1
|
Perry AS, Zhang K, Murthy VL, Choi B, Zhao S, Gajjar P, Colangelo LA, Hou L, Rice MB, Carr JJ, Carson AP, Nigra AE, Vasan RS, Gerszten RE, Khan SS, Kalhan R, Nayor M, Shah RV. Proteomics, Human Environmental Exposure, and Cardiometabolic Risk. Circ Res 2024; 135:138-154. [PMID: 38662804 PMCID: PMC11189739 DOI: 10.1161/circresaha.124.324559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The biological mechanisms linking environmental exposures with cardiovascular disease pathobiology are incompletely understood. We sought to identify circulating proteomic signatures of environmental exposures and examine their associations with cardiometabolic and respiratory disease in observational cohort studies. METHODS We tested the relations of >6500 circulating proteins with 29 environmental exposures across the built environment, green space, air pollution, temperature, and social vulnerability indicators in ≈3000 participants of the CARDIA study (Coronary Artery Risk Development in Young Adults) across 4 centers using penalized and ordinary linear regression. In >3500 participants from FHS (Framingham Heart Study) and JHS (Jackson Heart Study), we evaluated the prospective relations of proteomic signatures of the envirome with cardiovascular disease and mortality using Cox models. RESULTS Proteomic signatures of the envirome identified novel/established cardiovascular disease-relevant pathways including DNA damage, fibrosis, inflammation, and mitochondrial function. The proteomic signatures of the envirome were broadly related to cardiometabolic disease and respiratory phenotypes (eg, body mass index, lipids, and left ventricular mass) in CARDIA, with replication in FHS/JHS. A proteomic signature of social vulnerability was associated with a composite of cardiovascular disease/mortality (1428 events; FHS: hazard ratio, 1.16 [95% CI, 1.08-1.24]; P=1.77×10-5; JHS: hazard ratio, 1.25 [95% CI, 1.14-1.38]; P=6.38×10-6; hazard ratio expressed as per 1 SD increase in proteomic signature), robust to adjustment for known clinical risk factors. CONCLUSIONS Environmental exposures are related to an inflammatory-metabolic proteome, which identifies individuals with cardiometabolic disease and respiratory phenotypes and outcomes. Future work examining the dynamic impact of the environment on human cardiometabolic health is warranted.
Collapse
Affiliation(s)
- Andrew S Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN (A.S.P., S.Z., J.J.C., R.V.S.)
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, (K.Z.)
| | | | - Bina Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (B.C.)
| | - Shilin Zhao
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN (A.S.P., S.Z., J.J.C., R.V.S.)
| | - Priya Gajjar
- Cardiovascular Medicine Section, Department of Medicine (P.G.), Boston University School of Medicine, MA
| | - Laura A Colangelo
- Department of Preventive Medicine (L.A.C., L.H.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Lifang Hou
- Department of Preventive Medicine (L.A.C., L.H.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Mary B Rice
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA (M.B.R.)
| | - J Jeffrey Carr
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN (A.S.P., S.Z., J.J.C., R.V.S.)
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson (A.P.C.)
| | - Anne E Nigra
- Department of Environmental Health Science, Columbia University Mailman School of Public Health, New York, NY (A.E.N.)
| | - Ramachandran S Vasan
- School of Public Health, School of Medicine, University of Texas San Antonio (R.S.V.)
| | - Robert E Gerszten
- Broad Institute of Harvard and MIT, Cambridge, MA (R.E.G.)
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (R.E.G.)
| | - Sadiya S Khan
- Division of Cardiology, Department of Medicine (S.S.K.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Ravi Kalhan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine (R.K.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine (M.N.), Boston University School of Medicine, MA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN (A.S.P., S.Z., J.J.C., R.V.S.)
| |
Collapse
|
2
|
Ferreira CR, Lima Gomes PCFD, Robison KM, Cooper BR, Shannahan JH. Implementation of multiomic mass spectrometry approaches for the evaluation of human health following environmental exposure. Mol Omics 2024; 20:296-321. [PMID: 38623720 PMCID: PMC11163948 DOI: 10.1039/d3mo00214d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Omics analyses collectively refer to the possibility of profiling genetic variants, RNA, epigenetic markers, proteins, lipids, and metabolites. The most common analytical approaches used for detecting molecules present within biofluids related to metabolism are vibrational spectroscopy techniques, represented by infrared, Raman, and nuclear magnetic resonance (NMR) spectroscopies and mass spectrometry (MS). Omics-based assessments utilizing MS are rapidly expanding and being applied to various scientific disciplines and clinical settings. Most of the omics instruments are operated by specialists in dedicated laboratories; however, the development of miniature portable omics has made the technology more available to users for field applications. Variations in molecular information gained from omics approaches are useful for evaluating human health following environmental exposure and the development and progression of numerous diseases. As MS technology develops so do statistical and machine learning methods for the detection of molecular deviations from personalized metabolism, which are correlated to altered health conditions, and they are intended to provide a multi-disciplinary overview for researchers interested in adding multiomic analysis to their current efforts. This includes an introduction to mass spectrometry-based omics technologies, current state-of-the-art capabilities and their respective strengths and limitations for surveying molecular information. Furthermore, we describe how knowledge gained from these assessments can be applied to personalized medicine and diagnostic strategies.
Collapse
Affiliation(s)
- Christina R Ferreira
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Kiley Marie Robison
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Bruce R Cooper
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA.
| | - Jonathan H Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Lubner RJ, Rubel K, Chandra RK, Turner JH, Chowdhury NI. Particulate matter exposure is associated with increased inflammatory cytokines and eosinophils in chronic rhinosinusitis. Allergy 2024; 79:1219-1229. [PMID: 38180309 PMCID: PMC11062815 DOI: 10.1111/all.16006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is thought to result from complex interactions between the host immune system, microbiota, and environmental exposures. Currently, there is limited data regarding the impact of ambient particulate matter ≤2.5 μm in diameter (PM2.5) in the pathogenesis of CRS, despite evidence linking PM2.5 to other respiratory diseases. We hypothesized that PM2.5 may result in differential cytokine patterns that could inform our mechanistic understanding of the effect of environmental factors on CRS. METHODS We conducted an analysis of data prospectively collected from 308 CRS patients undergoing endoscopic sinus surgery. Cytokines were quantified in intraoperative mucus specimens using a multiplex flow cytometric bead assay. Clinical and demographic data including zip codes were extracted and used to obtain tract-level income and rurality measures. A spatiotemporal machine learning model was used to estimate daily PM2.5 levels for the year prior to each patient's surgery date. Spearman correlations and regression analysis were performed to characterize the relationship between mucus cytokines and PM2.5. RESULTS: Several inflammatory cytokines including IL-2, IL-5/IL-13, IL-12, and 21 were significantly correlated with estimated average 6, 9, and 12-month preoperative PM2.5 levels. These relationships were maintained for most cytokines after adjusting for age, income, body mass index, rurality, polyps, asthma, and allergic rhinitis (AR) (p < .05). There were also higher odds of asthma (OR = 1.5, p = .01) and AR (OR = 1.48, p = .03) with increasing 12-month PM2.5 exposure. Higher tissue eosinophil counts were associated with increasing PM2.5 levels across multiple timeframes (p < .05). CONCLUSIONS Chronic PM2.5 exposure may be an independent risk factor for development of a mixed, type-2 dominant CRS inflammatory response.
