stem axons, making somatic control over t-junctional filtering more efficient. Optogenetically induced GABA release within DRG from the transplanted GABAergic cells enhanced filtering and alleviated hypersensitivity to noxious stimulation produced by chronic inflammation and neuropathic injury in vivo. These findings support "gating" of pain information by DRGs and suggest new therapeutic approaches for pain relief.
Collapse
Affiliation(s)
- Han Hao
- Department of Pharmacology, Hebei Medical University; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Rosmaliza Ramli
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Dental Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Caixue Wang
- Department of Pharmacology, Hebei Medical University; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Chao Liu
- Department of Animal Care, Hebei Medical University; The Key Laboratory of Experimental Animal, Hebei Province; Shijiazhuang, China
| | - Shihab Shah
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Pierce Mullen
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Varinder Lall
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Frederick Jones
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Jicheng Shao
- Department of Pharmacology, Hebei Medical University; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| | - David B. Jaffe
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Xiaona Du
- Department of Pharmacology, Hebei Medical University; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Shijiazhuang, China
| |
Collapse
|
7
|
Velasco-González R, Coffeen U. Neurophysiopathological Aspects of Paclitaxel-induced Peripheral Neuropathy. Neurotox Res 2022; 40:1673-1689. [PMID: 36169871 DOI: 10.1007/s12640-022-00582-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/31/2022]
Abstract
Chemotherapy is widely used as a primary treatment or adjuvant therapy for cancer. Anti-microtubule agents (such as paclitaxel and docetaxel) are used for treating many types of cancer, either alone or in combination. However, their use has negative consequences that restrict the treatment's ability to continue. The principal negative effect is the so-called chemotherapy-induced peripheral neuropathy (CIPN). CIPN is a complex ailment that depends on diversity in the mechanisms of action of the different chemotherapy drugs, which are not fully understood. In this paper, we review several neurophysiological and pathological characteristics, such as morphological changes, changes in ion channels, mitochondria and oxidative stress, cell death, changes in the immune response, and synaptic control, as well as the characteristics of neuropathic pain produced by paclitaxel.
Collapse
Affiliation(s)
- Roberto Velasco-González
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, México.,Maestría en Ciencias Biológicas, UNAM, Ciudad de México, México
| | - Ulises Coffeen
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, México.
| |
Collapse
|
8
|
Jergova S, Hernandez M, Sagen J. Analgesic effect of recombinant GABAergic precursors releasing MVIIA in a model of peripheral nerve injury in rats. Mol Pain 2022; 18:17448069221129829. [PMID: 36113096 PMCID: PMC9513588 DOI: 10.1177/17448069221129829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Development of chronic pain has been attributed to dysfunctional GABA signaling in the
spinal cord. Direct pharmacological interventions on GABA signaling are usually not very
efficient and often accompanied by side effects due to the widespread distribution of GABA
receptors in CNS. Transplantation of GABAergic neuronal cells may restore the inhibitory
potential in the spinal cord. Grafted cells may also release additional analgesic peptides
by means of genetic engineering to further enhance the benefits of this approach.
Conopeptides are ideal candidates for recombinant expression using cell-based strategies.
The omega-conopeptide MVIIA is in clinical use for severe pain marketed as FDA approved
Prialt in the form of intrathecal injections. The goal of this study was to develop
transplantable recombinant GABAergic cells releasing conopeptide MVIIA and to evaluate the
analgesic effect of the grafts in a model of peripheral nerve injury-induced pain. We have
engineered and characterized the GABAergic progenitors expressing MVIIA. Recombinant and
nonrecombinant cells were intraspinally injected into animals after the nerve injury.
Animals were tested weekly up to 12 weeks for the presence of hypersensitivity, followed
by histochemical and biochemical analysis of the tissue. We observed beneficial effects of
the grafted cells in reducing hypersensitivity in all grafted animals, especially potent
in the recombinant group. The level of pain-related cytokines was reduced in the grafted
animals and correlation between these pain markers and actual behavior was indicated. This
study demonstrated the feasibility of recombinant cell transplantation in the management
of chronic pain.
Collapse
|
9
|
Park SE, Neupane C, Noh C, Sharma R, Shin HJ, Pham TL, Lee GS, Park KD, Lee CJ, Kang DW, Lee SY, Kim HW, Park JB. Antiallodynic effects of KDS2010, a novel MAO-B inhibitor, via ROS-GABA inhibitory transmission in a paclitaxel-induced tactile hypersensitivity model. Mol Brain 2022; 15:41. [PMID: 35526002 PMCID: PMC9078011 DOI: 10.1186/s13041-022-00924-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
Monoamine oxidase (MAO) inhibitors have been investigated for the treatment of neuropathic pain. Here, we assessed the antiallodynic effects of a novel MAO-B inhibitor, KDS2010, on paclitaxel (PTX)-induced mechanical hypersensitivity. Oral administration of KDS2010 effectively relieved PTX-induced mechanical hypersensitivity in a dose-dependent manner. KDS2010 (25 mg/Kg) significantly prevented and suppressed PTX-induced pain responses with minimal effects on the body weight, motor activity, and working memory. KDS2010 significantly reduced reactive astrocytosis and reactive oxygen species (ROS) level in the L4–L6 spinal cord of PTX-treated mice. Furthermore, KDS2010 reversed the attenuation of GABAergic spontaneous inhibitory postsynaptic current (sIPSC) frequency in spinal dorsal horn neurons, although it failed to restore the reduced tonic GABAA inhibition nor the increased GABA transporter 1 (GAT1) expression in PTX-treated mice. In addition, bath application of a reactive oxygen species (ROS) scavenger (PBN) restored the sIPSC frequency in PTX-treated mice but not in control and PTX + KDS2010-treated mice. These results indicated that the antiallodynic effect of KDS2010 is not due to a MAO-B-dependent GABA production. Finally, PBN alone also exerted a similar analgesic effect as KDS2010, but a co-treatment of PBN with KDS2010 showed no additive effect, suggesting that inhibition of MAO-B-dependent ROS production is responsible for the analgesic effect by KDS2010 on PTX-induced allodynia. Overall, KDS2010 attenuated PTX-induced pain behaviors by restoring the altered ROS level and GABAergic inhibitory signaling in the spinal cord, suggesting that KDS2010 is a promising therapeutic strategy for chemotherapy-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Su Eun Park
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea
| | - Chiranjivi Neupane
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Chan Noh
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, 35015, South Korea
| | - Ramesh Sharma
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Hyun Jin Shin
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea
| | - Thuy Linh Pham
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea
| | - Gyu-Seung Lee
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Dong-Gu Health Promotion Center 301-01, 30 Bogeunso Avenue, Samseung-Dong, Dong-gu, Daejeon, South Korea
| | - Ki Duk Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Korea
| | - Dong-Wook Kang
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Hyun-Woo Kim
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea.,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea
| | - Jin Bong Park
- Department of Medical Sciences, Graduate School, Chungnam National University, Daejeon, 35015, Korea. .,Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon, 35015, Korea. .,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
10
|
Wang H, Chen W, Dong Z, Xing G, Cui W, Yao L, Zou WJ, Robinson HL, Bian Y, Liu Z, Zhao K, Luo B, Gao N, Zhang H, Ren X, Yu Z, Meixiong J, Xiong WC, Mei L. A novel spinal neuron connection for heat sensation. Neuron 2022; 110:2315-2333.e6. [PMID: 35561677 DOI: 10.1016/j.neuron.2022.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 12/30/2022]
Abstract
Heat perception enables acute avoidance responses to prevent tissue damage and maintain body thermal homeostasis. Unlike other modalities, how heat signals are processed in the spinal cord remains unclear. By single-cell gene profiling, we identified ErbB4, a transmembrane tyrosine kinase, as a novel marker of heat-sensitive spinal neurons in mice. Ablating spinal ErbB4+ neurons attenuates heat sensation. These neurons receive monosynaptic inputs from TRPV1+ nociceptors and form excitatory synapses onto target neurons. Activation of ErbB4+ neurons enhances the heat response, while inhibition reduces the heat response. We showed that heat sensation is regulated by NRG1, an activator of ErbB4, and it involves dynamic activity of the tyrosine kinase that promotes glutamatergic transmission. Evidence indicates that the NRG1-ErbB4 signaling is also engaged in hypersensitivity of pathological pain. Together, these results identify a spinal neuron connection consisting of ErbB4+ neurons for heat sensation and reveal a regulatory mechanism by the NRG1-ErbB4 signaling.
Collapse
Affiliation(s)
- Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wenbing Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zhaoqi Dong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Guanglin Xing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wanpeng Cui
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Lingling Yao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wen-Jun Zou
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Heath L Robinson
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Yaoyao Bian
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zhipeng Liu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Kai Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Bin Luo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Nannan Gao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Hongsheng Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zheng Yu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - James Meixiong
- Solomon H. Snyder Department of Neuroscience and Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
11
|
Oyama M, Watanabe S, Iwai T, Tanabe M. Distinct synaptic mechanisms underlying the analgesic effects of γ-aminobutyric acid transporter subtypes 1 and 3 inhibitors in the spinal dorsal horn. Pain 2022; 163:334-349. [PMID: 33990107 DOI: 10.1097/j.pain.0000000000002338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/13/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Normalization of the excitatory and inhibitory balance by increasing the levels of endogenous inhibitory neurotransmitters by blocking their reuptake is a promising therapeutic strategy for relieving chronic pain. Pharmacological blockade of spinal γ-aminobutyric acid (GABA) transporter subtypes 1 and 3 (GAT1 and GAT3) has been reported to generate analgesic effects in animal models of neuropathic pain. Here, we explored the synaptic mechanisms underlying their analgesic effects in the spinal dorsal horn. Whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult mice, and the effects of GAT inhibitors on miniature and evoked postsynaptic currents were examined. Behaviorally, GAT inhibitors were intrathecally applied to assess their effects on mechanical hypersensitivity in mice developing neuropathic pain after partial sciatic nerve ligation. The GAT1 inhibitor NNC-711 reduced the frequency of miniature excitatory postsynaptic currents (EPSCs) and the amplitude of C-fiber-mediated EPSCs, and the GAT3 inhibitor SNAP-5114 reduced the amplitude of A-fiber-mediated and C-fiber-mediated EPSCs. These effects were antagonized by the GABAB receptor antagonist CGP55845. Consistently, the analgesic effect of intrathecally injected NNC-711 and SNAP-5114 in mice developing mechanical hypersensitivity after partial sciatic nerve ligation was abolished by CGP55845. Thus, GAT1 and GAT3 inhibitors exert distinct GABAB receptor-mediated inhibitory effects on excitatory synaptic transmission in the spinal dorsal horn, which most likely contributes to their analgesic effects.
