1
|
Luján MÁ, Kim Y, Zhang LY, Cheer JF. Cannabinoid-based Pharmacology for the Management of Substance Use Disorders. Curr Top Behav Neurosci 2025. [PMID: 39813001 DOI: 10.1007/7854_2024_551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In the last two decades, the endocannabinoid system has emerged as a crucial modulator of motivation and emotional processing. Due to its widespread neuroanatomical distribution and characteristic retrograde signaling nature, cannabinoid type I receptors and their endogenous ligands finely orchestrate somatic and axon terminal activity of dopamine neurons. Owing to these unique features, this signaling system is a promising pharmacological target to ameliorate dopamine-mediated drug-seeking behaviors while circumventing the adverse side effects of, for instance, dopaminergic antagonists. Despite considerable preclinical efforts, an agreement on the efficacy of endocannabinoid-targeting compounds for treating drug substance use disorders in humans has not been reached. In the following chapter, we will summarize preclinical and clinical evidence addressing the therapeutic potential of cannabinoids and endocannabinoid-targeting compounds in substance use disorders. To bridge the gap between animal and clinical research, we capitalize on studies evaluating the impact of endocannabinoid-targeting compounds in relevant settings, such as the management of drug relapse. Finally, we discuss the therapeutic potential of novel cannabinoid compounds that hold promise for treating substance use disorders.
Collapse
Affiliation(s)
- M Á Luján
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Y Kim
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - L Y Zhang
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - J F Cheer
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Marquez JD, Dezanetti T, Walz R, de Carvalho CR. Cannabinoid for alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:301-322. [PMID: 39523058 DOI: 10.1016/bs.irn.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Several pieces of evidence have implicated the endocannabinoid system on dopaminergic mesolimbic brain reward, as well as the potential role of cannabinoid receptors CB1 and CB2 on modulation of reinforced properties of drug abuse and consequently to the treatment of substance use disorder, including alcoholism. Moreover, growing evidence has been proposed that cannabis or cannabinoid compounds may be helpful to treat alcohol use disorder (AUD). Cannabis is prevalent among individuals who also consume alcohol. While some authors reported that cannabis may be a promising candidate as a substitute medication for AUD, some studies have demonstrated that concomitant use of alcohol and cannabis may increase the risk of adverse outcomes. Considering that advances in the legalization and decriminalization movements regarding cannabis have led to increased availability worldwide, the current chapter aims to provide evidence on the benefits and risks of combining alcohol and cannabis, as well as the potential therapeutic use of cannabinoid compounds in treating AUD.
Collapse
Affiliation(s)
- Júlia Dalfovo Marquez
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Talissa Dezanetti
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Roger Walz
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil; Departamento de Ciências Clínica Médica, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Cristiane Ribeiro de Carvalho
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil; Departamento de Patologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.
| |
Collapse
|
3
|
Buechler HM, Sumi M, Madhuranthakam IM, Donegan C, DiGiorgio F, Acosta AA, Uribe S, Rahman MA, Sorbello A, Fischer BD, Keck TM. The CB1 negative allosteric modulator PSNCBAM-1 reduces ethanol self-administration via a nonspecific hypophagic effect. Pharmacol Biochem Behav 2024; 240:173776. [PMID: 38679080 PMCID: PMC11373428 DOI: 10.1016/j.pbb.2024.173776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/22/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Alcohol use disorder (AUD) affects >15 million people in the United States. Current pharmacotherapeutic treatments for AUD are only modestly effective, necessitating the identification of new targets for medications development. The cannabinoid receptor type 1 (CB1) has been a target of interest for the development of medications for substance use disorders and other compulsive disorders. However, CB1 antagonists/inverse agonists (e.g., rimonabant) have severe side effects that limit their clinical utility, including anxiety, depression, and suicide. Recent development of CB1 negative allosteric modulators (NAMs), including PSNCBAM-1, may provide an alternative mechanism of attenuating CB1 signaling with reduced side effects. PSNCBAM-1 has not yet been evaluated for effects in models of AUD. In this study, we investigated the effects of the CB1 NAM, PSNCBAM-1, in rodent models of AUD using adult male mice. PSNCBAM-1 dose-dependently attenuated oral ethanol self-administration (8 % w/v ethanol in water), significantly reducing ethanol rewards at a dose of 30 mg/kg, but not at 10 or 18 mg/kg. PSNCBAM-1 also dose-dependently attenuated palatable food self-administration (diluted vanilla Ensure), significantly reducing food rewards at 18 and 30 mg/kg PSNCBAM-1. PSNCBAM-1 did not affect conditioned place preference for 2 g/kg ethanol. These results suggest PSNCBAM-1 reduces ethanol-taking behavior via a nonspecific hypophagic effect and does not reduce the rewarding effects of ethanol.
Collapse
Affiliation(s)
| | - Mousumi Sumi
- Rowan University, Glassboro, NJ 08028, United States
| | | | | | | | | | - Sarah Uribe
- Rowan University, Glassboro, NJ 08028, United States
| | | | | | - Bradford D Fischer
- Cooper Medical School of Rowan University, Camden, NJ 08103, United States
| | - Thomas M Keck
- Rowan University, Glassboro, NJ 08028, United States.
| |
Collapse
|
4
|
De Aquino JP, Sloan ME, Nunes JC, Costa GPA, Katz JL, de Oliveira D, Ra J, Tang VM, Petrakis IL. Alcohol Use Disorder and Chronic Pain: An Overlooked Epidemic. Am J Psychiatry 2024; 181:391-402. [PMID: 38706339 PMCID: PMC11521207 DOI: 10.1176/appi.ajp.20230886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Alcohol use disorder (AUD) and chronic pain disorders are pervasive, multifaceted medical conditions that often co-occur. However, their comorbidity is often overlooked, despite its prevalence and clinical relevance. Individuals with AUD are more likely to experience chronic pain than the general population. Conversely, individuals with chronic pain commonly alleviate their pain with alcohol, which may escalate into AUD. This narrative review discusses the intricate relationship between AUD and chronic pain. Based on the literature available, the authors present a theoretical model explaining the reciprocal relationship between AUD and chronic pain across alcohol intoxication and withdrawal. They propose that the use of alcohol for analgesia rapidly gives way to acute tolerance, triggering the need for higher levels of alcohol consumption. Attempts at abstinence lead to alcohol withdrawal syndrome and hyperalgesia, increasing the risk of relapse. Chronic neurobiological changes lead to preoccupation with pain and cravings for alcohol, further entrenching both conditions. To stimulate research in this area, the authors review methodologies to improve the assessment of pain in AUD studies, including self-report and psychophysical methods. Further, they discuss pharmacotherapies and psychotherapies that may target both conditions, potentially improving both AUD and chronic pain outcomes simultaneously. Finally, the authors emphasize the need to manage both conditions concurrently, and encourage both the scientific community and clinicians to ensure that these intertwined conditions are not overlooked given their clinical significance.
Collapse
Affiliation(s)
- Joao P De Aquino
- Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (DeAquino, Nunes, Ra, Petrakis); Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, Conn. (De Aquino, Ra); VA Connecticut Healthcare System, West Haven, Conn. (De Aquino, Petrakis); Addictions Division, Centre for Addiction and Mental Health, Toronto (Sloan, Katz, Tang); Division of Neurosciences and Clinical Translation, Department of Psychiatry, University of Toronto (Sloan); Department of Pharmacology & Toxicology, University of Toronto (Sloan); Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Sloan); Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto (Sloan); Institute of Medical Science, University of Toronto (Sloan, Tang); Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto (Sloan, Tang); University of Ribeirao Preto, Ribeirao Preto, São Paulo, Brazil (Costa); St. Elizabeth's Hospital, Washington, D.C. (De Oliveira)
| | - Matthew E Sloan
- Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (DeAquino, Nunes, Ra, Petrakis); Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, Conn. (De Aquino, Ra); VA Connecticut Healthcare System, West Haven, Conn. (De Aquino, Petrakis); Addictions Division, Centre for Addiction and Mental Health, Toronto (Sloan, Katz, Tang); Division of Neurosciences and Clinical Translation, Department of Psychiatry, University of Toronto (Sloan); Department of Pharmacology & Toxicology, University of Toronto (Sloan); Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Sloan); Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto (Sloan); Institute of Medical Science, University of Toronto (Sloan, Tang); Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto (Sloan, Tang); University of Ribeirao Preto, Ribeirao Preto, São Paulo, Brazil (Costa); St. Elizabeth's Hospital, Washington, D.C. (De Oliveira)
| | - Julio C Nunes
- Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (DeAquino, Nunes, Ra, Petrakis); Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, Conn. (De Aquino, Ra); VA Connecticut Healthcare System, West Haven, Conn. (De Aquino, Petrakis); Addictions Division, Centre for Addiction and Mental Health, Toronto (Sloan, Katz, Tang); Division of Neurosciences and Clinical Translation, Department of Psychiatry, University of Toronto (Sloan); Department of Pharmacology & Toxicology, University of Toronto (Sloan); Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Sloan); Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto (Sloan); Institute of Medical Science, University of Toronto (Sloan, Tang); Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto (Sloan, Tang); University of Ribeirao Preto, Ribeirao Preto, São Paulo, Brazil (Costa); St. Elizabeth's Hospital, Washington, D.C. (De Oliveira)
| | - Gabriel P A Costa
- Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (DeAquino, Nunes, Ra, Petrakis); Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, Conn. (De Aquino, Ra); VA Connecticut Healthcare System, West Haven, Conn. (De Aquino, Petrakis); Addictions Division, Centre for Addiction and Mental Health, Toronto (Sloan, Katz, Tang); Division of Neurosciences and Clinical Translation, Department of Psychiatry, University of Toronto (Sloan); Department of Pharmacology & Toxicology, University of Toronto (Sloan); Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Sloan); Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto (Sloan); Institute of Medical Science, University of Toronto (Sloan, Tang); Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto (Sloan, Tang); University of Ribeirao Preto, Ribeirao Preto, São Paulo, Brazil (Costa); St. Elizabeth's Hospital, Washington, D.C. (De Oliveira)
| | - Jasmin L Katz
- Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (DeAquino, Nunes, Ra, Petrakis); Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, Conn. (De Aquino, Ra); VA Connecticut Healthcare System, West Haven, Conn. (De Aquino, Petrakis); Addictions Division, Centre for Addiction and Mental Health, Toronto (Sloan, Katz, Tang); Division of Neurosciences and Clinical Translation, Department of Psychiatry, University of Toronto (Sloan); Department of Pharmacology & Toxicology, University of Toronto (Sloan); Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Sloan); Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto (Sloan); Institute of Medical Science, University of Toronto (Sloan, Tang); Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto (Sloan, Tang); University of Ribeirao Preto, Ribeirao Preto, São Paulo, Brazil (Costa); St. Elizabeth's Hospital, Washington, D.C. (De Oliveira)
| | - Debora de Oliveira
- Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (DeAquino, Nunes, Ra, Petrakis); Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, Conn. (De Aquino, Ra); VA Connecticut Healthcare System, West Haven, Conn. (De Aquino, Petrakis); Addictions Division, Centre for Addiction and Mental Health, Toronto (Sloan, Katz, Tang); Division of Neurosciences and Clinical Translation, Department of Psychiatry, University of Toronto (Sloan); Department of Pharmacology & Toxicology, University of Toronto (Sloan); Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Sloan); Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto (Sloan); Institute of Medical Science, University of Toronto (Sloan, Tang); Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto (Sloan, Tang); University of Ribeirao Preto, Ribeirao Preto, São Paulo, Brazil (Costa); St. Elizabeth's Hospital, Washington, D.C. (De Oliveira)
| | - Jocelyn Ra
- Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (DeAquino, Nunes, Ra, Petrakis); Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, Conn. (De Aquino, Ra); VA Connecticut Healthcare System, West Haven, Conn. (De Aquino, Petrakis); Addictions Division, Centre for Addiction and Mental Health, Toronto (Sloan, Katz, Tang); Division of Neurosciences and Clinical Translation, Department of Psychiatry, University of Toronto (Sloan); Department of Pharmacology & Toxicology, University of Toronto (Sloan); Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Sloan); Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto (Sloan); Institute of Medical Science, University of Toronto (Sloan, Tang); Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto (Sloan, Tang); University of Ribeirao Preto, Ribeirao Preto, São Paulo, Brazil (Costa); St. Elizabeth's Hospital, Washington, D.C. (De Oliveira)