Collapse
Affiliation(s)
- Rory J Lubner
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kolin Rubel
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rakesh K Chandra
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin H Turner
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Naweed I Chowdhury
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
SONG Y, QI Z, CAI Z. [Application of multiomics mass spectrometry in the research of chemical exposome]. Se Pu 2024; 42:120-130. [PMID: 38374592 PMCID: PMC10877483 DOI: 10.3724/sp.j.1123.2023.10001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Indexed: 02/21/2024] Open
Abstract
Environmental factors, such as environmental pollutants, behaviors, and lifestyles, are the leading causes of chronic noncommunicable diseases. Estimates indicate that approximately 50% of all deaths worldwide can be attributed to environmental factors. The exposome is defined as the totality of human environmental (i.e., all nongenetic) exposures from conception, including general external exposure (e.g., climate, education, and urban environment), specific external exposure (e.g., pollution, physical activity, and diet), and internal exposure (e.g., metabolic factors, oxidative stress, inflammation, and protein modification). As a new paradigm, this concept aims to comprehensively understand the link between human health and environmental factors. Therefore, a comprehensive measurement of the exposome, including accurate and reliable measurements of exposure to the external environment and a wide range of biological responses to the internal environment, is of great significance. The measurement of the general external exposome depends on advances in environmental sensors, personal-sensing technologies, and geographical information systems. The determination of exogenous chemicals to which individuals are exposed and endogenous chemicals that are produced or modified by external stressors relies on improvements in methodology and the development of instrumental approaches, including colorimetric, chromatographic, spectral, and mass-spectrometric methods. This article reviews the research strategies for chemical exposomes and summarizes existing exposome-measurement methods, focusing on mass spectrometry (MS)-based methods. The top-down and bottom-up approaches are commonly used in exposome studies. The bottom-up approach focuses on the identification of chemicals in the external environment (e.g., soil, water, diet, and air), whereas the top-down approach focuses on the evaluation of endogenous chemicals and biological processes in biological samples (e.g., blood, urine, and serum). Low- and high-resolution MS (LRMS and HRMS, respectively) have become the most popular methods for the direct measurement of exogenous and endogenous chemicals owing to their superior sensitivity, specificity, and dynamic range. LRMS has been widely applied in the targeted analysis of expected chemicals, whereas HRMS is a promising technique for the suspect and unknown screening of unexpected chemicals. The development of MS-based multiomics, including proteomics, metabolomics, epigenomics, and spatial omics, provides new opportunities to understand the effects of environmental exposure on human health. Metabolomics involves the sum of all low-molecular-weight metabolites in a living system. Nontargeted metabolomics can measure both endogenous and exogenous chemicals, which would directly link exposure to biological effects, internal dose, and disease pathobiology, whereas proteomics could play an important role in predicting potential adverse health outcomes and uncovering molecular mechanisms. MS imaging (MSI) is an emerging technique that provides unlabeled in-depth measurements of endogenous and exogenous molecules directly from tissue and cell sections without changing their spatial information. MSI-based spatial omics, which has been widely applied in biomarker discovery for clinical diagnosis, as well as drug and pollutant monitoring, is expected to become an effective method for exposome measurement. Integrating these response measurements from metabolomics, proteomics, spatial omics, and epigenomics will enable the generation of new hypotheses to discover the etiology of diseases caused by chemical exposure. Finally, we highlight the major challenges in achieving chemical exposome measurements.
Collapse
|
5
|
Okeme JO, Koelmel JP, Johnson E, Lin EZ, Gao D, Pollitt KJG. Wearable Passive Samplers for Assessing Environmental Exposure to Organic Chemicals: Current Approaches and Future Directions. Curr Environ Health Rep 2023:10.1007/s40572-023-00392-w. [PMID: 36821032 DOI: 10.1007/s40572-023-00392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE OF REVIEW We are continuously exposed to dynamic mixtures of airborne contaminants that vary by location. Understanding the compositional diversity of these complex mixtures and the levels to which we are each exposed requires comprehensive exposure assessment. This comprehensive analysis is often lacking in population-based studies due to logistic and analytical challenges associated with traditional measurement approaches involving active air sampling and chemical-by-chemical analysis. The objective of this review is to provide an overview of wearable passive samplers as alternative tools to active samplers in environmental health research. The review highlights the advances and challenges in using wearable passive samplers for assessing personal exposure to organic chemicals and further presents a framework to enable quantitative measurements of exposure and expanded use of this monitoring approach to the population scale. RECENT FINDINGS Overall, wearable passive samplers are promising tools for assessing personal exposure to environmental contaminants, evident by the increased adoption and use of silicone-based devices in recent years. When combined with high throughput chemical analysis, these exposure assessment tools present opportunities for advancing our ability to assess personal exposures to complex mixtures. Most designs of wearable passive samplers used for assessing exposure to semi-volatile organic chemicals are currently uncalibrated, thus, are mostly used for qualitative research. The challenge with using wearable samplers for quantitative exposure assessment mostly lies with the inherent complexity in calibrating these wearable devices. Questions remain regarding how they perform under various conditions and the uncertainty of exposure estimates. As popularity of these samplers grows, it is critical to understand the uptake kinetics of chemicals and the different environmental and meteorological conditions that can introduce variability. Wearable passive samplers enable evaluation of exposure to hundreds of chemicals. The review presents the state-of-the-art of technology for assessing personal exposure to environmental chemicals. As more studies calibrate wearable samplers, these tools present promise for quantitatively assessing exposure at both the individual and population levels.
Collapse
Affiliation(s)
- Joseph O Okeme
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Emily Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Dong Gao
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA.
| |
Collapse
|
6
|
Liu KH, Lee CM, Singer G, Bais P, Castellanos F, Woodworth MH, Ziegler TR, Kraft CS, Miller GW, Li S, Go YM, Morgan ET, Jones DP. Large scale enzyme based xenobiotic identification for exposomics. Nat Commun 2021; 12:5418. [PMID: 34521839 PMCID: PMC8440538 DOI: 10.1038/s41467-021-25698-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
Advances in genomics have revealed many of the genetic underpinnings of human disease, but exposomics methods are currently inadequate to obtain a similar level of understanding of environmental contributions to human disease. Exposomics methods are limited by low abundance of xenobiotic metabolites and lack of authentic standards, which precludes identification using solely mass spectrometry-based criteria. Here, we develop and validate a method for enzymatic generation of xenobiotic metabolites for use with high-resolution mass spectrometry (HRMS) for chemical identification. Generated xenobiotic metabolites were used to confirm identities of respective metabolites in mice and human samples based upon accurate mass, retention time and co-occurrence with related xenobiotic metabolites. The results establish a generally applicable enzyme-based identification (EBI) for mass spectrometry identification of xenobiotic metabolites and could complement existing criteria for chemical identification.