Collapse
Affiliation(s)
- Misa Oyama
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Shun Watanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Takashi Iwai
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Mitsuo Tanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| |
Collapse
|
12
|
Askarian-Amiri S, Maleki SN, Alavi SNR, Neishaboori AM, Toloui A, Gubari MIM, Sarveazad A, Hosseini M, Yousefifard M. The efficacy of GABAergic precursor cells transplantation in alleviating neuropathic pain in animal models: a systematic review and meta-analysis. Korean J Pain 2022; 35:43-58. [PMID: 34966011 PMCID: PMC8728544 DOI: 10.3344/kjp.2022.35.1.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
Background Current therapies are quite unsuccessful in the management of neuropathic pain. Therefore, considering the inhibitory characteristics of GABA mediators, the present systematic review and meta-analysis aimed to determine the efficacy of GABAergic neural precursor cells on neuropathic pain management. Methods Search was conducted on Medline, Embase, Scopus, and Web of Science databases. A search strategy was designed based on the keywords related to GABAergic cells combined with neuropathic pain. The outcomes were allodynia and hyperalgesia. The results were reported as a pooled standardized mean difference (SMD) with a 95% confidence interval (95% CI). Results Data of 13 studies were analyzed in the present meta-analysis. The results showed that administration of GABAergic cells improved allodynia (SMD = 1.79; 95% CI 0.87, 271; P < 0.001) and hyperalgesia (SMD = 1.29; 95% CI 0.26, 2.32; P = 0.019). Moreover, the analyses demonstrated that the efficacy of GABAergic cells in the management of allodynia and hyperalgesia is only observed in rats. Also, only genetically modified cells are effective in improving both of allodynia, and hyperalgesia. Conclusions A moderate level of pre-clinical evidence showed that transplantation of genetically-modified GABAergic cells is effective in the management of neuropathic pain. However, it seems that the transplantation efficacy of these cells is only statistically significant in improving pain symptoms in rats. Hence, caution should be exercised regarding the generalizability and the translation of the findings from rats and mice studies to large animal studies and clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Amirmohammad Toloui
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammed I M Gubari
- Department of Family and Community Medicine, College of Medicine, University of Sulaimani, Sulaimani, Iraq
| | - Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.,Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Hosseini
- Pediatric Chronic Kidney Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Naji Esfahani H, Vaseghi G, Haghjooy Javanmard S, Pilehvarian A. Doxepin prevents the Expression and Development of Paclitaxel-Induced Neuropathic Pain. Adv Biomed Res 2021; 10:43. [PMID: 35071111 PMCID: PMC8744423 DOI: 10.4103/abr.abr_245_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Peripheral neurotoxicity is a common side effect of many anticancer chemotherapy drugs, including paclitaxel. Peripheral neurotoxicity may present as changes in sensory function and mild paresthesia that, in turn, can lead to alleviation of the prescribed dose of the medication. The aim of this study was to evaluate the effectiveness of acute and chronic doxepin administration on development and expression of neuropathic pain during the treatment of cancer with paclitaxel. MATERIALS AND METHODS Neuropathic pain was induced in mice by paclitaxel (2 mg/kg, intraperitoneally [i.p.,] once daily from day 1 to day 5) that caused mechanical and cold allodynia. Doxepin was administrated every day from day 6 to 10 (10 and 15 mg/kg i.p.). Mechanical and cold allodynia was evaluated on day 11 of the experiment in both the test and the control group. RESULTS Daily administration of doxepin (2.5, 5, and 10 mg/kg i.p.) from day 1 to 5 significantly inhibited the development of cold and mechanical allodynia. As well doxepin administration (5 and 10 mg/kg i.p.) from the 6th day, to 10th day significantly inhibited cold and mechanical allodynia expression. To address the concerns associated with the effectiveness of chemotherapy agents on the tumor, we evaluated paclitaxel cytotoxicity effect in combination with doxepin. Our observations indicate that doxepin even at high concentrations (1 and 10 μg/ml) does not interfere with the cytotoxic effect of paclitaxel (0.05 μg/ml). CONCLUSIONS These results indicate that doxepin, when administered during chemotherapy, can prevent the development and expression of paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Hajar Naji Esfahani
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Basic Sciences, Isfahan Payame Noor University, Isfahan, Iran
| | - Golnaz Vaseghi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Physiology, Applied Physiology Research Center, School of Medicine, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
14
|
Yeo M, Chen Y, Jiang C, Chen G, Wang K, Chandra S, Bortsov A, Lioudyno M, Zeng Q, Wang P, Wang Z, Busciglio J, Ji RR, Liedtke W. Repurposing cancer drugs identifies kenpaullone which ameliorates pathologic pain in preclinical models via normalization of inhibitory neurotransmission. Nat Commun 2021; 12:6208. [PMID: 34707084 PMCID: PMC8551327 DOI: 10.1038/s41467-021-26270-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Inhibitory GABA-ergic neurotransmission is fundamental for the adult vertebrate central nervous system and requires low chloride concentration in neurons, maintained by KCC2, a neuroprotective ion transporter that extrudes intracellular neuronal chloride. To identify Kcc2 gene expression‑enhancing compounds, we screened 1057 cell growth-regulating compounds in cultured primary cortical neurons. We identified kenpaullone (KP), which enhanced Kcc2/KCC2 expression and function in cultured rodent and human neurons by inhibiting GSK3ß. KP effectively reduced pathologic pain-like behavior in mouse models of nerve injury and bone cancer. In a nerve-injury pain model, KP restored Kcc2 expression and GABA-evoked chloride reversal potential in the spinal cord dorsal horn. Delta-catenin, a phosphorylation-target of GSK3ß in neurons, activated the Kcc2 promoter via KAISO transcription factor. Transient spinal over-expression of delta-catenin mimicked KP analgesia. Our findings of a newly repurposed compound and a novel, genetically-encoded mechanism that each enhance Kcc2 gene expression enable us to re-normalize disrupted inhibitory neurotransmission through genetic re-programming.
Collapse
Affiliation(s)
- Michele Yeo
- Department of Neurology, Duke University Medical Center, Durham, NC, USA.
| | - Yong Chen
- Department of Neurology, Duke University Medical Center, Durham, NC, USA.
| | - Changyu Jiang
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA
| | - Gang Chen
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA
| | - Kaiyuan Wang
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA
| | - Sharat Chandra
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA
| | - Andrey Bortsov
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA
| | - Maria Lioudyno
- Department of Neurobiology & Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, CA, USA
| | - Qian Zeng
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Peng Wang
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Zilong Wang
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA
| | - Jorge Busciglio
- Department of Neurobiology & Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, CA, USA
| | - Ru-Rong Ji
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| | - Wolfgang Liedtke
- Department of Neurology, Duke University Medical Center, Durham, NC, USA.
- Department of Anesthesiology (Center for Translational Pain Medicine), Duke University Medical Center, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
- Duke Neurology Clinics for Headache, Head-Pain and Trigeminal Sensory Disorders, Duke University Medical Center, Durham, NC, USA.
- Duke Anesthesiology Clinics for Innovative Pain Therapy, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
15
|
MiR-30d Participates in Vincristine-Induced Neuropathic Pain by Down-Regulating GAD67. Neurochem Res 2021; 47:481-492. [PMID: 34623561 DOI: 10.1007/s11064-021-03462-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Vincristine is a common chemotherapeutic agent in cancer treatment, while it often causes chemotherapy-induced peripheral neuropathy(CIPN), which brings patients a great disease burden and associated economic pressure. The mechanism under CIPN remains mostly unknown. The previous study has shown that cell-type-specific spinal synaptic plasticity in the dorsal horn plays a pivotal role in neuropathic pain. Downregulation of GABA transmission, which mainly acts as an inhibitory pathway, has been reported in the growing number of research. Our present study found that GAD67, responsible for > 90% of basal GABA synthesis, is down-regulated, while its relative mRNA remains unchanged in vincristine-induced neuropathy. Considering microRNAs (miRNAs) as a post-transcription modifier by degrading targeted mRNA or repressing mRNA translation, we performed genome-wide miRNA screening and revealed that miR-30d might contribute to GAD67 down-regulation. Further investigation confirmed that miR-30d could affect the fluorescence activity of GAD67 by binding to the 3 'UTR of the GAD67 gene, and intrathecal injection of miR-30d antagomir increased the expression of GAD67, partially rescued vincristine-induced thermal hyperalgesia and mechanical allodynia. In summary, our study revealed the molecule interactions of GAD67 and miR-30d in CIPN, which has not previously been discussed in the literature. The results give more profound insight into understanding the CIPN mechanism and hopefully helps pain control.