| | - Victor M Tang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (DeAquino, Nunes, Ra, Petrakis); Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, Conn. (De Aquino, Ra); VA Connecticut Healthcare System, West Haven, Conn. (De Aquino, Petrakis); Addictions Division, Centre for Addiction and Mental Health, Toronto (Sloan, Katz, Tang); Division of Neurosciences and Clinical Translation, Department of Psychiatry, University of Toronto (Sloan); Department of Pharmacology & Toxicology, University of Toronto (Sloan); Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Sloan); Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto (Sloan); Institute of Medical Science, University of Toronto (Sloan, Tang); Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto (Sloan, Tang); University of Ribeirao Preto, Ribeirao Preto, São Paulo, Brazil (Costa); St. Elizabeth's Hospital, Washington, D.C. (De Oliveira)
| | - Ismene L Petrakis
- Department of Psychiatry, Yale University School of Medicine, New Haven, Conn. (DeAquino, Nunes, Ra, Petrakis); Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, Conn. (De Aquino, Ra); VA Connecticut Healthcare System, West Haven, Conn. (De Aquino, Petrakis); Addictions Division, Centre for Addiction and Mental Health, Toronto (Sloan, Katz, Tang); Division of Neurosciences and Clinical Translation, Department of Psychiatry, University of Toronto (Sloan); Department of Pharmacology & Toxicology, University of Toronto (Sloan); Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Sloan); Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto (Sloan); Institute of Medical Science, University of Toronto (Sloan, Tang); Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto (Sloan, Tang); University of Ribeirao Preto, Ribeirao Preto, São Paulo, Brazil (Costa); St. Elizabeth's Hospital, Washington, D.C. (De Oliveira)
| |
Collapse
|
5
|
Raghav JG, Kumar H, Ji L, Vemuri K, Makriyannis A, Suh J, Leonard MZ, Dang V, Ty C, Marandola S, Kane N, Witt AS, Shaqour S, Miczek KA. The neutral CB1 antagonist AM6527 reduces ethanol seeking, binge-like consumption, reinforcing, and withdrawal effects in male and female mice. Psychopharmacology (Berl) 2024; 241:427-443. [PMID: 38001264 DOI: 10.1007/s00213-023-06500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
RATIONALE Alcohol use disorder (AUD) is a debilitating physiological and psychiatric disorder which affects individuals globally. The current pharmacological interventions to treat AUD are limited, and hence there is an urgent need for a novel pharmacological therapy which can be effective and safe across the population. OBJECTIVE We aimed to investigate a novel neutral cannabinoid receptor-1 (CB1R) antagonist, AM6527, in several preclinical models of ethanol consumption using male and female C57BL6/J mice. METHODS Independent groups of male and female mice were subjected to repeated cycles of drinking in the dark (DID), or intermittent access to alcohol (IAA) procedures. Twenty minutes prior to ethanol access in each procedure, animals were treated with intraperitoneal injections of either 1, 3, and 10 mg/kg of AM6527 or its respective vehicle. Acamprosate (100, 200, 300, and 400 mg/kg) or its respective vehicle was used as a positive control. Separate groups of male mice were subjected to a chain schedule of ethanol reinforcement to gain access to ethanol wherein completion of a fixed interval (FI; 5 min) schedule (link 1: "Seeking") was reinforced with continuous access to ethanol (fixed ratio; FR1) for up to 1.8 g/kg (link 2: "consumption"). All the animals were treated with 1, 3, and 10 mg/kg of AM6527 or its respective vehicle 20 mins prior to the start of the FI chain of the procedure. Separately, AM6527 was also evaluated in male and female mice undergoing acute ethanol withdrawal following 8 weeks of intermittent or continuous access to 20% ethanol drinking. RESULTS In both DID and IAA procedures, AM6527 reduced ethanol consumption in a dose-related manner in both male and female mice. AM6527 produced no tolerance in the DID procedure; mice treated with 3 mg/kg of AM6527 for 3 weeks continuously drank significantly smaller amounts of ethanol as compared to vehicle-treated mice over a period of three DID cycles. Moreover, in the IAA procedure, AM6527 caused an increase in water intake over the 24-h period. Acamprosate transiently reduced ethanol intake in male mice in both the DID and the IAA procedures but failed to produce any significant effect in female mice. AM6527 also produced a decrease in the FI responding ("ethanol seeking") in animals trained to self-administer ethanol. Lastly, AM6527 mitigated neurological withdrawal signs, i.e., handling induced convulsions (HIC) in mice undergoing acute ethanol withdrawal. CONCLUSIONS Current findings support previous studies with CB1R neutral antagonist in reducing voluntary ethanol intake and seeking behavior. Based on results shown in this work, AM6527 can be developed as a first in class CB1R neutral antagonist to treat AUD in both males and females.
Collapse
Affiliation(s)
- Jimit Girish Raghav
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Hritik Kumar
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Lipin Ji
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Kiran Vemuri
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
| | - Junghyup Suh
- Division of Depression and Anxiety Disorders, Department of Psychiatry, Harvard Medical School, Mclean Hospital, Belmont, MA, 02478, USA
| | - Michael Z Leonard
- Dept. of Psychology, Tufts University, 530 Boston Ave (Bacon Hall), Medford, MA, 02155, USA
| | - Vivi Dang
- Dept. of Psychology, Tufts University, 530 Boston Ave (Bacon Hall), Medford, MA, 02155, USA
| | - Chelsea Ty
- Dept. of Psychology, Tufts University, 530 Boston Ave (Bacon Hall), Medford, MA, 02155, USA
| | - Stephen Marandola
- Dept. of Psychology, Tufts University, 530 Boston Ave (Bacon Hall), Medford, MA, 02155, USA
| | - Natalie Kane
- Dept. of Psychology, Tufts University, 530 Boston Ave (Bacon Hall), Medford, MA, 02155, USA
| | - Annika S Witt
- Dept. of Psychology, Tufts University, 530 Boston Ave (Bacon Hall), Medford, MA, 02155, USA
| | - Samar Shaqour
- Dept. of Psychology, Tufts University, 530 Boston Ave (Bacon Hall), Medford, MA, 02155, USA
| | - Klaus A Miczek
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
- Dept. of Psychology, Tufts University, 530 Boston Ave (Bacon Hall), Medford, MA, 02155, USA.
- Dept. of Neuroscience, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
6
|
Hill MN, Haney M, Hillard CJ, Karhson DS, Vecchiarelli HA. The endocannabinoid system as a putative target for the development of novel drugs for the treatment of psychiatric illnesses. Psychol Med 2023; 53:7006-7024. [PMID: 37671673 PMCID: PMC10719691 DOI: 10.1017/s0033291723002465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023]
Abstract
Cannabis is well established to impact affective states, emotion and perceptual processing, primarily through its interactions with the endocannabinoid system. While cannabis use is quite prevalent in many individuals afflicted with psychiatric illnesses, there is considerable controversy as to whether cannabis may worsen these conditions or provide some form of therapeutic benefit. The development of pharmacological agents which interact with components of the endocannabinoid system in more localized and discrete ways then via phytocannabinoids found in cannabis, has allowed the investigation if direct targeting of the endocannabinoid system itself may represent a novel approach to treat psychiatric illness without the potential untoward side effects associated with cannabis. Herein we review the current body of literature regarding the various pharmacological tools that have been developed to target the endocannabinoid system, their impact in preclinical models of psychiatric illness and the recent data emerging of their utilization in clinical trials for psychiatric illnesses, with a specific focus on substance use disorders, trauma-related disorders, and autism. We highlight several candidate drugs which target endocannabinoid function, particularly inhibitors of endocannabinoid metabolism or modulators of cannabinoid receptor signaling, which have emerged as potential candidates for the treatment of psychiatric conditions, particularly substance use disorder, anxiety and trauma-related disorders and autism spectrum disorders. Although there needs to be ongoing clinical work to establish the potential utility of endocannabinoid-based drugs for the treatment of psychiatric illnesses, the current data available is quite promising and shows indications of several potential candidate diseases which may benefit from this approach.
Collapse
Affiliation(s)
- Matthew N. Hill
- Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, Hotchkiss Brain Institute and The Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada
| | - Margaret Haney
- Department of Psychiatry, New York State Psychiatric Institute and Columbia University Irving Medical Center, New York, USA
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, USA
| | - Debra S. Karhson
- Department of Psychology, University of New Orleans, New Orleans, USA
| | | |
Collapse
|
7
|
Gharbi KA, Bonomo YA, Hallinan CM. Evidence from Human Studies for Utilising Cannabinoids for the Treatment of Substance-Use Disorders: A Scoping Review with a Systematic Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4087. [PMID: 36901098 PMCID: PMC10001982 DOI: 10.3390/ijerph20054087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 06/08/2023]
Abstract
Substance-use disorders are pervasive, comorbid with a plethora of disease and possess limited treatment options. Medicinal cannabinoids have been proposed as a novel potential treatment based on preclinical/animal trials. The objective of this study was to examine the efficacy and safety of potential therapeutics targeting the endocannabinoid system in the treatment of substance-use disorders. We performed a scoping review using a systematic approach of systematic reviews, narrative reviews, and randomised control trials that utilised cannabinoids as treatment for substance-use disorders. For this scoping review we used the PRISMA guidelines, a framework for systematic reviews and meta-analyses, to inform our methodology. We conducted a manual search of Medline, Embase, and Scopus databases in July 2022. Of the 253 results returned by the databases, 25 studies including reviews were identified as relevant, from which 29 randomised controlled trials were derived and analysed via a primary study decomposition. This review captured a small volume of highly heterogenous primary literature investing the therapeutic effect of cannabinoids for substance-use disorders. The most promising findings appeared to be for cannabis-use disorder. Cannabidiol appeared to be the cannabinoid showing the most promise for the treatment of multiple-substance-use disorders.
Collapse
Affiliation(s)
- Kayvan Ali Gharbi
- Department of General Practice, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yvonne Ann Bonomo
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- St Vincent’s Health—Department of Addiction Medicine, Fitzroy, VIC 3065, Australia
| | - Christine Mary Hallinan
- Department of General Practice, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Health & Biomedical Research Information Technology Unit (HaBIC R2), Department of General Practice, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
8
|
Royse SK, Lopresti BJ, Mathis CA, Tollefson S, Narendran R. Beyond monoamines: II. Novel applications for PET imaging in psychiatric disorders. J Neurochem 2023; 164:401-443. [PMID: 35716057 DOI: 10.1111/jnc.15657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
Early applications of positron emission tomography (PET) in psychiatry sought to identify derangements of cerebral blood flow and metabolism. The need for more specific neurochemical imaging probes was soon evident, and these probes initially targeted the sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. For nearly 30 years, the centrality of monoamine dysfunction in psychiatric disorders drove the development of an armamentarium of monoaminergic PET radiopharmaceuticals and imaging methodologies. However, continued investments in monoamine-enhancing drug development realized only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely parallelled drug development priorities, resulting in the development of new PET imaging agents for non-monoamine targets. In part two of this review, we survey clinical research studies using the novel targets and radiotracers described in part one across major psychiatric application areas such as substance use disorders, anxiety disorders, eating disorders, personality disorders, mood disorders, and schizophrenia. Important limitations of the studies described are discussed, as well as key methodologic issues, challenges to the field, and the status of clinical trials seeking to exploit these targets for novel therapeutics.
Collapse
Affiliation(s)
- Sarah K Royse
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah Tollefson
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Fischler PV, Soyka M, Seifritz E, Mutschler J. Off-label and investigational drugs in the treatment of alcohol use disorder: A critical review. Front Pharmacol 2022; 13:927703. [PMID: 36263121 PMCID: PMC9574013 DOI: 10.3389/fphar.2022.927703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Compounds known to be successful in the treatment of alcohol use disorder include the aversive agent, Disulfiram, the glutamatergic NMDA receptor antagonist, Acamprosate, and the opioid receptor antagonists, Naltrexone and Nalmefene. Although all four are effective in maintaining abstinence or reduction of alcohol consumption, only a small percentage of patients receive pharmacological treatment. In addition, many other medications have been investigated for their therapeutic potential in the treatment of alcohol use disorder. In this review we summarize and compare Baclofen, Gabapentin, Topiramate, Ondansetron, Varenicline, Aripiprazole, Quetiapine, Clozapine, Antidepressants, Lithium, Neuropeptide Y, Neuropeptide S, Corticotropin-releasing factor antagonists, Oxytocin, PF-05190457, Memantine, Ifenprodil, Samidorphan, Ondelopran, ABT-436, SSR149415, Mifepristone, Ibudilast, Citicoline, Rimonabant, Surinabant, AM4113 and Gamma-hydroxybutyrate While some have shown promising results in the treatment of alcohol use disorder, others have disappointed and should be excluded from further investigation. Here we discuss the most promising results and highlight medications that deserve further preclinical or clinical study. Effective, patient-tailored treatment will require greater understanding provided by many more preclinical and clinical studies.
