1
|
Turner MC, Cogliano V, Guyton K, Madia F, Straif K, Ward EM, Schubauer-Berigan MK. Research Recommendations for Selected IARC-Classified Agents: Impact and Lessons Learned. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:105001. [PMID: 37902675 PMCID: PMC10615125 DOI: 10.1289/ehp12547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND The International Agency for Research on Cancer (IARC) Monographs program assembles expert working groups who publish a critical review and evaluation of data on agents of interest. These comprehensive reviews provide a unique opportunity to identify research needs to address classification uncertainties. A multidisciplinary expert review and workshop held in 2009 identified research gaps and needs for 20 priority occupational chemicals, metals, dusts, and physical agents, with the goal of stimulating advances in epidemiological studies of cancer and carcinogen mechanisms. Overarching issues were also described. OBJECTIVES In this commentary we review the current status of the evidence for the 20 priority agents identified in 2009. We examine whether identified Research Recommendations for each agent were addressed and their potential impact on resolving classification uncertainties. METHODS We reviewed the IARC classifications of each of the 20 priority agents and identified major new epidemiological and human mechanistic studies published since the last evaluation. Information sources were either the published Monograph for agents that have been reevaluated or, for agents not yet reevaluated, Advisory Group reports and literature searches. Findings are described in view of recent methodological developments in Monographs evidence evaluation processes. DISCUSSION The majority of the 20 priority agents were reevaluated by IARC since 2009. The overall carcinogen classifications of 9 agents advanced, and new cancer sites with either "sufficient" or "limited" evidence of carcinogenicity were also identified for 9 agents. Examination of published findings revealed whether evidence gaps and Research Recommendations have been addressed and highlighted remaining uncertainties. During the past decade, new research addressed a range of the 2009 recommendations and supported updated classifications for priority agents. This supports future efforts to systematically apply findings of Monograph reviews to identify research gaps and priorities relevant to evaluation criteria established in the updated IARC Monograph Preamble. https://doi.org/10.1289/EHP12547.
Collapse
Affiliation(s)
- Michelle C. Turner
- Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Vincent Cogliano
- California Environmental Protection Agency Office of Environmental Health Hazard Assessment, Oakland, California, USA
| | - Kathryn Guyton
- National Academies of Sciences, Engineering, and Medicine, Washington, District of Columbia, USA
| | - Federica Madia
- International Agency for Research on Cancer, Lyon, France
| | - Kurt Straif
- Barcelona Institute for Global Health, Barcelona, Spain
- Boston College, Massachusetts, USA
| | | | | |
Collapse
|
2
|
Hansa J, Merzenich H, Cascant Ortolano L, Klug SJ, Blettner M, Gianicolo E. Health risks of titanium dioxide (TiO 2) dust exposure in occupational settings - A scoping review. Int J Hyg Environ Health 2023; 252:114212. [PMID: 37392523 DOI: 10.1016/j.ijheh.2023.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 07/03/2023]
Abstract
Titanium dioxide (TiO2) is an inorganic compound with many applications, for example in paint, sunscreen or as food coloring. There have been concerns regarding its safety and according to IARC, the existing evidence is not substantial enough to rule them out, leading to the substance being classified as possibly carcinogenic to humans (2B). This work aims to provide a comprehensible overview about epidemiological studies on occupational health risks and methodological aspects. A literature search was conducted in two databases (MEDLINE and Web of Science). The search focused on occupational exposure since this setting provides the highest amounts of TiO2 exposure. Of 443 unique search results, ten were included in this study, with publication dates ranging from 1988 to 2022. Seven of them are retrospective cohort studies and three have a case-control study design. Main outcomes of most studies were all-cause mortality and lung cancer mortality. For all-cause mortality, most cohort studies reported no association with TiO2 exposure. For lung cancer mortality, a significantly increased risk was found in a study population from Europe. The analysis results of working cohorts from the US comparing exposed workers' mortality rates with those of the general population were unobtrusive. However, one US cohort found an elevated mortality risk for all causes and lung cancer based on a reference population of company workers unexposed to TiO2. Case-control studies did not indicate an increased risk for cancer related to TiO2. Recent publications partly questioned the validity of those earlier findings, claiming insufficient confounder analysis, most notably for smoking, as well as the presence of the healthy worker effect, masking a potential health risk. In conclusion, the associations between occupational TiO2 exposure and mortality are unclear, but concerns regarding possible health risks recently re-emerged based on new analytical approaches, highlighting methodological difficulties that could have limited the inferential value of previously conducted studies.