Collapse
|
16
|
Middleton SJ, Perez-Sanchez J, Dawes JM. The structure of sensory afferent compartments in health and disease. J Anat 2021; 241:1186-1210. [PMID: 34528255 PMCID: PMC9558153 DOI: 10.1111/joa.13544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
Primary sensory neurons are a heterogeneous population of cells able to respond to both innocuous and noxious stimuli. Like most neurons they are highly compartmentalised, allowing them to detect, convey and transfer sensory information. These compartments include specialised sensory endings in the skin, the nodes of Ranvier in myelinated axons, the cell soma and their central terminals in the spinal cord. In this review, we will highlight the importance of these compartments to primary afferent function, describe how these structures are compromised following nerve damage and how this relates to neuropathic pain.
Collapse
Affiliation(s)
- Steven J Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Omran M, Belcher EK, Mohile NA, Kesler SR, Janelsins MC, Hohmann AG, Kleckner IR. Review of the Role of the Brain in Chemotherapy-Induced Peripheral Neuropathy. Front Mol Biosci 2021; 8:693133. [PMID: 34179101 PMCID: PMC8226121 DOI: 10.3389/fmolb.2021.693133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common, debilitating, and dose-limiting side effect of many chemotherapy regimens yet has limited treatments due to incomplete knowledge of its pathophysiology. Research on the pathophysiology of CIPN has focused on peripheral nerves because CIPN symptoms are felt in the hands and feet. However, better understanding the role of the brain in CIPN may accelerate understanding, diagnosing, and treating CIPN. The goals of this review are to (1) investigate the role of the brain in CIPN, and (2) use this knowledge to inform future research and treatment of CIPN. We identified 16 papers using brain interventions in animal models of CIPN and five papers using brain imaging in humans or monkeys with CIPN. These studies suggest that CIPN is partly caused by (1) brain hyperactivity, (2) reduced GABAergic inhibition, (3) neuroinflammation, and (4) overactivation of GPCR/MAPK pathways. These four features were observed in several brain regions including the thalamus, periaqueductal gray, anterior cingulate cortex, somatosensory cortex, and insula. We discuss how to leverage this knowledge for future preclinical research, clinical research, and brain-based treatments for CIPN.
Collapse
Affiliation(s)
- Maryam Omran
- University of Rochester Medical Center, Rochester, NY, United States
| | | | - Nimish A Mohile
- University of Rochester Medical Center, Rochester, NY, United States
| | - Shelli R Kesler
- The University of Texas at Austin, Austin, TX, United States
| | | | - Andrea G Hohmann
- Psychological and Brain Sciences, Program in Neuroscience and Gill Center for Biomolecular Science, Indiana University Bloomington, Bloomington, IN, United States
| | - Ian R Kleckner
- University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
18
|
McIntyre WB, Pieczonka K, Khazaei M, Fehlings MG. Regenerative replacement of neural cells for treatment of spinal cord injury. Expert Opin Biol Ther 2021; 21:1411-1427. [PMID: 33830863 DOI: 10.1080/14712598.2021.1914582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Traumatic Spinal Cord Injury (SCI) results from primary physical injury to the spinal cord, which initiates a secondary cascade of neural cell death. Current therapeutic approaches can attenuate the consequences of the primary and secondary events, but do not address the degenerative aspects of SCI. Transplantation of neural stem/progenitor cells (NPCs) for the replacement of the lost/damaged neural cells is suggested here as a regenerative approach that is complementary to current therapeutics.Areas Covered: This review addresses how neurons, oligodendrocytes, and astrocytes are impacted by traumatic SCI, and how current research in regenerative-NPC therapeutics aims to restore their functionality. Methods used to enhance graft survival, as well as bias progenitor cells towards neuronal, oligodendrogenic, and astroglia lineages are discussed.Expert Opinion: Despite an NPC's ability to differentiate into neurons, oligodendrocytes, and astrocytes in the transplant environment, their potential therapeutic efficacy requires further optimization prior to translation into the clinic. Considering the temporospatial identity of NPCs could promote neural repair in region specific injuries throughout the spinal cord. Moreover, understanding which cells are targeted by NPC-derived myelinating cells can help restore physiologically-relevant myelin patterns. Finally, the duality of astrocytes is discussed, outlining their context-dependent importance in the treatment of SCI.
Collapse
Affiliation(s)
- William Brett McIntyre
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Katarzyna Pieczonka
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Mohamad Khazaei
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Neumann E, Küpfer L, Zeilhofer HU. The α2/α3GABAA receptor modulator TPA023B alleviates not only the sensory but also the tonic affective component of chronic pain in mice. Pain 2021; 162:421-431. [PMID: 32773599 PMCID: PMC7808355 DOI: 10.1097/j.pain.0000000000002030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
Abstract
ABSTRACT Diminished synaptic inhibition in the spinal dorsal horn is a major contributor to pathological pain syndromes of neuropathic or inflammatory origin. Drugs that enhance the activity of dorsal horn α2/α3GABAARs normalize exaggerated nociceptive responses in rodents with neuropathic nerve lesions or peripheral inflammation but lack most of the typical side effects of less specific GABAergic drugs. It is however still unknown whether such drugs also reduce the clinically more relevant conscious perception of pain. Here, we investigated the effects of the α2/α3GABAAR subtype-selective modulator TPA023B on the tonic aversive component of pain in mice with peripheral inflammation or neuropathy. In neuropathic mice with a chronic constriction injury of the sciatic nerve, TPA023B not only reversed hyperalgesia to tactile and heat stimuli but also was highly effective in the conditioned place preference test. In the formalin test, TPA023B not only reduced licking of the injected paw but also reversed facial pain expression scores in the mouse grimace scale assay. Taken together, our results demonstrate that α2/α3GABAA receptor subtype-selective modulators not only reduce nociceptive withdrawal responses but also alleviate the tonic aversive components of chronic pain.
Collapse
Affiliation(s)
- Elena Neumann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Laura Küpfer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- Drug Discovery Network Zurich (DDNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Ford E, Pearlman J, Ruan T, Manion J, Waller M, Neely GG, Caron L. Human Pluripotent Stem Cells-Based Therapies for Neurodegenerative Diseases: Current Status and Challenges. Cells 2020; 9:E2517. [PMID: 33233861 PMCID: PMC7699962 DOI: 10.3390/cells9112517] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are characterized by irreversible cell damage, loss of neuronal cells and limited regeneration potential of the adult nervous system. Pluripotent stem cells are capable of differentiating into the multitude of cell types that compose the central and peripheral nervous systems and so have become the major focus of cell replacement therapies for the treatment of neurological disorders. Human embryonic stem cell (hESC) and human induced pluripotent stem cell (hiPSC)-derived cells have both been extensively studied as cell therapies in a wide range of neurodegenerative disease models in rodents and non-human primates, including Parkinson's disease, stroke, epilepsy, spinal cord injury, Alzheimer's disease, multiple sclerosis and pain. In this review, we discuss the latest progress made with stem cell therapies targeting these pathologies. We also evaluate the challenges in clinical application of human pluripotent stem cell (hPSC)-based therapies including risk of oncogenesis and tumor formation, immune rejection and difficulty in regeneration of the heterogeneous cell types composing the central nervous system.
Collapse
Affiliation(s)
- Elizabeth Ford
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW 2006, Australia; (E.F.); (J.P.); (T.R.); (J.M.); (M.W.); (G.G.N.)
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Jodie Pearlman
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW 2006, Australia; (E.F.); (J.P.); (T.R.); (J.M.); (M.W.); (G.G.N.)
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Travis Ruan
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW 2006, Australia; (E.F.); (J.P.); (T.R.); (J.M.); (M.W.); (G.G.N.)
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - John Manion
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW 2006, Australia; (E.F.); (J.P.); (T.R.); (J.M.); (M.W.); (G.G.N.)
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Departments of Surgery and Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Waller
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW 2006, Australia; (E.F.); (J.P.); (T.R.); (J.M.); (M.W.); (G.G.N.)
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Gregory G. Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW 2006, Australia; (E.F.); (J.P.); (T.R.); (J.M.); (M.W.); (G.G.N.)
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Leslie Caron
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, University of Sydney, Camperdown, NSW 2006, Australia; (E.F.); (J.P.); (T.R.); (J.M.); (M.W.); (G.G.N.)
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
21
|
Lin B, Wang Y, Zhang P, Yuan Y, Zhang Y, Chen G. Gut microbiota regulates neuropathic pain: potential mechanisms and therapeutic strategy. J Headache Pain 2020; 21:103. [PMID: 32807072 PMCID: PMC7433133 DOI: 10.1186/s10194-020-01170-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
Neuropathic pain (NP) is a sustained and nonreversible condition characterized by long-term devastating physical and psychological damage. Therefore, it is urgent to identify an effective treatment for NP. Unfortunately, the precise pathogenesis of NP has not been elucidated. Currently, the microbiota-gut-brain axis has drawn increasing attention, and the emerging role of gut microbiota is investigated in numerous diseases including NP. Gut microbiota is considered as a pivotal regulator in immune, neural, endocrine, and metabolic signaling pathways, which participates in forming a complex network to affect the development of NP directly or indirectly. In this review, we conclude the current understanding of preclinical and clinical findings regarding the role of gut microbiota in NP and provide a novel therapeutic method for pain relief by medication and dietary interventions.