Collapse
Affiliation(s)
- Pascal Valentin Fischler
- Department for Gynecology and Obstetrics, Women’s Clinic Lucerne, Cantonal Hospital of Lucerne, Lucerne, Switzerland
- *Correspondence: Pascal Valentin Fischler,
| | - Michael Soyka
- Psychiatric Hospital University of Munich, Munich, Germany
| | - Erich Seifritz
- Director of the Clinic for Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Clinic Zürich, Zürich, Switzerland
| | | |
Collapse
|
10
|
Sloan ME, Grant CW, Stangl BL, Klepp TD, Brewton HW, Cinar R, Kunos G, Ramchandani VA. The effects of acute alcohol administration on circulating endocannabinoid levels in humans. Addict Biol 2022; 27:e13197. [PMID: 36001429 PMCID: PMC9413364 DOI: 10.1111/adb.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
Several lines of evidence suggest that endocannabinoid signalling may influence alcohol consumption. Preclinical studies have found that pharmacological blockade of cannabinoid receptor 1 leads to reductions in alcohol intake. Furthermore, variations in endocannabinoid metabolism between individuals may be associated with the presence and severity of alcohol use disorder. However, little is known about the acute effects of alcohol on the endocannabinoid system in humans. In this study, we evaluated the effect of acute alcohol administration on circulating endocannabinoid levels by analysing data from two highly-controlled alcohol administration experiments. In the first within-subjects experiment, 47 healthy participants were randomized to receive alcohol and placebo in a counterbalanced order. Alcohol was administered using an intravenous clamping procedure such that each participant attained a nearly identical breath alcohol concentration of 0.05%, maintained over 3 h. In the second experiment, 23 healthy participants self-administered alcohol intravenously; participants had control over their exposure throughout the paradigm. In both experiments, circulating concentrations of two endocannabinoids, N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), were measured at baseline and following alcohol exposure. During the intravenous clamping procedure, acute alcohol administration reduced circulating AEA but not 2-AG levels when compared to placebo. This finding was confirmed in the self-administration paradigm, where alcohol reduced AEA levels in an exposure-dependent manner. Future studies should seek to determine whether alcohol administration has similar effects on brain endocannabinoid signalling. An improved understanding of the bidirectional relationship between endocannabinoid signalling and alcohol intake may deepen our understanding of the aetiology and repercussions of alcohol use disorder.
Collapse
Affiliation(s)
- Matthew E Sloan
- Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Division of Neurosciences and Clinical Translation, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Caroline W Grant
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Bethany L Stangl
- Human Psychopharmacology Laboratory, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Timothy D Klepp
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Honoree W Brewton
- Human Psychopharmacology Laboratory, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Vijay A Ramchandani
- Human Psychopharmacology Laboratory, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Navarro D, Manzanares J. CB2 Receptor Involvement in the Treatment of Substance Use Disorders. Biomolecules 2021; 11:1556. [PMID: 34827554 PMCID: PMC8615453 DOI: 10.3390/biom11111556] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
The pharmacological modulation of the cannabinoid receptor 2 (CB2r) has emerged as a promising potential therapeutic option in addiction. The purpose of this review was to determine the functional involvement of CB2r in the effects produced by drugs of abuse at the central nervous system (CNS) level by assessing evidence from preclinical and clinical studies. In rodents, several reports suggest the functional involvement of CB2r in the effects produced by drugs of abuse such as alcohol, cocaine, or nicotine. In addition, the discovery of CB2r in brain areas that are part of the reward system supports the relevance of CB2r in the field of addiction. Interestingly, animal studies support that the CB2r regulates anxiety and depression behavioral traits. Due to its frequent comorbidity with neuropsychiatric disorders, these pharmacological actions may be of great interest in managing SUD. Preliminary clinical trials are focused on exploring the therapeutic potential of modulating CB2r in treating addictive disorders. These promising results support the development of new pharmacological tools regulating the CB2r that may help to increase the therapeutic success in the management of SUD.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| |
Collapse
|
12
|
Daldegan-Bueno D, Maia LO, Glass M, Jutras-Aswad D, Fischer B. Co-exposure of cocaine and cannabinoids and its association with select biological, behavioural and health outcomes: A systematic scoping review of multi-disciplinary studies. Eur Neuropsychopharmacol 2021; 51:106-131. [PMID: 34273801 DOI: 10.1016/j.euroneuro.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/18/2023]
Abstract
Cocaine use entails severe health- and social-related harms globally. Treatment options for cocaine dependence are highly limited. Benefits of cannabinoids for addiction have been documented, making it opportune to examine existing data on the possible outcomes associated with cannabinoids and cocaine co-use. We conducted a systematic scoping review following the PRISMA guidelines of peer-reviewed, English-language studies published from 2000 to 2021 in four databases (Medline, Web-of-Science, CINAHL Plus, and PsycInfo), assessing the co-exposure of cannabis/cannabinoids with cocaine on behavioural, biological or health outcomes. Both quantitative and qualitative, as well as humans and pre-clinical animals' studies (n=46) were included. Pre-clinical studies (n=19) showed mostly protective effects of cannabidiol (CBD) administration on animal models of addiction (e.g., cocaine-craving, -relapse, and -withdrawal) and cocaine-toxicity. Tetrahydrocannabinol (THC) had more inconsistent results, with both protective and counter-protective effects. Human studies (n=27) were more heterogeneous and assessed natural ongoing cannabis and cocaine use or dependence. Quantitative-based studies showed mostly enhanced harms in several outcomes (e.g., cocaine use, mental health); two available clinical trials found no effect upon CBD administration on cocaine-related treatment outcomes. Qualitative data-based studies reported cannabis use as a substitute for or to alleviate harms of crack-cocaine use. While pre-clinical studies suggest a potential of cannabinoids, especially CBD, to treat cocaine addiction, the few trials conducted in humans found no benefits. Cannabis co-use by cocaine users commonly presents a risk factor, entailing enhanced harms for users. More rigorous, controlled trials are still necessary to investigate cannabinoids' potential considering pre-clinical findings and reported benefits from specific drug users.
Collapse
Affiliation(s)
- Dimitri Daldegan-Bueno
- Schools of Population Health and Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lucas O Maia
- Centre for Applied Research in Mental Health & Addiction, Simon Fraser University, Vancouver, Canada
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Otago, New Zealand
| | - Didier Jutras-Aswad
- Centre de Recherche, Centre Hospitalier Universitaire de Universite de Montreal (CHUM), Montreal, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Benedikt Fischer
- Schools of Population Health and Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Applied Research in Mental Health & Addiction, Simon Fraser University, Vancouver, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Psychiatry, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil.
| |
Collapse
|
13
|
Winters ND, Bedse G, Astafyev AA, Patrick TA, Altemus M, Morgan AJ, Mukerjee S, Johnson KD, Mahajan VR, Uddin MJ, Kingsley PJ, Centanni SW, Siciliano CA, Samuels DC, Marnett LJ, Winder DG, Patel S. Targeting diacylglycerol lipase reduces alcohol consumption in preclinical models. J Clin Invest 2021; 131:146861. [PMID: 34292886 PMCID: PMC8409586 DOI: 10.1172/jci146861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Alcohol use disorder (AUD) is associated with substantial morbidity, mortality, and societal cost, and pharmacological treatment options for AUD are limited. The endogenous cannabinoid (eCB) signaling system is critically involved in reward processing and alcohol intake is positively correlated with release of the eCB ligand 2-Arachidonoylglycerol (2-AG) within reward neurocircuitry. Here we show that genetic and pharmacological inhibition of diacylglycerol lipase (DAGL), the rate limiting enzyme in the synthesis of 2-AG, reduces alcohol consumption in a variety of preclinical models ranging from a voluntary free-access model to aversion resistant-drinking and dependence-like drinking induced via chronic intermittent ethanol vapor exposure in mice. DAGL inhibition during either chronic alcohol consumption or protracted withdrawal was devoid of anxiogenic and depressive-like behavioral effects. Lastly, DAGL inhibition also prevented ethanol-induced suppression of GABAergic transmission onto midbrain dopamine neurons, providing mechanistic insight into how DAGL inhibition could affect alcohol reward. These data suggest reducing 2-AG signaling via inhibition of DAGL could represent an effective approach to reduce alcohol consumption across the spectrum of AUD severity.
Collapse
Affiliation(s)
- Nathan D. Winters
- Department of Psychiatry and Behavioral Sciences
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
| | - Gaurav Bedse
- Department of Psychiatry and Behavioral Sciences
- Vanderbilt Center for Addiction Research
| | | | | | | | | | - Snigdha Mukerjee
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
| | | | | | - Md Jashim Uddin
- Departments of Biochemistry and Chemistry, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology
| | - Philip J. Kingsley
- Departments of Biochemistry and Chemistry, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology
| | - Samuel W. Centanni
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology and Biophysics
- Vanderbilt Brain Institute, and
| | - Cody A. Siciliano
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
- Vanderbilt Brain Institute, and
| | - David C. Samuels
- Department of Molecular Physiology and Biophysics
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lawrence J. Marnett
- Department of Pharmacology
- Departments of Biochemistry and Chemistry, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology and Biophysics
- Vanderbilt Brain Institute, and
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
- Department of Molecular Physiology and Biophysics
- Vanderbilt Brain Institute, and
| |
Collapse
|
14
|
Fu R, Tang Y, Li W, Ren Z, Li D, Zheng J, Zuo W, Chen X, Zuo QK, Tam KL, Zou Y, Bachmann T, Bekker A, Ye JH. Endocannabinoid signaling in the lateral habenula regulates pain and alcohol consumption. Transl Psychiatry 2021; 11:220. [PMID: 33854035 PMCID: PMC8046806 DOI: 10.1038/s41398-021-01337-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/10/2021] [Accepted: 03/31/2021] [Indexed: 02/02/2023] Open
Abstract
Hyperalgesia, which often occurs in people suffering from alcohol use disorder, may drive excessive drinking and relapse. Emerging evidence suggests that the lateral habenula (LHb) may play a significant role in this condition. Previous research suggests that endocannabinoid signaling (eCBs) is involved in drug addiction and pain, and that the LHb contains core components of the eCBs machinery. We report here our findings in rats subjected to chronic ethanol vapor exposure. We detected a substantial increase in endocannabinoid-related genes, including Mgll and Daglb mRNA levels, as well as monoacylglycerol lipase (MAGL) protein levels, as well as a decrease in Cnr1 mRNA and type-1 cannabinoid receptor (CB1R) protein levels, in the LHb of ethanol-exposed rats. Also, rats withdrawing from ethanol exposure displayed hypersensitivity to mechanical and thermal nociceptive stimuli. Conversely, intra-LHb injection of the MAGL inhibitor JZL184, the fatty acid amide hydrolase inhibitor URB597, or the CB1R agonist WIN55,212-2 produced an analgesic effect, regardless of ethanol or air exposure history, implying that alcohol exposure does not change eCB pain responses. Intra-LHb infusion of the CB1R inverse agonist rimonabant eliminated the analgesic effect of these chemicals. Rimonabant alone elicited hyperalgesia in the air-, but not ethanol-exposed animals. Moreover, intra-LHb JZL184, URB597, or WIN55,212-2 reduced ethanol consumption in both homecages and operant chambers in rats exposed to ethanol vapor but not air. These findings suggest that LHb eCBs play a pivotal role in nociception and facilitating LHb eCBs may attenuate pain in drinkers.