Collapse
Affiliation(s)
- Jannis Hansa
- Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University, Rhabanusstr. 3, Turm A, 55118, Mainz, Germany.
| | - Hiltrud Merzenich
- Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University, Rhabanusstr. 3, Turm A, 55118, Mainz, Germany.
| | - Lorena Cascant Ortolano
- Departmental Library for the University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Stefanie J Klug
- Chair of Epidemiology, Department of Sport and Health Sciences, Technische Universität München, Georg-Brauchle-Ring 56, 80992, Munich, Germany.
| | - Maria Blettner
- Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University, Rhabanusstr. 3, Turm A, 55118, Mainz, Germany.
| | - Emilio Gianicolo
- Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University, Rhabanusstr. 3, Turm A, 55118, Mainz, Germany; Institute of Clinical Physiology, National Research Council, Lecce, Italy.
| |
Collapse
|
3
|
McCunney RJ, Yong M, Warheit DB, Morfeld P. Occupational Exposure to Poorly Soluble Low Toxicity Particles and Cardiac Disease: A Look at Carbon Black and Titanium Dioxide. Front Public Health 2022; 10:909136. [PMID: 35968459 PMCID: PMC9374269 DOI: 10.3389/fpubh.2022.909136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental particulate exposure and the potential risk to people with various types of cardiac diseases, most notably cardiovascular disease, have aroused scientific and regulatory interest worldwide. Epidemiological studies have shown associations between exposure to airborne environmental particulate matter (PM) and mortality from cardiovascular disease (CVD). The associations reported, however, are complex and may not involve a direct role for PM, since air pollutants are diverse and highly correlated. This study examines the potential role of occupational exposure to two types of particles, namely, manufactured carbon black (CB) and titanium dioxide (TiO2), on the risk of cardiovascular disease. To address the risk of cardiovascular disease from exposure to carbon black and titanium dioxide, as reflective of poorly soluble low toxicity particles, we reviewed the published cohort mortality studies of occupational exposure to carbon black and titanium dioxide. Mortality studies of carbon black have been conducted in the United States, Germany, and the United Kingdom. Five mortality studies related to workers involved in the manufacture of titanium dioxide in the United States and Europe have also been conducted. In addition, a meta-analysis of the three-carbon black mortality studies was performed. In the random-effects meta-analysis, full cohort meta-SMRs were 1.01 (95% confidence interval (CI): 0.79–1.29) for heart disease; 1.02 (95% CI: 0.80–1.30) for ischemic heart disease; and 1.08 (95% CI: 0.74–1.59) for acute myocardial infarction (AMI) mortality. A small but imprecise increased AMI mortality risk was suggested for cumulative exposure by a meta-HR = 1.10 per 100 mg/m3-years (95% CI: 0.92–1.31) but not for lugged exposures, that is, for recent exposures. Results of five cohort mortality studies of titanium dioxide workers in the United States and Europe showed no excess in all heart disease or cardiovascular disease. In the most recent study in the United States, an internal analysis, that is, within the cohort itself, with no lag time, showed that the exposure group 15–35 mg/m3-years yielded a significantly increased risk for heart disease; however, there was no evidence of increasing risk with increasing exposure for any of the exposure categories. In contrast to environmental studies, the results of cohort mortality studies do not demonstrate that airborne occupational exposure to carbon black and titanium dioxide particulates increases cardiovascular disease mortality. The lack of a relationship between carbon black and titanium dioxide and CVD mortality suggests that the associations reported in air pollution studies may not be driven by the particulate component.