Collapse
Affiliation(s)
- Binbin Lin
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Zhejiang, 310016, Hangzhou, China
| | - Yuting Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Zhejiang, 310016, Hangzhou, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Zhejiang, 310016, Hangzhou, China
| | - Yanyan Yuan
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Zhejiang, 310016, Hangzhou, China
| | - Ying Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Zhejiang, 310016, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Zhejiang, 310016, Hangzhou, China.
| |
Collapse
|
22
|
Sałat K. Chemotherapy-induced peripheral neuropathy: part 1-current state of knowledge and perspectives for pharmacotherapy. Pharmacol Rep 2020; 72:486-507. [PMID: 32394362 PMCID: PMC7329796 DOI: 10.1007/s43440-020-00109-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Background Despite the increasing knowledge of the etiology of neuropathic pain, this type of chronic pain is resistant to available analgesics in approximately 50% of patients and therefore is continuously a subject of considerable interest for physiologists, neurologists, medicinal chemists, pharmacologists and others searching for more effective treatment options for this debilitating condition. Materials and methods The present review article is the first of the two articles focused on chemotherapy-induced peripheral neuropathy (CIPN). Results CIPN is regarded as one of the most common drug-induced neuropathies and is highly pharmacoresistant. The lack of efficacious pharmacological methods for treating CIPN and preventing its development makes CIPN-related neuropathic pain a serious therapeutic gap in current medicine and pharmacotherapy. In this paper, the most recent advances in the field of studies on CIPN caused by platinum compounds (namely oxaliplatin and cisplatin), taxanes, vinca alkaloids and bortezomib are summarized. Conclusions The prevalence of CIPN, potential causes, risk factors, symptoms and molecular mechanisms underlying this pharmacoresistant condition are discussed. Graphic abstract ![]()
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland.
| |
Collapse
|
23
|
Cisplatin educates CD8+ T cells to prevent and resolve chemotherapy-induced peripheral neuropathy in mice. Pain 2020; 160:1459-1468. [PMID: 30720585 DOI: 10.1097/j.pain.0000000000001512] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mechanisms responsible for the persistence of chemotherapy-induced peripheral neuropathy (CIPN) in a significant proportion of cancer survivors are still unknown. Our previous findings show that CD8 T cells are necessary for the resolution of paclitaxel-induced mechanical allodynia in male mice. In this study, we demonstrate that CD8 T cells are not only essential for resolving cisplatin-induced mechanical allodynia, but also to normalize spontaneous pain, numbness, and the reduction in intraepidermal nerve fiber density in male and female mice. Resolution of CIPN was not observed in Rag2 mice that lack T and B cells. Reconstitution of Rag2 mice with CD8 T cells before cisplatin treatment normalized the resolution of CIPN. In vivo education of CD8 T cells by cisplatin was necessary to induce resolution of CIPN in Rag2 mice because adoptive transfer of CD8 T cells from naive wild-type mice to Rag2 mice after completion of chemotherapy did not promote resolution of established CIPN. The CD8 T-cell-dependent resolution of CIPN does not require epitope recognition by the T-cell receptor. Moreover, adoptive transfer of cisplatin-educated CD8 T cells to Rag2 mice prevented CIPN development induced by either cisplatin or paclitaxel, indicating that the activity of the educated CD8 T is not cisplatin specific. In conclusion, resolution of CIPN requires in vivo education of CD8 T cells by exposure to cisplatin. Future studies should examine whether ex vivo CD8 T cell education could be applied as a therapeutic strategy for treating or preventing CIPN in patients.
Collapse
|
24
|
Slivicki RA, Iyer V, Mali SS, Garai S, Thakur GA, Crystal JD, Hohmann AG. Positive Allosteric Modulation of CB 1 Cannabinoid Receptor Signaling Enhances Morphine Antinociception and Attenuates Morphine Tolerance Without Enhancing Morphine- Induced Dependence or Reward. Front Mol Neurosci 2020; 13:54. [PMID: 32410959 PMCID: PMC7199816 DOI: 10.3389/fnmol.2020.00054] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/17/2020] [Indexed: 01/09/2023] Open
Abstract
Opioid analgesics represent a critical treatment for chronic pain in the analgesic ladder of the World Health Organization. However, their use can result in a number of unwanted side-effects including incomplete efficacy, constipation, physical dependence, and overdose liability. Cannabinoids enhance the pain-relieving effects of opioids in preclinical studies and dampen unwanted side-effects resulting from excessive opioid intake. We recently reported that a CB1 positive allosteric modulator (PAM) exhibits antinociceptive efficacy in models of pathological pain and lacks the adverse side effects of direct CB1 receptor activation. In the present study, we evaluated whether a CB1 PAM would enhance morphine’s therapeutic efficacy in an animal model of chemotherapy-induced neuropathic pain and characterized its impact on unwanted side-effects associated with chronic opioid administration. In paclitaxel-treated mice, both the CB1 PAM GAT211 and the opioid analgesic morphine reduced paclitaxel-induced behavioral hypersensitivities to mechanical and cold stimulation in a dose-dependent manner. Isobolographic analysis revealed that combinations of GAT211 and morphine resulted in anti-allodynic synergism. In paclitaxel-treated mice, a sub-threshold dose of GAT211 prevented the development of tolerance to the anti-allodynic effects of morphine over 20 days of once daily dosing. However, GAT211 did not reliably alter somatic withdrawal signs (i.e., jumps, paw tremors) in morphine-dependent neuropathic mice challenged with naloxone. In otherwise naïve mice, GAT211 also prolonged antinociceptive efficacy of morphine in the tail-flick test and reduced the overall right-ward shift in the ED50 for morphine to produce antinociception in the tail-flick test, consistent with attenuation of morphine tolerance. Pretreatment with GAT211 did not alter somatic signs of μ opioid receptor dependence in mice rendered dependent upon morphine via subcutaneous implantation of a morphine pellet. Moreover, GAT211 did not reliably alter μ-opioid receptor-mediated reward as measured by conditioned place preference to morphine. Our results suggest that a CB1 PAM may be beneficial in enhancing and prolonging the therapeutic properties of opioids while potentially sparing unwanted side-effects (e.g., tolerance) that occur with repeated opioid treatment.
Collapse
Affiliation(s)
- Richard A Slivicki
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Vishakh Iyer
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Sonali S Mali
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Sumanta Garai
- Center for Drug Discovery, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Ganesh A Thakur
- Center for Drug Discovery, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Jonathon D Crystal
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States.,Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States
| |
Collapse
|
25
|
Human induced pluripotent stem cell-derived GABAergic interneuron transplants attenuate neuropathic pain. Pain 2020; 161:379-387. [DOI: 10.1097/j.pain.0000000000001733] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Mutually beneficial effects of intensive exercise and GABAergic neural progenitor cell transplants in reducing neuropathic pain and spinal pathology in rats with spinal cord injury. Exp Neurol 2020; 327:113208. [PMID: 31962127 DOI: 10.1016/j.expneurol.2020.113208] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 01/13/2023]
Abstract
Spinal cord injury (SCI) produces both locomotor deficits and sensory dysfunction that greatly reduce the overall quality of life. Mechanisms underlying chronic pain include increased neuro-inflammation and changes in spinal processing of sensory signals, with reduced inhibitory GABAergic signaling a likely key player. Our previous research demonstrated that spinal transplantation of GABAergic neural progenitor cells (NPCs) reduced neuropathic pain while intensive locomotor training (ILT) could reduce development of pain and partially reverse already established pain behaviors. Therefore, we evaluate the potential mutually beneficial anti-hypersensitivity effects of NPC transplants cells in combination with early or delayed ILT. NPC transplants were done at 4 weeks post-SCI. ILT, using a progressive ramping treadmill protocol, was initiated either 5 days post-SCI (early: pain prevention group) or at 5 weeks post-SCI (delayed: to reverse established pain) in male Sprague Dawley rats. Results showed that either ILT alone or NPCs alone could partially attenuate SCI neuropathic pain behaviors in both prevention and reversal paradigms. However, the combination of ILT with NPC transplants significantly enhanced neuropathic pain reduction on most of the outcome measures including tests for allodynia, hyperalgesia, and ongoing pain. Immunocytochemical and neurochemical analyses showed decreased pro-inflammatory markers and spinal pathology with individual treatments; these measures were further improved by the combination of either early or delayed ILT and GABAergic cellular transplantation. Lumbar dorsal horn GABAergic neuronal and process density were nearly restored to normal levels by the combination treatment. Together, these interventions may provide a less hostile and more supportive environment for promoting functional restoration in the spinal dorsal horn and attenuation of neuropathic pain following SCI. These findings suggest mutually beneficial effects of ILT and NPC transplants for reducing SCI neuropathic pain.
Collapse
|
27
|
Costa-Pereira JT, Ribeiro J, Martins I, Tavares I. Role of Spinal Cord α 2-Adrenoreceptors in Noradrenergic Inhibition of Nociceptive Transmission During Chemotherapy-Induced Peripheral Neuropathy. Front Neurosci 2020; 13:1413. [PMID: 32009887 PMCID: PMC6974806 DOI: 10.3389/fnins.2019.01413] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a problem during cancer treatment and for cancer survivors but the central mechanisms underlying CIPN remain understudied. This study aims to determine if CIPN is associated with alterations of noradrenergic modulation of nociceptive transmission at the spinal cord. CIPN was induced in male Wistar rats by paclitaxel injections. One month after CIPN induction, the behavioral effects of the administration of reboxetine (noradrenaline reuptake inhibitor), clonidine (agonist of α2-adrenoreceptors; α2–AR) and atipamezole (antagonist of α2–AR) were evaluated using the von Frey and cold plate tests. Furthermore, we measured the expression of the noradrenaline biosynthetic enzyme dopamine-β-hydroxylase (DBH) and of α2–AR in the spinal dorsal horn. Reboxetine and clonidine reversed the behavioral signs of CIPN whereas the opposite occurred with atipamezole. In the 3 pharmacological approaches, a higher effect was detected in mechanical allodynia, the pain modality which is under descending noradrenergic control. DBH expression was increased at the spinal dorsal horn of paclitaxel-injected animals. The enhanced noradrenergic inhibition during CIPN may represent an adaptation of the descending noradrenergic pain control system to the increased arrival of peripheral nociceptive input. A potentiation of the α2–AR mediated antinociception at the spinal cord may represent a therapeutic opportunity to face CIPN.