Collapse
Affiliation(s)
- Rao Fu
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ying Tang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhiheng Ren
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ding Li
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jiayi Zheng
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Xuejun Chen
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Qi Kang Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Kelsey L Tam
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Yucong Zou
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Thomas Bachmann
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
15
|
Niemela G, Terry GE. Contribution of Fatty Acid Amide Hydrolase to Alcohol Use Disorder: A Systematic Review. Cannabis Cannabinoid Res 2021; 6:105-118. [PMID: 33989054 DOI: 10.1089/can.2020.0158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose: Recent research has suggested that chronic alcohol exposure induces changes in the endocannabinoid system within the central nervous system and therefore could be an attractive target for better understanding and treating alcohol use disorder (AUD). Much of this research has centered around the CB1 receptor and its endogenous partial agonist, the endocannabinoid anandamide, as the CB1 receptor is densely expressed in brain regions involved in development and maintenance of addictive behaviors. In addition, recent evidence has suggested that chronic alcohol exposure induces changes in the modulation of endocannabinoid concentration and suggests that these changes may contribute to the motivation to abuse alcohol. Therefore, we performed a systematic literature review to evaluate how fatty acid amide hydrolase (FAAH), an enzyme that degrades anandamide, relates to the characteristics and biology of AUD, as well as how modulating FAAH through pharmacologic inhibition or genetic manipulation affects outcomes related to alcohol use and consumption. Method: A search strategy was developed using the terms "endocannabinoids" or "drug delivery systems" and "alcohol dependence" or "alcohol use disorder" or "alcoholism" and "Fatty Acid Amide Hydrolase" and "FAAH" as text words and Medical Subject Headings (i.e., MeSH and EMTREE). We then used this search strategy on the electronic databases PubMed, Embase, and Web of Science. Results: We found 224 records; after removing repeated records (37%), articles that did not fit the topic question (47%), or were not primary research (4%), we included 26 for qualitative synthesis (12%). Discussion: The literature clearly suggests that FAAH has a role in the biology and characteristics of AUD. FAAH inhibition seems especially promising as a target for alcohol withdrawal as it may lead to a reduction in symptoms, including anxiety and a reduction of alcohol intake reinstatement. However, decreased FAAH may also lead to reduced sensitivity to alcohol along with increased preference and intake. Conclusions: Modulation of FAAH is promising for therapeutic intervention of AUD, but requires more research. Pre-clinical studies have indicated that FAAH inhibition may reduce withdrawal characteristics, but may also exacerbate other characteristics of AUD outside of that period.
Collapse
Affiliation(s)
- Greta Niemela
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Garth E Terry
- Department of Psychiatry & Behavioral Sciences, and Radiology, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Veterans Affairs, Puget Sound Health Care System, Mental Illness Research, Education, and Clinical Center (MIRECC), Seattle, Washington, USA
| |
Collapse
|
16
|
Terry GE, Raymont V, Horti AG. PET Imaging of the Endocannabinoid System. PET AND SPECT OF NEUROBIOLOGICAL SYSTEMS 2021:319-426. [DOI: 10.1007/978-3-030-53176-8_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Acin MT, Rueda JR, Saiz LC, Parent Mathias V, Alzueta N, Solà I, Garjón J, Erviti J. Alcohol intake reduction for controlling hypertension. Cochrane Database Syst Rev 2020; 9:CD010022. [PMID: 32960976 PMCID: PMC8094445 DOI: 10.1002/14651858.cd010022.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND High blood pressure constitutes one of the leading causes of mortality and morbidity all over the world. At the same time, heavy drinking increases the risk for developing cardiovascular diseases, including cardiomyopathy, hypertension, atrial arrhythmias, or stroke. Several studies have already assessed specifically the relationship between alcohol intake and hypertension. However, the potential effect on blood pressure of alcohol intake reduction interventions is largely unknown. OBJECTIVES To assess the effect of any intervention to reduce alcohol intake in terms of blood pressure decrease in hypertensive people with alcohol consumption compared to a control intervention or no intervention at all. To determine additional effects related to mortality, major cardiovascular events, serious adverse events, or quality of life. SEARCH METHODS The Cochrane Hypertension Information Specialist searched the following databases for randomised controlled trials up to June 2020: the Cochrane Hypertension Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 5, 2020), MEDLINE Ovid (from 1946), MEDLINE Ovid Epub Ahead of Print, and MEDLINE Ovid In-Process, Embase Ovid (from 1974), ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform. Trial authors were contacted when needed and no language restrictions were applied. SELECTION CRITERIA We included randomised controlled trials with minimum 12 weeks duration and including 50 or more subjects per group with quantitative measurement of alcohol consumption and/or biological measurement of the outcomes of interest. Participants were adults (16 years of age or older) with systolic blood pressure (SBP) greater than 140 mmHg and diastolic blood pressure (DBP) greater than 90 mmHg, and SBP ≥ 130 or DBP ≥ 80 mmHg in participants with diabetes. We included any intervention implemented to reduce their alcohol intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed search results and extracted data using standard methodological procedures adopted by Cochrane. MAIN RESULTS A total of 1210 studies were screened. We included one randomised controlled trial involving a total of 269 participants with a two-year follow-up. Individual patient data for all participants were provided and used in this review. No differences were found between the cognitive-behavioural intervention group and the control group for overall mortality (RR 0.72, 95% CI 0.16 to 3.17; low-certainty evidence), cardiovascular mortality (not estimable) and cardiovascular events (RR 0.80, 95% CI 0.36 to 1.79; very low-certainty evidence). There was no statistical difference in systolic blood pressure (SBP) reduction (Mean Difference (MD) -0.92 mmHg, 95% confidence interval (CI) -5.66 to 3.82 mmHg; very low-certainty evidence) or diastolic blood pressure (DBP) decrease (MD 0.98 mmHg, 95% CI -1.69 to 3.65 mmHg; low-certainty evidence) between the cognitive-behavioural intervention group and the control group. We also did not find any differences in the proportion of subjects with SBP < 140 mmHg and DBP < 90 mmHg (Risk Ratio (RR) 1.21, 95% CI 0.88 to 1.65; very low-certainty evidence). Concerning secondary outcomes, the alcohol intake was significantly reduced in the cognitive-behavioural intervention compared with the control group (MD 191.33 g, 95% CI 85.36 to 297.30 g). We found no differences between the active and control intervention in the proportion of subjects with lower-risk alcohol intake versus higher-risk and extreme drinkers at the end of the study (RR 1.04, 95% CI 0.68 to 1.60). There were no estimable results for the quality of life outcome. AUTHORS' CONCLUSIONS An intervention for decreasing alcohol intake consumption did not result in differences in systolic and diastolic blood pressure when compared with a control intervention, although there was a reduction in alcohol intake favouring the active intervention. No differences were found either for overall mortality, cardiovascular mortality or cardiovascular events. No data on serious adverse events or quality of life were available to assess. Adequate randomised controlled trials are needed to provide additional evidence on this specific question.
Collapse
Affiliation(s)
| | - José-Ramón Rueda
- Department of Preventive Medicine and Public Health, University of the Basque Country, Leioa, Spain
| | - Luis Carlos Saiz
- Unit of Innovation and Organization, Navarre Health Service, Pamplona, Spain
| | | | - Natalia Alzueta
- Drug Prescribing Service, Navarre Health Service, Pamplona, Spain
| | - Ivan Solà
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Javier Garjón
- Medicines Advice and Information Service, Navarre Health Service, Pamplona, Spain
| | - Juan Erviti
- Unit of Innovation and Organization, Navarre Health Service, Pamplona, Spain
| |
Collapse
|
18
|
Spanagel R. Cannabinoids and the endocannabinoid system in reward processing and addiction: from mechanisms to interventions
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020; 22:241-250. [PMID: 33162767 PMCID: PMC7605022 DOI: 10.31887/dcns.2020.22.3/rspanagel] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The last decades have seen a major gain in understanding the action of
cannabinoids and the endocannabinoid system in reward processing and the development of
addictive behavior. Cannabis-derived psychoactive compounds such as
Δ9-tetrahydrocannabinol and synthetic cannabinoids directly interact with the reward
system and thereby have addictive properties. Cannabinoids induce their reinforcing
properties by an increase in tonic dopamine levels through a cannabinoid type 1 (CB1)
receptor–dependent mechanism within the ventral tegmental area. Cues that are
conditioned to cannabis smoking can induce drug-seeking responses (ie, craving) by
eliciting phasic dopamine events. A dopamine-independent mechanism involved in
drug-seeking responses involves an endocannabinoid/glutamate interaction within the
corticostriatal part of the reward system. In conclusion, pharmacological blockade of
endocannabinoid signaling should lead to a reduction in drug craving and subsequently
should reduce relapse behavior in addicted individuals. Indeed, there is increasing
preclinical evidence that targeting the endocannabinoid system reduces craving and
relapse, and allosteric modulators at CB1 receptors and fatty acid amide hydrolase
inhibitors are in clinical development for cannabis use disorder. Cannabidiol, which
mainly acts on CB1 and CB2 receptors, is currently being tested in patients with alcohol
use disorder and opioid use disorder.
Collapse
Affiliation(s)
- Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Germany
| |
Collapse
|
19
|
Babalonis S, Walsh SL. Therapeutic potential of opioid/cannabinoid combinations in humans: Review of the evidence. Eur Neuropsychopharmacol 2020; 36:206-216. [PMID: 32273144 PMCID: PMC7338254 DOI: 10.1016/j.euroneuro.2020.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 02/05/2023]
Abstract
The endogenous opioid and cannabinoid receptor systems are widely distributed and co-localized throughout central and peripheral nervous system regions. A large body of preclinical evidence suggests that there are functional interactions between these two systems that may be leveraged to address various health conditions. Numerous animal studies have shown that cannabinoid agonists (e.g., delta-9-tetrahydrocannabinol [Δ9-THC]) enhance the analgesic effects of µ-opioid analgesics as evidenced by decreasing the opioid dose required for analgesia (i.e., opioid sparing) and extending the duration of the opioid analgesia. In contrast, controlled human laboratory studies and clinical trials have not demonstrated robust analgesic or opioid-sparing effects from opioid-cannabinoid combinations. Meta-analyses of the literature (clinical trials, controlled laboratory studies; some non-controlled studies/case reports) have examined the effects of cannabis/cannabinoids for pain relief in those taking a wide variety of analgesics, including prescription opioid medications. These data do not strongly support the use of cannabinoids for chronic pain nor do prospective studies demonstrate significant cannabinoid-mediated opioid-sparing effects. Preclinical studies have also suggested a role for cannabinoids for the treatment of opioid withdrawal. Controlled laboratory and clinical studies suggest that there may be a modest signal for Δ9-THC to suppress some opioid signs and symptoms but they are not completely ameliorated and there may also be concerns around safety of Δ9-THC administration in a state of heightened autonomic arousal as occurs with opioid withdrawal. Despite anecdotal and correlational reports suggesting a benefit of cannabis on reducing opioid overdose, there is no strong data supporting this contention and emerging reports have conflicting results. In summary, there is a groundswell of public advocacy supporting the use of cannabis and cannabinoids to replace opioid analgesics or to reduce opioid use; however, the extant controlled clinical data do not support the role of cannabinoids for opioid replacement or opioid-sparing effects when treating opioid use disorder or chronic pain.
Collapse
Affiliation(s)
- Shanna Babalonis
- Department of Behavioral Science, University of Kentucky, 845 Angliana Avenue, Lexington, KY 40508, United States; Department of the Center on Drug and Alcohol Research, University of Kentucky, Lexington, KY 40508, United States
| | - Sharon L Walsh
- Department of Behavioral Science, University of Kentucky, 845 Angliana Avenue, Lexington, KY 40508, United States; Department of Pharmacology, University of Kentucky, Lexington, KY 40508, United States; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40508, United States; Department of Psychiatry, University of Kentucky, Lexington, KY 40508, United States; Department of the Center on Drug and Alcohol Research, University of Kentucky, Lexington, KY 40508, United States.
| |
Collapse
|
20
|
Gianessi CA, Groman SM, Thompson SL, Jiang M, van der Stelt M, Taylor JR. Endocannabinoid contributions to alcohol habits and motivation: Relevance to treatment. Addict Biol 2020; 25:e12768. [PMID: 31056846 PMCID: PMC7790504 DOI: 10.1111/adb.12768] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/26/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022]
Abstract
Individuals with alcohol use disorder exhibit compulsive habitual behaviors that are thought to be, in part, a consequence of chronic and persistent use of alcohol. The endocannabinoid system plays a critical role in habit learning and in ethanol self-administration, but the role of this neuromodulatory system in the expression of habitual alcohol seeking is unknown. Here, we investigated the role of the endocannabinoid system in established alcohol habits using contingency degradation in male C57BL/6 mice. We found that administration of the novel diacyl glycerol lipase inhibitor DO34, which decreases the biosynthesis of the endocannabinoid 2-arachidonoyl glycerol (2-AG), reduced habitual responding for ethanol and ethanol approach behaviors. Moreover, administration of the endocannabinoid transport inhibitor AM404 or the cannabinoid receptor type 1 antagonist AM251 produced similar reductions in habitual responding for ethanol and ethanol approach behaviors. Notably, AM404 was also able to reduce ethanol seeking and consumption in mice that were insensitive to lithium chloride-induced devaluation of ethanol. Conversely, administration of JZL184, a monoacyl glycerol lipase inhibitor that increases levels of 2-AG, increased motivation to respond for ethanol on a progressive ratio schedule of reinforcement. These results demonstrate an important role for endocannabinoid signaling in the motivation to seek ethanol, in ethanol-motivated habits, and suggest that pharmacological manipulations of endocannabinoid signaling could be effective therapeutics for treating alcohol use disorder.