Collapse
Affiliation(s)
- Robert J. McCunney
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Robert J. McCunney
| | - Mei Yong
- MY EpiConsulting, Duesseldorf, Germany
| | | | - Peter Morfeld
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research of Cologne University Hospital, Cologne, Germany
| |
Collapse
|
4
|
Ladics GS, Price O, Kelkar S, Herkimer S, Anderson S. A Weight-of-the-Evidence Approach for Evaluating, in Lieu of Animal Studies, the Potential of a Novel Polysaccharide Polymer to Produce Lung Overload. Chem Res Toxicol 2021; 34:1430-1444. [PMID: 33881304 DOI: 10.1021/acs.chemrestox.0c00301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The United States Environmental Protection Agency (EPA) is concerned about the respiratory effects caused by respirable particles of water-insoluble high molecular weight polymers. The EPA has proposed a tiered approach to evaluate polymer lung overload, a kinetic event. Kinetic polymer lung overload in itself is not necessarily adverse, however, inhalation of respirable particulate matter can have adverse effects (i.e., inflammation, fibrosis, etc.). If Tier I testing demonstrates that particles may reach the distal lung (i.e., a non-negligible amount of respirable particles/droplets ≤10 μm in diameter and lack of biosolubility), then animal inhalation testing in Tiers II-IV would be requested. In silico, in chemico, and in vitro alternatives should be considered versus in vivo testing for animal welfare purposes. An in chemico measure of biosolubility was used to demonstrate that a novel α-1,3-glucan polysaccharide, made by enzymatic polymerization of glucose from sucrose, is biosoluble and fits a simple exponential decay model with a half-life on the order of 66 days. The multiple-path particle dosimetry (MPPD) in silico model was used to predict lung burden for the novel α-1,3-glucan polysaccharide. MPPD was validated with measurements in rats exposed to a toner particulate and showed good agreement with lung burden measurements. A simulated 24 month rat exposure yielded 10-20 times less lung burden for the polysaccharide compared to the toner at equivalent exposure concentrations. The MPPD model was refined to include biosolubility data for the polysaccharide polymer. Data for amorphous silica were used to validate the clearance model, and the model incorporating dissolution predicted the amorphous silica lung burden within 20% of measured values. Human equivalent concentrations (HECs) were calculated for each toner rat exposure concentration. HECs were also determined for the polysaccharide at exposure concentrations yielding the same predicted internal doses as the toner. The in vitro, in chemico and in silico studies described here for the novel polysaccharide provide a useful weight of evidence approach in the absence of animal studies for the evaluation of polymer substances where polymer lung overload may be a concern.
Collapse
Affiliation(s)
- Gregory S Ladics
- IFF, 200 Powder Mill Road, Bldg. 353, Wilmington, Delaware 19803, United States
| | - Owen Price
- Applied Research Associates, Inc., 801 N. Quincy Street, Suite 700, Arlington, Virginia 22203, United States
| | - Shantanu Kelkar
- IFF, 200 Powder Mill Road, Bldg. 353, Wilmington, Delaware 19803, United States
| | - Scott Herkimer
- IFF, 200 Powder Mill Road, Bldg. 353, Wilmington, Delaware 19803, United States
| | - Shawn Anderson
- IFF, 200 Powder Mill Road, Bldg. 353, Wilmington, Delaware 19803, United States
| |
Collapse
|
5
|
Guseva Canu I, Fraize-Frontier S, Michel C, Charles S. Weight of epidemiological evidence for titanium dioxide risk assessment: current state and further needs. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:430-435. [PMID: 31420585 DOI: 10.1038/s41370-019-0161-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/29/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
We address here the importance of epidemiological evidence in risk assessment and decision-making in Europe. To illustrate this, titanium dioxide (TiO2) was used as a model compound. TiO2 is widely used as an odorless white pigment and opacifying agent. A recent systematic review assessing the weight of evidence on the relationship between exposure to TiO2 (all forms) and cancer in humans questions the assumptions that TiO2 is an inert material of low toxicity. Based on this new data, France submitted a proposal to classify TiO2 as a possible human carcinogen under the European regulation. The European Chemicals Agency Risk assessment committee concluded that TiO2 (all forms) warrants a classification as a suspected human carcinogen via inhalation (Category-2) under the CLP regulation (for Classification, Labeling and Packaging of chemicals). No considerations was given to TiO2 particle size, which may affect human health effects. Consequently, further epidemiological studies are needed to assess possible associations between different physical-chemical characteristics of TiO2 exposures and their impact on human health. This would allow strengthening the evidence on which to build the most appropriate regulation and to guaranty safe use given any exposure route of any TiO2 particle shape or size.