Collapse
Affiliation(s)
- Ken H. Liu
- grid.189967.80000 0001 0941 6502Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia USA
| | - Choon M. Lee
- grid.189967.80000 0001 0941 6502Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia USA
| | - Grant Singer
- grid.189967.80000 0001 0941 6502Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia USA
| | - Preeti Bais
- The Jackson Laboratory for Genomic Medicine, Atlanta, Connecticut USA
| | | | - Michael H. Woodworth
- grid.189967.80000 0001 0941 6502Division of Infectious Disease, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia USA
| | - Thomas R. Ziegler
- grid.189967.80000 0001 0941 6502Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia USA
| | - Colleen S. Kraft
- grid.189967.80000 0001 0941 6502Division of Infectious Disease, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia USA ,grid.189967.80000 0001 0941 6502Emory University School of Medicine, Department of Pathology and Laboratory Medicine, Atlanta, Georgia USA
| | - Gary W. Miller
- grid.21729.3f0000000419368729Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York USA
| | - Shuzhao Li
- The Jackson Laboratory for Genomic Medicine, Atlanta, Connecticut USA
| | - Young-Mi Go
- grid.189967.80000 0001 0941 6502Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia USA
| | - Edward T. Morgan
- grid.189967.80000 0001 0941 6502Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia USA
| | - Dean P. Jones
- grid.189967.80000 0001 0941 6502Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia USA
| |
Collapse
|
7
|
Geretto M, Ferrari M, De Angelis R, Crociata F, Sebastiani N, Pulliero A, Au W, Izzotti A. Occupational Exposures and Environmental Health Hazards of Military Personnel. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5395. [PMID: 34070145 PMCID: PMC8158372 DOI: 10.3390/ijerph18105395] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Military personnel are frequently exposed to environmental pollutants that can cause a variety of diseases. METHODS This review analyzed publications regarding epidemiological and biomonitoring studies on occupationally-exposed military personnel. RESULTS The exposures include sulfur mustard, organ chlorines, combustion products, fuel vapors, and ionizing and exciting radiations. Important factors to be considered are the lengths and intensities of exposures, its proximity to the sources of environmental pollutants, as well as confounding factors (cigarette smoke, diet, photo-type, healthy warrior effect, etc.). Assessment of environmental and individual exposures to pollutants is crucial, although often omitted, because soldiers have often been evaluated based on reported health problems rather than on excessive exposure to pollutants. Biomarkers of exposures and effects are tools to explore relationships between exposures and diseases in military personnel. Another observation from this review is a major problem from the lack of suitable control groups. CONCLUSIONS This review indicates that only studies which analyzed epidemiological and molecular biomarkers in both exposed and control groups would provide evidence-based conclusions on exposure and disease risk in military personnel.
Collapse
Affiliation(s)
- Marta Geretto
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Marco Ferrari
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| | - Roberta De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Filippo Crociata
- General Inspectorate of Military Health, 00184 Rome, Italy; (F.C.); (N.S.)
| | - Nicola Sebastiani
- General Inspectorate of Military Health, 00184 Rome, Italy; (F.C.); (N.S.)
| | | | - William Au
- Faculty of Medicine, Pharmacy, Science and Technology University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
8
|
Hernández-Mesa M, Le Bizec B, Dervilly G. Metabolomics in chemical risk analysis – A review. Anal Chim Acta 2021; 1154:338298. [DOI: 10.1016/j.aca.2021.338298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
|
9
|
Smith MR, Jarrell ZR, Orr M, Liu KH, Go YM, Jones DP. Metabolome-wide association study of flavorant vanillin exposure in bronchial epithelial cells reveals disease-related perturbations in metabolism. ENVIRONMENT INTERNATIONAL 2021; 147:106323. [PMID: 33360165 PMCID: PMC7856097 DOI: 10.1016/j.envint.2020.106323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Electronic cigarettes (e-cig) are an increasingly popular alternative to traditional smoking but have been in use for too short of a period of time to fully understand health risks. Furthermore, associated health risks are difficult to evaluate because of a large range of flavoring agents and their combinations for use with e-cig. Many flavoring agents are generally regarded as safe but have limited studies for effects on lung. Vanillin, an aromatic aldehyde, is one of the most commonly used flavoring agents in e-cig. Vanillin is electrophilic and can be redox active, with chemical properties expected to interact within biologic systems. Because accumulating lung metabolomics studies have identified metabolic disruptions associated with idiopathic pulmonary fibrosis, asthma and acute respiratory distress syndrome, we used human bronchial epithelial cells (BEAS-2B) with high-resolution metabolomics analysis to determine whether these disease-associated pathways are impacted by vanillin over the range used in e-cig. A metabolome-wide association study showed that vanillin perturbed specific energy, amino acid, antioxidant and sphingolipid pathways previously associated with human disease. Analysis of a small publicly available human dataset showed associations with several of the same pathways. Because vanillin is a common and high-abundance flavorant in e-cig, these results show that vanillin has potential to be mechanistically important in lung diseases and warrants in vivo toxicity testing in the context of e-cig use.
Collapse
Affiliation(s)
- Matthew Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ken H Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
10
|
Torres J, Riddle M, Colombel JF. Reply. Gastroenterology 2021; 160:476-477. [PMID: 33159925 DOI: 10.1053/j.gastro.2020.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 12/02/2022]
Affiliation(s)
- Joana Torres
- Department of Medicine, Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York and, Gastroenterology Division, Hospital Beatriz Ângelo, Loures, Lisbon, Portugal
| | - Mark Riddle
- University of Nevada, Reno School of Medicine and, VA Sierra Nevada Health Care System, Reno, Nevada
| | - Jean-Frédéric Colombel
- Department of Medicine, Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York
| |
Collapse
|
11
|
Bollati V, Ferrari L, Leso V, Iavicoli I. Personalised Medicine: implication and perspectives in the field of occupational health. LA MEDICINA DEL LAVORO 2020; 111:425-444. [PMID: 33311418 PMCID: PMC7809984 DOI: 10.23749/mdl.v111i6.10947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
"Personalised medicine" relies on identifying and integrating individual variability in genomic, biological, and physiological parameters, as well as in environmental and lifestyle factors, to define "individually" targeted disease prevention and treatment. Although innovative "omic" technologies supported the application of personalised medicine in clinical, oncological, and pharmacological settings, its role in occupational health practice and research is still in a developing phase. Occupational personalised approaches have been currently applied in experimental settings and in conditions of unpredictable risks, e.g.. war missions and space flights, where it is essential to avoid disease manifestations and therapy failure. However, a debate is necessary as to whether personalized medicine may be even more important to support a redefinition of the risk assessment processes taking into consideration the complex interaction between occupational and individual factors. Indeed, "omic" techniques can be helpful to understand the hazardous properties of the xenobiotics, dose-response relationships through a deeper elucidation of the exposure-disease pathways and internal doses of exposure. Overall, this may guide the adoption/implementation of primary preventive measures protective for the vast majority of the population, including most susceptible subgroups. However, the application of personalised medicine into occupational health requires overcoming some practical, ethical, legal, economical, and socio-political issues, particularly concerning the protection of privacy, and the risk of discrimination that the workers may experience. In this scenario, the concerted action of academic, industry, governmental, and stakeholder representatives should be encouraged to improve research aimed to guide effective and sustainable implementation of personalised medicine in occupational health fields.