Collapse
Affiliation(s)
- Carol A. Gianessi
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University Graduate School of Arts and Sciences, New Haven, CT, USA
| | - Stephanie M. Groman
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Summer L. Thompson
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ming Jiang
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jane R. Taylor
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University Graduate School of Arts and Sciences, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| |
Collapse
|
21
|
The therapeutic potential of second and third generation CB1R antagonists. Pharmacol Ther 2020; 208:107477. [DOI: 10.1016/j.pharmthera.2020.107477] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022]
|
22
|
Hayat A, Piper BJ. Characteristics of Dispensary Patients that Limit Alcohol after Initiating Cannabis. J Psychoactive Drugs 2020; 52:145-152. [PMID: 31813342 PMCID: PMC7275884 DOI: 10.1080/02791072.2019.1694199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/31/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022]
Abstract
Many patients have reported that they decrease their use of opioids after starting medical cannabis (MC) but less is known for alcohol. The objective of this exploratory study was to identify any factors which differentiate alcohol abaters from those that do not modify their alcohol use after starting MC (non-abaters). Comparisons were made to identify any demographic, dosing, or health history characteristics which differentiated alcohol abaters (N = 47) from non-abaters (N = 65). Respondents selected from among a list of 37 diseases/health conditions (e.g. diabetes, sleep disorders). Abaters and non-abaters were indistinguishable in terms of sex, age, or prior drug history. A greater percentage of abaters (59.6%) than non-abaters (40.6%, p < .05) reported using MC two or more times per day. Abaters were more likely to be employed (68.1%) than non-abaters (51.1%, p < .05). Abaters also reported having significantly more health conditions and diseases (3.3 ± 2.0) than non-abaters (2.4 ± 1.4, p < .05). This small study offers some insights into the profile of patients whose self-reported alcohol intake decreased following initiation of MC. Additional prospective or controlled research into the alcohol abatement phenomenon following MC may be warranted.
Collapse
Affiliation(s)
- Assad Hayat
- Geisinger Commonwealth School of Medicine, Scranton, PA 18509 USA
| | - Brian J. Piper
- Geisinger Commonwealth School of Medicine, Scranton, PA 18509 USA
- Center for Pharmacy Innovation and Outcomes, Geisinger Precision Health Center, Forty Fort, PA 18704 USA
- Neuroscience Program, Bowdoin College, Brunswick, ME 04011 USA
| |
Collapse
|
23
|
Abstract
Despite a number of approved medications for alcohol use disorder (AUD), this chronic relapsing disease still produces a considerable global burden, with both health-related and financial consequences. While clinical trials are a critical step in drug development, human laboratory studies provide the field with means of screening pharmacotherapy for more nuanced aspects of AUD. Specifically, studies employing alcohol administration techniques (e.g., alcohol challenge and self-administration) are able to investigate potential drugs with respect to their ability to alter various responses to alcohol administration or alter alcohol consumption in laboratory settings. This chapter reviews methodological designs and provides updates from alcohol administration studies used to screen for potential AUD pharmacotherapy over the past decade. These recent studies have supported the efficacy of approved drugs, identified some promising novel drugs, and investigated other drugs that appear ineffective in AUD treatment. Yet, few drugs are explored using the different variants of alcohol administration methods, and using the different methods has provided inconsistent results for the same drug. Future research would aid advancement in the field by testing medication with various methodologies and refining recently developed techniques.
Collapse
|
24
|
Kunos G. Interactions Between Alcohol and the Endocannabinoid System. Alcohol Clin Exp Res 2020; 44:790-805. [PMID: 32056226 DOI: 10.1111/acer.14306] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Endocannabinoids are lipid mediators that interact with the same cannabinoid receptors that recognize Δ9 -tetrahydrocannabinol (THC), the psychoactive constituent of marijuana, to induce similar effects in the brain and periphery. Alcohol and THC are both addictive substances whose acute use elicits rewarding effects that can lead to chronic and compulsive use via engaging similar signaling pathways in the brain. In the liver, both alcohol and endocannabinoids activate lipogenic gene expression leading to fatty liver disease. This review focuses on evidence accumulated over the last 2 decades to indicate that both the addictive neural effects of ethanol and its organ toxic effects in the liver and elsewhere are mediated, to a large extent, by endocannabinoids signaling via cannabinoid-1 receptors (CB1 R). The therapeutic potential of CB1 R blockade globally or in peripheral tissues only is also discussed.
Collapse
Affiliation(s)
- George Kunos
- From the, Division of Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
25
|
Neasta J, Darcq E, Jeanblanc J, Carnicella S, Ben Hamida S. GPCR and Alcohol-Related Behaviors in Genetically Modified Mice. Neurotherapeutics 2020; 17:17-42. [PMID: 31919661 PMCID: PMC7007453 DOI: 10.1007/s13311-019-00828-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest class of cell surface signaling receptors and regulate major neurobiological processes. Accordingly, GPCRs represent primary targets for the treatment of brain disorders. Several human genetic polymorphisms affecting GPCRs have been associated to different components of alcohol use disorder (AUD). Moreover, GPCRs have been reported to contribute to several features of alcohol-related behaviors in animal models. Besides traditional pharmacological tools, genetic-based approaches mostly aimed at deleting GPCR genes provided substantial information on how key GPCRs drive alcohol-related behaviors. In this review, we summarize the alcohol phenotypes that ensue from genetic manipulation, in particular gene deletion, of key GPCRs in rodents. We focused on GPCRs that belong to fundamental neuronal systems that have been shown as potential targets for the development of AUD treatment. Data are reviewed with particular emphasis on alcohol reward, seeking, and consumption which are behaviors that capture essential aspects of AUD. Literature survey indicates that in most cases, there is still a gap in defining the intracellular transducers and the functional crosstalk of GPCRs as well as the neuronal populations in which their signaling regulates alcohol actions. Further, the implication of only a few orphan GPCRs has been so far investigated in animal models. Combining advanced pharmacological technologies with more specific genetically modified animals and behavioral preclinical models is likely necessary to deepen our understanding in how GPCR signaling contributes to AUD and for drug discovery.
Collapse
Affiliation(s)
- Jérémie Neasta
- Laboratoire de Pharmacologie, Faculté de Pharmacie, University of Montpellier, 34093, Montpellier, France
| | - Emmanuel Darcq
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada
| | - Jérôme Jeanblanc
- Research Group on Alcohol and Pharmacodependences-INSERM U1247, University of Picardie Jules Verne, 80025, Amiens, France
| | - Sebastien Carnicella
- INSERM U1216, Grenoble Institut des Neurosciences (GIN), University of Grenoble Alpes, 38000, Grenoble, France
| | - Sami Ben Hamida
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada.
| |
Collapse
|
26
|
Abstract
Cannabinoid receptors, endocannabinoids and the enzymes responsible for their biosynthesis and degradation constitute the endocannabinoid system. In recent decades, the endocannabinoid system has attracted considerable interest as a potential therapeutic target in numerous pathological conditions. Its involvement in several physiological processes is well known, such as in energy balance, appetite stimulation, blood pressure, pain modulation, embryogenesis, nausea and vomiting control, memory, learning and immune response, among others, as well as in pathological conditions where it exerts a protective role in the development of certain disorders. As a result, it has been reported that changes in endocannabinoid levels may be related to neurological diseases such as Parkinson's disease, Huntington's disease, Alzheimer's disease and multiple sclerosis, as well as anorexia and irritable bowel syndrome. Alterations in the endocannabinoid system have also been associated with cancer, affecting the growth, migration and invasion of some tumours. Cannabinoids have been tested in several cancer types, including brain, breast and prostate cancers. Cannabinoids have shown promise as analgesics for the treatment of both inflammatory and neuropathic pain. There is also evidence for a role of the endocannabinoid system in the control of emotional states, and cannabinoids could prove useful in decreasing and palliating post-traumatic stress disorder symptoms and anxiolytic disorders. The role of the endocannabinoid system in addictions has also been examined, and cannabinoids have been postulated as alternative and co-adjuvant treatments in some abuse syndromes, mainly in ethanol and opioid abuses. The expression of the endocannabinoid system in the eye suggests that it could be a potential therapeutic target for eye diseases. Considering the importance of the endocannabinoid system and the therapeutic potential of cannabinoids in this vast number of medical conditions, several clinical studies with cannabinoid-based medications are ongoing. In addition, some cannabinoid-based medications have already been approved in various countries, including nabilone and dronabinol capsules for the treatment of nausea and vomiting associated with chemotherapy, dronabinol capsules for anorexia, an oral solution of dronabinol for both vomiting associated with chemotherapy and anorexia, a Δ9-tetrahydrocannabinol/cannabidiol oromucosal spray for pain related to cancer and for spasticity and pain associated with multiple sclerosis, and an oral solution of cannabidiol for Dravet and Lennox-Gastaut syndromes. Here, we review the available efficacy, safety and tolerability data for cannabinoids in a range of medical conditions.
Collapse
Affiliation(s)
- Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramón y Cajal s/n, 28040 , Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramón y Cajal s/n, 28040 , Madrid, Spain. .,Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 , Madrid, Spain.
| |
Collapse
|
27
|
Basavarajappa BS, Joshi V, Shivakumar M, Subbanna S. Distinct functions of endogenous cannabinoid system in alcohol abuse disorders. Br J Pharmacol 2019; 176:3085-3109. [PMID: 31265740 DOI: 10.1111/bph.14780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
Δ9 -tetrahydrocannabinol, the principal active component in Cannabis sativa extracts such as marijuana, participates in cell signalling by binding to cannabinoid CB1 and CB2 receptors on the cell surface. The CB1 receptors are present in both inhibitory and excitatory presynaptic terminals and the CB2 receptors are found in neuronal subpopulations in addition to microglial cells and astrocytes and are present in both presynaptic and postsynaptic terminals. Subsequent to the discovery of the endocannabinoid (eCB) system, studies have suggested that alcohol alters the eCB system and that this system plays a major role in the motivation to abuse alcohol. Preclinical studies have provided evidence that chronic alcohol consumption modulates eCBs and expression of CB1 receptors in brain addiction circuits. In addition, studies have further established the distinct function of the eCB system in the development of fetal alcohol spectrum disorders. This review provides a recent and comprehensive assessment of the literature related to the function of the eCB system in alcohol abuse disorders.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,New York State Psychiatric Institute, New York, NY, USA.,Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Vikram Joshi
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Madhu Shivakumar
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
28
|
Sloan ME, Grant CW, Gowin JL, Ramchandani VA, Le Foll B. Endocannabinoid signaling in psychiatric disorders: a review of positron emission tomography studies. Acta Pharmacol Sin 2019; 40:342-350. [PMID: 30166624 PMCID: PMC6460371 DOI: 10.1038/s41401-018-0081-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/18/2018] [Indexed: 12/28/2022] Open
Abstract
Endocannabinoid signaling is implicated in an array of psychopathologies ranging from anxiety to psychosis and addiction. In recent years, radiotracers targeting the endocannabinoid system have been used in positron emission tomography (PET) studies to determine whether individuals with psychiatric disorders display altered endocannabinoid signaling. We comprehensively reviewed PET studies examining differences in endocannabinoid signaling between individuals with psychiatric illness and healthy controls. Published studies evaluated individuals with five psychiatric disorders: cannabis use disorder, alcohol use disorder, schizophrenia, post-traumatic stress disorder, and eating disorders. Most studies employed radiotracers targeting cannabinoid receptor 1 (CB1). Cannabis users consistently demonstrated decreased CB1 binding compared to controls, with normalization following short periods of abstinence. Findings in those with alcohol use disorder and schizophrenia were less consistent, with some studies demonstrating increased CB1 binding and others demonstrating decreased CB1 binding. Evidence of aberrant CB1 binding was also found in individuals with anorexia nervosa and post-traumatic stress disorder, but limited data have been published to date. Thus, existing evidence suggests that alterations in endocannabinoid signaling are present in a range of psychiatric disorders. Although recent efforts have largely focused on evaluating CB1 binding, the synthesis of new radiotracers targeting enzymes involved in endocannabinoid degradation, such as fatty acid amide hydrolase, will allow for other facets of endocannabinoid signaling to be evaluated in future studies.
Collapse
Affiliation(s)
- Matthew E Sloan
- Section on Human Psychopharmacology, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20814, USA
| | - Caroline W Grant
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20814, USA
| | - Joshua L Gowin
- Section on Human Psychopharmacology, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20814, USA
| | - Vijay A Ramchandani
- Section on Human Psychopharmacology, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20814, USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5S 2S1, Canada.