Collapse
Affiliation(s)
- Irina Guseva Canu
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland.
| | - Sandrine Fraize-Frontier
- Department of Risk Assessment, Methodology and Studies Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Cécile Michel
- Department of Risk Assessment, Chemical Evaluation Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Sandrine Charles
- Department of Risk Assessment, Chemical Evaluation Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| |
Collapse
|
6
|
Braakhuis HM, Gosens I, Heringa MB, Oomen AG, Vandebriel RJ, Groenewold M, Cassee FR. Mechanism of Action of TiO 2: Recommendations to Reduce Uncertainties Related to Carcinogenic Potential. Annu Rev Pharmacol Toxicol 2020; 61:203-223. [PMID: 32284010 DOI: 10.1146/annurev-pharmtox-101419-100049] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Risk Assessment Committee of the European Chemicals Agency issued an opinion on classifying titanium dioxide (TiO2) as a suspected human carcinogen upon inhalation. Recent animal studies indicate that TiO2 may be carcinogenic through the oral route. There is considerable uncertainty on the carcinogenicity of TiO2, which may be decreased if its mechanism of action becomes clearer. Here we consider adverse outcome pathways and present the available information on each of the key events (KEs). Inhalation exposure to TiO2 can induce lung tumors in rats via a mechanism that is also applicable to other poorly soluble, low-toxicity particles. To reduce uncertainties regarding human relevance, we recommend gathering information on earlier KEs such as oxidative stress in humans. For oral exposure, insufficient information is available to conclude whether TiO2 can induce intestinal tumors. An oral carcinogenicity study with well-characterized (food-grade) TiO2 is needed, including an assessment of toxicokinetics and early KEs.
Collapse
Affiliation(s)
- Hedwig M Braakhuis
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands;
| | - Ilse Gosens
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands;
| | - Minne B Heringa
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands; .,Current affiliation: Reckitt Benckiser, 1118 BH Schiphol, The Netherlands
| | - Agnes G Oomen
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands;
| | - Rob J Vandebriel
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands;
| | - Monique Groenewold
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands;
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands; .,Institute for Risk Assessment Sciences, University of Utrecht, 3508 TD Utrecht, The Netherlands
| |
Collapse
|
7
|
Dréno B, Alexis A, Chuberre B, Marinovich M. Safety of titanium dioxide nanoparticles in cosmetics. J Eur Acad Dermatol Venereol 2019; 33 Suppl 7:34-46. [DOI: 10.1111/jdv.15943] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Affiliation(s)
- B. Dréno
- Onco‐Dermatology Department CHU Nantes CRCINA University Nantes Nantes France
| | - A. Alexis
- Department of Dermatology Icahn School of Medicine at Mount Sinai New York NY USA
| | - B. Chuberre
- L'Oréal Cosmetique Active International Levallois‐Perret France
| | - M. Marinovich
- Department of Pharmacological and Biomolecular Sciences University of Milan Milan Italy
| |
Collapse
|
8
|
A Review and Meta-Analysis of Occupational Titanium Dioxide Exposure and Lung Cancer Mortality. J Occup Environ Med 2018. [DOI: 10.1097/jom.0000000000001314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Warheit DB, Kreiling R, Levy LS. Relevance of the rat lung tumor response to particle overload for human risk assessment-Update and interpretation of new data since ILSI 2000. Toxicology 2016; 374:42-59. [PMID: 27876671 DOI: 10.1016/j.tox.2016.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022]
Abstract