Collapse
Affiliation(s)
- Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Italy.
| | - Luca Ferrari
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Italy.
| | - Veruscka Leso
- Section of Occupational Medicine, Department of Public Health, Università degli Studi di Napoli Federico II, Napoli, Italy.
| | - Ivo Iavicoli
- Section of Occupational Medicine, Department of Public Health, Università degli Studi di Napoli Federico II, Napoli, Italy.
| |
Collapse
|
12
|
Respiratory Health after Military Service in Southwest Asia and Afghanistan. An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2020; 16:e1-e16. [PMID: 31368802 PMCID: PMC6774741 DOI: 10.1513/annalsats.201904-344ws] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Since 2001, more than 2.7 million U.S. military personnel have been deployed in support of operations in Southwest Asia and Afghanistan. Land-based personnel experienced elevated exposures to particulate matter and other inhalational exposures from multiple sources, including desert dust, burn pit combustion, and other industrial, mobile, or military sources. A workshop conducted at the 2018 American Thoracic Society International Conference had the goals of: 1) identifying key studies assessing postdeployment respiratory health, 2) describing emerging research, and 3) highlighting knowledge gaps. The workshop reviewed epidemiologic studies that demonstrated more frequent encounters for respiratory symptoms postdeployment compared with nondeployers and for airway disease, predominantly asthma, as well as case series describing postdeployment dyspnea, asthma, and a range of other respiratory tract findings. On the basis of particulate matter effects in other populations, it also is possible that deployers experienced reductions in pulmonary function as a result of such exposure. The workshop also gave particular attention to constrictive bronchiolitis, which has been reported in lung biopsies of selected deployers. Workshop participants had heterogeneous views regarding the definition and frequency of constrictive bronchiolitis and other small airway pathologic findings in deployed populations. The workshop concluded that the relationship of airway disease, including constrictive bronchiolitis, to exposures experienced during deployment remains to be better defined. Future clinical and epidemiologic research efforts should address better characterization of deployment exposures; carry out longitudinal assessment of potentially related adverse health conditions, including lung function and other physiologic changes; and use rigorous histologic, exposure, and clinical characterization of patients with respiratory tract abnormalities.
Collapse
|
13
|
Benzo[a]pyrene Perturbs Mitochondrial and Amino Acid Metabolism in Lung Epithelial Cells and Has Similar Correlations With Metabolic Changes in Human Serum. J Occup Environ Med 2020; 61 Suppl 12:S73-S81. [PMID: 31800453 DOI: 10.1097/jom.0000000000001687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE A study was conducted to identifymetabolic-related effects of benzo[a]pyrene (BaP) on human lung epithelial cells and validate these findings using human sera. METHODS Human lung epithelial cells were treated with BaP, and extracts were analyzed with a global metabolome-wide association study (MWAS) to test for pathways and metabolites altered relative to vehicle controls. RESULTS MWAS results showed that BaP metabolites were among the top metabolites differing between BaP-treated cells and controls. Pathway enrichment analysis further confirmed that fatty acid, lipid, and mitochondrial pathways were altered by BaP. Human sera analysis showed that lipids varied with BaP concentration. BaP associations with amino acid metabolism were found in both models. CONCLUSIONS These findings show that BaP has broad metabolic effects, and suggest that air pollution exacerbates disease processes by altered mitochondrial and amino acid metabolism.
Collapse
|
14
|
Analysis of Postdeployment Serum Samples Identifies Potential Biomarkers of Exposure to Burn Pits and Other Environmental Hazards. J Occup Environ Med 2020; 61 Suppl 12:S45-S54. [PMID: 31800450 DOI: 10.1097/jom.0000000000001715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The potential health risks of deployment to sites with open burn pits remain poorly understood, in part, because personal exposure monitoring was not performed. Here, we investigated whether postdeployment serum samples contain biomarkers associated with exposure to burn pits. METHODS A total of 237 biomarkers were measured in 800 serum samples from deployed and never-deployed subjects. We used a regression model and a supervised vector machine to identify serum biomarkers with significant associations with exposures and deployment. RESULTS We identified 101 serum biomarkers associated with polycyclic aromatic hydrocarbons, dioxins or furans, and 54 biomarkers associated with deployment. Twenty-six of these biomarkers were shared in common by the exposure and deployment groups. CONCLUSIONS We identify a potential signature of exposure to open burn pits, and provide a framework for using postexposure sera to identify exposures when contemporaneous monitoring was inadequate.
Collapse
|
15
|
Environmental Chemicals Altered in Association With Deployment for High Risk Areas. J Occup Environ Med 2020; 61 Suppl 12:S15-S24. [PMID: 31800447 DOI: 10.1097/jom.0000000000001647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE A study was conducted using serum samples and high-resolution metabolomics (HRM) to test for changes in abundance of environmental chemicals in deployment in high-risk areas (Balad, Iraq; Bagram, Afghanistan). METHODS Pre and Post-deployment serum samples for deployment (cases) and matched controls stationed domestically were analyzed by HRM and bioinformatics for the relative abundance of 271 environmental chemicals. RESULTS Of the 271 chemicals, 153 were measurable in at least 80% of the samples in one of the pre- or post-deployment groups. Several pesticides and other chemicals were modestly elevated post-deployment in the Control as well as the Bagram and Balad samples. Similarly, small decreases were seen for some chemicals. CONCLUSION These results using serum samples show that for the 271 environmental chemicals studied, 56% were detected and small differences occurred with deployment to high-risk areas.
Collapse
|
16
|
Advances in Comprehensive Exposure Assessment: Opportunities for the US Military. J Occup Environ Med 2020; 61 Suppl 12:S5-S14. [PMID: 31800446 DOI: 10.1097/jom.0000000000001677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Review advances in exposure assessment offered by the exposome concept and new -omics and sensor technologies. METHODS Narrative review of advances, including current efforts and potential future applications by the US military. RESULTS Exposure assessment methods from both bottom-up and top-down exposomics approaches are advancing at a rapid pace, and the US military is engaged in developing both approaches. Top-down approaches employ various -omics technologies to identify biomarkers of internal exposure and biological effect. Bottom-up approaches use new sensor technology to better measure external dose. Key challenges of both approaches are largely centered around how to integrate, analyze, and interpret large datasets that are multidimensional and disparate. CONCLUSIONS Advances in -omics and sensor technologies may dramatically enhance exposure assessment and improve our ability to characterize health risks related to occupational and environmental exposures, including for the US military.
Collapse
|
17
|
Metabolome-Wide Association Study of Deployment to Balad, Iraq or Bagram, Afghanistan. J Occup Environ Med 2020; 61 Suppl 12:S25-S34. [PMID: 31800448 DOI: 10.1097/jom.0000000000001665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To use high-resolution metabolomics (HRM) to identify metabolic changes in military personnel associated with deployment to Balad, Iraq, or Bagram, Afghanistan. METHODS Pre- and post-deployment samples were obtained from the Department of Defense Serum Repository (DoDSR). HRM and bioinformatics were used to identify metabolic differences associated with deployment. RESULTS Differences at baseline (pre-deployment) between personnel deployed to Bagram compared with Balad or Controls included sex hormone and keratan sulfate metabolism. Deployment to Balad was associated with alterations to amino acid and lipid metabolism, consistent with inflammation and oxidative stress, and pathways linked to metabolic adaptation and repair. Difference associated with deployment to Bagram included lipid pathways linked to cell signaling and inflammation. CONCLUSIONS Metabolic variations in pre- and post-deployment are consistent with deployment-associated responses to air pollution and other environmental stressors.
Collapse
|
18
|
Integrative Network Analysis Linking Clinical Outcomes With Environmental Exposures and Molecular Variations in Service Personnel Deployed to Balad and Bagram. J Occup Environ Med 2020; 61 Suppl 12:S65-S72. [PMID: 31800452 DOI: 10.1097/jom.0000000000001710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To develop a computational approach to link clinical outcomes with environmental exposures and molecular variations measured in Department of Defense (DOD) serum-repository samples. METHODS International Classification of Diseases, Ninth Division codes which corresponded to cardiopulmonary symptoms for service personnel were selected to test for associations with deployment-related inhalation hazards and metabolomics, micro-RNA, cytokine, plasma markers, and environmental exposure analyses for corresponding samples. xMWAS and Mummichog were used for integrative network and pathway analysis. RESULTS Comparison between 41 personnel exhibiting new cardio-pulmonary diagnoses after deployment start-date to 25 personnel exhibiting no symptoms identified biomarkers associated with cardiopulmonary conditions. Integrative network and pathway analysis showed communities of clinical, molecular, and environmental markers associated with fatty acid, lipid, nucleotide, and amino acid metabolism pathways. CONCLUSIONS The current proof of principle study establishes a computational framework for integrative analysis of deployment-related exposures, molecular responses, and health outcomes.