- Addiction Medicine Service, Centre for Addiction and Mental Health, Toronto, ON, M6J 1H4, Canada.
- Departments of Family and Community Medicine, Pharmacology and Toxicology, Psychiatry, Institute of Medical Science, University of Toronto, Toronto, ON, M5S 2S1, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M6J 1H4, Canada.
| |
Collapse
|
29
|
Scherma M, Masia P, Satta V, Fratta W, Fadda P, Tanda G. Brain activity of anandamide: a rewarding bliss? Acta Pharmacol Sin 2019; 40:309-323. [PMID: 30050084 DOI: 10.1038/s41401-018-0075-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022] Open
Abstract
Anandamide is a lipid mediator that acts as an endogenous ligand of CB1 receptors. These receptors are also the primary molecular target responsible for the pharmacological effects of Δ9-tetrahydrocannabinol, the psychoactive ingredient in Cannabis sativa. Several studies demonstrate that anandamide exerts an overall modulatory effect on the brain reward circuitry. Several reports suggest its involvement in the addiction-producing actions of other abused drugs, and it can also act as a behavioral reinforcer in animal models of drug abuse. Importantly, all these effects of anandamide appear to be potentiated by pharmacological inhibition of its metabolic degradation. Enhanced brain levels of anandamide after treatment with inhibitors of fatty acid amide hydrolase, the main enzyme responsible for its degradation, seem to affect the rewarding and reinforcing actions of many drugs of abuse. In this review, we will provide an overview from a preclinical perspective of the current state of knowledge regarding the behavioral pharmacology of anandamide, with a particular emphasis on its motivational/reinforcing properties. We will also discuss how modulation of anandamide levels through inhibition of enzymatic metabolic pathways could provide a basis for developing new pharmaco-therapeutic tools for the treatment of substance use disorders.
Collapse
|
30
|
Chye Y, Christensen E, Solowij N, Yücel M. The Endocannabinoid System and Cannabidiol's Promise for the Treatment of Substance Use Disorder. Front Psychiatry 2019; 10:63. [PMID: 30837904 PMCID: PMC6390812 DOI: 10.3389/fpsyt.2019.00063] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/28/2019] [Indexed: 11/16/2022] Open
Abstract
Substance use disorder is characterized by repeated use of a substance, leading to clinically significant distress, making it a serious public health concern. The endocannabinoid system plays an important role in common neurobiological processes underlying substance use disorder, in particular by mediating the rewarding and motivational effects of substances and substance-related cues. In turn, a number of cannabinoid drugs (e.g., rimonabant, nabiximols) have been suggested for potential pharmacological treatment for substance dependence. Recently, cannabidiol (CBD), a non-psychoactive phytocannabinoid found in the cannabis plant, has also been proposed as a potentially effective treatment for the management of substance use disorder. Animal and human studies suggest that these cannabinoids have the potential to reduce craving and relapse in abstinent substance users, by impairing reconsolidation of drug-reward memory, salience of drug cues, and inhibiting the reward-facilitating effect of drugs. Such functions likely arise through the targeting of the endocannabinoid and serotonergic systems, although the exact mechanism is yet to be elucidated. This article seeks to review the role of the endocannabinoid system in substance use disorder and the proposed pharmacological action supporting cannabinoid drugs' therapeutic potential in addictions, with a focus on CBD. Subsequently, this article will evaluate the underlying evidence for CBD as a potential treatment for substance use disorder, across a range of substances including nicotine, alcohol, psychostimulants, opioids, and cannabis. While early research supports CBD's promise, further investigation and validation of CBD's efficacy, across preclinical and clinical trials will be necessary.
Collapse
Affiliation(s)
- Yann Chye
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Erynn Christensen
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,The Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW, Australia
| | - Murat Yücel
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Porcu A, Melis M, Turecek R, Ullrich C, Mocci I, Bettler B, Gessa GL, Castelli MP. Rimonabant, a potent CB1 cannabinoid receptor antagonist, is a Gα i/o protein inhibitor. Neuropharmacology 2018; 133:107-120. [PMID: 29407764 DOI: 10.1016/j.neuropharm.2018.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 12/25/2022]
Abstract
Rimonabant is a potent and selective cannabinoid CB1 receptor antagonist widely used in animal and clinical studies. Besides its antagonistic properties, numerous studies have shown that, at micromolar concentrations rimonabant behaves as an inverse agonist at CB1 receptors. The mechanism underpinning this activity is unclear. Here we show that micromolar concentrations of rimonabant inhibited Gαi/o-type G proteins, resulting in a receptor-independent block of G protein signaling. Accordingly, rimonabant decreased basal and agonist stimulated [35S]GTPγS binding to cortical membranes of CB1- and GABAB-receptor KO mice and Chinese Hamster Ovary (CHO) cell membranes stably transfected with GABAB or D2 dopamine receptors. The structural analog of rimonabant, AM251, decreased basal and baclofen-stimulated GTPγS binding to rat cortical and CHO cell membranes expressing GABAB receptors. Rimonabant prevented G protein-mediated GABAB and D2 dopamine receptor signaling to adenylyl cyclase in Human Embryonic Kidney 293 cells and to G protein-coupled inwardly rectifying K+ channels (GIRK) in midbrain dopamine neurons of CB1 KO mice. Rimonabant suppressed GIRK gating induced by GTPγS in CHO cells transfected with GIRK, consistent with a receptor-independent action. Bioluminescent resonance energy transfer (BRET) measurements in living CHO cells showed that, in presence or absence of co-expressed GABAB receptors, rimonabant stabilized the heterotrimeric Gαi/o-protein complex and prevented conformational rearrangements induced by GABAB receptor activation. Rimonabant failed to inhibit Gαs-mediated signaling, supporting its specificity for Gαi/o-type G proteins. The inhibition of Gαi/o protein provides a new site of rimonabant action that may help to understand its pharmacological and toxicological effects occurring at high concentrations.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Rostislav Turecek
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Celine Ullrich
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Ignazia Mocci
- Institute of Translational Pharmacology, National Research Council of Italy (CNR) U.O.S. of Cagliari, 09010, Pula, Italy
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Gian Luigi Gessa
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Guy Everett Laboratory, University of Cagliari, 09042, Monserrato, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy; Center of Excellence "Neurobiology of Addiction", University of Cagliari, 09042, Monserrato, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Center of Excellence "Neurobiology of Addiction", University of Cagliari, 09042, Monserrato, Italy.
| |
Collapse
|
32
|
Navarrete F, García-Gutiérrez MS, Manzanares J. Pharmacological regulation of cannabinoid CB2 receptor modulates the reinforcing and motivational actions of ethanol. Biochem Pharmacol 2018; 157:227-234. [DOI: 10.1016/j.bcp.2018.07.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/27/2018] [Indexed: 11/27/2022]
|
33
|
Role of the endocannabinoid system in drug addiction. Biochem Pharmacol 2018; 157:108-121. [PMID: 30217570 DOI: 10.1016/j.bcp.2018.09.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
Drug addiction is a chronic relapsing disorder that produces a dramaticglobal health burden worldwide. Not effective treatment of drug addiction is currently available probably due to the difficulties to find an appropriate target to manage this complex disease raising the needs for further identification of novel therapeutic approaches. The endocannabinoid system has been found to play a crucial role in the neurobiological substrate underlying drug addiction. Endocannabinoids and cannabinoid receptors are widely expressed in the main areas of the mesocorticolimbic system that participate in the initiation and maintenance of drug consumption and in the development of compulsion and loss of behavioral control occurring during drug addiction. The identification of the important role played by CB1 cannabinoid receptors in drug addiction encouraged the possible used of an early commercialized CB1 receptor antagonist for treating drug addiction. However, the incidence of serious psychiatric adverse events leaded to the sudden withdrawal from the market of this CB1 antagonist and all the research programs developed by pharmaceutical companies to obtain new CB1 antagonists were stopped. Currently, new research strategies are under development to target the endocannabinoid system for drug addiction avoiding these side effects, which include allosteric negative modulators of CB1 receptors and compounds targeting CB2 receptors. Recent studies showing the potential role of CB2 receptors in the addictive properties of different drugs of abuse have open a promising research opportunity to develop novel possible therapeutic approaches.
Collapse
|
34
|
Walker LC, Lawrence AJ. Investigational drug therapies in phase I and phase II clinical trials for alcohol use disorders. Expert Opin Investig Drugs 2018; 27:1-14. [PMID: 30019949 DOI: 10.1080/13543784.2018.1502269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Alcohol use disorder (AUD) is a complex psychiatric condition characterized by craving, compulsive seeking, loss of control of alcohol consumption as well as the emergence of negative emotional states during withdrawal. Despite the large socioeconomic burden of AUD, therapeutic treatment options lag behind. AREAS COVERED This review covers pharmacotherapies currently in phase I/II clinical trials for the treatment of AUDs listed on clinicaltrials.gov. We discuss drug therapies that modulate monoamine, GABA/Glutamate, neuropeptide and neuroimmune systems. We examine in depth preclinical and clinical evidence of a select range of these compounds and consider their utility in treating AUDs. EXPERT OPINION Current therapeutic options to treat AUD are inadequate at a population level. Currently there are 30 different compounds and one compound combination in phase I/II clinical trials for AUD. These compounds target various aspects of neurotransmitter signaling, neuroimmune modulation, and alcohol metabolism. Almost 75% of these compounds under trial are Food and Drug Administration (FDA) approved for other indications, which may save time and costs in treatment development. Further, development of therapeutics focused on genetic biomarkers and behavioral screening may improve how treatment decisions are made in the future on a case-by-case basis.
Collapse
Affiliation(s)
- Leigh C Walker
- a Florey Department of Neuroscience and Mental Health , University of Melbourne , Parkville , VIC , Australia
| | - Andrew J Lawrence
- a Florey Department of Neuroscience and Mental Health , University of Melbourne , Parkville , VIC , Australia
| |
Collapse
|
35
|
THC inhibits the expression of ethanol-induced locomotor sensitization in mice. Alcohol 2017; 65:31-35. [PMID: 29084627 DOI: 10.1016/j.alcohol.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 01/08/2023]
Abstract
The motivational circuit activated by ethanol leads to behavioral changes that recruit the endocannabinoid system (ECS). Case reports and observational studies suggest that the use of Cannabis sp. mitigates problematic ethanol consumption in humans. Here, we verified the effects of the two main phytocannabinoid compounds of Cannabis sp., cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC), in the expression of ethanol-induced locomotor sensitization in mice. Male adult DBA/2 mice were exposed to locomotor sensitization by daily intraperitoneal injections of ethanol (2.5 g/kg) for 12 days; control groups received saline. After the acquisition phase, animals were treated with cannabinoids: CBD (2.5 mg/kg); THC (2.5 mg/kg); CBD + THC (1:1 ratio), or vehicle for 4 days with no access to ethanol during this period. One day after the last cannabinoid injection, all animals were challenged with ethanol (2.0 g/kg) to evaluate the expression of the locomotor sensitization. Mice treated with THC alone or THC + CBD showed reduced expression of locomotor sensitization, compared to the vehicle control group. No effects were observed with CBD treatment alone. Our findings showing that phytocannabinoid treatment prevents the expression of behavioral sensitization in mice provide insight into the potential therapeutic use of phytocannabinoids in alcohol-related problems.
Collapse
|
36
|
Silva AAF, Barbosa-Souza E, Confessor-Carvalho C, Silva RRR, De Brito ACL, Cata-Preta EG, Silva Oliveira T, Berro LF, Oliveira-Lima AJ, Marinho EAV. Context-dependent effects of rimonabant on ethanol-induced conditioned place preference in female mice. Drug Alcohol Depend 2017; 179:317-324. [PMID: 28837947 DOI: 10.1016/j.drugalcdep.2017.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND The CB1 receptor antagonist rimonabant has been previously found to prevent behavioral effects of drugs of abuse in a context-dependent manner, suggesting an important role of endocannabinoid signaling in drug-induced environmental conditioning. The aim of the present study was to evaluate the effects of rimonabant on ethanol-induced conditioned place preference (CPP) in female mice. METHODS Animals were conditioned with saline or ethanol (1.8g/kg) during 8 sessions, and subsequently treated with either saline or rimonabant (1 or 10mg/kg) in the CPP environment previously associated with saline (unpaired) or ethanol (paired) for 6 consecutive days. Animals were then challenged with ethanol (1.8g/kg) in the ethanol-paired environment and ethanol-induced CPP was quantified on the following day. RESULTS While treatment with 1mg/kg rimonabant in the saline-associated environment had no effects on the subsequent expression of ethanol-induced CPP, it blocked the expression of CPP to ethanol when paired to the ethanol-associated environment. When given in the ethanol-paired environment, 10mg/kg rimonabant induced aversion to the ethanol-associated environment. The same aversion effect was observed for 10mg/kg rimonabant when given in the saline-associated environment, thereby potentiating the expression of ethanol-induced CPP. Importantly, rimonabant did not induce CPP or conditioned place aversion on its own. Controlling for the estrous cycle phase showed no influences of hormonal cycle on the development and expression of ethanol-induced CPP. CONCLUSIONS Our data suggest that rimonabant reduces the rewarding properties of ethanol by abolishing drug-environment conditioning in the CPP paradigm in a context-dependent manner.