Collapse
Affiliation(s)
- José Tiago Costa-Pereira
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal.,I3S-Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| | - Joana Ribeiro
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal.,I3S-Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| | - Isabel Martins
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal.,I3S-Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| | - Isaura Tavares
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal.,I3S-Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
28
|
Manion J, Waller MA, Clark T, Massingham JN, Neely GG. Developing Modern Pain Therapies. Front Neurosci 2019; 13:1370. [PMID: 31920521 PMCID: PMC6933609 DOI: 10.3389/fnins.2019.01370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Chronic pain afflicts as much as 50% of the population at any given time but our methods to address pain remain limited, ineffective and addictive. In order to develop new therapies an understanding of the mechanisms of painful sensitization is essential. We discuss here recent progress in the understanding of mechanisms underlying pain, and how these mechanisms are being targeted to produce modern, specific therapies for pain. Finally, we make recommendations for the next generation of targeted, effective, and safe pain therapies.
Collapse
Affiliation(s)
- John Manion
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Matthew A. Waller
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Teleri Clark
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Joshua N. Massingham
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - G. Gregory Neely
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Genome Editing Initiative, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
29
|
Marsala M, Kamizato K, Tadokoro T, Navarro M, Juhas S, Juhasova J, Marsala S, Studenovska H, Proks V, Hazel T, Johe K, Kakinohana M, Driscoll S, Glenn T, Pfaff S, Ciacci J. Spinal parenchymal occupation by neural stem cells after subpial delivery in adult immunodeficient rats. Stem Cells Transl Med 2019; 9:177-188. [PMID: 31800978 PMCID: PMC6988771 DOI: 10.1002/sctm.19-0156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/19/2019] [Indexed: 02/01/2023] Open
Abstract
Neural precursor cells (NSCs) hold great potential to treat a variety of neurodegenerative diseases and injuries to the spinal cord. However, current delivery techniques require an invasive approach in which an injection needle is advanced into the spinal parenchyma to deliver cells of interest. As such, this approach is associated with an inherent risk of spinal injury, as well as a limited delivery of cells into multiple spinal segments. Here, we characterize the use of a novel cell delivery technique that employs single bolus cell injections into the spinal subpial space. In immunodeficient rats, two subpial injections of human NSCs were performed in the cervical and lumbar spinal cord, respectively. The survival, distribution, and phenotype of transplanted cells were assessed 6-8 months after injection. Immunofluorescence staining and mRNA sequencing analysis demonstrated a near-complete occupation of the spinal cord by injected cells, in which transplanted human NSCs (hNSCs) preferentially acquired glial phenotypes, expressing oligodendrocyte (Olig2, APC) or astrocyte (GFAP) markers. In the outermost layer of the spinal cord, injected hNSCs differentiated into glia limitans-forming astrocytes and expressed human-specific superoxide dismutase and laminin. All animals showed normal neurological function for the duration of the analysis. These data show that the subpial cell delivery technique is highly effective in populating the entire spinal cord with injected NSCs, and has a potential for clinical use in cell replacement therapies for the treatment of ALS, multiple sclerosis, or spinal cord injury.
Collapse
Affiliation(s)
- Martin Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, California
| | - Kota Kamizato
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Department of Anesthesia, University of Ryukyus, Okinawa, Japan
| | - Takahiro Tadokoro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Department of Anesthesia, University of Ryukyus, Okinawa, Japan
| | - Michael Navarro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, California
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Silvia Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, California
| | - Hana Studenovska
- Department of Biomaterials and Bioanalogous Systems, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Proks
- Department of Biomaterials and Bioanalogous Systems, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Tom Hazel
- Neuralstem Inc., Germantown, Maryland
| | - Karl Johe
- Neuralstem Inc., Germantown, Maryland
| | | | - Shawn Driscoll
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California
| | - Thomas Glenn
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California
| | - Samuel Pfaff
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California
| | - Joseph Ciacci
- Department of Neurosurgery, University of California, San Diego, La Jolla, California
| |
Collapse
|
30
|
Costa‐Pereira JT, Serrão P, Martins I, Tavares I. Serotoninergic pain modulation from the rostral ventromedial medulla (RVM) in chemotherapy‐induced neuropathy: The role of spinal 5‐HT3 receptors. Eur J Neurosci 2019; 51:1756-1769. [DOI: 10.1111/ejn.14614] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/03/2019] [Accepted: 10/30/2019] [Indexed: 01/31/2023]
Affiliation(s)
- José Tiago Costa‐Pereira
- Department of Biomedicine Unit of Experimental Biology Faculty of Medicine University of Porto Porto Portugal
- IBMC‐Institute of Molecular and Cell Biology University of Porto Porto Portugal
- I3S‐ Institute of Investigation and Innovation in Health University of Porto Porto Portugal
| | - Paula Serrão
- Department of Biomedicine Unit of Pharmacology and Therapeutics Faculty of Medicine University of Porto Porto Portugal
- MedInUP ‐ Center for Drug Discovery and Innovative Medicines University of Porto Porto Portugal
| | - Isabel Martins
- Department of Biomedicine Unit of Experimental Biology Faculty of Medicine University of Porto Porto Portugal
- IBMC‐Institute of Molecular and Cell Biology University of Porto Porto Portugal
- I3S‐ Institute of Investigation and Innovation in Health University of Porto Porto Portugal
| | - Isaura Tavares
- Department of Biomedicine Unit of Experimental Biology Faculty of Medicine University of Porto Porto Portugal
- IBMC‐Institute of Molecular and Cell Biology University of Porto Porto Portugal
- I3S‐ Institute of Investigation and Innovation in Health University of Porto Porto Portugal
| |
Collapse
|
31
|
Juarez-Salinas DL, Braz JM, Etlin A, Gee S, Sohal V, Basbaum AI. GABAergic cell transplants in the anterior cingulate cortex reduce neuropathic pain aversiveness. Brain 2019; 142:2655-2669. [PMID: 31321411 PMCID: PMC6752168 DOI: 10.1093/brain/awz203] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/18/2019] [Accepted: 05/12/2019] [Indexed: 01/09/2023] Open
Abstract
Dysfunction of inhibitory circuits in the rostral anterior cingulate cortex underlies the affective (aversive), but not the sensory-discriminative features (hypersensitivity) of the pain experience. To restore inhibitory controls, we transplanted inhibitory interneuron progenitor cells into the rostral anterior cingulate cortex in a chemotherapy-induced neuropathic pain model. The transplants integrated, exerted a GABA-A mediated inhibition of host pyramidal cells and blocked gabapentin preference (i.e. relieved ongoing pain) in a conditioned place preference paradigm. Surprisingly, pain aversiveness persisted when the transplants populated both the rostral and posterior anterior cingulate cortex. We conclude that selective and long lasting inhibition of the rostral anterior cingulate cortex, in the mouse, has a profound pain relieving effect against nerve injury-induced neuropathic pain. However, the interplay between the rostral and posterior anterior cingulate cortices must be considered when examining circuits that influence ongoing pain and pain aversiveness.
Collapse
Affiliation(s)
| | - Joao M Braz
- Department Anatomy, University California San Francisco, San Francisco, CA, USA
| | - Alexander Etlin
- Department Anatomy, University California San Francisco, San Francisco, CA, USA
| | - Steven Gee
- Department Psychiatry, University California San Francisco, San Francisco, CA, USA
| | - Vikaas Sohal
- Department Psychiatry, University California San Francisco, San Francisco, CA, USA
| | - Allan I Basbaum
- Department Anatomy, University California San Francisco, San Francisco, CA, USA
| |
Collapse
|
32
|
Price TJ, Gold MS. From Mechanism to Cure: Renewing the Goal to Eliminate the Disease of Pain. PAIN MEDICINE 2019; 19:1525-1549. [PMID: 29077871 DOI: 10.1093/pm/pnx108] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective Persistent pain causes untold misery worldwide and is a leading cause of disability. Despite its astonishing prevalence, pain is undertreated, at least in part because existing therapeutics are ineffective or cause intolerable side effects. In this review, we cover new findings about the neurobiology of pain and argue that all but the most transient forms of pain needed to avoid tissue damage should be approached as a disease where a cure can be the goal of all treatment plans, even if attaining this goal is not yet always possible. Design We reviewed the literature to highlight recent advances in the area of the neurobiology of pain. Results We discuss barriers that are currently hindering the achievement of this goal, as well as the development of new therapeutic strategies. We also discuss innovations in the field that are creating new opportunities to treat and even reverse persistent pain, some of which are in late-phase clinical trials. Conclusion We conclude that the confluence of new basic science discoveries and development of new technologies are creating a path toward pain therapeutics that should offer significant hope of a cure for patients and practitioners alike. Classification of Evidence. Our review points to new areas of inquiry for the pain field to advance the goal of developing new therapeutics to treat chronic pain.