The relevance of particle-overload related lung tumors in rats for human risk assessment following chronic inhalation exposures to poorly soluble particulates (PSP) has been a controversial issue for more than three decades. In 1998, an ILSI (International Life Sciences) Working Group of health scientists was convened to address this issue of applicability of experimental study findings of lung neoplasms in rats for lifetime-exposed production workers to PSPs. A full consensus view was not reached by the Workshop participants, although it was generally acknowledged that the findings of lung tumors in rats following chronic inhalation, particle-overload PSP exposures occurred only in rats and no other tested species; and that there was an absence of lung cancers in PSP-exposed production workers. Since the publication of the ILSI Workshop report in 2000, there have been important new data published on the human relevance issue. A thorough and comprehensive review of the health effects literature on poorly soluble particles/lung overload was undertaken and published by an ECETOC (European Centre for Ecotoxicology and Toxicology of Chemicals) Task Force in 2013. One of the significant conclusions derived from that technical report was that the rat is unique amongst all species in developing lung tumors under chronic inhalation overload exposures to PSPs. Accordingly, the objective of this review is to provide important insights on the fundamental differences in pulmonary responses between experimentally-exposed rats, other experimental species and occupationally-exposed humans. Briefly, five central factors are described by the following issues. Focusing on these five interrelated/convergent factors clearly demonstrate an inappropriateness in concluding that the findings of lung tumors in rats exposed chronically to high concentrations of PSPs are accurate representations of the risks of lung cancer in PSP-exposed production workers. The most plausible conclusion that can be reached is that results from chronic particle-overload inhalation studies with PSPs in rats have no relevance for determining lung cancer risks in production workers exposed for a working lifetime to these poorly soluble particulate-types.
Collapse
Affiliation(s)
| | - R Kreiling
- Clariant Produkte (DE) GmbH, Sulzbach, Germany
| | - L S Levy
- Cranfield University, Cranfield, UK
| |
Collapse
|
10
|
Development of linear and threshold no significant risk levels for inhalation exposure to titanium dioxide using systematic review and mode of action considerations. Regul Toxicol Pharmacol 2016; 80:60-70. [DOI: 10.1016/j.yrtph.2016.05.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 11/21/2022]
|
11
|
Wallin H, Kyjovska ZO, Poulsen SS, Jacobsen NR, Saber AT, Bengtson S, Jackson P, Vogel U. Surface modification does not influence the genotoxic and inflammatory effects of TiO2 nanoparticles after pulmonary exposure by instillation in mice. Mutagenesis 2016; 32:47-57. [PMID: 27658823 PMCID: PMC5180170 DOI: 10.1093/mutage/gew046] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The influence of surface charge of nanomaterials on toxicological effects is not yet fully understood. We investigated the inflammatory response, the acute phase response and the genotoxic effect of two different titanium dioxide nanoparticles (TiO2 NPs) following a single intratracheal instillation. NRCWE-001 was unmodified rutile TiO2 with endogenous negative surface charge, whereas NRCWE-002 was surface modified to be positively charged. C57BL/6J BomTac mice received 18, 54 and 162 µg/mouse and were humanely killed 1, 3 and 28 days post-exposure. Vehicle controls were tested alongside for comparison. The cellular composition and protein concentration were determined in bronchoalveolar lavage (BAL) fluid as markers for an inflammatory response. Pulmonary and systemic genotoxicity was analysed by the alkaline comet assay as DNA strand breaks in BAL cells, lung and liver tissue. The pulmonary and hepatic acute phase response was analysed by Saa3 mRNA levels in lung tissue or Saa1 mRNA levels in liver tissue by real-time quantitative polymerase chain reaction. Instillation of NRCWE-001 and -002 both induced a dose-dependent neutrophil influx into the lung lining fluid and Saa3 mRNA levels in lung tissue at all assessed time points. There was no statistically significant difference between NRCWE-001 and NRCWE-002. Exposure to both TiO2 NPs induced increased levels of DNA strand breaks in lung tissue at all doses 1 and 28 days post-exposure and NRCWE-002 at the low and middle dose 3 days post-exposure. The DNA strand break levels were statistically significantly different for NRCWE-001 and -002 for liver and for BAL cells, but no consistent pattern was observed. In conclusion, functionalisation of reactive negatively charged rutile TiO2 to positively charged did not consistently influence pulmonary toxicity of the studied TiO2 NPs.