Collapse
Affiliation(s)
- Aline A F Silva
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Evelyn Barbosa-Souza
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Cassio Confessor-Carvalho
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Raiany R R Silva
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Ana Carolina L De Brito
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Elisangela G Cata-Preta
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Thaynara Silva Oliveira
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Lais F Berro
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA.
| | - Alexandre J Oliveira-Lima
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Eduardo A V Marinho
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil.
| |
Collapse
|
37
|
Sloan ME, Gowin JL, Ramchandani VA, Hurd YL, Le Foll B. The endocannabinoid system as a target for addiction treatment: Trials and tribulations. Neuropharmacology 2017; 124:73-83. [PMID: 28564576 DOI: 10.1016/j.neuropharm.2017.05.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/19/2022]
Abstract
Addiction remains a major public health concern, and while pharmacotherapies can be effective, clinicians are limited by the paucity of existing interventions. Endocannabinoid signaling is involved in reward and addiction, which raises the possibility that drugs targeting this system could be used to treat substance use disorders. This review discusses findings from randomized controlled trials evaluating cannabinergic medications for addiction. Current evidence suggests that pharmacotherapies containing delta-9-tetrahydrocannabinol, such as dronabinol and nabiximols, are effective for cannabis withdrawal. Dronabinol may also reduce symptoms of opioid withdrawal. The cannabinoid receptor 1 (CB1) inverse agonist rimonabant showed promising effects for smoking cessation but also caused psychiatric side effects and currently lacks regulatory approval. Few trials have investigated cannabinergic medications for alcohol use disorder. Overall, the endocannabinoid system remains a promising target for addiction treatment. Development of novel medications such as fatty acid amide hydrolase inhibitors and neutral CB1 antagonists promises to extend the range of available interventions. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Matthew E Sloan
- Section on Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive (10CRC, 2-2352), Bethesda, MD, 20892-1540, USA
| | - Joshua L Gowin
- Section on Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive (10CRC, 2-2352), Bethesda, MD, 20892-1540, USA
| | - Vijay A Ramchandani
- Section on Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive (10CRC, 2-2352), Bethesda, MD, 20892-1540, USA
| | - Yasmin L Hurd
- Departments of Psychiatry, Neuroscience, Pharmacology, and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, Hess CSM Building, Floor 10, Rm 105, Office 1470, Madison Avenue, New York, NY, 10029, USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada; Addiction Medicine Service, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Departments of Family and Community Medicine, Pharmacology and Toxicology, and Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| |
Collapse
|
38
|
Yardley MM, Ray LA. Medications development for the treatment of alcohol use disorder: insights into the predictive value of animal and human laboratory models. Addict Biol 2017; 22:581-615. [PMID: 26833803 DOI: 10.1111/adb.12349] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 12/20/2022]
Abstract
Development of effective treatments for alcohol use disorder (AUD) represents an important public health goal. This review provides a summary of completed preclinical and clinical studies testing pharmacotherapies for the treatment of AUD. We discuss opportunities for improving the translation from preclinical findings to clinical trial outcomes, focusing on the validity and predictive value of animal and human laboratory models of AUD. Specifically, while preclinical studies of medications development have offered important insights into the neurobiology of the disorder and alcohol's molecular targets, limitations include the lack of standardized methods and streamlined processes whereby animal studies can readily inform human studies. Behavioral pharmacology studies provide a less expensive and valuable opportunity to assess the feasibility of a pharmacotherapy prior to initiating larger scale clinical trials by providing insights into the mechanism of the drug, which can then inform recruitment, analyses, and assessments. Summary tables are provided to illustrate the wide range of preclinical, human laboratory, and clinical studies of medications development for alcoholism. Taken together, this review highlights the challenges associated with animal paradigms, human laboratory studies, and clinical trials with the overarching goal of advancing treatment development and highlighting opportunities to bridge the gap between preclinical and clinical research.
Collapse
Affiliation(s)
- Megan M. Yardley
- Department of Psychology; University of California, Los Angeles; Los Angeles CA USA
| | - Lara A. Ray
- Department of Psychology; University of California, Los Angeles; Los Angeles CA USA
- Department of Psychiatry and Biobehavioral Sciences; University of California, Los Angeles; Los Angeles CA USA
| |
Collapse
|
39
|
Soyka M, Kranzler HR, Hesselbrock V, Kasper S, Mutschler J, Möller HJ. Guidelines for biological treatment of substance use and related disorders, part 1: Alcoholism, first revision. World J Biol Psychiatry 2017; 18:86-119. [PMID: 28006997 DOI: 10.1080/15622975.2016.1246752] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
These practice guidelines for the biological treatment of alcohol use disorders are an update of the first edition, published in 2008, which was developed by an international Task Force of the World Federation of Societies of Biological Psychiatry (WFSBP). For this 2016 revision, we performed a systematic review (MEDLINE/PUBMED database, Cochrane Library) of all available publications pertaining to the biological treatment of alcoholism and extracted data from national guidelines. The Task Force evaluated the identified literature with respect to the strength of evidence for the efficacy of each medication and subsequently categorised it into six levels of evidence (A-F) and five levels of recommendation (1-5). Thus, the current guidelines provide a clinically and scientifically relevant, evidence-based update of our earlier recommendations. These guidelines are intended for use by clinicians and practitioners who evaluate and treat people with alcohol use disorders and are primarily concerned with the biological treatment of adults with such disorders.
Collapse
Affiliation(s)
- Michael Soyka
- a Psychiatric Hospital Meiringen , Meiringen , Switzerland.,b Department of Psychiatry , Ludwig-Maximilians-University , Munich , Germany.,c Medicalpark Chiemseeblick , Bernau , Germany
| | - Henry R Kranzler
- d Crescenz VAMC , University of Pennsylvania and VISN 4 MIRECC , Philadelphia , PA , USA
| | | | - Siegfried Kasper
- f Department of Psychiatric Medicine , University of Vienna, Vienna , Austria
| | - Jochen Mutschler
- a Psychiatric Hospital Meiringen , Meiringen , Switzerland.,g Psychiatric Hospital University of Zürich, Zürich , Switzerland
| | - Hans-Jürgen Möller
- b Department of Psychiatry , Ludwig-Maximilians-University , Munich , Germany
| | | |
Collapse
|
40
|
Henderson-Redmond AN, Guindon J, Morgan DJ. Roles for the endocannabinoid system in ethanol-motivated behavior. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:330-9. [PMID: 26123153 PMCID: PMC4679600 DOI: 10.1016/j.pnpbp.2015.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 12/19/2022]
Abstract
Alcohol use disorder represents a significant human health problem that leads to substantial loss of human life and financial cost to society. Currently available treatment options do not adequately address this human health problem, and thus, additional therapies are desperately needed. The endocannabinoid system has been shown, using animal models, to modulate ethanol-motivated behavior, and it has also been demonstrated that chronic ethanol exposure can have potentially long-lasting effects on the endocannabinoid system. For example, chronic exposure to ethanol, in either cell culture or preclinical rodent models, causes an increase in endocannabinoid levels that results in down-regulation of the cannabinoid receptor 1 (CB1) and uncoupling of this receptor from downstream G protein signaling pathways. Using positron emission tomography (PET), similar down-regulation of CB1 has been noted in multiple regions of the brain in human alcoholic patients. In rodents, treatment with the CB1 inverse agonist SR141716A (Rimonabant), or genetic deletion of CB1 leads to a reduction in voluntary ethanol drinking, ethanol-stimulated dopamine release in the nucleus accumbens, operant self-administration of ethanol, sensitization to the locomotor effects of ethanol, and reinstatement/relapse of ethanol-motivated behavior. Although the clinical utility of Rimonabant or other antagonists/inverse agonists for CB1 is limited due to negative neuropsychiatric side effects, negative allosteric modulators of CB1 and inhibitors of endocannabinoid catabolism represent therapeutic targets worthy of additional examination.
Collapse
Affiliation(s)
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Science Center, Lubbock, TX, 79430
| | - Daniel J Morgan
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States; Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
41
|
Morales M, McGinnis MM, McCool BA. Chronic ethanol exposure increases voluntary home cage intake in adult male, but not female, Long-Evans rats. Pharmacol Biochem Behav 2015; 139:67-76. [PMID: 26515190 PMCID: PMC4722864 DOI: 10.1016/j.pbb.2015.10.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 11/30/2022]
Abstract
The current experiment examined the effects of 10 days of chronic intermittent ethanol (CIE) exposure on anxiety-like behavior and home cage ethanol intake using a 20% intermittent access (M, W, F) paradigm in male and female Long-Evans rats. Withdrawal from alcohol dependence contributes to relapse in humans and increases in anxiety-like behavior and voluntary ethanol consumption in preclinical models. Our laboratory has shown that 10 days of CIE exposure produces both behavioral and neurophysiological alterations associated with withdrawal in male rats; however, we have yet to examine the effects of this exposure regime on ethanol intake in females. During baseline, females consumed more ethanol than males but, unlike males, did not show escalations in intake. Rats were then exposed to CIE and were again given intermittent access to 20% ethanol. CIE males increased their intake compared to baseline, whereas air-exposed males did not. Ethanol intake in females was unaffected by CIE exposure. Notably, both sexes expressed significantly elevated withdrawal-associated anxiety-like behavior in the plus maze. Finally, rats were injected with the cannabinoid CB1 receptor antagonist, SR141716A (0, 1, 3, 10mg/kg, i.p.) which reduced ethanol intake in both sexes. However, females appear to be more sensitive to lower doses of this CB1 receptor antagonist. Our results show that females consume more ethanol than males; however, they did not escalate their intake using the intermittent access paradigm. Unlike males, CIE exposure had no effect on drinking in females. It is possible that females may be less sensitive than males to ethanol-induced increases in drinking after a short CIE exposure. Lastly, our results demonstrate that males and females may have different pharmacological sensitivities to CB1 receptor blockade on ethanol intake, at least under the current conditions.
Collapse
Affiliation(s)
- Melissa Morales
- Wake Forest University, School of Medicine, Dept. of Physiology & Pharmacology, Winston-Salem, NC 27101, United States
| | - Molly M McGinnis
- Wake Forest University, School of Medicine, Dept. of Physiology & Pharmacology, Winston-Salem, NC 27101, United States
| | - Brian A McCool
- Wake Forest University, School of Medicine, Dept. of Physiology & Pharmacology, Winston-Salem, NC 27101, United States.
| |
Collapse
|
42
|
Cannabinoid Ligands and Alcohol Addiction: A Promising Therapeutic Tool or a Humbug? Neurotox Res 2015; 29:173-96. [PMID: 26353844 PMCID: PMC4701763 DOI: 10.1007/s12640-015-9555-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 01/08/2023]
Abstract
The vast therapeutic potential of cannabinoids of both synthetic and plant-derived origins currently makes these compounds the focus of a growing interest. Although cannabinoids are still illicit drugs, their possible clinical usefulness, including treatment of acute or neuropathic pain, have been suggested by several studies. In addition, some observations indicate that cannabinoid receptor antagonists may be useful for the treatment of alcohol dependence and addiction, which is a major health concern worldwide. While the synergism between alcohol and cannabinoid agonists (in various forms) creates undesirable side effects when the two are consumed together, the administration of CB1 antagonists leads to a significant reduction in alcohol consumption. Furthermore, cannabinoid antagonists also mitigate alcohol withdrawal symptoms. Herein, we present an overview of studies focusing on the effects of cannabinoid ligands (agonists and antagonists) during acute or chronic consumption of ethanol.