Collapse
|
19
|
Use of Biomarkers to Assess Environmental Exposures and Health Outcomes in Deployed Troops. J Occup Environ Med 2020; 61 Suppl 12:S1-S4. [PMID: 31800445 DOI: 10.1097/jom.0000000000001752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This paper provides an overview of our Military Biomarkers Research Study (MBRS) designed to assess whether biomarkers can be used to retrospectively assess deployment exposures and health impacts related to deployment environmental exposures. METHODS The MBRS consists of four phases. Phase I was a feasibility study of stored sera. Phase II looks at associations between exposures and biomarkers. Phase III examines relationships of biomarkers and health outcomes, and Phase IV investigates in vitro biomarker changes associated with exposures to chemicals of interest. This paper briefly summarizes work already published and introduces the new reports contained in this supplement. RESULTS Novel biomarkers were identified. These were associated with deployment exposures. CONCLUSIONS Significant associations were noted between deployment exposures, microRNA biomarkers and metabolomic biomarkers, and deployment health outcomes.
Collapse
|
20
|
Dennis KK, Uppal K, Liu KH, Ma C, Liang B, Go YM, Jones DP. Phytochelatin database: a resource for phytochelatin complexes of nutritional and environmental metals. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5527149. [PMID: 31267134 PMCID: PMC6606759 DOI: 10.1093/database/baz083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022]
Abstract
Phytochelatins (PyCs) are a diverse set of plant compounds that chelate metals, protect against metal toxicity and function in metal homeostasis. PyCs are present in plants consumed as food by humans and could, in principle, impact absorption and utilization of essential and toxic metals such as selenium and cadmium, respectively. PyCs vary in terminal amino acid composition and chain length, exist in multiple oxidation states and reversibly bind multiple metals; consequently, PyCs include a large set of possible structures. Although individual PyC-metal complexes have been studied, no resource exists to characterize the diversity of PyCs and PyC-metal complexes. We used the scientific literature to develop a database of elemental formulas for polymer forms varying in chain length from 2 to 11 glutamyl-cysteine repeats. Using elemental formulas, we calculated monoisotopic masses using the most abundant isotopes of each element and calculated masses for complexes with 13 metals of nutritional and toxicological significance. The resulting phytochelatin database (PyCDB) contains 46 260 unique elemental formulas for PyC and PyC-metal complexes. The database is available online for download as well as for direct mass queries for mass spectrometry using an accurate mass annotation tool for user-selected PyC types, metals and adducts of interest. We performed studies of a commonly consumed food—onion—to validate the database and test utility of the tool. Onion samples were analyzed using ultra-high resolution mass spectrometry-based metabolomics. Mass spectral features were annotated using the PyCDB web tool and the R package, xMSannotator; annotated features were further validated by collision-induced dissociation mass spectrometry. The results establish use and a workflow for PyCDB as a resource for characterization of PyCs and PyC-metal complexes.
Collapse
Affiliation(s)
- Kristine K Dennis
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Ken H Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Chunyu Ma
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Bill Liang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
21
|
Woeller CF, Thatcher TH, Thakar J, Cornwell A, Smith MR, Jones DP, Hopke PK, Sime PJ, Krahl P, Mallon TM, Phipps RP, Utell MJ. Exposure to Heptachlorodibenzo-p-dioxin (HpCDD) Regulates microRNA Expression in Human Lung Fibroblasts. J Occup Environ Med 2019; 61 Suppl 12:S82-S89. [PMID: 31800454 PMCID: PMC8058852 DOI: 10.1097/jom.0000000000001691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Benzo(ghi)perylene (BghiP) and 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD) were elevated in serum from personnel deployed to sites with open burn pits. Here, we investigated the ability of BghiP and HpCDD to regulate microRNA (miRNA) expression through the aryl hydrocarbon receptor (AHR). METHODS Human lung fibroblasts (HLFs) were exposed to BghiP and HpCDD. AHR activity was measured by reporter assay and gene expression. Deployment related miRNA were measured by quantitative polymerase chain reaction. AHR expression was depleted using siRNA. RESULTS BghiP displayed weak AHR agonist activity. HpCDD induced AHR activity in a dose-dependent manner. Let-7d-5p, miR-103-3p, miR-107, and miR-144-3p levels were significantly altered by HpCDD. AHR knockdown attenuated these effects. CONCLUSIONS These studies reveal that miRNAs previously identified in sera from personnel deployed to sites with open burn pits are altered by HpCDD exposure in HLFs.
Collapse
Affiliation(s)
- Collynn F Woeller
- Department of Environmental Medicine (Dr Woeller, Dr Hopke, Dr Phipps, Dr Utell); Department of Medicine (Dr Thatcher, Dr Sime, Dr Utell); Microbiology and Immunology (Dr Thakar, Mr Cornwell, Dr Phipps), University of Rochester Medical Center, Rochester; Center for Air Resources Engineering and Science, Clarkson University, Potsdam (Dr Hopke), New York; Emory University, Atlanta, Georgia (Dr Smith, Dr Jones); Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, Maryland (Dr Krahl, Dr Mallon)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jiang X, Xu F, Qiu X, Shi X, Pardo M, Shang Y, Wang J, Rudich Y, Zhu T. Hydrophobic Organic Components of Ambient Fine Particulate Matter (PM 2.5) Associated with Inflammatory Cellular Response. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10479-10486. [PMID: 31397158 DOI: 10.1021/acs.est.9b02902] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nowadays, knowledge regarding component-specific inflammatory effect of fine particulate matter (PM2.5) is limited. In this study, an omics approach based on time-of-flight mass spectrometry was established to identify the key hydrophobic components of PM2.5 associated with pro-inflammatory cytokines released by macrophages after in vitro exposure. Of 764 compounds, 62 components were robustly screened with firmly identified 37 specific chemicals. In addition to polycyclic aromatic hydrocarbons (PAHs) and their methylated congeners, novel oxygen- and nitrogen-containing PAHs and, especially, oxygenated PAHs (Oxy-PAHs) were identified. Interleukin (IL)-6 was associated with Oxy-PAHs of 1,8-naphthalic anhydride, xanthone, and benzo[h]quinolone, especially, whereas IL-1β and tumor necrosis factor (TNF)-α were associated with most species. Most species were related to IL-1β, which was significantly higher in the heating season, with a monotonic dose-response pattern mainly for Oxy-PAHs and a U-shaped dose-response pattern for primary species. On the basis of the identified components, four sources of pollution (coal combustion, traffic emissions, biomass burning, and secondary formation, traced by Oxy-PAHs such as 1,8-naphthalic anhydride and quinones) were resolved by the positive matrix factorization model. TNF-α was associated with primary sources, whereas IL-1β and IL-6 were associated with both primary and secondary sources, suggesting different inflammatory effects between primary and secondary sources when assessing the toxicity-driven disparities of known and unknown PM2.5 components.