Collapse
Affiliation(s)
- Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas
| | - Michael S Gold
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Perturbations in neuroinflammatory pathways are associated with paclitaxel-induced peripheral neuropathy in breast cancer survivors. J Neuroimmunol 2019; 335:577019. [PMID: 31401418 PMCID: PMC6788784 DOI: 10.1016/j.jneuroim.2019.577019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 01/11/2023]
Abstract
Paclitaxel is a common chemotherapy drug associated with the development of chronic paclitaxel-induced peripheral neuropathy (PIPN). PIPN is associated with neuroinflammatory mechanisms in pre-clinical studies. Here, we evaluated for differential gene expression (DGE) in peripheral blood between breast cancer survivors with and without PIPN and for neuroinflammatory (NI) related signaling pathways and whole-transcriptome profiles from other experiments. Pathway impact analysis identified 8 perturbed NI related pathways. Expression profile analysis found 15 experiments having similar whole-transcriptome profiles of DGE related to neuroinflammation and PIPN. These findings suggest that perturbations in pathways associated with neuroinflammation are found in cancer survivors with PIPN. Paclitaxel-induced peripheral neuropathy (PIPN) is associated with Paclitaxel treatment Differential gene expression was associated with PIPN in breast cancer survivors. Perturbations of neuroinflammatory-related pathways were identified between survivors. Transcriptome profile was similar to other pre-clinical and clinical studies.
Collapse
|
34
|
Zhong S, Zhou Z, Liang Y, Cheng X, Li Y, Teng W, Zhao M, Liu C, Guan M, Zhao C. Targeting strategies for chemotherapy-induced peripheral neuropathy: does gut microbiota play a role? Crit Rev Microbiol 2019; 45:369-393. [PMID: 31106639 DOI: 10.1080/1040841x.2019.1608905] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a progressive, often irreversible condition that produces severe neurological deficits. Emerging data suggest that chemotherapy also exerts detrimental effects on gut microbiota composition and intestinal permeability, contributing to dysbiosis and inflammation. Compared with other complications associated with chemotherapy, such as diarrhoea and mucositis, CIPN is of particular concern because it is the most common reason for terminating or suspending treatment. However, specific and effective curative treatment strategies are lacking. In this review, we provide an update on current preclinical and clinical understandings about the role of gut microbiota in CIPN. The gut microbiota serves as an intersection between the microbiome-gut-brain and the neuroimmune-endocrine axis, forming a complex network that can directly or indirectly affect key components involved in the manifestations of CIPN. Herein, we discuss several potential mechanisms within the context of the networks and summarize alterations in gut microbiome induced by chemotherapeutic drugs, providing great potential for researchers to target pathways associated with the gut microbiome and overcome CIPN.
Collapse
Affiliation(s)
- Shanshan Zhong
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Zhike Zhou
- Department of Geriatrics, The First Hospital of China Medical University , Shenyang , PR China
| | - Yifan Liang
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Xi Cheng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University , Shenyang , PR China
| | - Weiyu Teng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Mei Zhao
- Department of Cardiology, Shengjing Hospital of China Medical University , Shenyang , PR China
| | - Chang Liu
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Meiting Guan
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Chuansheng Zhao
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| |
Collapse
|
35
|
Adamek P, Heles M, Palecek J. Mechanical allodynia and enhanced responses to capsaicin are mediated by PI3K in a paclitaxel model of peripheral neuropathy. Neuropharmacology 2018; 146:163-174. [PMID: 30471295 DOI: 10.1016/j.neuropharm.2018.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
Paclitaxel chemotherapy treatment often leads to neuropathic pain resistant to available analgesic treatments. Recently spinal Toll-like receptor 4 (TLR4) and the transient receptor potential cation channel subfamily V member 1 (TRPV1) were identified to be involved in the pro-nociceptive effect of paclitaxel. The aim of this study was to investigate the role of phosphatidylinositol 3-kinase (PI3K) and serine/threonine kinases in this process, with the use of their antagonists (wortmannin, LY-294002, and staurosporine). The single paclitaxel administration (8 mg/kg i.p.) in mice induced robust mechanical allodynia measured as a reduced threshold to von Frey filament stimulation and generated reduced tachyphylaxis of capsaicin-evoked responses, recorded as changes in mEPSC frequency in patch-clamp recordings of dorsal horn neurons activity in vitro, for up to eight days. Paclitaxel application also induced increased Akt kinase phosphorylation in rat DRG neurons. All these paclitaxel-induced changes were prevented by the wortmannin in vivo pretreatment. Acute co-application of wortmannin or LY-294002 with paclitaxel in spinal cord slices also attenuated the paclitaxel effect on capsaicin-evoked responses. Staurosporine was effective in the acute in vitro experiments and on the first day after the paclitaxel treatment in vivo, but in contrast to wortmannin, it did not have a significant impact later. Our data suggest that the inhibition of PI3K signaling may help alleviate pathological pain syndromes in the paclitaxel-induced neuropathy.
Collapse
Affiliation(s)
- Pavel Adamek
- Department of Functional Morphology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague, 128 44, Czech Republic
| | - Mario Heles
- Department of Functional Morphology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague, 128 44, Czech Republic
| | - Jiri Palecek
- Department of Functional Morphology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic.
| |
Collapse
|
36
|
Forebrain medial septum sustains experimental neuropathic pain. Sci Rep 2018; 8:11892. [PMID: 30089875 PMCID: PMC6082830 DOI: 10.1038/s41598-018-30177-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022] Open
Abstract
The present study explored the role of the medial septal region (MS) in experimental neuropathic pain. For the first time, we found that the MS sustains nociceptive behaviors in rodent models of neuropathic pain, especially in the chronic constriction injury (CCI) model and the paclitaxel model of chemotherapy-induced neuropathic pain. For example, inactivation of the MS with intraseptal muscimol (2 μg/μl, 0.5 μl), a GABA mimetic, reversed peripheral hypersensitivity (PH) in the CCI model and induced place preference in a conditioned place preference task, a surrogate measure of spontaneous nociception. The effect of intraseptal muscimol on PH was comparable to that seen with microinjection of the local anesthetic, lidocaine, into rostral ventromedial medulla which is implicated in facilitating experimental chronic nociception. Cellular analysis in the CCI model showed that the MS region sustains nociceptive gain with CCI by facilitating basal nociceptive processing and the amplification of stimulus-evoked neural processing. Indeed, consistent with the idea that excitatory transmission through MS facilitates chronic experimental pain, intraseptal microinjection of antagonists acting at AMPA and NMDA glutamate receptors attenuated CCI-induced PH. We propose that the MS is a central monitor of bodily nociception which sustains molecular plasticity triggered by persistent noxious insult.
Collapse
|
37
|
Pain relief by supraspinal gabapentin requires descending noradrenergic inhibitory controls. Pain Rep 2018; 3:e659. [PMID: 30123855 PMCID: PMC6085145 DOI: 10.1097/pr9.0000000000000659] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/10/2023] Open
Abstract
Introduction Gabapentin regulates pain processing by direct action on primary afferent nociceptors and dorsal horn nociresponsive neurons. Through an action at supraspinal levels, gabapentin also engages descending noradrenergic inhibitory controls that indirectly regulate spinal cord pain processing. Although direct injection of gabapentin into the anterior cingulate cortex provides pain relief independent of descending inhibitory controls, it remains unclear whether that effect is representative of what occurs when gabapentin interacts at multiple brain loci, eg, after intracerebroventricular (i.c.v.) injection. Methods We administered gabapentin i.c.v. in a mouse model of chemotherapy (paclitaxel)-induced neuropathic pain. To distinguish spinal from supraspinally processed features of the pain experience, we examined mechanical hypersensitivity and assessed relief of pain aversiveness using an analgesia-induced conditioned place preference paradigm. Results Paclitaxel-treated mice showed a preference for a 100-μg i.c.v. gabapentin-paired chamber that was accompanied by reduced mechanical allodynia, indicative of concurrent engagement of descending controls. As expected, the same dose in uninjured mice did not induce place preference, demonstrating that gabapentin, unlike morphine, is not inherently rewarding. Furthermore, a lower dose of supraspinal gabapentin (30 μg), which did not reverse mechanical allodynia, did not induce conditioned place preference. Finally, concurrent injections of i.c.v. gabapentin (100 μg) and intrathecal yohimbine, an α2-receptor antagonist, blocked preference for the gabapentin-paired chamber. Conclusion We conclude that pain relief, namely a reduction of pain aversiveness, induced by supraspinal gabapentin administered by an i.c.v. route is secondary to its activation of descending noradrenergic inhibitory controls that block transmission of the "pain" message from the spinal cord to the brain.
Collapse
|
38
|
Braz JM, Etlin A, Juarez-Salinas D, Llewellyn-Smith IJ, Basbaum AI. Rebuilding CNS inhibitory circuits to control chronic neuropathic pain and itch. PROGRESS IN BRAIN RESEARCH 2018; 231:87-105. [PMID: 28554402 DOI: 10.1016/bs.pbr.2016.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cell transplantation offers an attractive alternative to pharmacotherapy for the management of a host of clinical conditions. Most importantly, the transplanted cells provide a continuous, local delivery of therapeutic compounds, which avoids many of the adverse side effects associated with systemically administered drugs. Here, we describe the broad therapeutic utility of transplanting precursors of cortical inhibitory interneurons derived from the embryonic medial ganglionic eminence (MGE), in a variety of chronic pain and itch models in the mouse. Despite the cortical environment in which the MGE cells normally develop, these cells survive transplantation and will even integrate into the circuitry of an adult host spinal cord. When transplanted into the spinal cord, the cells significantly reduce the hyperexcitability that characterizes both chronic neuropathic pain and itch conditions. This MGE cell-based strategy differs considerably from traditional pharmacological treatments as the approach is potentially disease modifying (i.e., the therapy targets the underlying etiology of the pain and itch pathophysiology).