Collapse
Affiliation(s)
- Håkan Wallin
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark.,Institute of Public Health, University of Copenhagen, DK-1353 Copenhagen K, Denmark and
| | - Zdenka O Kyjovska
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Sarah S Poulsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Anne T Saber
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Stefan Bengtson
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Petra Jackson
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark, .,Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
In vivo micronucleus studies with 6 titanium dioxide materials (3 pigment-grade & 3 nanoscale) in orally-exposed rats. Regul Toxicol Pharmacol 2016; 74:64-74. [DOI: 10.1016/j.yrtph.2015.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 01/01/2023]
|
13
|
Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues. Food Chem Toxicol 2015; 85:138-47. [PMID: 26362081 DOI: 10.1016/j.fct.2015.07.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 11/20/2022]
Abstract
The basic tenets for assessing health risks posed by nanoparticles (NP) requires documentation of hazards and the corresponding exposures that may occur. Accordingly, this review describes the range and types of potential human exposures that may result from interactions with titanium dioxide (TiO2) particles or NP - either in the occupational/workplace environment, or in consumer products, including food materials and cosmetics. Each of those applications has a predominant route of exposure. Very little is known about the human impact potential from environmental exposures to NP - thus this particular issue will not be discussed further. In the workplace or occupational setting inhalation exposure predominates. Experimental toxicity studies demonstrate low hazards in particle-exposed rats. Only at chronic overload exposures do rats develop forms of lung pathology. These findings are not supported by multiple epidemiology studies in heavily-exposed TiO2 workers which demonstrate a lack of correlation between chronic particle exposures and adverse health outcomes including lung cancer and noncancerous chronic respiratory effects. Cosmetics and sunscreens represent the major application of dermal exposures to TiO2 particles. Experimental dermal studies indicate a lack of penetration of particles beyond the epidermis with no consequent health risks. Oral exposures to ingested TiO2 particles in food occur via passage through the gastrointestinal tract (GIT), with studies indicating negligible uptake of particles into the bloodstream of humans or rats with subsequent excretion through the feces. In addition, standardized guideline-mandated subchronic oral toxicity studies in rats demonstrate very low toxicity effects with NOAELs of >1000 mg/kg bw/day. Additional issues which are summarized in detail in this review are: 1) Methodologies for implementing the Nano Risk Framework - a process for ensuring the responsible development of products containing nanoscale materials; and 2) Safe-handling of nanomaterials in the laboratory.