Collapse
Affiliation(s)
- Xing Jiang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health , Peking University , Beijing 100871 , P. R. China
| | - Fanfan Xu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health , Peking University , Beijing 100871 , P. R. China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health , Peking University , Beijing 100871 , P. R. China
| | - Xiaodi Shi
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health , Peking University , Beijing 100871 , P. R. China
| | - Michal Pardo
- Department of Earth and Planetary Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Yu Shang
- Institute of Environmental Pollution and Health , Shanghai University , Shanghai 200444 , P. R. China
| | - Junxia Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health , Peking University , Beijing 100871 , P. R. China
| | - Yinon Rudich
- Department of Earth and Planetary Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health , Peking University , Beijing 100871 , P. R. China
| |
Collapse
|
23
|
Xue J, Lai Y, Liu CW, Ru H. Towards Mass Spectrometry-Based Chemical Exposome: Current Approaches, Challenges, and Future Directions. TOXICS 2019; 7:toxics7030041. [PMID: 31426576 PMCID: PMC6789759 DOI: 10.3390/toxics7030041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
The proposal of the “exposome” concept represents a shift of the research paradigm in studying exposure-disease relationships from an isolated and partial way to a systematic and agnostic approach. Nevertheless, exposome implementation is facing a variety of challenges including measurement techniques and data analysis. Here we focus on the chemical exposome, which refers to the mixtures of chemical pollutants people are exposed to from embryo onwards. We review the current chemical exposome measurement approaches with a focus on those based on the mass spectrometry. We further explore the strategies in implementing the concept of chemical exposome and discuss the available chemical exposome studies. Early progresses in the chemical exposome research are outlined, and major challenges are highlighted. In conclusion, efforts towards chemical exposome have only uncovered the tip of the iceberg, and further advancement in measurement techniques, computational tools, high-throughput data analysis, and standardization may allow more exciting discoveries concerning the role of exposome in human health and disease.
Collapse
Affiliation(s)
- Jingchuan Xue
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yunjia Lai
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chih-Wei Liu
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongyu Ru
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
24
|
|
25
|
Walker DI, Valvi D, Rothman N, Lan Q, Miller GW, Jones DP. The metabolome: A key measure for exposome research in epidemiology. CURR EPIDEMIOL REP 2019; 6:93-103. [PMID: 31828002 PMCID: PMC6905435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE OF REVIEW Application of omics to study human health has created a new era of opportunities for epidemiology research. However, approaches to characterize exogenous health triggers have largely not leveraged advances in analytical platforms and big data. In this review, we highlight the exposome, which is defined as the cumulative measure of exposure and biological responses across a lifetime as a cornerstone for new epidemiology approaches to study complex and preventable human diseases. RECENT FINDINGS While no universal approach exists to measure the entirety of the exposome, use of high-resolution mass spectrometry methods provide distinct advantages over traditional biomonitoring and have provided key advances necessary for exposome research. Application to different study designs and recommendations for combining exposome data with novel data analytic frameworks to study complex interactions of multiple stressors are also discussed. SUMMARY Even though challenges still need to be addressed, advances in methods to characterize the exposome provide exciting new opportunities for epidemiology to support fundamental discoveries to improve public health.
Collapse
Affiliation(s)
- Douglas I. Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Damaskini Valvi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, United States
| | - Nathaniel Rothman
- Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Qing Lan
- Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Gary W. Miller
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York NY
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
26
|
Walker DI, Perry-Walker K, Finnell RH, Pennell KD, Tran V, May RC, McElrath TF, Meador KJ, Pennell PB, Jones DP. Metabolome-wide association study of anti-epileptic drug treatment during pregnancy. Toxicol Appl Pharmacol 2019; 363:122-130. [PMID: 30521819 PMCID: PMC7172934 DOI: 10.1016/j.taap.2018.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/29/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022]
Abstract
Pregnant women with epilepsy (PWWE) require continuous anti-epileptic drug (AED) treatment to avoid risk to themselves and fetal risks secondary to maternal seizures, resulting in prolonged AED exposure to the developing embryo and fetus. The objectives of this study were to determine whether high-resolution metabolomics is able to link the metabolite profile of PWWE receiving lamotrigine or levetiracetam for seizure control to associated pharmacodynamic (PD) biological responses. Untargeted metabolomic analysis of plasma obtained from 82 PWWE was completed using high-resolution mass spectrometry. Biological alterations due to lamotrigine or levetiracetam monotherapy were determined by a metabolome-wide association study that compared patients taking either drug to those who did not require AED treatment. Metabolic changes associated with AED use were then evaluated by testing for drug-dose associated metabolic variations and pathway enrichment. AED therapy resulted in drug-associated metabolic profiles recognizable within maternal plasma. Both the parent compounds and major metabolites were detected, and each AED was correlated with other metabolic features and pathways. Changes in metabolites and metabolic pathways important to maternal health and linked to fetal neurodevelopment were detected for both drugs, including changes in one‑carbon metabolism, neurotransmitter biosynthesis and steroid metabolism. In addition, decreased levels of 5-methyltetrahydrofolate and tetrahydrofolate were detected in women taking lamotrigine, which is consistent with recent findings showing increased risk of autism spectrum disorder traits in PWWE using AED. These results represent a first step in development of pharmacometabolomic framework with potential to detect adverse AED-related metabolic changes during pregnancy.
Collapse
Affiliation(s)
- Douglas I Walker
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA, United States; Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Kayla Perry-Walker
- Department of Obstetrics-Gynecology, Pennsylvania Hospital, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, United States
| | - Vilinh Tran
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Ryan C May
- The Emmes Corporation, Rockville, MD, United States
| | - Thomas F McElrath
- Division of Maternal-Fetal Medicine, Department of Obstetrics-Gynecology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kimford J Meador
- Department of Neurology, Stanford University, Stanford, CA, United States
| | - Page B Pennell
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
27
|
Niedzwiecki MM, Walker DI, Vermeulen R, Chadeau-Hyam M, Jones DP, Miller GW. The Exposome: Molecules to Populations. Annu Rev Pharmacol Toxicol 2019; 59:107-127. [PMID: 30095351 DOI: 10.1146/annurev-pharmtox-010818-021315] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Derived from the term exposure, the exposome is an omic-scale characterization of the nongenetic drivers of health and disease. With the genome, it defines the phenome of an individual. The measurement of complex environmental factors that exert pressure on our health has not kept pace with genomics and historically has not provided a similar level of resolution. Emerging technologies make it possible to obtain detailed information on drugs, toxicants, pollutants, nutrients, and physical and psychological stressors on an omic scale. These forces can also be assessed at systems and network levels, providing a framework for advances in pharmacology and toxicology. The exposome paradigm can improve the analysis of drug interactions and detection of adverse effects of drugs and toxicants and provide data on biological responses to exposures. The comprehensive model can provide data at the individual level for precision medicine, group level for clinical trials, and population level for public health.