Collapse
Affiliation(s)
- Joao M Braz
- University of California-San Francisco, San Francisco, CA, United States
| | - Alex Etlin
- University of California-San Francisco, San Francisco, CA, United States
| | | | - Ida J Llewellyn-Smith
- Cardiovascular Medicine, Human Physiology and Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| | - Allan I Basbaum
- University of California-San Francisco, San Francisco, CA, United States.
| |
Collapse
|
39
|
Control of mechanical pain hypersensitivity in mice through ligand-targeted photoablation of TrkB-positive sensory neurons. Nat Commun 2018; 9:1640. [PMID: 29691410 PMCID: PMC5915601 DOI: 10.1038/s41467-018-04049-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/28/2018] [Indexed: 01/24/2023] Open
Abstract
Mechanical allodynia is a major symptom of neuropathic pain whereby innocuous touch evokes severe pain. Here we identify a population of peripheral sensory neurons expressing TrkB that are both necessary and sufficient for producing pain from light touch after nerve injury in mice. Mice in which TrkB-Cre-expressing neurons are ablated are less sensitive to the lightest touch under basal conditions, and fail to develop mechanical allodynia in a model of neuropathic pain. Moreover, selective optogenetic activation of these neurons after nerve injury evokes marked nociceptive behavior. Using a phototherapeutic approach based upon BDNF, the ligand for TrkB, we perform molecule-guided laser ablation of these neurons and achieve long-term retraction of TrkB-positive neurons from the skin and pronounced reversal of mechanical allodynia across multiple types of neuropathic pain. Thus we identify the peripheral neurons which transmit pain from light touch and uncover a novel pharmacological strategy for its treatment. There are several classes of sensory neuron that contribute to pain states. Here, the authors demonstrate that TrkB+ sensory neurons detect light touch under normal conditions in mice but contribute to hypersensitivity in models of chronic pain, and that ligand-guided laser ablation of TrkB+ sensory neurons in the mouse skin attenuates this hypersensitivity.
Collapse
|
40
|
Neuropathic pain-induced enhancement of spontaneous and pain-evoked neuronal activity in the periaqueductal gray that is attenuated by gabapentin. Pain 2018; 158:1241-1253. [PMID: 28328571 DOI: 10.1097/j.pain.0000000000000905] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuropathic pain is a debilitating pathological condition that is poorly understood. Recent evidence suggests that abnormal central processing occurs during the development of neuropathic pain induced by the cancer chemotherapeutic agent, paclitaxel. Yet, it is unclear what role neurons in supraspinal pain network sites, such as the periaqueductal gray, play in altered behavioral sensitivity seen during chronic pain conditions. To elucidate these mechanisms, we studied the spontaneous and thermally evoked firing patterns of ventrolateral periaqueductal gray (vlPAG) neurons in awake-behaving rats treated with paclitaxel to induce neuropathic pain. In the present study, vlPAG neurons in naive rats exhibited either excitatory, inhibitory, or neutral responses to noxious thermal stimuli, as previously observed. However, after development of behavioral hypersensitivity induced by the chemotherapeutic agent, paclitaxel, vlPAG neurons displayed increased neuronal activity and changes in thermal pain-evoked neuronal activity. This involved elevated levels of spontaneous firing and heightened responsiveness to nonnoxious stimuli (allodynia) as well as noxious thermal stimuli (hyperalgesia) as compared with controls. Furthermore, after paclitaxel treatment, only excitatory neuronal responses were observed for both nonnoxious and noxious thermal stimuli. Systemic administration of gabapentin, a nonopioid analgesic, induced significant dose-dependent decreases in the elevated spontaneous and thermally evoked vlPAG neuronal firing to both nonnoxious and noxious thermal stimuli in rats exhibiting neuropathic pain, but not in naive rats. Thus, these results show a strong correlation between behavioral hypersensitivity to thermal stimuli and increased firing of vlPAG neurons in allodynia and hyperalgesia that occur in this neuropathic pain model.
Collapse
|
41
|
St John Smith E. Advances in understanding nociception and neuropathic pain. J Neurol 2018; 265:231-238. [PMID: 29032407 PMCID: PMC5808094 DOI: 10.1007/s00415-017-8641-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
Abstract
Pain results from the activation of a subset of sensory neurones termed nociceptors and has evolved as a "detect and protect" mechanism. However, lesion or disease in the sensory system can result in neuropathic pain, which serves no protective function. Understanding how the sensory nervous system works and what changes occur in neuropathic pain are vital in identifying new therapeutic targets and developing novel analgesics. In recent years, technologies such as optogenetics and RNA-sequencing have been developed, which alongside the more traditional use of animal neuropathic pain models and insights from genetic variations in humans have enabled significant advances to be made in the mechanistic understanding of neuropathic pain.
Collapse
Affiliation(s)
- Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
42
|
Llewellyn-Smith IJ, Basbaum AI, Bráz JM. Long-term, dynamic synaptic reorganization after GABAergic precursor cell transplantation into adult mouse spinal cord. J Comp Neurol 2017; 526:480-495. [PMID: 29134656 DOI: 10.1002/cne.24346] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 12/14/2022]
Abstract
Transplanting embryonic precursors of GABAergic neurons from the medial ganglionic eminence (MGE) into adult mouse spinal cord ameliorates mechanical and thermal hypersensitivity in peripheral nerve injury models of neuropathic pain. Although Fos and transneuronal tracing studies strongly suggest that integration of MGE-derived neurons into host spinal cord circuits underlies recovery of function, the extent to which there is synaptic integration of the transplanted cells has not been established. Here, we used electron microscopic immunocytochemistry to assess directly integration of GFP-expressing MGE-derived neuronal precursors into dorsal horn circuitry in intact, adult mice with short- (5-6 weeks) or long-term (4-6 months) transplants. We detected GFP with pre-embedding avidin-biotin-peroxidase and GABA with post-embedding immunogold labeling. At short and long times post-transplant, we found host-derived synapses on GFP-immunoreactive MGE cells bodies and dendrites. The proportion of dendrites with synaptic input increased from 50% to 80% by 6 months. In all mice, MGE-derived terminals formed synapses with GFP-negative (host) cell bodies and dendrites and, unexpectedly, with some GFP-positive (i.e., MGE-derived) dendrites, possibly reflecting autoapses or cross talk among transplanted neurons. We also observed axoaxonic appositions between MGE and host terminals. Immunogold labeling for GABA confirmed that the transplanted cells were GABAergic and that some transplanted cells received an inhibitory GABAergic input. We conclude that transplanted MGE neurons retain their GABAergic phenotype and integrate dynamically into host-transplant synaptic circuits. Taken together with our previous electrophysiological analyses, we conclude that MGE cells are not GABA pumps, but alleviate pain and itch through synaptic release of GABA.
Collapse
Affiliation(s)
- Ida J Llewellyn-Smith
- Cardiovascular Medicine, Human Physiology and Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia.,Department of Anatomy, University of California San Francisco, San Francisco, California
| | - Allan I Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, California
| | - João M Bráz
- Department of Anatomy, University of California San Francisco, San Francisco, California
| |
Collapse
|
43
|
Functional Synaptic Integration of Forebrain GABAergic Precursors into the Adult Spinal Cord. J Neurosci 2017; 36:11634-11645. [PMID: 27852772 DOI: 10.1523/jneurosci.2301-16.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 01/17/2023] Open
Abstract
Spinal cord transplants of embryonic cortical GABAergic progenitor cells derived from the medial ganglionic eminence (MGE) can reverse mechanical hypersensitivity in the mouse models of peripheral nerve injury- and paclitaxel-induced neuropathic pain. Here, we used electrophysiology, immunohistochemistry, and electron microscopy to examine the extent to which MGE cells integrate into host circuitry and recapitulate endogenous inhibitory circuits. Whether the transplants were performed before or after nerve injury, the MGE cells developed into mature neurons and exhibited firing patterns characteristic of subpopulations of cortical and spinal cord inhibitory interneurons. Conversely, the transplanted cells preserved cortical morphological and neurochemical properties. We also observed a robust anatomical and functional synaptic integration of the transplanted cells into host circuitry in both injured and uninjured animals. The MGE cells were activated by primary afferents, including TRPV1-expressing nociceptors, and formed GABAergic, bicuculline-sensitive, synapses onto host neurons. Unexpectedly, MGE cells transplanted before injury prevented the development of mechanical hypersensitivity. Together, our findings provide direct confirmation of an extensive, functional synaptic integration of MGE cells into host spinal cord circuits. This integration underlies normalization of the dorsal horn inhibitory tone after injury and may be responsible for the prophylactic effect of preinjury transplants. SIGNIFICANCE STATEMENT Spinal cord transplants of embryonic cortical GABAergic interneuron progenitors from the medial ganglionic eminence (MGE), can overcome the mechanical hypersensitivity produced in different neuropathic pain models in adult mice. Here, we examined the properties of transplanted MGE cells and the extent to which they integrate into spinal cord circuitry. Using electrophysiology, immunohistochemistry, and electron microscopy, we demonstrate that MGE cells, whether transplanted before or after nerve injury, develop into inhibitory neurons, are activated by nociceptive primary afferents, and form GABA-A-mediated inhibitory synapses with the host. Unexpectedly, cells transplanted into naive spinal cord prevented the development of nerve-injury-induced mechanical hypersensitivity. These results illustrate the remarkable plasticity of adult spinal cord and the potential of cell-based therapies against neuropathic pain.