Collapse
|
14
|
Makumire S, Chakravadhanula VSK, Köllisch G, Redel E, Shonhai A. Immunomodulatory activity of zinc peroxide (ZnO₂) and titanium dioxide (TiO₂) nanoparticles and their effects on DNA and protein integrity. Toxicol Lett 2014; 227:56-64. [PMID: 24631018 DOI: 10.1016/j.toxlet.2014.02.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 01/27/2023]
Abstract
Nanoparticles that are made from zinc and titanium oxide have found widespread applications, including their use in sunscreens. However, there is little information regarding their effects on immune cells. In the current study, we synthesized charge stabilized and "ligand free" colloid stable ZnO₂ and TiO₂ nanoparticles. Most previous published studies commonly used ZnO and TiO₂ nanoparticles. In the current study we investigated the comparative toxicity of ZnO₂ and TiO₂ nanoparticles. Therefore, our results based on ZnO₂ which is more oxidative than ZnO provides novel data on the possible toxicity of this species of nanoparticles. First, we investigated the immunomodulatory action of these nanoparticles on human peripheral blood mononuclear cells and their effects on DNA and protein integrity. A minimum concentration of ZnO₂ nanoparticles of 1 μg/mL inhibited the production of two inflammatory cytokines: interleukin-1-β and interleukin 6 by peripheral blood mononuclear cells in the presence of lipopolysaccharides. On the other hand, TiO₂ nanoparticles at a concentration range of 0.1-100 μg/mL did not present apparent toxicity to the peripheral blood mononuclear cells. ZnO₂ nanoparticles at a minimum concentration of 2 μg/mL caused DNA damage in vitro. TiO₂ nanoparticles at a concentration range of 25-100 μg/mL only caused marginal DNA damage. ZnO₂ nanoparticles at a minimum concentration of 5 μg/mL were capable of promoting aggregation of malate dehydrogenase, and facilitated its degradation at higher concentrations. Exposure of malate dehydrogenase to TiO₂ at a concentration range of 2.5-15 μg/mL did not alter the solubility of malate dehydrogenase. Altogether, our findings suggest that charge stabilized ZnO₂ nanoparticles are nascent and interact with DNA and protein and may be harmful to immune cells. In addition, the propensity of ZnO₂ nanoparticles to promote protein aggregation could facilitate the production of protein complexes that may interfere with normal immune functions.
Collapse
Affiliation(s)
- Stanely Makumire
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Venkata S K Chakravadhanula
- Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Gabriele Köllisch
- Department of Parasitology, Faculty of Biology, Philipps University, Marburg, Germany; Institute of Immunology, Philipps University, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Engelbert Redel
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Karlsruhe Institute of Technology (KIT), Institute of Functional Surfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa; Current address: Department of Biochemistry, School of Mathematics & Natural Sciences, University of Venda, South Africa.
| |
Collapse
|
15
|
Interspecies Comparisons of Pulmonary Responses to Fine and/or Nanoscale Particulates. Nanotoxicology 2014. [DOI: 10.1201/b16562-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Warheit DB. How to measure hazards/risks following exposures to nanoscale or pigment-grade titanium dioxide particles. Toxicol Lett 2013; 220:193-204. [PMID: 23603385 DOI: 10.1016/j.toxlet.2013.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 10/26/2022]
Abstract
Due to its multifunctional applications, titanium dioxide particles have widespread use in commerce. The particle-types function as sources of pigment color, in food products, anti-bacterial components, ultraviolet radiation scavengers, catalysts, as well as in cosmetics. Because of its inherent properties in a diverse number of products, exposures may occur via any of the major point-of-entry routes, i.e., inhalation, oral or dermal. Although the majority of TiO2 applications are known to exist in the pigment-grade form, nanoscale forms of TiO2 are also common components in several products. This brief review is designed to identify relevant toxicology and risk-related issues which inform health effects assessments on the various forms of titanium dioxide particles. While there has been an abundance of hazard data generated on titanium dioxide particulates, many of the published reports have limited informational value for assessing health effects due, in large part, to shortcomings in experimental design issues, such as: (1) inadequate material characterization of test samples; (2) questionable relevance of experimental systems employed to simulate human exposures; (3) applications of generally high doses, exclusive focus on acute toxicity endpoints, and a lack of reference benchmark control materials, to afford interpretation of measured results; and/or (4) failure to recognize fundamental differences between hazard and risk concepts. Accordingly, a number of important toxicology issues are identified and integrated herein to provide a more comprehensive assessment of the health risks of different forms of pigment-grade and nanoscale titanium dioxide particles. It is important to note that particle-types of different TiO2 compositions may have variable toxicity potencies, depending upon crystal structure, particle size, particle surface characteristics and surface coatings. In order to develop a more robust health risk evaluation of TiO2 particle exposures, this review focuses on the following issues: (1) Introduction to TiO2 particle chemistry/functionality and importance of robust material characterization of test samples; (2) Implementation of meaningful hazard studies for gauging EHS safety issues – pulmonary bioassay data and development of the Nano Risk Framework for developmental nano TiO2 compounds; (3) Epidemiological study findings on titanium dioxide workers – the most heavily-exposed populations; (4) Methodologies for setting occupational exposure limits including benchmarking or bridging comparisons; and (5) The importance of particle overload data in the lungs of rats as it relates to gauging the relevance of health effects for humans. A comprehensive evaluation of the existing animal and human health data is a necessary prerequisite for facilitating accurate assessments of human health risks to TiO2 exposures.