Collapse
Affiliation(s)
- Megan M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; ,
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; ,
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA;
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, Netherlands;
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 Utrecht, Netherlands
- MRC/PHE Centre for Environmental Health, Department of Epidemiology and Public Health, Imperial College London, W2 1PG London, United Kingdom;
| | - Marc Chadeau-Hyam
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, Netherlands;
- MRC/PHE Centre for Environmental Health, Department of Epidemiology and Public Health, Imperial College London, W2 1PG London, United Kingdom;
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA;
| | - Gary W Miller
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA
- Current affiliation: Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA;
| |
Collapse
|
28
|
Ladva CN, Golan R, Liang D, Greenwald R, Walker DI, Uppal K, Raysoni AU, Tran V, Yu T, Flanders WD, Miller GW, Jones DP, Sarnat JA. Particulate metal exposures induce plasma metabolome changes in a commuter panel study. PLoS One 2018; 13:e0203468. [PMID: 30231074 PMCID: PMC6145583 DOI: 10.1371/journal.pone.0203468] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/21/2018] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Advances in liquid chromatography-mass spectrometry (LC-MS) have enabled high-resolution metabolomics (HRM) to emerge as a sensitive tool for measuring environmental exposures and corresponding biological response. Using measurements collected as part of a large, panel-based study of car commuters, the current analysis examines in-vehicle air pollution concentrations, targeted inflammatory biomarker levels, and metabolomic profiles to trace potential metabolic perturbations associated with on-road traffic exposures. METHODS A 60-person panel of adults participated in a crossover study, where each participant conducted a highway commute and randomized to either a side-street commute or clinic exposure session. In addition to in-vehicle exposure characterizations, participants contributed pre- and post-exposure dried blood spots for 2-hr changes in targeted proinflammatory and vascular injury biomarkers and 10-hr changes in the plasma metabolome. Samples were analyzed on a Thermo QExactive MS system in positive and negative electrospray ionization (ESI) mode. Data were processed and analyzed in R using apLCMS, xMSanalyzer, and limma. Features associated with environmental exposures or biological endpoints were identified with a linear mixed effects model and annotated through human metabolic pathway analysis in mummichog. RESULTS HRM detected 10-hr perturbations in 110 features associated with in-vehicle, particulate metal exposures (Al, Pb, and Fe) which reflect changes in arachidonic acid, leukotriene, and tryptophan metabolism. Two-hour changes in proinflammatory biomarkers hs-CRP, IL-6, IL-8, and IL-1β were also associated with 10-hr changes in the plasma metabolome, suggesting diverse amino acid, leukotriene, and antioxidant metabolism effects. A putatively identified metabolite, 20-OH-LTB4, decreased after in-vehicle exposure to particulate metals, suggesting a subclinical immune response. CONCLUSIONS Acute exposures to traffic-related air pollutants are associated with broad inflammatory response, including several traditional markers of inflammation.
Collapse
Affiliation(s)
- Chandresh Nanji Ladva
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Rachel Golan
- Department of Public Health, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Donghai Liang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Roby Greenwald
- Department of Environmental Health, Georgia State University, Atlanta, GA, United States of America
| | - Douglas I. Walker
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Amit U. Raysoni
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - ViLinh Tran
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Tianwei Yu
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, United States of America
| | - W. Dana Flanders
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Gary W. Miller
- Department of Public Health, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dean P. Jones
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Jeremy A. Sarnat
- Department of Public Health, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
29
|
Fernandes J, Chandler JD, Liu KH, Uppal K, Go YM, Jones DP. Putrescine as indicator of manganese neurotoxicity: Dose-response study in human SH-SY5Y cells. Food Chem Toxicol 2018; 116:272-280. [PMID: 29684492 PMCID: PMC6008158 DOI: 10.1016/j.fct.2018.04.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/31/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023]
Abstract
Disrupted polyamine metabolism with elevated putrescine is associated with neuronal dysfunction. Manganese (Mn) is an essential nutrient that causes neurotoxicity in excess, but methods to evaluate biochemical responses to high Mn are limited. No information is available on dose-response effects of Mn on putrescine abundance and related polyamine metabolism. The present research was to test the hypothesis that Mn causes putrescine accumulation over a physiologically adequate to toxic concentration range in a neuronal cell line. We used human SH-SY5Y neuroblastoma cells treated with MnCl2 under conditions that resulted in cell death or no cell death after 48 h. Putrescine and other metabolites were analyzed by liquid chromatography-ultra high-resolution mass spectrometry. Putrescine-related pathway changes were identified with metabolome-wide association study (MWAS). Results show that Mn caused a dose-dependent increase in putrescine over a non-toxic to toxic concentration range. MWAS of putrescine showed positive correlations with the polyamine metabolite N8-acetylspermidine, methionine-related precursors, and arginine-associated urea cycle metabolites, while putrescine was negatively correlated with γ-aminobutyric acid (GABA)-related and succinate-related metabolites (P < 0.001, FDR < 0.01). These data suggest that measurement of putrescine and correlated metabolites may be useful to study effects of Mn intake in the high adequate to UL range.
Collapse
Affiliation(s)
- Jolyn Fernandes
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Joshua D Chandler
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Ken H Liu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA.
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
30
|
Introduction to Department of Defense Research on Burn Pits, Biomarkers, and Health Outcomes Related to Deployment in Iraq and Afghanistan. J Occup Environ Med 2018; 58:S3-S11. [PMID: 27501101 DOI: 10.1097/jom.0000000000000775] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE This paper provides an overview of our study that was designed to assess the health impact of environmental exposures to open pit burning in deployed troops. METHODS The rationale for the study and the structure of the research plan was laid out. An overview of each article in the supplement was provided. The cohort of deployed Service members was assessed for airborne exposure, relevant biomarkers, and health outcomes following deployment to Balad, Iraq, and/or Bagram, Afghanistan. RESULTS Polycyclic aromatic hydrocarbon (PAH) exposures were elevated, and serum biomarkers were statistically different postdeployment. Associations were noted between PAHs and dioxins and microRNAs. Some health outcomes were evident in deployers compared with nondeployers. CONCLUSIONS Future research will examine the associations between demographic variables, smoking status, biomarker levels, and related health outcomes.
Collapse
|
31
|
Gil AM, Duarte D, Pinto J, Barros AS. Assessing Exposome Effects on Pregnancy through Urine Metabolomics of a Portuguese (Estarreja) Cohort. J Proteome Res 2018; 17:1278-1289. [DOI: 10.1021/acs.jproteome.7b00878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ana M. Gil
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Daniela Duarte
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Pinto
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- UCIBIO@REQUIMTE/Laboratório
de Toxicologia, Departamento de Ciências Biológicas,
Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - António S. Barros
- CICECO
- Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Department
of Cardiothoracic Surgery and Physiology, Faculty of Medicine, Porto 4200-319, Portugal
| |
Collapse
|
32
|
Johnson CH, Athersuch TJ, Collman GW, Dhungana S, Grant DF, Jones DP, Patel CJ, Vasiliou V. Yale school of public health symposium on lifetime exposures and human health: the exposome; summary and future reflections. Hum Genomics 2017; 11:32. [PMID: 29221465 PMCID: PMC5723043 DOI: 10.1186/s40246-017-0128-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/01/2017] [Indexed: 01/12/2023] Open
Abstract
The exposome is defined as "the totality of environmental exposures encountered from birth to death" and was developed to address the need for comprehensive environmental exposure assessment to better understand disease etiology. Due to the complexity of the exposome, significant efforts have been made to develop technologies for longitudinal, internal and external exposure monitoring, and bioinformatics to integrate and analyze datasets generated. Our objectives were to bring together leaders in the field of exposomics, at a recent Symposium on "Lifetime Exposures and Human Health: The Exposome," held at Yale School of Public Health. Our aim was to highlight the most recent technological advancements for measurement of the exposome, bioinformatics development, current limitations, and future needs in environmental health. In the discussions, an emphasis was placed on moving away from a one-chemical one-health outcome model toward a new paradigm of monitoring the totality of exposures that individuals may experience over their lifetime. This is critical to better understand the underlying biological impact on human health, particularly during windows of susceptibility. Recent advancements in metabolomics and bioinformatics are driving the field forward in biomonitoring and understanding the biological impact, and the technological and logistical challenges involved in the analyses were highlighted. In conclusion, further developments and support are needed for large-scale biomonitoring and management of big data, standardization for exposure and data analyses, bioinformatics tools for co-exposure or mixture analyses, and methods for data sharing.