Collapse
|
44
|
Abstract
Over the past three decades the research on GABAB receptor biology and pharmacology in pain processing has been a fascinating experience. Norman Bowery's fundamental discovery of the existence of the GABAB receptor has led the way to the definition of GABAB molecular mechanisms; patterns of receptor expression in the peripheral and central nervous system; GABAB modulatory functions within the pain pathways. We are now harnessing this acquired knowledge to develop innovative approaches to the therapeutic management of chronic pain through allosteric modulation of the GABAB. Norman's legacy would be ultimately fulfilled by the development of novel analgesics that activate the GABAB receptor. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Marzia Malcangio
- Wolfson Centre for Age Related Diseases, King's College London, London SE1 1UL, UK.
| |
Collapse
|
45
|
Transplantation of GABAergic interneurons for cell-based therapy. PROGRESS IN BRAIN RESEARCH 2017; 231:57-85. [PMID: 28554401 DOI: 10.1016/bs.pbr.2016.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many neurological disorders stem from defects in or the loss of specific neurons. Neuron transplantation has tremendous clinical potential for central nervous system therapy as it may allow for the targeted replacement of those cells that are lost in diseases. Normally, most neurons are added during restricted periods of embryonic and fetal development. The permissive milieu of the developing brain promotes neuronal migration, neuronal differentiation, and synaptogenesis. Once this active period of neurogenesis ends, the chemical and physical environment of the brain changes dramatically. The brain parenchyma becomes highly packed with neuronal and glial processes, extracellular matrix, myelin, and synapses. The migration of grafted cells to allow them to home into target regions and become functionally integrated is a key challenge to neuronal transplantation. Interestingly, transplanted young telencephalic inhibitory interneurons are able to migrate, differentiate, and integrate widely throughout the postnatal brain. These grafted interneurons can also functionally modify local circuit activity. These features have facilitated the use of interneuron transplantation to study fundamental neurodevelopmental processes including cell migration, cell specification, and programmed neuronal cell death. Additionally, these cells provide a unique opportunity to develop interneuron-based strategies for the treatment of diseases linked to interneuron dysfunction and neurological disorders associated to circuit hyperexcitability.
Collapse
|
46
|
Akbar S, Subhan F, Karim N, Shahid M, Ahmad N, Ali G, Mahmood W, Fawad K. 6-Methoxyflavanone attenuates mechanical allodynia and vulvodynia in the streptozotocin-induced diabetic neuropathic pain. Biomed Pharmacother 2016; 84:962-971. [PMID: 27764759 DOI: 10.1016/j.biopha.2016.10.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Diabetic neuropathy is the most prevalent, persistent and debilitating complication of diabetes mellitus often coupled with vulvodynia that may present as an isolated symptom or as a part of constellation of other neuropathic abnormalities. OBJECTIVE Flavonoids have selective affinity for GABA receptors and 6-methoxyflavanone (6-MeOF) is a positive allosteric modulator of GABA responses at human recombinant GABAA receptors. GABAergic and opioidergic system inhibition have been shown to facilitate neuropathic pain. METHODS 6-MeOF was evaluated for analgesic effect in the hot plate test and streptozotocin-induced diabetic neuropathic pain in female rats using von Frey hairs. The possible involvement of opioidergic and GABAergic mechanisms was investigated using naloxone and pentylenetetrazole (PTZ) antagonists, respectively. The biodistribution of 6-MeOF in plasma and CNS was examined using a validated HPLC/UV analytical method. The binding affinity of 6-MeOF with opioid and GABA receptors was studied using molecular docking simulation approach. RESULTS 6-MeOF (10 and 30mg/kg) attenuated the acute phasic thermal nociception in the hot plate test while in the case of streptozotocin-induced diabetic neuropathy model, 6-MeOF (10 and 30mg/kg) produced static/dynamic anti-allodynic (increased paw withdrawal threshold and latency) as well as static/dynamic anti-vulvodynic effects (increased flinching response threshold and latency), when compared to the vehicle and standard gabapentin (75mg/kg). In silico studies depicted the preference of 6-MeOF for the delta- and kappa-opioid and GABAA receptors. Moreover, the pharmacokinetic profile revealed a quick appearance of 6-MeOF in the systemic circulation and brain areas with maximum concentration observed after 30min in the amygdala, brain stem and cerebral cortex. CONCLUSION 6-MeOF readily crosses the blood brain barrier and may be effective in attenuating the diabetes-induced allodynia as well as vulvodynia, probably through interactions with the GABAergic and opioidergic systems.
Collapse
Affiliation(s)
- Shehla Akbar
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan.
| | - Fazal Subhan
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan.
| | - Nasiara Karim
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan.
| | - Muhammad Shahid
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan.
| | - Nisar Ahmad
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan.
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan.
| | - Wajahat Mahmood
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan.
| | - Khwaja Fawad
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan.
| |
Collapse
|
47
|
Fandel TM, Trivedi A, Nicholas CR, Zhang H, Chen J, Martinez AF, Noble-Haeusslein LJ, Kriegstein AR. Transplanted Human Stem Cell-Derived Interneuron Precursors Mitigate Mouse Bladder Dysfunction and Central Neuropathic Pain after Spinal Cord Injury. Cell Stem Cell 2016; 19:544-557. [PMID: 27666009 DOI: 10.1016/j.stem.2016.08.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/24/2016] [Accepted: 08/19/2016] [Indexed: 12/19/2022]
Abstract
Neuropathic pain and bladder dysfunction represent significant quality-of-life issues for many spinal cord injury patients. Loss of GABAergic tone in the injured spinal cord may contribute to the emergence of these symptoms. Previous studies have shown that transplantation of rodent inhibitory interneuron precursors from the medial ganglionic eminence (MGE) enhances GABAergic signaling in the brain and spinal cord. Here we look at whether transplanted MGE-like cells derived from human embryonic stem cells (hESC-MGEs) can mitigate the pathological effects of spinal cord injury. We find that 6 months after transplantation into injured mouse spinal cords, hESC-MGEs differentiate into GABAergic neuron subtypes and receive synaptic inputs, suggesting functional integration into host spinal cord. Moreover, the transplanted animals show improved bladder function and mitigation of pain-related symptoms. Our results therefore suggest that this approach may be a valuable strategy for ameliorating the adverse effects of spinal cord injury.
Collapse
Affiliation(s)
- Thomas M Fandel
- Department of Neurological Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - Alpa Trivedi
- Department of Neurological Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Cory R Nicholas
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Neurona Therapeutics, 650 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Haoqian Zhang
- Department of Neurological Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jiadong Chen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Aida F Martinez
- Department of Neurological Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Linda J Noble-Haeusslein
- Department of Neurological Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Arnold R Kriegstein
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
48
|
Vardeh D, Mannion RJ, Woolf CJ. Toward a Mechanism-Based Approach to Pain Diagnosis. THE JOURNAL OF PAIN 2016; 17:T50-69. [PMID: 27586831 PMCID: PMC5012312 DOI: 10.1016/j.jpain.2016.03.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 12/13/2022]
Abstract
UNLABELLED The past few decades have witnessed a huge leap forward in our understanding of the mechanistic underpinnings of pain, in normal states where it helps protect from injury, and also in pathological states where pain evolves from a symptom reflecting tissue injury to become the disease itself. However, despite these scientific advances, chronic pain remains extremely challenging to manage clinically. Although the number of potential treatment targets has grown substantially and a strong case has been made for a mechanism-based and individualized approach to pain therapy, arguably clinicians are not much more advanced now than 20 years ago, in their capacity to either diagnose or effectively treat their patients. The gulf between pain research and pain management is as wide as ever. We are still currently unable to apply an evidence-based approach to chronic pain management that reflects mechanistic understanding, and instead, clinical practice remains an empirical and often unsatisfactory journey for patients, whose individual response to treatment cannot be predicted. In this article we take a common and difficult to treat pain condition, chronic low back pain, and use its presentation in clinical practice as a framework to highlight what is known about pathophysiological pain mechanisms and how we could potentially detect these to drive rational treatment choice. We discuss how present methods of assessment and management still fall well short, however, of any mechanism-based or precision medicine approach. Nevertheless, substantial improvements in chronic pain management could be possible if a more strategic and coordinated approach were to evolve, one designed to identify the specific mechanisms driving the presenting pain phenotype. We present an analysis of such an approach, highlighting the major problems in identifying mechanisms in patients, and develop a framework for a pain diagnostic ladder that may prove useful in the future, consisting of successive identification of 3 steps: pain state, pain mechanism, and molecular target. Such an approach could serve as the foundation for a new era of individualized/precision pain medicine. The Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION)-American Pain Society (APS) Pain Taxonomy (AAPT) includes pain mechanisms as 1 of the 5 dimensions that need to be considered when making a diagnostic classification. The diagnostic ladder proposed in this article is consistent with and an extension of the AAPT. PERSPECTIVE We discuss how identifying the specific mechanisms that operate in the nervous system to produce chronic pain in individual patients could provide the basis for a targeted and rational precision medicine approach to controlling pain, using chronic low back pain as our example.
Collapse
Affiliation(s)
- Daniel Vardeh
- Division of Pain Neurology, Department of Neurology and Anesthesia, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Richard J Mannion
- Department of Academic Neurosurgery, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Clifford J Woolf
- FM Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
49
|
Chohan MO, Moore H. Interneuron Progenitor Transplantation to Treat CNS Dysfunction. Front Neural Circuits 2016; 10:64. [PMID: 27582692 PMCID: PMC4987325 DOI: 10.3389/fncir.2016.00064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/02/2016] [Indexed: 11/13/2022] Open
Abstract
Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field.
Collapse
Affiliation(s)
- Muhammad O Chohan
- Department of Integrative Neuroscience, New York State Psychiatric Institute, New YorkNY, USA; Department of Psychiatry, Columbia University, New YorkNY, USA
| | - Holly Moore
- Department of Integrative Neuroscience, New York State Psychiatric Institute, New YorkNY, USA; Department of Psychiatry, Columbia University, New YorkNY, USA
| |
Collapse
|
50
|
Benarroch EE. Dorsal horn circuitry: Complexity and implications for mechanisms of neuropathic pain. Neurology 2016; 86:1060-9. [PMID: 26888981 DOI: 10.1212/wnl.0000000000002478] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|