Collapse
Affiliation(s)
- David B Warheit
- DuPont Haskell Global Centers for Health and Environmental Sciences, 1090 Elkton Road, Newark, DE 19714-0050, United States.
| |
Collapse
|
17
|
Ellis ED, Watkins JP, Tankersley WG, Phillips JA, Girardi DJ. Occupational exposure and mortality among workers at three titanium dioxide plants. Am J Ind Med 2013; 56:282-91. [PMID: 23143834 DOI: 10.1002/ajim.22137] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2012] [Indexed: 11/07/2022]
Abstract
BACKGROUND A cohort of 3,607 workers employed in three DuPont titanium dioxide production facilities was followed from 1935 through 2006. METHODS Combined and plant-specific cohort mortality was compared with the overall US population and other DuPont employees. The relationships between selected causes of death and annual cumulative exposures to titanium dioxide and chloride were investigated using Poisson regression methods to examine trends with increasing exposure. RESULTS Among the 833 deaths, no causes of deaths were statistically significantly elevated either overall or plant-specific when compared to the US population. Compared to DuPont workers, statistically significantly elevated SMRs for all causes, all cancers, and lung cancers were found driven by the workers at the oldest plant. Comparing increasing exposure groups to the lowest group, disease risk did not increase with exposure. CONCLUSIONS There was no indication of a positive association between occupational exposure and death from all causes, all cancers, lung cancers, non-malignant respiratory disease, or all heart disease.
Collapse
Affiliation(s)
- Elizabeth D Ellis
- Center for Epidemiologic Research, Oak Ridge Associated Universities, Oak Ridge, TN 37831-0117, USA.
| | | | | | | | | |
Collapse
|
18
|
Mithril C, Dragsted LO. Safety evaluation of some wild plants in the New Nordic Diet. Food Chem Toxicol 2012; 50:4461-7. [DOI: 10.1016/j.fct.2012.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/11/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
|
19
|
A Panel Study for Cardiopulmonary Effects Produced by Occupational Exposure to Inhalable Titanium Dioxide. J Occup Environ Med 2012; 54:1389-94. [DOI: 10.1097/jom.0b013e3182611a49] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Jackson P, Halappanavar S, Hougaard KS, Williams A, Madsen AM, Lamson JS, Andersen O, Yauk C, Wallin H, Vogel U. Maternal inhalation of surface-coated nanosized titanium dioxide (UV-Titan) in C57BL/6 mice: effects in prenatally exposed offspring on hepatic DNA damage and gene expression. Nanotoxicology 2011; 7:85-96. [PMID: 22117692 DOI: 10.3109/17435390.2011.633715] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We investigated effects of maternal pulmonary exposure to titanium dioxide (UV-Titan) on prenatally exposed offspring. Time-mated mice (C57BL/6BomTac) were inhalation exposed (1 h/day to 42 mg UV-Titan/m(3) aerosolised powder or filtered air) during gestation days (GDs) 8-18. We evaluated DNA strand breaks using the comet assay in bronchoalveolar lavage (BAL) cells and livers of the time-mated mice (5 and 26-27 days after inhalation exposure), and in livers of the offspring (post-natal days (PND) 2 and 22). We also analysed hepatic gene expression in newborns using DNA microarrays. UV-Titan exposure did not induce DNA strand breaks in time-mated mice or their offspring. Transcriptional profiling of newborn livers revealed changes in the gene expression related to the retinoic acid signalling pathway in the females, while gene expression in male offspring was unaffected. Changes may be a secondary response to maternal inflammation although no direct link was evident through gene expression analysis.
Collapse
Affiliation(s)
- Petra Jackson
- National Research Centre for the Working Environment, DK- 2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|