Collapse
Affiliation(s)
- Caroline H. Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT USA
| | - Toby J. Athersuch
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College Norfolk Place, London, UK
| | - Gwen W. Collman
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, National Institutes of Health, Morrisville, NC USA
| | - Suraj Dhungana
- Waters Corporation, Metabolomics and Translational Research, Milford, MA USA
| | - David F. Grant
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT USA
| | - Dean P. Jones
- Department of Medicine, Emory University School of Medicine, Atlanta, GA USA
| | - Chirag J. Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT USA
| |
Collapse
|
33
|
Andra SS, Austin C, Patel D, Dolios G, Awawda M, Arora M. Trends in the application of high-resolution mass spectrometry for human biomonitoring: An analytical primer to studying the environmental chemical space of the human exposome. ENVIRONMENT INTERNATIONAL 2017; 100:32-61. [PMID: 28062070 PMCID: PMC5322482 DOI: 10.1016/j.envint.2016.11.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 05/05/2023]
Abstract
Global profiling of xenobiotics in human matrices in an untargeted mode is gaining attention for studying the environmental chemical space of the human exposome. Defined as the study of a comprehensive inclusion of environmental influences and associated biological responses, human exposome science is currently evolving out of the metabolomics science. In analogy to the latter, the development and applications of high resolution mass spectrometry (HRMS) has shown potential and promise to greatly expand our ability to capture the broad spectrum of environmental chemicals in exposome studies. HRMS can perform both untargeted and targeted analysis because of its capability of full- and/or tandem-mass spectrum acquisition at high mass accuracy with good sensitivity. The collected data from target, suspect and non-target screening can be used not only for the identification of environmental chemical contaminants in human matrices prospectively but also retrospectively. This review covers recent trends and advances in this field. We focus on advances and applications of HRMS in human biomonitoring studies, and data acquisition and mining. The acquired insights provide stepping stones to improve understanding of the human exposome by applying HRMS, and the challenges and prospects for future research.
Collapse
Affiliation(s)
- Syam S Andra
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Christine Austin
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dhavalkumar Patel
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Georgia Dolios
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahmoud Awawda
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Manish Arora
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
34
|
Uppal K, Walker DI, Liu K, Li S, Go YM, Jones DP. Computational Metabolomics: A Framework for the Million Metabolome. Chem Res Toxicol 2016; 29:1956-1975. [PMID: 27629808 DOI: 10.1021/acs.chemrestox.6b00179] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
"Sola dosis facit venenum." These words of Paracelsus, "the dose makes the poison", can lead to a cavalier attitude concerning potential toxicities of the vast array of low abundance environmental chemicals to which humans are exposed. Exposome research teaches that 80-85% of human disease is linked to environmental exposures. The human exposome is estimated to include >400,000 environmental chemicals, most of which are uncharacterized with regard to human health. In fact, mass spectrometry measures >200,000 m/z features (ions) in microliter volumes derived from human samples; most are unidentified. This crystallizes a grand challenge for chemical research in toxicology: to develop reliable and affordable analytical methods to understand health impacts of the extensive human chemical experience. To this end, there appears to be no choice but to abandon the limitations of measuring one chemical at a time. The present review looks at progress in computational metabolomics to provide probability-based annotation linking ions to known chemicals and serve as a foundation for unambiguous designation of unidentified ions for toxicologic study. We review methods to characterize ions in terms of accurate mass m/z, chromatographic retention time, correlation of adduct, isotopic and fragment forms, association with metabolic pathways and measurement of collision-induced dissociation products, collision cross section, and chirality. Such information can support a largely unambiguous system for documenting unidentified ions in environmental surveillance and human biomonitoring. Assembly of this data would provide a resource to characterize and understand health risks of the array of low-abundance chemicals to which humans are exposed.
Collapse
Affiliation(s)
- Karan Uppal
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University , Atlanta, Georgia 30322, United States
| | - Douglas I Walker
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University , Atlanta, Georgia 30322, United States.,Hercules Exposome Research Center, Department of Environmental Health, Rollins School of Public Health, Emory University , Atlanta, Georgia 30322, United States.,Department of Civil and Environmental Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Ken Liu
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University , Atlanta, Georgia 30322, United States
| | - Shuzhao Li
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University , Atlanta, Georgia 30322, United States.,Hercules Exposome Research Center, Department of Environmental Health, Rollins School of Public Health, Emory University , Atlanta, Georgia 30322, United States
| | - Young-Mi Go
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University , Atlanta, Georgia 30322, United States
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University , Atlanta, Georgia 30322, United States.,Hercules Exposome Research Center, Department of Environmental Health, Rollins School of Public Health, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
35
|
Chandler JD, Hu X, Ko EJ, Park S, Lee YT, Orr M, Fernandes J, Uppal K, Kang SM, Jones DP, Go YM. Metabolic pathways of lung inflammation revealed by high-resolution metabolomics (HRM) of H1N1 influenza virus infection in mice. Am J Physiol Regul Integr Comp Physiol 2016; 311:R906-R916. [PMID: 27558316 DOI: 10.1152/ajpregu.00298.2016] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/19/2016] [Indexed: 12/21/2022]
Abstract
Influenza is a significant health concern worldwide. Viral infection induces local and systemic activation of the immune system causing attendant changes in metabolism. High-resolution metabolomics (HRM) uses advanced mass spectrometry and computational methods to measure thousands of metabolites inclusive of most metabolic pathways. We used HRM to identify metabolic pathways and clusters of association related to inflammatory cytokines in lungs of mice with H1N1 influenza virus infection. Infected mice showed progressive weight loss, decreased lung function, and severe lung inflammation with elevated cytokines [interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ] and increased oxidative stress via cysteine oxidation. HRM showed prominent effects of influenza virus infection on tryptophan and other amino acids, and widespread effects on pathways including purines, pyrimidines, fatty acids, and glycerophospholipids. A metabolome-wide association study (MWAS) of the aforementioned inflammatory cytokines was used to determine the relationship of metabolic responses to inflammation during infection. This cytokine-MWAS (cMWAS) showed that metabolic associations consisted of distinct and shared clusters of 396 metabolites highly correlated with inflammatory cytokines. Strong negative associations of selected glycosphingolipid, linoleate, and tryptophan metabolites with IFN-γ contrasted strong positive associations of glycosphingolipid and bile acid metabolites with IL-1β, TNF-α, and IL-10. Anti-inflammatory cytokine IL-10 had strong positive associations with vitamin D, purine, and vitamin E metabolism. The detailed metabolic interactions with cytokines indicate that targeted metabolic interventions may be useful during life-threatening crises related to severe acute infection and inflammation.
Collapse
Affiliation(s)
- Joshua D Chandler
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Xin Hu
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Eun-Ju Ko
- Georgia State University, Atlanta, Georgia
| | | | | | - Michael Orr
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Jolyn Fernandes
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Karan Uppal
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| | | | - Dean P Jones
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Young-Mi Go
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| |
Collapse
|