Collapse
|
43
|
Abstract
Alcohol use disorder is a heterogeneous illness with a complex biology that is controlled by many genes and gene-by-environment interactions. Several efficacious, evidence-based treatments currently exist for treating and managing alcohol use disorder, including a number of pharmacotherapies that target specific aspects of biology that initiate and maintain dangerous alcohol misuse. This article reviews the neurobiological and neurobehavioral foundation of alcohol use disorder, the mechanisms of action and evidence for the efficacy of currently approved medications for treatment, and the literature on other emerging pharmacotherapies.
Collapse
Affiliation(s)
- Robert M Swift
- From the Department of Psychiatry and Human Behavior, Brown University Alpert School of Medicine (Dr. Swift); Center for Alcohol and Addiction Studies, Brown University School of Public Health (Drs. Swift and Aston); VA Medical Center, Providence, RI (Dr. Swift)
| | | |
Collapse
|
44
|
Nair MP, Figueroa G, Casteleiro G, Muñoz K, Agudelo M. Alcohol Versus Cannabinoids: A Review of Their Opposite Neuro-Immunomodulatory Effects and Future Therapeutic Potentials. JOURNAL OF ALCOHOLISM AND DRUG DEPENDENCE 2015; 3:184. [PMID: 26478902 PMCID: PMC4607066 DOI: 10.4172/2329-6488.1000184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Due to the legalization of marijuana and the increased demand for cannabis and alcohol consumption, research efforts highlighting the biomedical consequences of the use of alcohol and cannabinoids are not only relevant to the substance abuse scientific field, but are also of public health interest. Moreover, an overview of the recent literature about alcohol and cannabinoids neuro-immunomodulatory effects highlighting their future therapeutic potentials will provide a significant contribution to science and medicine. Therefore, in the current review, we will first discuss briefly the prevalence of alcohol and marijuana abuse, followed by a discussion on the individual effects of alcohol and cannabinoids on the immune system; then, we will focus on the role of endocannabinoids on the alcohol-induced inflammatory effects. In addition, the review also incorporates cytokine array data obtained from human monocyte-derived dendritic cells, providing a different perspective on the alcohol and cannabinoid abuse divergent effects on cytokine production. The final section will highlight the therapeutic potential of cannabinoid receptors and the novel strategies to treat alcohol dependence as determined by in vitro, in vivo and clinical studies.
Collapse
Affiliation(s)
- Madhavan P. Nair
- Department of Immunology, Herbert Wertheim College of Medicine, AHC-I 417-B, Florida International University, Miami, FL 33199, USA
| | - Gloria Figueroa
- Department of Immunology, Herbert Wertheim College of Medicine, AHC-I 417-B, Florida International University, Miami, FL 33199, USA
| | - Gianna Casteleiro
- Department of Immunology, Herbert Wertheim College of Medicine, AHC-I 417-B, Florida International University, Miami, FL 33199, USA
| | - Karla Muñoz
- Department of Immunology, Herbert Wertheim College of Medicine, AHC-I 417-B, Florida International University, Miami, FL 33199, USA
| | - Marisela Agudelo
- Department of Immunology, Herbert Wertheim College of Medicine, AHC-I 417-B, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
45
|
Meinhardt MW, Sommer WH. Postdependent state in rats as a model for medication development in alcoholism. Addict Biol 2015; 20:1-21. [PMID: 25403107 DOI: 10.1111/adb.12187] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rational development of novel therapeutic strategies for alcoholism requires understanding of its underlying neurobiology and pathophysiology. Obtaining this knowledge largely relies on animal studies. Thus, choosing the appropriate animal model is one of the most critical steps in pre-clinical medication development. Among the range of animal models that have been used to investigate excessive alcohol consumption in rodents, the postdependent model stands out. It was specifically developed to test the role of negative affect as a key driving force in a perpetuating addiction cycle for alcoholism. Here, we will describe our approach to make rats dependent via chronic intermittent exposure to alcohol, discuss the validity of this model, and compare it with other commonly used animal models of alcoholism. We will summarize evidence that postdependent rats fulfill several criteria of a 'Diagnostic and Statistical Manual of Mental Disorders IV/V-like' diagnostic system. Importantly, these animals show long-lasting excessive consumption of and increased motivation for alcohol, and evidence for loss of control over alcohol intake. Our conclusion that postdependent rats are an excellent model for medication development for alcoholism is underscored by a summary of more than two dozen pharmacological tests aimed at reversing these abnormal alcohol responses. We will end with open questions on the use of this model. In the tradition of the Sanchis-Segura and Spanagel review, we provide comic strips that illustrate the postdependent procedure and relevant phenotypes in this review.
Collapse
Affiliation(s)
| | - Wolfgang H. Sommer
- Institute of Psychopharmacology; University of Heidelberg; Germany
- Department of Addiction Medicine; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| |
Collapse
|
46
|
Abstract
OBJECTIVE Substance dependence disorder is a chronically relapsing condition characterised by neurobiological changes leading to loss of control in restricting a substance intake, compulsion and withdrawal syndrome. In the past few years, (endo)cannabinoids have been raised as a possible target in the aetiology of drug addiction. On the other hand, although the exact mechanisms of the genesis of addiction remain poorly understood, it is possible that neuroinflammation might also play a role in the pathophysiology of this condition. Studies demonstrated that (endo)cannabinoids act as immunomodulators by inhibiting cytokines production and microglial cell activation. Thus, in the present review, we explore the possible role of neuroinflammation on the therapeutic effects of cannabinoids on drug addiction. METHODS We conducted an evidence-based review of the literature in order to assess the role of cannabinoids on the neuroinflammatory hypothesis of addiction (terms: addiction, cannabinoids and inflammation). We searched PubMed and BioMedCentral databases up to April 2014 with no date restrictions. RESULTS In all, 165 eligible articles were included in the present review. Existing evidence suggests that disruption in cannabinoid signalling during the drug addiction process leads to microglial activation and neuroinflammation. CONCLUSION The literature showed that inflammation and changes in endocannabinod signalling occur in drug abuse; however, it remains uncertain whether these changes are causally or coincidentally associated with addiction. Additional studies, therefore, are needed to elucidate the contribution of neuroinflammation on the behavioural and neuroprotective effects of cannabinoids on drug addiction.
Collapse
|
47
|
Akerman SC, Brunette MF, Noordsy DL, Green AI. Pharmacotherapy of Co-Occurring Schizophrenia and Substance Use Disorders. CURRENT ADDICTION REPORTS 2014; 1:251-260. [PMID: 27226947 PMCID: PMC4877030 DOI: 10.1007/s40429-014-0034-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Substance use disorders, common in patients with schizophrenia, can lead to poor outcomes. Here we review the literature on the use of antipsychotics in patients with co-occurring schizophrenia and substance use disorder as well as evidence for the use of adjunctive pharmacological treatments targeting substance use in these patients. We also discuss a neurobiological formulation suggesting that the cooccurrence of these disorders may be related to a dysfunction in the dopamine mediated brain reward circuitry. Typical antipsychotics do not appear to decrease substance use in this population. Randomized, controlled trials provide some support for use of the atypical antipsychotic clozapine for co-occurring cannabis use disorder, naltrexone and disulfiram for alcohol use disorder, and also nicotine replacement therapy, sustained-release bupropion and varenicline for tobacco use disorder. Nonetheless, data regarding treatment in patients with these co-occurring disorders are still limited, and many studies reported to date have been either underpowered or did not include a control condition. Further research is needed to evaluate optimal pharmacotherapeutic strategies for this population.
Collapse
Affiliation(s)
- Sarah C. Akerman
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Mary F. Brunette
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Douglas L. Noordsy
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Alan I. Green
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
48
|
Hillemacher T, Leggio L, Heberlein A. Investigational therapies for the pharmacological treatment of alcoholism. Expert Opin Investig Drugs 2014; 24:17-30. [PMID: 25164385 DOI: 10.1517/13543784.2014.954037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Alcohol dependence is one of the most important psychiatric disorders leading to enormous harm in individuals and indeed within society. Yet, although alcohol dependence is a disease of significant importance, the availability of efficacious pharmacological treatment is still limited. Areas covered: The current review focuses on neurobiological pathways that are the rationale for recent preclinical and clinical studies testing novel compounds that could be used as treatments for alcohol dependence. These neurobiological mechanisms include the: glutamatergic, dopaminergic and GABA mediated pathways as well as neuroendocrine systems. There is also an interest in the approaches for influencing chromatin structure. Expert opinion: There are several compounds in Phase I and Phase II clinical studies that have produced potentially useful results for the treating alcoholism. Further evaluation is still necessary, and the implementation of Phase III studies will help to elucidate the usefulness of these compounds. It is important that personalized approaches (e.g., pharmacogenomics) are investigated in these later studies, as the efficacy of different compounds may vary substantially between subgroups of patients.
Collapse
Affiliation(s)
- Thomas Hillemacher
- Hannover Medical School, Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy , Carl-Neuberg-Str. 1, 30625 Hannover , Germany +49 511 532 2427 ; +49 511 532 2415 ;
| | | | | |
Collapse
|
49
|
Pina MM, Cunningham CL. Effects of the novel cannabinoid CB1 receptor antagonist PF 514273 on the acquisition and expression of ethanol conditioned place preference. Alcohol 2014; 48:427-31. [PMID: 24954022 DOI: 10.1016/j.alcohol.2014.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/18/2022]
Abstract
The centrally expressed cannabinoid receptor (CB1) has been considered a potential therapeutic target in treating alcoholism. Though CB1 receptors have been shown to modulate primary and conditioned ethanol reward, much of this research employed animal models that require ethanol ingestion or oral routes of administration. This is problematic considering CB1 antagonist drugs have high anorectic liability and have been used clinically in the treatment of obesity. Therefore, the present study examined CB1 antagonism in DBA/2J mice using an unbiased ethanol-induced conditioned place preference (CPP) procedure, a paradigm that does not require ethanol ingestion. To evaluate the role of CB1 receptors in primary ethanol reward, the highly potent and selective novel CB1 antagonist 2-(2-chlorophenyl)-3-(4-chlorophenyl)-7-(2,2-difluoropropyl)-6,7-dihydro-2H-pyrazolo[3,4-f][1,4]oxazepin-8(5H)-one (PF 514273) was administered 30 min before place preference conditioning with a fixed dose of ethanol (acquisition). To evaluate the role of CB1 receptors in ethanol-conditioned reward, PF 514273 was administered 30 min before place preference testing (expression). Although PF 514273 reduced ethanol-stimulated and basal locomotor activity, it did not perturb the acquisition or expression of ethanol-induced CPP. Results from the present study appear inconsistent with other studies that have demonstrated a role for CB1 antagonism in ethanol reward using oral administration paradigms. Our findings suggest that CB1 antagonism may have greater involvement in consummatory behavior than ethanol reward.
Collapse
Affiliation(s)
- Melanie M Pina
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| | - Christopher L Cunningham
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97239-3098, USA
| |
Collapse
|
50
|
Changes in cerebral CB1 receptor availability after acute and chronic alcohol abuse and monitored abstinence. J Neurosci 2014; 34:2822-31. [PMID: 24553924 DOI: 10.1523/jneurosci.0849-13.2014] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Involvement of the type 1 cannabinoid receptor (CB1R) in the effects of alcohol on the brain is supported by animal experiments, but how in vivo CB1R levels are altered in alcoholic patients is still unclear. To assess the short-time effects of a binge drinking episode on CB1R availability, 20 healthy social drinkers underwent [(18)F]MK-9470-positron emission tomography (PET) at baseline and after intravenous ethanol administration (ALC ACU). Moreover, 26 alcoholic patients underwent sequential CB1R PET after chronic heavy drinking (ALC CHR) and after 1 month of abstinence (ALC ABST). Seventeen healthy subjects served as controls. Compared with baseline, ALC ACU resulted in a global increase of CB1R availability (+15.8%). In contrast, a global decreased CB1R availability was found in ALC CHR patients (-16.1%) compared with controls, which remained unaltered after abstinence (-17.0%). Voxel-based analysis showed that ALC CHR patients had reduced CB1R availability, especially in the cerebellum and parieto-occipital cortex. After abstinence, reduced CB1R availability extended also to other areas such as the ventral striatum and mesotemporal lobe. In conclusion, whereas the acute alcohol effect is an increase in CB1R availability, chronic heavy drinking leads to reduced CB1R availability that is not reversible after 1 month of abstinence. Longer follow-up is required to differentiate whether this is a compensatory effect of repeated endocannabinoid overstimulation or an enduring trait-like feature. An enhanced CB1R signaling may offer a new therapeutic direction for treatment of the negative affective state produced by alcohol withdrawal and abstinence, which is critical for the maintenance of alcohol addiction.
Collapse
|